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Abstract

We consider Glauber dynamics on finite spin systems. The mixing time of Glauber dy-
namics can be bounded in terms of the influences of sites on each other. We consider three
parameters bounding these influences — «, the total influence on a site, as studied by Do-
brushin; o/, the total influence of a site, as studied by Dobrushin and Shlosman; and o, the
total influence on a site in any given context, which is related to the path-coupling method
of Bubley and Dyer. It is known that if any of these parameters is less than 1 then random-
update Glauber dynamics (in which a randomly-chosen site is updated at each step) is rapidly
mixing. It is also known that the Dobrushin condition o < 1 implies that systematic-scan
Glauber dynamics (in which sites are updated in a deterministic order) is rapidly mixing.
This paper studies two related issues, primarily in the context of systematic scan: (1) the
relationship between the parameters a, o’ and o, and (2) the relationship between proofs of
rapid mixing using Dobrushin uniqueness (which typically use analysis techniques) and proofs
of rapid mixing using path coupling. We use matrix-balancing to show that the Dobrushin-
Shlosman condition o’ < 1 implies rapid mixing of systematic scan. An interesting question
is whether the rapid mixing results for scan can be extended to the @ = 1 or o’ = 1 case.
We give positive results for the rapid mixing of systematic scan for certain o = 1 cases. As
an application, we show rapid mixing of systematic scan (for any scan order) for heat-bath
Glauber dynamics for proper g-colourings of a degree-A graph G when ¢ > 2A.

1 Introduction

A spin system consists of a set of sites and a set of spins. In this paper, both sets will be finite.
We use [n] = {1,...,n} to denote the set of sites, and C to denote the set of spins. A configuration
is an assignment of spins to sites, and Q% denotes the set of all configurations.

Sites interact locally, and these interactions specify the relative likelihood of possible (local)
sub-configurations. Taken together, these give a well-defined probability distribution, m, on the
set of configurations Q7. Glauber dynamics is a random walk on configurations that updates spins
one site at a time, and converges to 7. Before giving some examples, we formalise these concepts
in a way that will be useful for this paper.
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We use the following notation. If = is a configuration and j is a site then z; denotes the spin
at site j in x. For each site j, S; denotes the set of pairs of configurations that agree off of site j.
That is, S; is the set of pairs (z,y) € QF x QF such that, for all i # j, x; = y;. For each site j,
we will have a transition matrix Pl on the state space Q@+ which satisfies two properties:

1. Pl moves from one configuration to another by updating site j. That is, if PUl(z,y) > 0,
then (z,y) € S;.

2. Also, 7 is invariant with respect to Pl

Most theoretical results about Glauber dynamics consider random updates, in which the random
walk on configurations proceeds as follows. At each step, a site j is chosen uniformly at random.
The configuration is then updated according to transition matrix P!, Formally, random-update
Glauber dynamics corresponds to a Markov chain M with state space QT and transition matrix
P=(1/n)"_ PU.

For example, consider the spin system corresponding to proper g-colourings of an n-vertex
graph G with maximum degree A < g—2. The sites are the vertices 1,...,n. C is the set of colours
C ={1,...,q}. The distribution 7 assigns equal probability to all proper colourings (colourings
with no monochromatic edges) and it assigns zero probability to all improper colourings. In so-
called “heat-bath” Glauber dynamics, the transition matrix PU] makes the following transition
from a configuration x. Let C, denote the set of colours that are not assigned to neighbours of
site j in . Let z—Jc denote the configuration obtained from z by changing the spin at site j
to c. PUl makes a transition to a uniformly-chosen configuration in {z—Jc | ¢ € C,}. Another
example is the “Metropolis” Glauber dynamics for proper g-colourings of G. In this case, the
transition matrix P makes the following transition from z. A colour ¢ € C' is chosen uniformly
at random. If ¢ € C, then a transition is made to z—7c otherwise the new configuration is z.
Further examples include corresponding dynamics for the Potts model (see Section 2.3) and for
the hard-core lattice gas model.

There has been much work on analyzing the mizing time of random-update Glauber dynamics.
The mixing time from a specified initial configuration = (as a function of the deviation & from
stationarity) is

T2(M,e) = min {¢ > 0 : dpy(P'(z,),7(-)) < e},

where dry denotes total variation distance. The mixing time of M is 7(M, €) = max,cq+ 7 (M, €).
M is said to be “rapidly mixing” if 7(M, ¢) is at most a polynomial in n and log(z~1).

It is well-known that the mixing time can be bounded in terms of the influences of sites on each
other. To be more precise, let 11;(x, -) be the distribution on spins at site j induced by PUl(z,.) and
let p; ; be the influence of site i on site j which is given by p; ; = max(, )es, drv (s (z,-), i (y, ).
We will be interested in three quantities. Let a be the total influence on a site, defined by

Finally, let o’ be the total influence of a site in any given context, defined by

"
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The Dobrushin condition o < 1, which says that the total influence on a site is small, implies
_n_

that M is rapidly mixing. In particular, 7(M,e) = O(2-log(ne™!)). Dobrushin’s original
result [7] was not stated in terms of rapid mixing — instead, he was concerned with a closely



related issue — uniqueness of the Gibbs measure for countable (not finite) spin systems. For a
proof that the condition implies rapid mixing see, for example, Weitz’s paper[21].

An easy application of the path coupling method of Bubley and Dyer [2] shows that o/ < 1
implies rapid mixing. In particular, 7(M,e) = O(72%7 log(ne™!)). Path coupling can also be
used to show rapid mixing for the case o’ = 1 provided the change in path length has enough
variance. For details, see Dyer and Greenhill’s survey paper [11].

