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Abstract. We consider the compu-
tational complexity of the Market
equilibrium problem by exploring the
structural properties of the Leontief
exchange economy. We prove that, for
economies guaranteed to have a mar-
ket equilibrium, finding one with max-
imum social welfare or maximum indi-
vidual welfare is NP-hard. In addition,
we prove that counting the number of
equilibrium prices is #P-hard.

Keywords Computational Complexity,
NP-hardness, Market Equilibrium, Leon-
tief Economy

1 Introduction

The mathematical proof of Arrow and Debreu on
the price equilibrium of exchange markets [1] un-
der a set of quite mild assumptions has provided
economics with tools for rigorous studies of its
subject matters. Scarf [15] designed a first algo-
rithm and proved its convergence to such equi-
librium prices in the limit that showed the pos-
sibility economic eqiulibrium state can indeed be
evaluated. Subsequently, economists, mathemati-
cians and operations researchers studied com-
putational methods for equilibrium price with
many approaches such as closed form formulas,
numerical methods, as well as mathematical pro-
gramming solutions, for different models of utility
functions. In a recent work of Deng, Papadim-
itriou and Safra explicitly called for a algorith-
mic complexity study of the problem, and devel-
oped interesting complexity results and approx-
imation algorithms for several classes of agent
utility functions [7]. There has since been a surge

of algorithmic study for computation of the price
equilibrium problem with continuous variables,
discovering and re-discovering polynomial time
algorithms for interesting classes of agent utility
functions [9, 13, 8, 12, 10, 16, 2, 3]. However,
as pointed out by Papadimitriou [14], hardness
computational results are difficult for the prob-
lem because of the guaranteed existence of equi-
librium price for the continuous variable cases un-
der quite mild assumptions on utility functions.
Indeed, the past known hardness results [7] for
equilibrium price are all for indivisible goods.

A recent surprising result by Codenotti,
Saberi, Varadarajan and Ye [4] proved that com-
puting an market equilibrium of Leontief econ-
omy with certain properties is NP-hard, for which
economy equilibrium may not exist at all. In-
formally, in a Leontief economy, each agent de-
mands a bundle of goods proportional to a con-
stant vector a = (a1, a2, ..., an)T . It was known
that polynomial-time algorithms existed to com-
pute the market equilibria of Leontief economy
in Fisher setting [5]. The recent hardness results
were developed through a one-to-one correspon-
dence between the market equilibria in a special
case of Leontief economy and the Nash equilib-
ria in bi-matrix games, initially discovered by
Ye [17]. With that connection, NP-hard results
in bi-matrix game [11] were carried over to the
market equilibrium problem. Cases led to NP-
hardness include: (1) the uniqueness of market
equilibria; (2) The existence of equilibrium with
positive prices on a given set of goods; (3) The
existence of equilibrium with at least (or at most)
k goods positive priced (c.f. [4]). Moreover, such
results can be extended to prove the NP-hardness
of deciding the existence of an equilibrium for
Leontief economy (which is known not to have
an equilibrium for some cases).

Our work tries to explore further the compu-
tational complexity issues of Arrow-Debreu equi-
librium price, by fully exploring the structural
properties of the Leontief economy, which is de-
fined in Section 2. In Section 3, we focus on the
pairing model and discuss social welfare issues of
the equilibrium. We prove that it is NP-hard to
compute the best market equilibrium in Leontief
economies, in terms of social utility, even when
we are restricted to cases where the existence
of market price equilibrium is guaranteed. Ob-
viously the restriction to pairing model has clear
structural properties that allow NP-hardness re-
sults be easily proven. The same holds if more
general utility function classes are considered. In
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Section 4, we prove the NP-hardness of maximiz-
ing individual utilities for the general model of
Leontief economy. An especially interesting re-
sult is a #P -hard proof of counting the num-
ber of market equilibrium price sets. Our hard-
ness proofs are self-sustained and do not rely on
the connection to the NP-hard problems in Nash
equilibria.

