Electronic Colloguium on Computational Complexity, Report No. 77 (2005)

On a D — N —optimal acceptor for TAUT

Zenon Sadowski

Institute of Mathematics,
University of Bialystok
15-267 Bialystok, ul. Akademicka 2, Poland
e-mail: sadowski@math.uwb.edu.pl

Abstract. A deterministic algorithm recognizing T'AUT is a D-N-optimal
acceptor for TAUT if no other nondeterministic algorithm accepting
TAUT has more than a polynomial speed-up over its running time on
instances from T AUT.

We prove that the existence of a D-N-optimal acceptor for TAUT is
equivalent to the existence of an optimal and automatizable propositional
proof system and to the existence of a suitable recursive presentation of
the class of all NP-easy (acceptable by nondeterministic polynomial time
machines) subsets of TAUT.

Additionally we show that the question of whether every proof system
is weakly automatizable is equivalent to the questions: of whether every
disjoint NP-pair is P-separable and of whether every function in NPSV
has a total extension in FP and prove that the existence of a D-N-optimal
acceptor for TAUT implies that every disjoint NP-pair is P-separable.

1 Introduction

A deterministic algorithm recognizing TAUT (the set of all propositional tau-
tologies) is optimal if no other deterministic algorithm recognizing TAUT has
more than a polynomial speed-up over its running time. If the optimality prop-
erty is stated only for any input string which belongs to TAUT and nothing is
claimed for other z’s, we name such an algorithm as an optimal deterministic ac-
ceptor for TAUT (a D-D-optimal acceptor for TAUT in our nomenclature). An
N-N-optimal acceptor for TAUT is a nondeterministic algorithm accepting
TAUT and such that no other nondeterministic algorithm accepting TAUT
has more than a polynomial speed-up over its running time (obviously on in-
stances from TAUT).

In the definition of an optimal deterministic acceptor for TAUT, the collec-
tion A of all deterministic algorithms recognizing TAUT occurs and we demand
that an optimal acceptor belongs to .A. We propose to loosen this restriction and
allow the situation when an optimal acceptor computes in different mode than
algorithms from collection .4. This leads to the following definition: a determin-
istic algorithm recognizing TAUT is a D-N-optimal acceptor for TAUT if no
other nondeterministic algorithm accepting TTAUT has more than a polyno-
mial speed up over its running time on instances from TAUT. An N-D-optimal
acceptor for TAUT can be defined analogously.

ISSN 1433-8092

These two new optimal acceptors are natural variants of the previously stud-
ied ones. Moreover, the importance of the notion of a D-N-optimal acceptor for
TAUT lies in the fact that the existence of a D-N-optimal acceptor for TAUT
implies that NP=co-NP is equivalent to P=NP.

Propositional proof systems (proof systems for TAUT) can be compared us-
ing the notion of simulation and the presumably stronger notion of p-simulation.
An optimal (p-optimal) proof system would have proofs which are no more than
polynomially longer than any other proof system. The existence of an optimal
proof system for TAUT and the existence of a p-optimal proof system are in-
teresting open problems posed by J. Krajicek and P. Pudldk [7] in 1989.

The same authors [7] proved that the existence of a D-D-optimal acceptor
for TAUT is equivalent to the existence of a p-optimal proof system for TAUT.
Likewise, it is easily seen that the existence of an N-N-optimal acceptor for
TAUT is equivalent to the existence of an optimal proof system for TAUT (see
[10], [8]). Thus, the existence of optimal proof systems and the existence of opti-
mal acceptors are different facets of the same problems. In this paper we develop
further this connection and prove that the existence of a D-N-optimal acceptor
for TAUT is equivalent to the existence of an optimal and automatizable proof
system for TAUT. Automatizability is a crucial notion for automated theorem
proving. A proof system is automatizable if there is a deterministic procedure
to find proofs in this system, in polynomial time with respect to the smallest
proof in this system (see [1]). Tt seems that the stronger proof system is, the
more difficult it is to search proofs in it. The investigation of the problem of the
existence of a D-N-optimal acceptor may confirm this hypothesis.

It is not currently known whether UP and other promise classes have com-
plete languages. J. Hartmanis, and L. Hemachandra pointed out in [4] that UP
possesses complete languages if and only if there is a recursive enumeration of
polynomial time clocked Turing machines covering all languages from this class.
Earlier, the question of whether NP N co-INP possesses complete languages was
related to an analogous statement (see [5]).