An inspection of the definition of o/ reveals that

1

o/ = max E (hax drv(ps(z, ), pi(y, ) > o”.
? — (z,y i
J

Therefore, o/ < 1 implies 7(M,e) = O(7%log(ne™')). Dobrushin and Shlosman [8] were the
first to derive uniqueness from the condition o < 1, which says that the total influence of a site is
small. (As Weitz points out [21], Dobrushin and Shlosman stated their result in terms of the total
influence on a site but they worked in a translation-invariant setting and what they used is that
the total influence of a site is small. In fact, Dobrushin and Shlosman worked in a more general
block-dynamics setting. This will be discussed below.)

While theoretical results about Glauber dynamics typically consider random updates, experi-
mental work is often carried out using systematic strategies that cycle through sites in a determin-
istic manner, a dynamics we refer to as systematic scan. Formally, systematic scan corresponds
to a Markov chain M_, with state space 2 and transition matrix P, = []}_, PUL.

The Dobrushin condition implies that systematic scan is rapidly mixing. In particular,

T(M_,e) =0( log(ne™1)).

l-«a
A proof follows easily from the account of Dobrushin uniqueness in Simon’s book [19], some of
which is derived from the account of Follmer [12].

This paper explores two related issues, primarily in the context of systematic scan.

1. What is the relationship between conditions bounding the influence on a site (upper bounds
on «) and conditions bounding the influence of a site (upper bounds on o’ or o’)? Do they
imply rapid mixing in the same circumstances?

2. What is the relationship between proofs of rapid mixing using Dobrushin uniqueness, which
typically use analysis techniques and proofs of rapid mixing using path coupling? Can they
be used to prove rapid mixing in the same circumstances?

The second of these issues was first raised by Sokal [20], who shows how to translate a proof
based on a Markovian coupling to analytic language. The first of these issues was highlighted by
Weitz [21] who elucidated the dual nature of the Dobrushin condition o < 1 and the Dobrushin-
Shlosman condition o’ < 1.

A preliminary issue is the relationship between the parameters «, o’ and o”. We have observed
above that the two “influence of a site” parameters, o’ and o are related by o < o'. Weitz [21,
Section 5.3] gives an example in a block-dynamics context where the parameter analogous to
o is less than one (allowing one to infer rapid mixing), but the other parameters are greater
than one. In Section 2.1 (Observation 6) we give a similar example in our (single-site) context.
In this example, o’ can be made arbitrarily smaller than the other parameters. In Section 2.2
(Observation 7) we give an example where the “influence of a site” parameters o’ and o’ are less
than one but the “influence on a site” parameter « is greater. In Section 2.3 (Observation 8)
we give an example where the “influence on a site” parameter « is less than one but the other
parameters are greater.

The primary motivation for our work was the observation that Dobrushin’s condition (the
influence on a site is small) implies rapid mixing for systematic scan. There are some known
coupling results for systematic scan using the fact that the influence of a site is small, but only in
very special circumstances, for example, proper colourings of a path, where the scan is left-to-right



along the path [9]. When Dobrushin’s condition is satisfied then systematic scan is rapidly mixing
regardless of the order in which vertices are scanned. In this paper we show that rapid mixing
also occurs (for every scan order) if the influence of a site is small. In particular, we prove the
following theorem.

Theorem 1 Suppose o/ < 1. Then

T(M_,e) < 1 2 log(4n?(1 — /) 'e™h).

— o

The main ingredient in the proof is matrix balancing. This enables us to translate the
Dobrushin-Shlosman condition (the influence of a site is small) into the Dobrushin condition
(the influence on a site is small). The matrix-balancing can be viewed as a generic way of deriving
weights. Simon’s version of Dobrushin uniqueness corresponds to showing convergence in the L;
norm of a particular vector. This convergence occurs for a < 1. The matrix-balancing approach
corresponds to showing convergence in a weighted L1 norm — the weights are derived automatically
by the balancing. Then convergence holds for o’ < 1.

The statement of Theorem 1 can be generalised. In particular, the proof does not require
each of the sites to be updated the same number of times. All that is really required is that
the sequence of updates contains a subsequence of at least = log(4n?(1 — a’)_la_l) scans. The
same generalisation holds for the Dobrushin case. It will be useful to record the following corollary.
Let P = [[;_, Pl""*+1 and let P__ = P_P_. Let M___ be the Markov chain with state
space QT and transition matrix P_ .

Corollary 2 Suppose o/ < 1. Then

T(M__,e) < log(4n?(1 — /) e ).

1—ao
The mixing time of a Markov chain is closely related to its spectral gap — the gap between

the largest eigenvalue of its transition matrix and the second-largest eigenvalue. We prove the

following theorem, which applies when the eigenvalues of the transition matrix are real.

Theorem 3 Suppose o’ < 1. Let 1 be the second-largest eigenvalue of P_,. If £1 and its associ-
ated eigenvector are real then 1 — B > (1 —a/)/2.

Theorems 1 and 3 are proved in Section 3.

Having seen that the Dobrushin condition and the Dobrushin-Shlosman condition imply rapid
mixing for systematic scan, an interesting question is whether these results can be extended to the
a=1or o =1 case. Section 4 (Observation 13) provides an example where o = 1 and random-
update Glauber dynamics is rapidly mixing, but systematic scan is not even ergodic. Nevertheless,
we give positive results for the rapid-mixing of systematic scan for certain o = 1 cases, particularly
some cases for which there are symmetric upper bounds on the dependencies corresponding to a
bound of 1, both on the total influence of a site, and on the total influence on a site.