2 Exchange Market Equilibria and

Utility Function Models

We consider an exchange market which consists
of n divisible goods and m trading agents. Each
trader comes to the market with an initial en-
dowment of goods, denoted by a vector ei ∈ R

n
+

for each trader i. W.l.o.g., we assume that the to-
tal amount of each good is normalized to 1, i.e.,
m
∑

i=1

ei
j = 1, (1 ≤ j ≤ n).

Each trader has a utility function, representing
its preference to different bundle of goods, which
is denoted by a function ui(·) : R

n
+ 7→ R+.

At the market, the traders exchange their
goods to maximized their utilities, according to
the market price. They sell their initial endow-
ments and buy their favorite goods. At a price
p ∈ R

n
+, trader i solves the following optimiza-

tion problem:

maxui(x
i) s.t.

〈

p, xi
〉

≤
〈

p, ei
〉

, xi ∈ R
n
+

The market equilibrium is defined by the fol-
lowing requirement:

Definition 1. An Arrow-Debreu equilibrium in

an exchange economy is a price vector p̄ ∈ R
n
+

and distributions of goods
{

x̄i ∈ R
n
+, i = 1, ..,m

}

,

such that for all 1 ≤ i ≤ n,

x̄i ∈ argmax
{

ui(x
i) |

〈

p, xi
〉

≤
〈

p, ei
〉

, xi ≥ 0
}

,

and for all 1 ≤ j ≤ n,

m
∑

i=1

x̄i
j ≤ 1.

we focus on a special type of utility functions
called the Leontief utility function.

2.1 Leontief Economy

A Leontief utility function ui can be character-
ized by a vector ai ∈ R

n
+. The trader’s utility on

a bundle of goods xi ∈ R
n
+ is given by

ui(x
i) = min

1≤j≤n

{

xi
j

ai
j

| ai
j 6= 0

}

In other words, a trader with a Leontief utility
function demands bundle of goods proportional
to ai. We can define a response function di to
present trader i’s response with respect to a cer-
tain price p:

di(p) =











0, if
〈

p, ai
〉

=
〈

p, ei
〉

= 0;
+∞, if

〈

p, ai
〉

= 0,
〈

p, ei
〉

6= 0;
〈p,ei〉
〈p,ai〉 , otherwise.

Therefore, given a price p, trader i’s demand to
good j is di(p)a

i
j . Obviously, ui(di(p)a

i) = di(p).
So di(p) can also be viewed as the trader i’s op-
timal utility under price p.

We adopt (A,E) to denote a Lenotief economy,
where A is an n ×m matrix whose i-th column
presents trader i’s demands, and E is an n ×m
matrix whose i-th column is trader i’s endow-
ments.

With these notations, the equilibrium point in
a Leontief economy is a pair of vectors (p, w) sat-
isfying that

wi = di(p), p ≥ 0, p 6= 0
Aw ≤ 1, pT (Aw − 1) = 0

3 Hardness of Optimizing Social

Welfare

In this section, We consider a social welfare func-
tion as a sum of individual utilities, i.e.,

∑m

j=1 uj .
Therefore, at an equilibrium state (p, w) for a
Leontief economy, the social welfare is

∑m

j=1 wj .
The best market equilibrium (p∗, w∗) for a Leon-
tief economy satisfies the following conditions:

∑

j≥1

w∗
j = max







∑

j≥1

wj | (p, w) is an equilibrium.







Similarly, we can define the worst market equi-

librium. We will show that it is NP-hard to find
the best or worst market equilibrium in Leontief
economies, even if the existence of an equilibrium
is guaranteed.

3.1 The Pairing Model

In this section, our study focuses on a spe-
cial pairing model introduced by Ye [17]. In the



model, there are equal number of traders and
goods and trader i holds one unit of good i ini-
tially. It has been proven to be very useful in
building the connection between bi-matrix games
and market equilibria [4].

In the pairing model for a Leontief economy,
the response function of trader i is simplified to:

di(p) =







0, if pi = 0 =
〈

p, ai
〉

;
+∞, if pi 6= 0,

〈

p, ai
〉

= 0
pi/

〈

p, ai
〉

, otherwise.

This simplification introduces interesting
structures that make it easy for complexity
results to be established.