It was observed in [10] that the question of the existence of p-optimal (op-
timal) proof systems for TAUT (and hence D-D and N-N-optimal acceptors)
can be characterized in a similar manner. For example, there exists a p-optimal
proof system for TAUT if and only if there is a suitable recursive presentation
of the class of all easy (recognizable by deterministic polynomial time machines)
subsets of TAUT'. In this paper we make this picture complete and prove that
a D-N-optimal acceptor exists if and only if there is a recursive enumeration
of polynomial time clocked deterministic Turing machines covering all NP-easy
(acceptable by nondeterministic polynomial time machines) subsets of TAUT.

In the last section we investigate the question of whether every proof system
for TAUT is weakly automatizable. We show that this question is equivalent
to the Complexity Theory questions studied before: of whether every disjoint
NP-pair is P-separable and of whether every function in NPSV has a total
extension in FP. Our characterization of the investigated question is analogous
to the characterization of the problem of whether every proof system for TAUT

admits an effective interpolation obtained by J. Kobler and J. Messner (see
[6]). As a corollary we obtained the result that the existence of a D-N-optimal
acceptor for TAUT implies that every disjoint NP-pair is P-separable.

2 Preliminaries

We assume some familiarity with basic complexity theory, see [2]. The symbol
X denotes, throughout the paper, a certain fixed finite alphabet. The set of all
strings over X is denoted by X*. For a string z, |z| denotes the length of z.

We use Turing machines (acceptors and transducers) as our basic compu-
tational model. We will not distinguish between a machine and its code. For
a deterministic Turing machine M and an input w, TIME(M; w) denotes the
computing time of M on w. When M is a nondeterministic Turing machine
TIME(M; w) is defined only for w’s accepted by M and denotes the number of
steps in the shortest accepting computation of M on w. For a Turing machine
M the symbol L(M) denotes the language accepted by M.

A Turing transducer M computes a (not necessarily total) function
[2% — X* defined by f(z) = M (z). Here, M (z) denotes the output of M on
input z € ¥* (M(z) = y means that M on input z reaches an accepting state
and stops with y written on its output tape).

A function f : Z* — X* (not necessarily total) is in NPSV (the class of all
single valued NP functions) if there is a nondeterministic Turing transducer N
working in polynomial time and such that for every z, N(z) = f(z) if and only
if f(z) is defined, and in case f(z) is defined all accepting computations of N
produce the same output. By FP we denote the class of all functions computed
by deterministic Turing transducers working in polynomial time.

We consider deterministic and nondeterministic polynomial time clocked Tur-
ing machines with uniformly attached standard n* + k clocks which stop their
computations in polynomial time (see [2]). We impose some restrictions on our
encoding of these machines. From the code of any polynomial time clocked Tur-
ing machine we can detect easily (in polynomial time) the natural & such that
n®* + k is its polynomial time bound.

We consider only languages over the alphabet X' (this means that, e. g. |
boolean formulas have to be suitably encoded). The symbol TAUT denotes the
set (of encodings) of all propositional tautologies over a fixed adequate set of
connectives.

Finally, (.,...,.) denotes some standard polynomial time computable tupling
function.

3 Optimal algorithms and optimal proof systems

The notion of an almost optimal deterministic algorithm for TAUT, with the
optimality property stated only for input strings which belong to TAUT, was
introduced by J. Kraji¢ek and P. Pudlék [7] (see also [10]). J. Messner [8] named

this algorithm as an optimal deterministic acceptor for TAUT'. In order to unify
our notation we propose to name this algorithm as a D-D-optimal acceptor for
TAUT.

Additionally we propose to introduce the notions of a D-N-optimal acceptor
for TAUT. The problem of the existence of a D-N-optimal acceptor for TAUT
will be studied in our paper.

Definition 1. A D-D-optimal acceptor (D-N-optimal acceptor) for TAUT is a
deterministic Turing machine M which recognizes TAUT and such that for every
deterministic (nondeterministic) Turing machine M’ which recognizes (accepts)
TAUT there exists a polynomial p such, that for every a € TAUT

TIME(M;a) <p(la], TIME(M'; a))

The importance of the question of the existence of a D-N-optimal acceptor
for TAUT can be described by the following fact:

Fact 1. If a D-N-optimal acceptor for TAUT exists then statements (i) — (ii)
are equivalent:

(i) P=NP.
(ii) NP=co-NP.