A dependency matriz for a spin system is an n X n matrix R in which R; ; > p; ; (so R;; is
an upper bound on the influence of site ¢ on site j. We will be particularly interested in the case
in which R is symmetric. In this case we can view R as a weighted adjacency matrix, and we
refer to the resulting (undirected) graph on sites as the dependency graph of R. We say that R
is connected if the resulting dependency graph is connected in the sense that there is a positive-
weight path from every site to every other. In Section 5.1 we prove the following result, which says
that systematic scan is rapidly mixing if there is a dependency matrix which (1) is symmetric, (2)
has row and column sums at most 1 (corresponding to total influence at most 1 for every site),
and (3) every connected component has a site with a row sum less than 1 (corresponding to total
influence less than 1).

The mixing bound given in the theorem is a function of n, the number of sites, and also
of N, the “precision” of R. We say that a dependency matrix R has precision N (for a positive
integer N) if every entry R; ; can be expressed as a fraction of integers with denominator N.



Theorem 4 Suppose that a spin system has a precision-N symmetric dependency matriz R
with row sums and column sums at most 1. Suppose that every connected component has a
site whose row sum is less than 1. Then 1(M_,e) = O(n3Nlog(n?c~1)) and 1(M__,e) =
O(n®N log(n?e~1)).

We now apply Theorem 4 to an example considered previously. Suppose that G is an n-
vertex connected graph with maximum degree A > 2. Let ¢ = 2A and consider the spin system
corresponding to heat-bath Glauber dynamics for proper g-colourings of G. If G is not A-regular
then there is a connected symmetric dependency matrix R in which some vertex s of degree less
than A has small total influence so its row sum is less than 1. As we will see in Section 5,
Theorem 4 implies that systematic scan is rapidly mixing. Using the decomposition method of
Martin and Randall, we can extend the result to the case in which G is A-regular (and every
vertex has total influence 1), proving the following.

Theorem 5 Let G be an n-vertex connected graph with maximum degree A > 2 and let g = 2A.
Consider the spin system corresponding to heat-bath updates on proper colourings and let x be any
proper colouring. Then 1,(M_ _, &) = O(n?log(n)log((ex(z)) ™ ")).

Theorem 5 is proved in Section 5.2 and a generalisation (to more general spin systems) is stated
and proved in Section 6.

It would be nice to have a full characterisation of the situations in which @ =1 (or o/ = 1)
implies rapid mixing for systematic scan. Another interesting open question is whether bounds
on the path-coupling parameter o’ imply rapid mixing for systematic scan.

All of our mixing results build upon the methods used in Simon’s account of Dobrushin unique-
ness (using analysis techniques). Thus, we might ask the question whether path coupling is a less
useful technique for proving rapid mixing for systematic scan. In Section 7 we show that this
may not be the case. In particular, we provide an alternative proof that the Dobrushin condition
implies rapid mixing of systematic scan. This proof uses path coupling.

An issue that is not treated in this paper is how these methods generalise to dynamics other
than Glauber. Dobrushin and Shlosman’s result [8] actually applied to block-dynamics rather
than just to single-site dynamics, though only when the underlying dependency graph is Z¢. For
random-update Glauber dynamics, Weitz [21] shows rapid mixing both when the influence of a
site is small and when the influence on a site is small. Weitz’s results apply to ”block dynamics”
and to an arbitrary dependency graph. Both results are proved using coupling. Our results about
systematic scan can be similarly generalised. This work, by Pedersen [15], is in preparation.

2 Relationships between the influence parameters

This section gives some examples illustrating the relationships between the influence parameters.
The “influence of a site” parameters o’ and o are related by o” < o/ and we give an example
in which this inequality is strict. We give examples showing that the influence on a site can be
either smaller than, or greater than, the influence of a site.

2.1 Example where the path-coupling parameter is smallest

Observation 6 There is a spin system for which o” <1 but a > 1 and o' > 1.

Let H be a uniform hypergraph with n vertices, which correspond to the sites of our spin
system. Let m be the size of the hyperedges and suppose that each vertex is contained in A edges.
We will have two spins, so a configuration x will correspond to a subset of sites, namely the subset
of sites with spin 1. The subset is said to be independent if it does not contain any hyperedge.
Let 7 be the distribution in which the probability of an independent set of size s is proportional
to A\* and the probability of a non-independent set is zero. Let Pl be the “Metropolis” Glauber
dynamics which makes the following transition from a configuration x. If site j is in the set



corresponding to x then move to a new configuration by deleting j with probability 1/(1+ \) and
stay at configuration x with the remaining probability. If j is not in the set corresponding to =z,
and the number of hyperedges contained in xU{j} is at most the number of hyperedges contained
in z then move to the configuration corresponding to x U {j} with probability A/(1 + A) and stay
at x with the remaining probability. If j is not in the set corresponding to « but the number of
hyperedges contained in z U {j} exceeds the number of hyperedges contained in x then stay at .

Now consider (x,y) € S;. Suppose for j # ¢ that vertex j has dpv(u; (=, ), i (y,-)) > 0. First
note that j is not in the set corresponding to = or y. So there is a hyperedge containing both i and j
such that every other vertex in the hyperedge (other than i and j) is contained in z (and therefore
in y). Note that there is at most one such j for this edge, since j is not in the set corresponding
to z or y. Also, dry(ui(z,-),1i(y,-)) < A/(1+ A). Since drv(ui(x, ), wi(y, ) < A/(1+ N),
o < (A+1)A/(1+A). Thus o < 1 if X is sufficiently small with respect to A. However, « is
larger than o/ by (approximately) a factor of m, which can be arbitrarily large. In particular,
a > A(m—1)\/(1+ X). To see this, consider a site j. For each of the A hyperedges containing j
and for each of the m — 1 other vertices ¢ in the hyperedge, we can consider (z,y) € S; such that
Jj is not in the set corresponding to z (or y) but every other vertex in the hyper-edge (other than
iorj)isin x (hence in y). dov(u;(z, ), 1 (y,-)) = A/(1+A) so @ > A(m —1)A/(1+ A). The
same analysis applies to /. Thus, we have an example where the path-coupling constant o’ is
less than one, but where o and o’ are arbitrarily large.