3.2 Worst Social Welfare Equilibrium

We formulate the worst social welfare equilibrium
as the following decision problem:

wT 1 ≤ r
s.t. wi = di(p), p ≥ 0, p 6= 0

Aw ≤ 1, pT (Aw − 1) = 0

For the pairing model,
〈

p, ei
〉

= pi. There-
fore pi = 0 implies wi = di(p) = 0, and vice
versa. Hence, the above complementary condition
pT (Aw − 1) is equivalent to wT (Aw − 1) = 0.

Theorem 1. In a Leontief economy, it is NP-

hard to decide whether there exists a market equi-

librium whose social welfare is less than an arbi-

trary number r, even if the existence of an equi-

librium is already known.

Proof. Given a graph G = (V,E), we construct
a 2n× 2n matrix

A =

(

H 1
n
In

kIn 0

)

where H = (hij) is defined by

hij =







1 + 1
n
, if i = j

1, if i 6= j and (i, j) ∈ E
0, otherwise.

We claim that G = (V,E) has a clique of size k
if and only if the worst social welfare of the above
Leontief economy is no more than r = kn

kn+1 .

Split the vector w to w = (uT , vT )T and let

Su =

n
∑

i=1

ui, Sv =

n
∑

i=1

vi, Sw = Su + Sv

For sufficiency, let (p, w) be an equilibrium
point satisfying that

wi = di(p), Sw ≤ kn/(kn+ 1),
Aw ≤ 1, pT (Aw − 1) = 0

We prove the existence of a k-clique in
G = (V,E) by the following four steps:

1. Sw ≥ kn−1
kn

:
Since Aw ≤ 1, ui ≤

1
k

for all i. By the comple-
mentary condition, there exists ui 6= 0. Hence,

1 = (1 + 1
n
)ui +

∑

j 6=i

hijuj + 1
n
vi

≤ 1
n
ui + Sw ≤ 1

kn
+ Sw

2. Sv ≤ k−1
kn+1 :

By the complementary condition, vi 6= 0 im-
plies ui = 1/k. Then for all vi 6= 0:

1 = (1+
1

n
)ui+

∑

j 6=i

hijuj +
1

n
vi ≤ (1+

1

n
)Su+

1

n
vi

Let µ = # {j | vj 6= 0}, we have:

1 ≤ (1+
1

n
)Su+

1

µn
Sv = (1+

1

n
)Sw−(1+

1

n
−

1

µn
)Sv

which implies

Sv ≤ (1+
1

n
)Sw−1 ≤

n+ 1

n

kn

kn+ 1
−1 =

k − 1

kn+ 1

3. # {i | ui > 0} ≥ k:
If | {i | ui > 0} | < k, there exists a ui such that

kui ≥
k

k−1Su = k(Sw−Sv)
k−1 ≥ k

k−1 (kn−1
kn

− k−1
kn+1 )

= kn−1
(k−1)n − k

kn+1 > 1

It is a contradiction to ui ≤
1
k
.

4. ui ≥
n

kn+1 for all ui > 0:
If ui > 0, the complementary condition shows

that:

1 = (1 + 1
n
)ui +

∑

j 6=i

hijuj + 1
n
vi

≤ 1
n
ui + Sw ≤ 1

n
ui + kn

kn+1

which implies

ui ≥ n(1 −
kn

kn+ 1
) =

n

kn+ 1



The last two assertions prove that there must
exist exactly k indices {i1, i2, ..., ik} such that
they are the only non-zero entries in w and
uil

= n
kn+1 for all 1 ≤ l ≤ k.

All the inequalities in ui 6= 0 and

1 = (1 +
1

n
)ui +

∑

j 6=i

hijuj +
1

n
vi ≤

1

n
ui + Sw

hold in equality. Therefore, all gij = 1 for
non-zero ui and uj . Therefore, the vertices
{i1, i2, ..., ik} form a k-clique.