The nondeterministic counterpart of a D-D-optimal acceptor for TAUT is an
N-N-optimal acceptor for TAUT. This algorithm was named in [8] as an optimal
nondeterministic acceptor for TAUT and in [10] as an optimal nondeterministic
algorithm for TAUT.

We propose to introduce additionally the notion of an N-D-optimal acceptor

for TAUT.

Definition 2. An N-N-optimal acceptor (N-D-optimal acceptor) for TAUT is
a nondeterministic Turing machine N which accepts TAUT and such that for
every nondeterministic (deterministic) Turing machine N' which accepts (rec-
ognizes) TAUT there exists a polynomial p such that for every o € TAUT

TIME(N;a) < p(la], TIME(N'; a))

The systematic study of the efficiency of propositional proof systems (proof
systems for TAUT) was started by S. Cook and R. Reckhow in [3]. They in-
troduced the abstract notion of a proof system for TAUT and proved that a
polynomially bounded proof system for TAUT exists if and only if NP=co-NP

(see [3]).

Definition 3. (see [3]) A proof system for TAUT is a polynomial time com-
putable function h : X* Y TAUT.

If h(w) = z we say that w is a proof of z in h.

Definition 4. (Krajicek, Pudldk) Let h, h' be two proof systems for TAUT.
We say that h simulates h' if there erists a polynomial p such that for any
x € TAUT, if x has a proof of length n in h', then x has a proof of length
< p(n) in h.

Definition 5. (Cook, Reckhow) Let h, h' be two proof systems for TAUT. We
say that h p-simulates I’ if there exists a polynomial time computable function
~ X% — X* such that for every x € TAUT and every w € X*, if w is a proof
of x in h', then y(w) is a proof of x in h.

The notions of an optimal proof system for TAUT and a p-optimal proof
system for TAUT were introduced by J. Krajicek and P. Pudldk in [7].

Definition 6. A proof system for TAUT is optimal (p-optimal) if it simulates
(p-simulates) any proof system for TAUT.

4 Optimal acceptors and the structure of easy subsets of

TAUT

It was shown in [5] and [4] that the problem of the existence of a complete lan-
guage for NP N co-INP and the problem of the existence of a complete language
for UP can be related to statements about the existence of recursive enumer-
ations of polynomial time clocked Turing machines covering all languages from
these classes. It turns out that the problems of the existence of optimal acceptors
for TAUT can be also related to analogous statements. In this chapter we survey
known results in this direction.

Definition 7. By an easy subset of TAUT we mean a set A such that A C TAUT
and A€ P.

Definition 8. By an NP-easy subset of TAUT we mean a set A such that
ACTAUT and A € NP.

Let Dy, Dy, Dj, ... denote the standard enumeration of all deterministic
polynomial time clocked Turing machines.

Theorem 1. (see [10]) Statements (i) — (iii) are equivalent:

(i) There exists a p-optimal proof system for TAUT.
(ii) There exists a D-D-optimal acceptor for TAUT.
(iii) The class of all easy subsets of TAUT possesses a recursive P-presentation.

By statement (iii) we mean: there exists a recursively enumerable list of
deterministic polynomial time clocked Turing machines D;,, D;,, D such
that:

iy e

(1) L(D;;) C TAUT for every j;

(2) For every A C TAUT such that A € P there exists j such that A = L(D;,).

Let Ny, Ny, N3, ... denote the standard enumeration of all nondeterministic
polynomial time clocked Turing machines.

Theorem 2. (see [10]) Statements (i) — (iii) are equivalent:

(i) There exists an optimal proof system for TAUT.
(ii) There exists an N-N-optimal acceptor for TAUT.
(iii) The class of all NP-easy subsets of TAUT possesses a recursive NP —pre-
sentation.

By statement (iii) we mean: there exists a recursively enumerable list of
nondeterministic polynomial time clocked Turing machines N;,, N;,, N;,, ... such

that:

19 37"

(1) L(N;,;) C TAUT for every j;

(2) Forevery A C TAUT such that A € NP there exists j such that A = L(N;,).

Theorem 3. Statements (i) — (iii) are equivalent:

(i) There exists an optimal propositional proof system.
(ii) There exists an N-D-optimal acceptor for TAUT.
(iii) The class of all easy subsets of TAUT possesses a recursive NP -presenta-
tion.