2.2 Example where the influence of a site is small but the influence on
a site is large

Observation 7 There is a spin system for which o <1 and o/’ <1 but o > 1.

Suppose that G is an n-vertex star, i.e., a graph with n — 1 vertices adjacent to a central one.
Let ¢ = n+ 1. Consider heat-bath Glauber dynamics on proper colourings. If v is the centre
vertex and w is another vertex then p, ., = 1/(¢—1). Now to calculate p,, ., suppose (x,y) € Sy.
Suppose z,, = 1 and y,, = 2. The simplest thing is to look at three cases, depending on whether
none, one, or both, of 1 and 2 appear in the set of colours assigned to the other leaves by x (or
equivalently, y). In the first case, suppose there are ¢’ distinct colours at the other leaves. Then
the number of available colours for v in both copies is ¢ — ¢’ — 1 and the variation distance is
1/(¢—¢' — 1) which is maximised by setting ¢’ = g — 3. The other cases are better, s0 py, = 1/2.
Now oo > > puww = (¢ —2)/2>1 but

-2 1
o/ < max ( Z p(v,w),p(w,v)) = max (Z—l, 5) < 1.

wH#v

Theorem 1 implies that systematic scan is rapidly mixing for this spin system.

2.3 Example where the influence on a site is small but the influence of
a site is large

Observation 8 There is a spin system for which o < 1 but o’ > 1 and o > 1

The spin system corresponds to the Ising model (2-state Potts model) on a length-2 path. There
are just 3 sites, w, v and w’. There are two spins, 1 and 2, and the weight of an assignment z is ¢
where A < 1 is a parameter of the spin system and ¢ € {0, 1,2} is the number of bichromatic edges
in the colouring that x assigns to the path w, v, w’. 7 is the distribution in which the probability of
a configuration is proportional to its weight. The dynamics is heat-bath: From a configuration z,
Pl transitions to a new configuration which is either 2—J1 or 2—72. The relative probabilities
of these are proportional to the weights of the two configurations.

First, note that p(v,w) = (1 =X)/(1+A). (To see this, note that if x,, = 1 then the probability
that colour 1 is chosen for w is 1/(1 + A).) p(v,w’) is the same. Next, note that p(w,v) =



1/(14 M%) —1/2. (To see this, assume without loss of generality that z,, = 1. If 2, = 1 then the
probability that 1 is chosen for v is 1/(1 + A2?). If 2, = 2 then the probability is 1/2.)
Now « = max(p(v, w),2p(w, v)) which is less than one for any positive A. Also

o' = max(2p(v,w), p(w,v)) = 2p(v, w)

which is greater than 1 for A < 1/3. Note that o/ = /.

3 Rapid mixing for o/ < 1.

In this section, we prove rapid mixing of systematic scan for the case o/ < 1. We prove The-
orem 1, Corollary 2, and Theorem 3. Consider a spin system with dependency matrix R.
Suppose that some entry of R is non-zero and that the row sums of R are less than 1. Let
v =1 —max;ep, Zje[n] R; ;. Note that v € (0,1]. Also, if a spin system is non-trivial in the sense
that it has sites ¢ and j with p; ; > 0 and it has o/ < 1 then it has such a dependency matrix with
y=1-da.

3.1 Matrix balancing
In this section we prove the following lemma.

Lemma 9 There is an n x n diagonal matrizc W such that, for every j € [n], v/(2n) < W;; <1
and every column sum of WRW =1 is less than 1 — /2.

Proof. Let R’ be the matrix which is the same as R except that we add a new column n + 1
and a new row n + 1. For i € [n], let R}, ; = (1 —r;)/2 where r; is the row sum of R. Note
that R, ., > /2 and that the row sums of R’ are at most 1 — /2. For j € [n], let R}, ; be
(1-=~/2)/n,and R}, ,,41 =0, s0 ZnH nt1,j = 1—7/2. Thus R is an irreducible nonnegative
matrix with largest eigenvalue at most 1 — ~/2 [17, Thm. 1.5, Cor. 1]. It follows from the Perron-
Frobenius Theorem [17, Thm. 1.6] that there exists 7’ € R**!, with 7’ > 0 and >_7_, 7} = 1, such

that
n+1

ZW’R’ < Q—q/27  (GeRh+1).

Now let W = diag(n?,...,m, 1) and let R” = WR'W~'. This multiplies row i by 7/ and divides
column j by 7. Now

n n n+1

Y R}, = ZR;]:—}/'_ < —ZWR < 1—79/2

i=1 i=1 J T =1
Thus, (if we move the extra row and column from W) the column sums of WRW ~! are less than
1 —~/2. Also w1 > /2, since

n

T > (1—7/2) n+1>Z7T 1—7r)/2 > (v/2) Z = /2.

i=1 i=1

Since 7 >0 (j € [n]) and 377, 7 = 1, we have W;; = 7 <1 (j € [n]). Finally, for j € [n],

| 102
> ! > —.
7= 1f’y/27rn+1 n 2n




3.2 The effect of a applying PUl or P_..

Let MUl be the matrix constructed from the identity matrix by replacing column j with the jth
column of R. For any function f from QF to R, let 6;(f) = max(, ) (x) — f(y)| and let 6(f)
be the column vector §(f) = (61(f),...,0n(f)). Let PUlf be the function from QF to R given by
PUlf(z) = >y PUl(z,y)f(y). The following lemma is (a slight generalisation of one) in Simon’s
book [19]. The proof is included for completeness.