The necessity is easy. If the vertices {1, 2, ..., k}
form a k-clique in G = (V,E), set wi = n

kn+1 and
pi = 1 for i ≤ k and wj = pj = 0 for j > k. Then
(p, w) satisfies

wi = di(p), Sw ≤ kn/(kn+ 1),
Aw ≤ 1, pT (Aw − 1) = 0

The economies defined above always admits an
equilibrium: Let u1 = 1/k, v1 = n−n/k−1/k and
any other components of w be zeros. Let p1 = 1
and pn+1 = 1 − 1/k − 1/kn. It is easy to verify
that (p, w) is an equilibrium. �

3.3 Best Social Welfare Equilibrium

The above proof has prepared us with techniques
for studying the more interesting maximization
problem defined as follows.

max wT 1

s.t. wi = di(p), p ≥ 0, p 6= 0
Aw ≤ 1, pT (Aw − 1) = 0

Theorem 2. In a Leontief economy, it is NP-

hard to decide whether there exists a market equi-

librium whose social welfare is greater than an

arbitrary number r, even if the existence of an

equilibrium is already known.

Proof. We carry out the proof by a reduction
from CLIQUE. Given a graph G = (V,E) with n
vertices and an integer k ≤ n, we can construct
a matrix A using the construction in the proof of
Theorem 1. Define an (2n+ 2)× (2n+ 2) matrix
B as follows:

B =





A 0 0
1T 0 ε
0T 1 0.5





where ε = 1
2(kn+1) .

Let z = (wT , x, y)T ∈ R
2n+2, in which w ∈

R
2n, x, y ∈ R. Let Sw =

2n
∑

i=1

wi and Sz = Sw +

x+ y. Consider the following problem:

maxSz

s.t. zi = di(p), p ≥ 0, p 6= 0
Bz ≤ 1, pT (Bz − 1) = 0

We claim that there is a k-clique in G if and
only if there is an equilibrium (p, z) such that
Sz ≥ 2 + kn

kn+1 .
The necessity is easy. For each node i in the k-

clique, set ui = n
kn+1 and set any other variables

in w zeros. Set x = 0 and y = 2.
For the sufficiency, assume that there exists an

equilibrium (p, z) such that:

zi = di(p), Sz ≥ 2 + kn
kn+1 ,

Bz ≤ 1, pT (Bz − 1) = 0

If w = 0, then Sz ≤ 2 because x + 0.5y ≤ 1,
a contradiction. Therefore w 6= 0. Since Bz ≤ 1,
we have Sw ≤ 1 and x ≤ 1. If y = 0, Sz =
Sw +x ≤ 2, a contradiction. Therefore y > 0. By
the complementary condition, x = 1 − 0.5y.

From Bz ≤ 1, we have Sw + yε ≤ 1. Note that
ε = 1

2(kn+1) , then

Sz = Sw + x+ y = Sw + (1 − 0.5y) + y
= Sw + 1 + 0.5y ≤ Sw + 1 + (1 − Sw)/(2ε)
= 2 + kn− knSw

With our assumption that Sz ≥ 2 + kn
kn+1 , it fol-

lows that knSw ≤ kn − kn
kn+1 . Therefore, Sw ≤

kn
kn+1 .

By the assertion in the proof of Theorem 1,
there exists a k-clique in G.

Similar to the end of Theorem 1, we can find an
equilibrium for the economy defined above. �

4 Hardness of Optimizing

Individual Utility

In this section, we will show that it is NP-hard
to find the equilibrium which maximize a certain
trader’s utility, even if the existence of an equilib-
rium is already known. We also prove that count-
ing the number of equilibria is #P -complete.

4.1 Min-Max of Individual Utility and

Count the Number of Equilibria

Let φ be a Boolean formula in 3-conjunctive nor-
mal form. Let V = {x1, x2, ..., xn} be its set of
variables, L =

{

l01, l
1
1, l

0
2, l

1
2, ..., l

0
n, l

1
n

}

the set of
corresponding literals and C = {c1, c2, ..., cm} its
set of clauses.



We will construct a Lenotief economy (A,E)
for φ. Let B denote the set of traders and G de-
note the set of goods.