By statement (iii) we mean: there exists a recursively enumerable list of
nondeterministic polynomial time clocked Turing machines N;,, N;,, N;,, ... such
that:

1) 39

(1) L(N;,;) C TAUT for every j;

(2) For every A C TAUT such that A € P there exists j such that A = L(N;,).

Proof. (i) — (%)

With every proof system for TAUT we can associate a nondeterministic
”guess and verify” algorithm for TAUT. On an input « this algorithm guesses
a string w and then checks in polynomial time whether w is a proof of a. If
successful, the algorithm halts in an accepting state. Also any deterministic
algorithm M for TAUT can be transformed to a proof system for TAUT. The
proof of a formula « in this system is a computation of M accepting «.

Let Opt denote an optimal proof system for TAUT and let N denote a nonde-
terministic Turing machine associated with Opt (a ”guess and verify” algorithm
associated with Opt). Tt can be easily checked that N accepts TAUT and for any
deterministic Turing machine M recognizing T AUT there exists a polynomial p
such that for every tautology « it holds:

TIME(N;a) < p(la|,TIME(M; a))
(i) — (idi) and (iii) — (i)
This follows by the same arguments as in the proofs of (i7) — (i4i) and
(#41) — (i) from Theorem 6.3. in [10].

5 Result

For a given propositional proof system A there might not be an algorithm that
would produce an h-proof of a tautology a in time polynomial in the size of
a. Considering these limitations of propositional proof systems, the following
definition was proposed in [1] (see also [9]).

Definition 9. A propositional proof system h is automatizable provided there is
an algorithm M and a polynomial p such that whencver a tautology o has an
h-proof of length n, the algorithm M produces on input o some h-proof of a in
time bounded by p(n).

Let L be any language. We say that L has the property Q if the following
statement is true:

(Q) The class of all NP-easy subsets of L possesses a recursive P-cover.

By statement (Q) we mean: there exists a recursively enumerable list of
deterministic polynomial time clocked Turing machines D;,, D;,, D;., ... such
that

(1) L(D;;) C L for every j;
(2) For every A C L such that A € NP there exists j such that A C L(D;;).
Definition 10. Given two languages Ly and Ly (L1,Ls C X*), we say that
L1 1s polynomial time many-one reducible to Lo if and only if there exists a
polynomial time computable function f : X* — X* such that x € Ly if and
only if f(z) € Ly holds for any x € X*.

If f 1s a function from Definition 10. we will say that f is a polynomial time
many-one reduction from L; to Ly (L is polynomial time many-one reducible
to Ly via f.

Definition 11. A function h : * — X* s said to be length increasing if for
all w € X* it holds that |h(w)| > |w].

Theorem 4. If TAUT has the property Q and L is a language that is polyno-
mual time many-one reducible to TAUT wia a length increasing reduction then
L has the property Q.

Proof. Let D;,, D;,, D;,,...be arecursive P-cover of the class of all NP-easy sub-
sets of TAUT. Let M be a polynomial time transducer computing the reduction
from L to TAUT. We define the new recursively enumerable list of deterministic
polynomial time clocked Turing machines D} , D; , D;_, ... The machine ng on
input 2 runs D;, on M (z). It follows from the definition of a polynomial time
many-one reduction from L to TAUT that L(ng) C L for any j.

Let A be any fixed NP-easy subset of L. Since M computes a length in-
creasing function, the set B = {y: there exists # € A such that M(z) =y } is
a NP-easy subset of TAUT'. It follows from the definition of a P-cover of the
class of all NP-easy subsets of TAUT, that there exists k such that B C L(D;,)

hence A C L(D;k).

Let TAUT* be the following language:

TAUT* = {{M, 0% w): where w € TAUT (w is a code of a propositional tautol-
ogy), M is a nondeterministic Turing machine and %k is a natural number}.

We say that a string v is in good form if v = (M, 0% w) where w is a code
of a propositional formula, M is a nondeterministic Turing machine and £ is
a natural number. Let ag be a certain fixed propositional formula such that
ag € TAUT. We define f : 2* — 2* in the following way: f(v) = w if v is in
good form (v = (M, 0% w)), otherwise f(v) = aq. It is easy to see that TAUT*
is polynomial time many-one reducible to TAUT via f.

Now we will show how to design a length increasing reduction from TAUT*
to TAUT.