Lemma 10 The vector §(PVlf) is component-wise less than or equal to the vector MUIS(f).
Proof. Suppose (z,y) € S;. Then

PV f(x) — P9 f(y)]
S eI o) Pl a—Te) = 37 fly =7 )PV (y,y — o)

Zf:c# OIERE ny# ug:cc+2fy4 (115 (w, ¢) = nj(y, ¢))

< Z\f (@ —7 ¢) = fly =7 o)|pj(z,0) Zf (y = &) (s, ¢) = 13 (y, )

< max|f(z =7 ¢) = fly = )| + (mng(y =7 ¢) —min f(y =7 ¢))drv (g (2, ), 15y, )
< Ligj6i(f) + Rij0;(f)-

O

Now let W be the matrix from Lemma 9. Let QU = WMUIW 1 and note that QU! is the
matrix constructed from the identity matrix by replacing column j with the vector (g1 j,...,¢n,j);
where ¢; ; = R; jw;/wj. From Lemma 9, Y7 | ¢; ; < 1—~/2. Now let k;(f) = w;8;(f) and let k(f)
be the column vector k(f) = (k1(f), ..., kn(f)). Let K(f) = >, ki(f). The following lemma is
a weighted version of a lemma in Simon’s book (using the weights from the matrix balancing).

Lemma 11 For any m € {0,...,n},
KPW...pmpy < 21_7/2 Z ki
i=1 i=m+1

Proof. First note that lemma 10 implies that the vector k(PU!f) is component-wise less than
or equal to the vector ka( f). Using this fact, the proof is by induction on m with base case
m = 0. The proof now follows Simon’s. By the inductive hypothesis, K (P! ... Pl f) is at most

Z::ll(l —q/2)ki (P Y + 30 ki (P ). Applying our fact, this is at most

m—1 n
> @ =/2)@QRME(): + >
i=1 i=m

Then using the observation about the structure of QI™ from above, we can re-write this as

3

n

(1 —=~/2)(ki(f) + Qi,mkm(f)) + qm,mkm(f) + Z ki(f) + qi,mkm(f)'

i=1 i=m+1

Z 1_'7/2 + Z kz(f)+km(f) (Z_(l_’Y/Q)Qi,m'FZQi,m)’

i=1 i=m+1 i=1 i=m

and the result now follows since Y " ¢;; <1 — /2, for all j. O



Corollary 12
K(P-f) < (1=~/2)K(f).

3.3 The bound on the mixing time - proof of Theorem 1 and Corollary 2

For a test function f, let fi(z) = Y, P'.(z,2)f(2). Thus, Corollary 12 gives K(f;) < (1 —
v/2)K(fi—1). Now let f be the indicator variable for being in some subset A of Qt. Then

max () — min fi(y <Z < () K < 260

min; Wi ;
4n 4n?
< 7(1 —7/2) K (fo) < 7(1 - v/2)’

which is at most e for ¢t > (2/v)log(4n?y~te~t). Also, min, fi(y) < Exf; < max, f;(z) and
E. fi = m(A), which gives us

2
T(M_,e) < =log(4n*y e ).
v

This proves Theorem 1. Corollary 2 comes from the fact that the right-hand side of the expression
in Lemma 11 is at most K(f). Thus, extra updates do no harm.

3.4 The bound on the spectral gap - proof of Theorem 3

Let f be the eigenvector associated with the second-largest eigenvalue (31 of P—_,. Suppose (5; and
f are real.

K(Péf)zz ﬁlzk = b K(f).

By Corollary 12, 1 — 8; > 7/2. This proves Theorem 3.

3.5 Remarks - contraction in various norms

Lemma 10 tells us that 6(PU1f) < MUI5(f). We are interested in the effect of M on the vector
5(f) where M = H?Zl MUl Lemma 11 shows that §(f) is contracting in the weighted L; distance

K(f). The contraction comes from the fact that the column sums of the weighted matrix QU
are less than 1. Simon’s proof of Dobrushin’s result for o < 1 corresponds to taking W to be the
identity matrix (so it is Ly contraction). Our proof uses contraction in weighted L, distance, but
there are other possibilities. For example, in Section 3.6 we revisit the random-updates Markov
chain M and we prove mixing by observing a contraction in the L., norm. This is possible when
the row sums of the appropriate weighted matrix are less than 1.

3.6 A similar proof for random updates

It is known that o/ < 1 implies a bound on the spectral gap of the random-updates Markov chain
M. For example, this can be obtained by path coupling. For completeness, here is a proof in the
Dobrushin framework.

Let

1 . ~1_ 1
f—ZMU]:" + —R.

Now note that every row of M’ has a row sum which is at most 1 — v/n. Suppose that P is
reversible and let A =1 — 31 be its spectral gap. Recall that Pf(z) = >, P(x,z)f(z). Choose f



to be the second-largest eigenvalue of P so Pf = (1 — \)f. Then since the maximum component
of §(f) is shrunk by a factor of 1 — v/n when we multiply by M’, we have

(1-=X) mle5i(f) = miaX@(Pf) <(1-~/n) mgX&(f),

so (1 = A) <1—~/n and therefore A > v/n.