There are |V |+ |L|+ 1 = 3n+ 1 traders in the
economy, denoted by

B = {x1, x2, ..., xn}∪
{

l01, l
1
1, l

0
2, l

1
2, ..., l

0
n, l

1
n

}

∪{φ}

There are |V | + |L| + |C| = 3n + m goods in
the economy. We also denote them by

G = {x1, x2, ..., xn} ∪
{

l01, l
1
1, l

0
2, l

1
2, ..., l

0
n, l

1
n

}

∪{c1, ..., cm}

The ambiguity of using the same symbol for
both the trades and the goods should be made
clear from the context.

Let A(b, g) denote trader b’s demand for good g
in proportion and E(b, g) denote trader b’s initial
endowment of good g. Then the economy (A,E)
is defined as follows:

A(b, g) =

���������� ���������

1, if b = xi, g = lji , 1 ≤ i ≤ n, j = 0, 1;

1, if b = lji , g = xi, 1 ≤ i ≤ n, j = 0, 1;

1, if b = g = lji , 1 ≤ i ≤ n, j = 0, 1;

1, if b = lji , g = ck, l
j

i ∈ ck, ∀i, j, k;

2, if b = lji , g = ck, l
j

i /∈ ck
and l1−j

i ∈ ck, ∀i, j, k;
0, otherwise.

E(b, g) =

���� ���
1, if b = g = lji , ∀i, j

1/n, if b ∈ V, g ∈ V ∪ L
5, if b = φ, g ∈ C
0, otherwise.

In the economy (A,E), the total amount of
good g is 1 (for g ∈ V ), 2 (for g ∈ L) or 5 (for
g ∈ C).

Theorem 3. For a Leontief economy and an ar-

bitrary number r, it is NP-hard to decide whether

there exists an equilibrium in which the maximal

individual utility is less than r.

Proof. We prove the theorem by showing that φ
is satisfiable if and only if there exists an equi-
librium in the corresponding Leontief economy
such that the maximal individual utility in the
equilibrium is no more than 1.

For the necessity, let there be a truth assign-
ment (l1, ..., ln) satisfies φ. Set P (g) = 1 for all
g = lji = li and P (g) = 0 otherwise. If b = φ

or b = lji 6= li, the initial endowment of b would
be valued as zero. By our convention of defining
the response function, those agents will not want
anything and their utility values will be zero.

If b = xi, then E(b, g) = 1/n for all g ∈ V ∪L.
It follows that the value of initial endowment of

b is 1
n
× n = 1 as P (g) = 1 for g = lji = li

and P (g) = 0 otherwise. If b = lji = li, then the
value of initial endowment of b is also 1 as both
E(b, g) = 1 and P (g) = 1 for b = g = lji = li.

By definition of Leontief utility functions, we
derive the utilities U(b) of agent b as follows:

U(b) =















1, when b = xi, ∀1 ≤ i ≤ n

1, when b = lji = li, ∀1 ≤ i ≤ n

0, when b = lji 6= li, ∀1 ≤ i ≤ n
0, when b = φ

For the Leontief economy, the trader b’s de-
mand for good g is A(b,g)U(b). Therefore,
∑

b A(b, g)U(b) is the total amount of consumed
good g. And

∑

g A(b, g)P (g)U(b) is the total
amount of money spent by trader b. The equi-
librium conditions are:

1.
∑

g A(b, g)P (g)U(b) ≤
∑

g E(b, g)P (g), ∀b ∈ B

2.
∑

b A(b, g)U(b) ≤
∑

bE(b, g), ∀g ∈ G
3.

∑

g P (g)(
∑

bA(b, g)U(b) −
∑

b

E(b, g)) = 0

For the first set of inequalities, we only need
to consider those traders with endowment of non-
zero value under the price vector P defined above,
since other traders will demand nothing accord-
ing to the definition of the Leontief utility func-
tions.

1. For agent b: b = xi, it desires two types of
goods l0i and l1i , of which one’s price is zero
and another’s price is one. Therefore, with
one unit of wealth, it will acquire one unit
each of l0i and l1i .

2. For agent b: b = lji = li, it desires goods

g = xi and g = lji , g = ck such that lji ∈ ck, as

well as g = ck such that lji /∈ ck but l1−j
i ∈ ck.