For any formula a by a padded version of @ we mean a formula @ = a A 3,
where 3 is a sufficiently long conjunction of trivial propositional tautologies. It
is clear that there exists a polynomial time computable function
pad : ¥* x {0} — I* with the following properties:

(1) a € TAUT if and only if pad(a,0™) € TAUT for any n natural;
(2) lpad(a,0m)] > n+|af

Lemma 1. TAUT* is polynomial time many-one reducible to TAUT via a
length increasing reduction.

Proof. The following function f : £* —s X*, f(w) = pad(f(w), 0!} is a poly-
nomial time length increasing reduction from TAUT* to TAUT.

Definition 12. A nondeterministic Turing machine M is called sound if M
accepts only propositional tautologies (if M accepts w, then w € TAUT).

To any nondeterministic Turing machine M we will assign the following lan-
guage Ly consisting of tuples (M, 0% w), where w € ¥* and k is a natural
number:

Ly ={(M,0% w) : M accepts w in k steps }

Since Ly C TAUT™ if and only if M is sound, the language Las can be used
to verify for a given nondeterministic Turing machine M, that M is sound. As
Ly € NP for any nondeterministic Turing machine M, we have the following
fact:

Fact 2. For every sound nondeterministic Turing machine M, the set Ly is a
NP-easy subset of TAUT™.

Now we are ready to prove the main result of this section.
Theorem 5. Statements (i) - (iii) are equivalent:

(i) There exists an optimal and automatizable proof system for TAUT.
(ii) There exists a D-N-optimal acceptor for TAUT.
(iii) The class of all NP-easy subsets of TAUT possesses a recursive P-cover.

By statement (iii) we mean: there exists a recursively enumerable list of
deterministic polynomial time clocked Turing machines D;,, D;,, D;., ... such
that
(1) L(D;,) C TAUT for every j;

¥}

(2) Forevery A C TAUT such that A € NP there exists j such that A C L(D;,).

Proof. (i) — (it7)

Let Opt be an optimal proof system for TAUT which is automatizable using
a deterministic Turing machine M. We define a recursively enumerable list of
deterministic Turing machines Fy, Fy, F3,... The machine Fj is obtained by
attaching the shut-off clock n* 4+ k to the machine M. On any input w, the
machine Fj accepts w if and only if M on input w halts in an accepting state
in no more than n* + k steps, where n = |w|, and Fy rejects w in the opposite
case. The sequence Fy, Fy, F3, F4, ... of deterministic Turing machines possesses
the properties (1) and (2):

(1) For every i it holds L(F;) C TAUT;
(2) For every A which is an NP-easy subset of TAUT there exists j such that
AC L(FJ)

To prove (2) let us consider A, an NP-easy subset of TAUT accepted by
a nondeterministic Turing machine N working in polynomial time. Combining
this machine with the ”brute force” algorithm for TAUT we obtain the nonde-
terministic Turing machine N’ accepting TAUT. From the definition of N’ it
follows that there exists a polynomial p such that TIM E(N';a) < p(|e|) for
any a € A.

Let us define a propositional proof system h such that if codes a compu-
tation of N’ which accepts «, then h(z) = a. If z does not code an accepting
computation of N’ then h(z) = ag for some fixed ag € TAUT. There exists a
polynomial ¢ such that for any a € A there is a string w of length bounded by
q(]e|) with A(w) = «. This implies that there exists a polynomial r such that
any « € A possesses an Opt-proof w of length bounded by r(|a|). Since Opt is
automatizable, there exists a polynomial s such that if & € A then M produces
an Opt-proof w of a in time bounded by s(|a|). From this we conclude that for a
sufficiently large j, M produces an Opt-proof w of a in time bounded by ||/ + j
for any o € A. This gives A C L(F;).

It follows from Theorem 4. and Lemma 1. that the class of all NP-easy sub-
sets of TAUT* possesses a recursive P-cover. Let D} , D , Dj ... be a recur-
sively enumerable list of polynomial time clocked deterministic Turing machines
forming this cover. Let G be the machine generating the codes of the machines
from this list.

Let My, My, Ms, ... be an enumeration of all nondeterministic Turing ma-
chines and let My be the trivial ”brute force” deterministic algorithm recognizing
TAUT. The desired machine T', which is a D-N-optimal acceptor for TAUT, is
constructed as follows:

On an input w, |w| = n, T spends its first n preliminary steps on comput-
ing, using the machine (G, as many as possible codes of the machines from the
sequence D} , Di Dj .. Let D; Di Di .. Dj be theresult of these first n
steps of T.