4 An a =1 case where systematic scan does not mix

Having seen that the Dobrushin condition and the Dobrushin-Shlosman condition imply rapid
mixing for systematic scan, an interesting question is whether these results can be extended to
the & =1 or o/ =1 case. In this section we provide an example where a = 1 and random-update
Glauber dynamics is rapidly mixing, but systematic scan is not rapidly mixing.

Observation 13 There is a spin system with o = 1 for which random-update Glauber dynamics
s rapidly mixing, but systematic scan is not ergodic.

To establish example 13, consider a spin system with n = 2m sites and spins 1 and 2. For
every odd number 5, the transition matrix Pl deterministically flips the spin at site j (either from
spin 1 to spin 2 or from spin 2 to spin 1). For every even number j, the transition matrix Pl
moves from configuration x to configuration 1 ---z;_12;12j41 - Tp.

Note that for an odd number i, p; ; = 1 and p; ;41 = 1. Every other p; ; is 0. Thus, a =1 but
both o/ and o' are 2.

To see that systematic scan is not ergodic, note that it is periodic. For an odd number 1, sites
i and i + 1 cycle through configurations 00,10, 11, 01.

To see that the random update dynamics is rapidly mixing, use path coupling. The transitions
on sites ¢ and i + 1 (for an odd number ) are the cycles above plus self-loops on 00 and 11 plus
transitions from 10 to 00 and from 01 to 11.

Remark. Observation 13 indicates that perhaps Dobrushin-like arguments cannot be extended
to the @ = 1 case. The reason for this is that Dobrushin-like arguments imply rapid mixing for
systematic scan, as well as for random updates. But here is an example where systematic scan is
clearly not rapidly mixing.

Remark. The reader might argue that it is too much to expect a Dobrushin-like argument to
apply when o = 1. After all, path coupling does not apply to the o’ = 1 case unless there is
sufficient variance — a side-condition that has not been carried over to the Dobrushin setting.
This may be true, and a proof of rapid mixing must require additional considerations. It seems
unlikely that such conditions can be Dobrushin-like, i.e. based purely on the dependency matrix.
We have no example which directly supports this view, but the following shows something weaker.
Combined with Observation 13, it implies that any such conditions could not be translated from
a to o, and vice versa, as they are in the contractive case.

Observation 14 Let R be the dependency matrix corresponding to Observation 13. Then there is
a spin system with o/ =1 and dependency matriz RT such that systematic scan is rapidly mizing.

To establish Observation 14, consider a spin system with n = 2m sites and spins 1, 2 and 3.
For every odd number j, the transition matrix PVl deterministically moves from a configuration
x with x;x;11 = 11 to x—72. If 22,41 is anything other than 11 then PUl moves to either z—71
or x—73 with equal probability. For every even number j, the transition matrix PU! moves to
either z—71 or —72 with equal probability. It can be checked that this example has dependency
matrix RT with o/ = 1. Coupling can be used to show that systematic scan is rapidly mixing —
each pair of sites (j,j + 1) (where j is odd) can be coupled independently.

10



Remark. Note that the (directed) dependency graph corresponding to R is not strongly connected
in the sense that there is not a positive-weight path from every site to every other. It is worth
considering whether Dobrushin-like arguments do apply when o = 1 and R is strongly connected.
Connectivity turns out to be useful in the proof of Theorem 4 below, though it is not essential for
the setting of that theorem (as is shown below).

5 Positive results for a =1

5.1 Symmetric dependency matrices with a row sum less than 1

In this section we prove Theorem 4, which says that systematic scan is rapidly mixing if there is a
dependency matrix which (1) is symmetric, (2) has row and column sums at most 1 (corresponding
to total influence at most 1 for every site), and (3) every connected component has a site with a
row sum less than 1 (corresponding to total influence less than 1). We start with the connected
case. Recall that a matrix has precision N if every entry in it can be expressed as a fraction of
integers with denominator V.

Theorem 15 Suppose that a spin system has a precision-IN symmetric connected dependency
matriz R with row sums and column sums at most 1. Suppose that there is a site s with row sum

less than 1. Then T(M_,e) = O(n3N log(n?c™1)) and 7(M__,e) = O(n3N log(n?e1)).

Remark. The dependence of the running time on the precision N is one way to express the
condition that the dependency matrix R needs to be sufficiently “mixing”. There are other possible
choices. See [4].

Proof. Without loss of generality assume that for i # s we have ;Ri; = 1. If this is not the
case then R;; can be increased until it is. Note that increasing R;; to make the row sum 1 does
not increase the precision of the matrix.

Let v =1-— Zje[n] R ;. Since the sum of row s is less than 1, +y is positive. Also, 7 is less
than 1 (otherwise sites in [n] do not depend upon s, contradicting connectivity).

Construct R? from R by adding an extra row and column. Set R[SQ]n 1= R’[rf—]i-l,s = ~ and
R’E—]i-l,n 41 = 1 —7 and make the rest of the entries in the new row and column equal to zero. Note

that the row and column sums of R1?! are 1. It is the transition matrix of an ergodic Markov chain.
Its stationary distribution, 7%, is uniform (by symmetry). Let H (i, j) denote the hitting time of j
from i and let H denote the maximum hitting time. Note that H < (n+ 1)>N. (To see this, view
the Markov chain with transition matrix R1? as a random walk on a N-regular undirected graph
(with multiple edges and loops allowed). Then H(G) is at most the number of vertices times the
number of (directed) edges [13].) Note also that H(4,7) = 1/71'1[2] =(n+1).