All those goods cost zero except g = lji cost

one per unit. Therefore, b = lji will get one

unit of g = lji , one unit of xi, one unit of ck
if lji ∈ ck, and two units of g = ck if lji /∈ ck
but l1−j

i ∈ ck.

For the second set of inequalities, consider
goods in V ∪ L:

∑

bA(b, g)U(b) = 1 =
∑

bE(b, g), ∀g ∈ V
∑

bA(b, g)U(b) = 2 =
∑

bE(b, g), for g = lji = li
∑

bA(b, g)U(b) = 1 <
∑

bE(b, g), for g = lji 6= li

For goods in C, one unit of g = ck is desired
by each literal in ck that is true, two units of
g = ck is desired by each literal in ck that is



false. Since li’s, i = 1, 2, ..., n, is a satisfying as-
signment, there is a true literal in each ck of three
literals. Therefore, at most five units of g = ck are
desired. With 5 units of each type of such goods,
we have enough for them.

Finally, as the price of g = l1−j
i with li = lji

is zero, and the prices of all ck’s are all zero, we
have

∑

g

P (g)(
∑

b

A(b, g)U(b) −
∑

b

E(b, g)) = 0

For the sufficiency of the theorem, assume
there is an equilibrium (P,U) such that every
trader’s utility is no more than 1.

If P |V ∪L= 0, the value of initial endowments
of all traders in V ∪L will be zero. Then the price
of goods in C will be zero too. It is a contradic-
tion, so P |V ∪L 6= 0. Then the budget of every
trader in V is positive. Since any trader xi ∈ V
only wants the goods l0i and l1i . Therefore, either
P (l0i ) or P (l1i ) is positive. Otherwise, xi would
buy an infinite amount of them.

Assume P (lji ) > 0, then trader lji has positive
budget since its initial endowment is one unit of
lji . However, since lji is desired only by agent lji
and xi, the two units of goods lji must be bought
by them for the market clearance condition to
hold as its price is non-zero. Therefore, U(lji ) +
U(xi) = 2.

Since the maximal utility of any trader is no
more than 1, we must have U(lji ) = U(xi) = 1.
Notice that both trader l0i and trader l1i demand
good xi and the total amount of good xi is 1, we
have U(l0i ) + U(l1i ) ≤ 1.

Hence, for any 1 ≤ i ≤ n, U(lji

i ) = 1 and

U(l1−ji

i ) = 0 for some ji = 0, 1. The set of in-
dices {ji | 1 ≤ i ≤ n} naturally yields a truth as-
signment for φ: {xi = ji, i = 1, 2, ..., n}.

For any clause ck, assume w.o.l.g. ck = xi1 ∧
xi2 ∧ ¬xi3 . Then

U(l0i1 )+2U(l1i1 )+U(l0i2)+2U(l1i2 )+2U(l0i3 )+U(l1i3) ≤ 5

The above inequality corresponding to the clause
ck forces that in the truth assignment of xi1 , xi2

and xi3 derived above, one of them will make the
clause ck satisfied. Therefore the assignment de-
rived from the market equilibrium makes φ sat-
isfied. �

Remark 1. The above economy always admits an
equilibrium. Let P (g) = 1 for any g ∈ V ∪L and
P (g) = 0 for any g ∈ C. Then U(b) = 3/2 for any
b ∈ V , U(b) = 1/2 for any b ∈ L and U(φ) = 0.
It is easy to check (P,U) is an equilibrium. �

An important property of the market (A,E)
is that for any equilibrium (P,U) and all i ∈
{1, 2, ..., n}, either U(xi) ≥ 3/2, or U(xi) =
U(lji ) = 1 and U(l1−j

i ) = 0 for some j ∈ {0, 1}.

To see that, if both P (lji ) 6= 0 and P (l1−j
i ) 6= 0,

then U(lji ) +U(xi) = 2 and U(l1−j
i ) +U(xi) = 2

as shown above. Therefore U(lji ) = U(l1−j
i ). On

the other hand, U(l0i ) + U(l1i ) ≤ 1, also shown
above. It follows that U(xi) ≥ 3/2 in this case.