Then T simulates the work of My, My, M3, ..., M, and Mg in several
rounds. At the k-th round the machine 7' performs the following three groups

of operations:

1. One additional computational step of My on w.

2. One additional computational step of D} , D; , D; ..., D; on every input
from the following list:

(My, 0% w), (Mz, 0, w), ..., (My, 0, w),
(My,0%, w), (Mz,0%,w), ..., (M, 0%, w),
(My, 03, w), (Mz,03,w), ..., (My, 03, w),

(My, 0% w), (Mg, 0% w), ..., (M,, 0% w)

3. T checks whether there are integers ¢, [(¢ < n, ! < k) such that a certain
machine ng, 1 < j < m, has accepted (M;, 0", w). If this is the case, T halts
and accepts w, otherwise it continues operating till My halts and delivers a
YES or NO result.

First we shall show that 7" recognizes TAUT. If T' finishes the simulation of
My, then this is clear. So suppose that 7' accepts w because the situation in 3.
occurs. Since the string (M;, 0!, w) has been accepted by a certain machine from
the P-cover of the class of all NP-easy subsets of TAUT™*, w is a propositional
tautology.

Let N be any nondeterministic Turing machine accepting TAUT (N = M;
for a certain i). It remains to be proved that there exists a polynomial p such
that TIME(T; w) < p(Jw|, TIME(N;w)) for any w € TAUT. By Fact 2., as
N is sound, the set Ly is a NP-easy subset of TAUT™* and hence there exists
a certain machine ng from the P-cover such that Ly C L(D;j). Let r be a
polynomial bounding the working time of ng.

Let w be any input such that |w| > max{i, i;} and w € TAUT. Let k =
TIME(M;,w). The machine T accepts w in the k + r(n)th round or sooner.
Since the mth round of T takes polynomially many steps in m and n, (n = |w]),
there is a polynomial p such that TTM E(T, w) < p(n, k). This proves that T is
a D-N-optimal acceptor for TAUT.

(id) — (i)

Let D be a D-N-optimal acceptor for TAUT. The existence of D implies by
Theorem 2, as D is also an N-N-optimal acceptor for TAUT, the existence of an

onto

optimal proof system L : X* — T AUT.

Define REF (L) = {{a,0™): there exists an L-proof of a of length < n} and
REF*(L) = {pad(a,0"): there exists an L-proof of a of length < n}. As L is
a proof system for TAUT and due to property (1) of pad, REF*(L) C TAUT.
As L and pad are polynomial time computable and due to property (2) of pad,
REF*(L) € NP.

Let N be a nondeterministic Turing machine working in polynomial time and
accepting REF*(L). Let q be a polynomial bounding its working time. Com-
bining the machine N with the "brute force” algorithm for TAUT we obtain
the nondeterministic Turing machine N recognizing T AUT and such that for
any § € REF*(L) it holds: TIME(N;[)’) < q(|8]). Let p be a polynomial con-
nected with the pair: the machine D and the machine N. Since TIME(D;p) <
P18, TIME(N; 8)) < p(18], a(|8))) for any # € REF*(L), there exists a poly-
nomial r such that TIM E(D; 8) < r(|8]|) for any f € REF*(L).

Let D, be a deterministic Turing machine obtained by attaching the shut-
off clock r to the machine D. We say that a string w € X* is in good form
if w = {,0"), where « is a propositional formula and n is a natural number.
Let ag be a certain fixed propositional tautology. We define L : * — X*
in the following way: L(w) = a if w is in good form (w = {(a,0")) and D,
accepts pad(a,0"), otherwise L(w) = aq. Clearly, L works in polynomial time
and L : ¥ — TAUT. Since L : £* 28 TAUT, we have L : X* 2 TAUT.
The system L p-simulates the system L via the function v — (L(v),0!"), so L
is an optimal proof system for TAUT.

Let M be a deterministic Turing machine which on input a runs in turn D,
on the following inputs: pad(a,0), pad(a, 0%), pad(a, 0), pad(a, 0%), ... If for a
certain n the machine D, accepts pad(a,0") then the machine M produces the
string {(«, 0™) and halts in an accepting state. As pad and D, work in polynomial
time, M produces an L-proof of a tautology a in time polynomial in the size of
the smallest L-proof of this tautology, hence the system L is automatizable.