Now let Rl = RP — E. where E is the all-zero matrix except that row n + 1 of E is

(=&, ..., =& n) where
1

n(n+1)°N
Note that v can be expressed as a fraction of integers with denominator N. Since it is less
than 1, v < % < 1—né, so R [3]

n+1,n+1
are also non-negative. Furthermore, R is the transition matrix of an ergodic Markov chain. Let
73 be its stationary distribution. We now use Theorem 2.1 of [3]. This says that for all j
Yy Y J5

is non-negative. It is clear that the other entries of R

[|Blloo maxiz; H(ij) 1
2 Hj,j - 2(TL+1)

2 3
|7T][-]—7Tj[-]|§

Now let W = diag(7l®l1,..., 718, ;1) and let R = WRBIW ! (this is multiplying row i by

7r£3] and dividing column j by w}s]). Note by stationarity of 7[®l that the columns of R[* have sum

11



1. That is,
n+1 [3] n+1

ZR [31 [_31 Z R

Also for j € [n], we have

el
[4] _ pBBl Tat (3]
Rn-i-lj Rn+1,J [3] —3Rn+1
i

ooln/‘n

so >, R[4] < 1—¢/3. Finally, observe that for ¢ and j in [n],

3] e

[

4 _ pBl T _ i

Rij =Ry 15 = Bui
T s

J J

so W (with row and column n + 1 deleted) can be used as a weight matrix for R. Also W, ; =

> 1/2(m+1)).
Now we proceed as in Section 3 and to get the variation distance down to &, this takes

% log(2n(n + 1)e™Y) = 3n(n + 1)°N log(2n(n + 1)e 1)

scans. This proves the bound on 7(M_,,¢) in the theorem. The bound on 7(M_ ., ¢€) is estab-
lished in the same way as Corollary 2. O

To prove Theorem 4, apply Theorem 15 to each connected component individually. Suppose
that ¢ is the maximum, over the components, of 7(M_,,e/n). Then drv (P (x,-),m) < e. The
same argument applies to 7(M_,_,¢).

5.2 Heat-bath updates and proper colourings with 2A colours

Let G be a connected graph with maximum degree A > 2 and let ¢ = |C] = 2A. Let Q be
the set of proper g-colourings of G. Let 7 be the uniform distribution on Q (so 7(z) = 0 for all
configurations € Qt — Q) . Let PVl be the transition matrix for a “heat-bath” update on site
j. To be precise, p;(x,-) is the uniform distribution on colours that are not used at neighbours of
site j in configuration z. For all edges (4, j) of G, p;; = 1/(¢—d(j)), where d(j) is the degree of
site 7, so we take R; ; = 1/(¢ — A) = 1/A. If (i,5) is not an edge then R; ; = 0 ([16]).

Unlike the rest of the paper we now use the notation M_,._ to refer to the Markov chain with
transition matrix P_,. but restricted to state space 2.

We now prove Theorem 5. If G is not A-regular, then the theorem follows from Theorem 15.
Some vertex has degree less than A, so has row sum less than 1. So assume from now on that G
is A-regular.

Note that on €, PU! is reversible with respect to the uniform distribution, so P, (x,y) =
P_(y,x) which implies that M_,._ is reversible (with respect to the uniform distribution).

We now use the decomposition theorem of Martin and Randall [14]. For every spin ¢ € C,
let Q. = {x € Q| 2, = ¢}. Let P___. be the restriction Markov chain on €. defined as
follows. If z # y and « and y are in Q. then P_, .(z,y) = P (z,y). Finally, if 2 € Q. then
P (z,2) =1=3 co ysa P——c(@,y). Note by symmetry that 7(€2) = 1/q. Let P be the
Markov chain on state space C' whose transition matrix is defined by

Ple,d)=q Y w@)Po(zy).

z€Q,YEN/

Note that P is reversible with respect to the uniform distribution on C.

12



Theorem 4.2 of [14] gives us
1 —
Gap(P-.) 2 5 Gap(P) min Gap(P-.), (1)
ce

where Gap(P) denotes the spectral gap of a reversible ergodic Markov chain with transition matrix
P.

5.3 A lower bound on Gap(P-._.).

Let P} be the Markov chain on 2. with transition matrix P; --- P,—1FP,—1 - - - P;. Note that both
P and P_, . are reversible with respect to the uniform distribution on .. Furthermore, for any
pair of distinct states x and y in €,

1 *
20 (@,y) < Poc(,y).

This inequality implies that there is a very straightforward comparison between P} and P_.. .

in which all of the flow corresponding to a transition of P uses the transition itself. The same
inequality holds in the case & = y (since every self-loop transition in P_,. . occurs with probability
at least ¢=2). Thus, the flow is an odd-flow, and Gap(P_..) > ¢ 2Gap(P?). (See Lemma 4.3
of [14]. The requirement that the flow be an odd flow is necessary to bound the gap between the
smallest eigenvalue and —1. See [5, 10].)

The analysis in Section 5.1 can be used to upper bound the mixing time of P}, which is
equivalent to lower-bounding its spectral gap. We will use the following inequality to convert the

mixing-time bound to a bound on spectral gap:

i} 1 1
Can(Fe) 2 e o (1o ™ (25) ‘

This inequality is based on Proposition 1(ii) of [18] by Sinclair, which is based on a continuous
version by Aldous [1]. A proof is given (see Theorem 5) in [10]. The inequality holds for any € > 0.
For example, we will take e = 1/4.

We will now give an upper bound on 7(P¥, ). The upper bound will actually be for the state
space QF consisting of all colourings (proper and improper) with x,, = ¢. However, this implies an
upper bound for Q.. Recall that our O() notation suppresses terms that depend upon g and A, but
not terms which depend upon n. The dependency matrix R* for this chain can be obtained from R
by deleting row n and column n. Every connected component of the corresponding dependency
graph contains a site s which is adjacent to n in G. Z;:ll R, = (A-1)(1/A) =1-1/A.
We can apply Theorem 4 to get the bound 7(P*,¢) = O(n?log(ne~1)). Taking ¢ = 1/4, we get
Gap(P-—) = Q(1/(n’ log(n))).