Alternatively, assume that P (lji ) 6= 0 but

P (l1−j
i ) = 0. Then, U(lji ) + U(xi) = 2 by the

former. Because of the latter, trader b = l1−j
i has

a zero initial wealth and U(l1−j
i ) = 0. Therefore

the one unit of xi must be all sold to b = lji since

it is desired only by b = lji and b = l1−j
i . There-

fore, U(lji ) = 1. In this case, U(xi) = 1.

So we can add n good to the market (A,E), de-
noted by Σ = {σ1, σ2, ..., σn}. Let E(φ, σi) = 5/4
and A(xi, σi) = 1 for all i. The newly added
goods σi forces that U(xi) ≤ 5/4. Hence, in
the modified economy (A,E), there is a one-to-
one correspondence to its equilibria and satisfi-
able truth assignments of the Boolean formula φ.
This correspondence proves the #P -complexity
of counting the number of equilibria in Leontief
economies:

Theorem 4. Counting the number of equilibria

in Leontief economies is #P -complete.

4.2 Maximizing Individual Utility

With similar technique in § 4.1, we can show the
NP-hardness of maximizing individual utility.

Theorem 5. For a trader in a Leontief economy

and an arbitrary number r, it is NP-hard to de-

cide whether there exists an equilibrium in which

his utility is greater than r.

Proof. We extend the economy M = (A,E)
in the previous subsection. Add n goods Θ =
{θ1, ..., θn} and a trader ψ to the market. We de-
fine A and E as follows:

A(b, g) =

��������������� ��������������

1, if b = xi, g = lji , 1 ≤ i ≤ n, j = 0, 1

1, if b = lji , g = xi, 1 ≤ i ≤ n, j = 0, 1

1, if b = g = lji , 1 ≤ i ≤ n, j = 0, 1

1, if b = lji , g = ck, l
j
i ∈ ck, ∀i, j, k

2, if b = lji , g = ck, l
j
i /∈ ck

and l1−j
i ∈ ck, ∀i, j, k

1, if b = xi, g = θi, ∀i
1, if b = ψ, g ∈ Θ
0, otherwise.



E(b, g) =

�������� �������

1, if b = g = lji , 1 ≤ i ≤ n, j = 0, 1
1/2n, if b ∈ V, g ∈ V ∪ L
1/2, if b = ψ, g ∈ V ∪ L
2, if b = xi, g = θi, ∀i
5, if b = φ, g ∈ C
0, otherwise.

We can declare that in any equilibrium (P,U),
U(ψ) ≥ 1 if and only if max

b∈V
{U(b)} ≤ 1. With

similar argument in the proof of Theorem 3, there
exists an equilibrium in which max

b∈V
{U(b)} ≤ 1 if

and only if the Boolean formula φ is satisfiable.
�

Remark 2. In the above economy, there always
exists an equilibrium (P,U) with the following
values:

U(b) =







3/2 when b ∈ V
1/2 when b ∈ L or b = ψ
0, otherwise.

P (g) =







2, when g ∈ Θ
1, when g ∈ V ∪ L
0 otherwise.

5 Conclusions

In this work, we prove that computing an equi-
librium with optimal social/individual welfare in
Leontief economies is NP-hard. In comparison,
a major result of Codenotti, Saberi, Varadara-
jan and Ye [4] states that finding the equilibrium
price is NP-hard. However, the economy they de-
fined may not have an equilibrium price at all.
The ultimate question remains open: what is the
computational complexity for finding an equilib-
rium price, given that the economy admits one.

In addition, we develop a #P-hard result for
counting the number of equilibrium prices. Our
#P-hard result does not depend on the connec-
tion of market equilibrium to Nash equilibrium
established by Codenotti, Saberi, Varadarajan
and Ye [4]. The understanding of structural prop-
erties of Leontief economy is indeed very impor-
tant in all the hardness proofs. We expect they
would be helpful in moving forward our under-
standing of computational complexity of market
equilibrium.
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