The proof above gives more: namely, the second version of Theorem 5 is valid.
In this version condition (7) is replaced by the following one:

(¢') There exists a p-optimal and automatizable proof system for TAUT.

6 D-N-optimal acceptors and P-separability of disjoint
NP-pairs

For a disjoint pair (A, B) of languages we say that (A, B) is C-separable if there
exists a language S € C that separates (A, B),i.e. AC Sand BNS =0.

Definition 13. (cf. [9]) We say that a propositional proof system L is weakly
automatizable if there exists a propositional proof system L that p-simulates L
and s automatizable.

J. Kobler and J. Messner [6] proved that the question of whether every proof
system for TAUT admits an effective interpolation is related to the question of
whether every disjoint pair of NP-sets is P /poly separable (see also [11]). We
show that analogously: the question of whether every proof system for TAUT
1s weakly automatizable is related to the question of whether every disjoint pair
of NP-sets 1s P-separable.

Theorem 6. Statements (i) - (iv) are equivalent:

(i) Every disjoint pair of NP sets is P separable.
(ii) Every function in NPSV has a total extension in FP.
(iii) Every proof system for TAUT is weakly automatizable.
(iv) For any NP-easy subset A of TAUT there ezists a deterministic polynomial
time clocked Turing machine D such that L(D) C TAUT and A C L(D).

Proof. (i) — (i) Our proof technique is adapted from [11].

Let f be a function in NPSV computed by a suitable nondeterministic
transducer in time bounded by a polynomial p. We define f’(z) as the string
f(z) = 0pUzD=1F @1 f(x). Tn case f(z) is not defined, neither f’(z) is defined.
By the above, for every z of a given length, f’(z) has the same length.

Define for a € {0, 1} the two disjoint NP sets
Ag = {{z,4): 1 <1 <p(|z|) + 1 and the i-th bit of f’(x) is a}. Since Ag and A
are P-separable there exists a deterministic transducer M working in polynomial
time which outputs 0 on Ag and 1 on A;. Consider a deterministic Turing ma-
chine M’ which on input 2 computes a; = M ((z,i)) for 1 <i < p(|z]|)+ 1, and
then outputs the string w obtained by erasing the prefix 000...01 from the string
a1a2a3...dp(|z|)41- 1t follows that, in case f(z) is defined the machine M’ pro-
duces f'(z), and then extracts from this the correct value for f(z). In case f(z)
is not defined the machine M’ computes some value for f, the total extension of
f, at x.

Let L be a proof system for TAUT. Consider the following canonical NP-
pair for the system L (see [9]): REF(L) = {{a,0"): there exists an L-proof of
a of length < n}, FALS* = {(a,0") « is a falsifiable propositional formula, n
is a natural number }. Define the function h : * — Z* as follows: h(z) = 1
for any « € REF(L), h(z) = 0 for any x € FALS* and h(z) is undefined for
any other z. As REF (L), FALS* are in NP and REF (L) N FALS* = {, the
function h is in NPSV.

Let g be a total extension of h in FP and let M be a deterministic Turing
transducer working in polynomial time and computing the function g. We say
that a string w is in good form if w = {«, 0™), where « is a propositional formula
and n is a natural number. Let ag be a certain fixed propositional tautology. We
define L : ¥* — X* in the following way: L(w) = a if w is in good form and
M (w) = 1, otherwise L(w) = ag.

The proof system L p-simulates the system L via the function
w > (L(w),0!*Y. Consider the following deterministic Turing transducer K. On
input a the machine K runs in turn the machine M on the following inputs:
(e, 0, {a, 0%), (e, 03), (@, 0%), ... If for a certain n it holds: M ({e,0")) = 1, the
machine K produces the string (a, 0"} and halts in an accepting state. Since L
is automatizable using the machine K, the system L is weakly automatizable.

(#38) — (iv)

Let A C TAUT and A € NP. There exists a nondeterministic Turing ma-
chine N working in time bounded by a polynomial p and accepting A. Combining

this machine with the ”brute force” algorithm for TAUT we obtain the nonde-
terministic Turing machine N’ accepting TAUT.Let h be a proof system for
TAUT associated with N’. Tt follows from the definition of A that any a € A
has an h-proof of length bounded by p(|al).

Let g be a proof system for TAUT which p-simulates h and which is autom-
atizable using the deterministic Turing transducer D. There exists a polynomial
q such that any a € A has a g-proof of length bounded by ¢(|a|) and, in con-
sequence, there exists a polynomial r such that for any a € A the machine D
produces a g-proof of « in time bounded by r(|a|). Therefore for a sufficiently
large j, D produces a g-proof of a in time bounded by |a|’ + j.