5.3.1 A lower bound on Gap(P).

Let @ be the Markov chain on {1,..., ¢} such that for all ¢, Q(c,-) is the uniform distribution.
We will compare P to Q. First note that

S Ped)=a Y wl@)Po(wy)>aY wle)] >

c#c! T,Y T FYn

=~

By symmetry, P(c,c’) is the same for all pairs of distinct colours (¢, ¢’) so P, (¢, c/) > 4(q1£1) -
ﬁ@(e, ¢'). Similarly,

Y Ped= Y m@Pec (o) g Y w2 1,

I’y:zn:y’ﬂ

so P(c,c) > Q(c,c) by symmetry. This gives Gap(P) > ﬁGap(Q) = ﬁ.

13



5.3.2 Putting it all together

By decomposition, we now have Gap(P—._) = Q(1/(n3log(n))). Applying an inequality of Di-
aconis and Stroock [6, Proposition 3] and Sinclair [18, Proposition 1(i)], we get 7,(M__,¢e) <
O(n®log(n)) In ——. Note that 7(x) > ¢~ ™ so 7,(M__,1/(2¢)) < O(n*log(n)).

em(z)”

6 A generalised a = 1 case

The following is a generalisation of Theorem 5. Consider a general spin system. Let Q = {z €
QF | w(z) > 0}. As in Section 5.2 let Q. = {z € Q | z, = ¢} and let P_,__. be the Markov
chain on Q. defined by P_, .(x,y) = P_(x,y) for distinct z and y in Q. with P, (x,2) =

1- ZyGQC:y;ﬁx P_"_C(‘T’ y)

Theorem 16 Suppose that a spin system has a precision-IN symmetric connected dependency
matriz R with row sums equal to 1. Suppose there is a positive integer & such that

(1) For every site j, PUl is reversible with respect to .

(2) For every spin ¢, P_, . is irreducible.

(8) For every configuration x and every site j, PUl(z,2;) > ¢

(4) For every configuration x and every colour ¢, Pr(r, = ¢) > & when 7 is drawn from P__(x,-).

Then T,(M__,e) < O 3n®Nlog(n))log(1/(em(x))).

Proof. The proof follows the proof of Theorem 5. Condition (1) implies that M_, is reversible
with respect to w. The projection chain P is defined by

Ple,d) = ! Z m(z) P (z,y).

m($2) 2€Q.,YEQ,

Note that P is reversible with respect to the distribution that chooses spin ¢ with probability 7(2.).
Condition (4) implies that P is irreducible and aperiodic. P_.., is reversible by construction. It
is aperiodic by Condition (3) and irreducible by Condition (2). Similarly, (3) implies that P_.
is aperiodic and (2) and (4) imply that it is irreducible. Since P, P_,. and P_. are reversible
and ergodic, we can apply the decomposition theorem.

By Condition (3), P (x,y) > &2P*(x,y), so Gap(P_..) > £Gap(P’). Applying Theo-
rem 4, we get Gap(P;) = Q(1/(n®Nlog(n))).

Condition (4) gives P(c,c) > £qQ(c, ') so Gap(P) > £qGap(Q) = &q. The remainder of the
proof is unchanged.

O

Remark. It is easy to see that Theorem 16 implies Theorem 5, though the implicit constants
are slightly worse since Condition 4 gives a slightly worse analysis than the analysis given in
Section 5.3.1. The theorem also applies to Glauber-dynamics on spin systems such as the Potts
model or the hard-core lattice gas model.

Remark. The connectivity requirement in Theorem 16 can be removed by considering the con-
nected components separately as in the proof of Theorem 4.
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7 Proving rapid mixing for systematic scan using path cou-
pling

All of the mixing results so far have built upon Dobrushin uniqueness. We conclude by sketching
an alternate proof, based on path coupling [2], that the Dobrushin condition o < 1 implies rapid
mixing of systematic scan.

We consider coupled chains X, Y;. Let the (path) coupling be given by choosing the same
vertex wy in both chains, and then coupling the choice of spin maximally. Suppose the initial states
Xo, Yo have shortest path Py. The length of Py is the Hamming distance H (X, Yp). Consider the
evolution of this path at time ¢ to P = (Zo, Z1,...,Ze—1,Zs), with length ¢ > H(X;,Y:). (Note
that we do not optimise the path length after each step, but assume instead that the path evolves
naturally.) We will call any edge of P (Z,_1,7Z,) (r € [¢]) an edge in S; if (Z,_1,Z,) € S;. Note
that Py has at most one edge in S; for each i = 1,2, ..., n. Suppose v; is the total number of edges
of Pin S;. Clearly £ = >"" | v;, so E[{] < nmax; E[v;].

Suppose wy = j. For every edge in S; (i # j), an edge in S; will persist, and a new edge in S;
will appear with probability at most p; ;. Every edge in S; will either disappear, or persist with
probability at most p; ;. Thus, denoting the quantities at time ¢ + 1 with primes, E[v] = E[v;]
(i # j) and

n
E[yj] < Zpi’j Elv] < amiaXE[ui].
i=1
In a complete scan we have w; = j for every j and some ¢t. Hence the resulting values 7/'; after
the scan will satisfy
max E[7;] < amaxE[y].
3 K3

Since max; E[y;] < 1 initially, after s complete scans max; E[v;] < o, and thus

dTV(ana Yns) < Pr(an # Yns) < E[H(an; Yns)] < E[ﬂ] < no’.
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