Let D; be a deterministic Turing machine obtained by attaching the shut-
off clock n/ + j to the transducer D. The machine D; accepts a formula « if
D on input «, halts in an accepting state after no more than |a|/ + j steps,
and rejects o in the opposite case. It follows from the above that L(D;) € P,
L(D]) C TAUT and A C L(D])

(iv) > (1)

Let U, V be two disjoint NP sets. Take a polynomial time reduction g of U
to the NP-complete set S*\TAUT. Let f : 5% — X*, f(w) = pad(g(w),0l*!)
for any w € I*. Since f is a length increasing reduction of U to Z*\TAUT we
have: f(U) C Z*\TAUT, f(U) € NP, f(V) C TAUT and f(V) € NP. It follows
from (iv) that there exists a set C' C TAUT such that C' € P and f(V) C C.

Consider the set W = f~1(C) = {w : f(w) € C }. Clearly W € P and
V C W. In order to prove that W NU = §}, suppose on the contrary that there
exists such that z € W and # € U. Then by the definition of W, f(z) € C
and, in consequence, f(z) ETAUT. Conversely, since z € U and f reduces U to
I*\TAUT, we have f(z) € Z*\TAUT, a contradiction. Thus U N W = @, which
proves that the disjoint pair (U, V) is P-separable.

Clearly, statement (i7i) from Theorem 5 (the class of all NP-easy subsets
of TAUT possesses a recursive P-cover) implies (iv), so as a corollary we have
obtained:

Corollary 1. If there exists a D-N-optimal acceptor for TAUT then every dis-
joint pair of NP-sets 1s P-separable.

References

1. Alekhnovich, M., Buss, S., Moran, S., Pitassi T.: Minimum propositional proof
length is NP-hard to linearly approximate. In: Proc. 23rd Symposium Mathemat-
ical Foundations of Computer Science. Lecture Notes in Computer Science, Vol.
1450. Springer-Verlag, Berlin Heidelberg New York (1998) 176 — 184

2. Balcazar, J.L., Diaz, J., Gabarrd, J.: Structural complexity 1. 2nd edn. Springer-
Verlag, Berlin Heidelberg New York (1995)

3. Cook, S.A., Reckhow R.A.: The relative efficiency of propositional proof systems.
J. Symbolic Logic 44 (1979) 36-50

4. Hartmanis, J., Hemachandra, L.: Complexity classes without machines: On com-
plete languages for UP. Theoret. Comput. Sci. 58 (1988) 129 — 142

10.

11.

. Kowalczyk, W.: Some connections between presentability of complexity classes and

the power of formal systems of reasoning. In: Proc. Mathematical Foundations of
Computer Science. Lecture Notes in Computer Science, Vol. 176. Springer-Verlag,
Berlin Heidelberg New York (1988) 364 — 369

. Kébler, J., Messner, J.: Is the standard proof system for SAT p-optimal? In: Proc.

20th Annual Conference the Foundations of Software Technology and Theoretical
Computer Science. Lecture Notes in Computer Science, Vol. 2136. Springer-Verlag,
Berlin Heidelberg New York (2001) 361 — 372 Computational Complexity, (1998)
132-140

Krajicek, J., Pudlak, P.: Propositional proof systems, the consistency of first order
theories and the complexity of computations. J. Symbolic Logic 54 (1989) 1063—
1079

Messner,J.: On optimal algorithms and optimal proof systems. In: Proc. 16th Sym-
posium on Theoretical Aspects of Computer Science. Lecture Notes in Computer
Science, Vol. 1563. Springer-Verlag, Berlin Heidelberg New York (1999) 541 —550
Pudlék, P.: On reducibility and symmetry of disjoint NP-pairs. In: Proc. 26th Sym-
posium Mathematical Foundations of Computer Science. Lecture Notes in Com-
puter Science, Vol. 2136. Springer-Verlag, Berlin Heidelberg New York (2001) 621
- 632

Sadowski, Z.: On an optimal propositional proof system and the structure of easy
subsets of TAUT. Theoret. Comput. Sci. 288 (2002) 181 —193

Schéning, U.,Tor4n, J.: A note on the size of Craig’s Interpolant. (1998) Unpub-
lished manuscript

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

