Electronic Collogquium on Computational Complexity, Report No. 79 (2005)

Expanders and time-restricted branching programs

S. Jukna *1*

Abstract

The replication number of a branching program is the minimum number R such
that along every accepting computation at most R variables are tested more than once.
Hence 0 < R < n for every branching program in n variables. The best results so far
were exponential lower bounds on the size of branching programs with R = o(n/logn).
We improve this to R = en for a constant ¢ > 0. This also gives a new and simple proof
of an exponential lower bound for branching programs of length (1 + ¢)n. These lower
bounds are proved for quadratic functions of Ramanujan graphs.

1 Introduction

We consider the standard model of (deterministic) branching programs (see, e.g. the survey
[16] or the monograph [20]). Recall that such a program is just a directed acyclic graph
with one source node. Each sink (i.e. a node of outdegree 0) is labeled either by 1 (accept)
or by 0 (reject). Each non-sink node has outdegree 2, and the (two) outgoing edges are
labeled by the tests x; = 0 and z; = 1, for some ¢ € {1,...,n}. Such a program computes a
boolean function f: {0,1}" — {0, 1} in a natural way: given an input vector z € {0,1}" we
start in the source node, and follow the (unique) path whose tests are consistent with the
corresponding bits of x; this path is the computation on x. This way we reach a sink, and
the input z is accepted iff this is the 1-sink.
Natural parameters of every branching program are:

e the size S = the number of nodes;

e the computation time T = the length of a longest computation, and
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e the replication number R = the maximal number of bits tested more than once along
an accepting computation.

Note that for every branching program in n variables we have 0 < R < n. Moreover,
every boolean function f in n variables can be computed by a branching program with 7' =n
and R = 0: just take a complete binary tree of depth n. However, the size S of such (trivial)
branching programs is then exponential for most functions. It is therefore interesting to
understand whether S can be substantially reduced by allowing larger values for 7" and /or
R. This is a so-called “space versus time” problem for branching programs.

Thus, given a boolean function f in n variables, we are interested in the smallest size S
of a branching program computing f when either 7" or R (or both) are limited.

Note that 7" and R are “semantic” restrictions: they concern only consistent paths (com-
putations), i.e. paths that do not contain two contradicting tests z; = 0 and z; = 1 on some
bit i. The “syntactic” case, where the restriction is on all paths (be they consistent or not)
is usually easier to deal with, and exponential lower bounds on the size S in this case were
obtained for T = o(nlogn) [15, 6, 10] as well as for' R = o(n'/3/log?*n) |19, 18].

In the non-syntactic case, the first super-polynomial lower bounds on S with R =
o(n/(logn)?) were proved in [17] (improving upon [21]); this was further improved to R =
o(n/logn) in [11]. These bounds hold also for 7" = (1 + ¢)n with € = o(1/logn).

The first exponential lower bound on S for 7' = (14 ¢€)n with a (very small but constant!)
e > 0 was proved in [4] (the proof works for ¢ = 0,0178). Shortly after this was substantially
improved in [1] to 7" = cn for an arbitrary constant ¢ > 0 (see also [5] for some further
improvements of this result).

In this paper we prove exponential lower bounds on the size S when R = en for a constant
¢ > 0 (Theorem 4.1 below). This improves the lower bounds of [21, 17, 11] and gives a new
proof for the lower bound of [4] (for a different function). The amazing simplicity of our
proofs (modulo some known deep constructions of expander graphs) indicates that expander
graphs could be good candidates to construct hard boolean functions for time-restricted
branching programs.

We prove our lower bounds for quadratic forms f(z) = 2T Az over GF(2) where A
is an adjacency matrix of particular Ramanujan graphs. It should be noted that quadratic
forms (over different fields) were used in most papers on time-restricted branching programs:
Sylvester and generalized Fourier matrices in [6, 4, 5|, Hankel matrices in [1, 5|, etc. The
“hardness” of the resulting functions was achieved by special algebraic properties of the
underlying matrices A: every large enough submatrix must have large rank. The difference
of our proof is that we use the combinatorial properties of the underlying matrices A: they

'In the literature, branching programs with the replication number R are also called “(1, +R)-branching
programs.”



must have relatively few 1’s and still do not have large all-0 submatrices. Such are, in
particular, adjacency matrices of good expander graphs, including the Ramanujan graphs.

2 A general lower bound

A set of vectors A C {0,1}" is a (boolean) rectangle if there is a partition of {1,...,n} into
two disjoint parts X; and X, of the same size +1 (i.e. a partition must be balanced) and
subsets A; C {0,1}* such that A = A; x A,. That is, the characteristic function f4 of A
(fa(xz) = 1iff x € A) can be represented as an AND f4 = f1(X7) A f2(X32) of two boolean
functions on the corresponding sets of variables. The width of a rectangle A = A; x A, is
min{|A4;|,|As|}. Define the rectangle width w(f) of a boolean function f as the maximal
possible width of a rectangle A such that f(x) = 1 for all z € A (in this case we also say
that the rectangle is contained in f).
We say that a boolean function f : {0,1}" — {0,1}

e is dense if | f~1(1)| > 2n—°;
e has small rectangle width if w(f) < 2"/279" for some constant J > 0;

e is good if any two vectors in f~1(1) differ in at least two bits.

Theorem 2.1. Let f be a good and dense boolean function in n variables. If f has small
rectangle width then there is a constant € > 0 such that any deterministic branching program
computing f with the replication number R = en has size S = 22,

We postpone the (relatively simple) proof of this theorem to Section 5, and turn to its
applications.

3 Functions with small rectangle width

To apply Theorem 2.1 we need boolean functions f : {0,1}" — {0,1} for which w(f) is
much smaller than the trivial upper bound 2"/2. Recall that w(f) is the maximum over all
balanced partitions. This gives an adversary a lot of freedom to enforce a wide rectangle.
We must therefore choose the function f so that no partition is suitable (for the adversary).
We define such functions using graphs.

Let G = (V, E) be an undirected graph, and A its adjacency matrix. By fs we denote
the quadratic form fg(z) = 2T Az over GF(2). That is,

fo(lx) = Z TyTp mod 2.

wel

Let us first show that such functions are dense.



Proposition 3.1. For every graph G with at least one edge the function fo is dense.

Proof. Take an arbitrary edge uv of G = (V, E) and consider the induced subgraph H of
G on the vertex set V \ {u,v}. Given an assignment a € {0,1}V\{“*} of constants to the
vertices of H, let p,(a) and p,(a) be the parities of bits assigned to the neighbors of u and
vin H. Then
fala,zy, z0) = fr(a) & xuxy & pula)zy ® pu(a),.

If fy(a) =1 then set z, =z, = 0. If fy(a) =0 and p,(a) = p,(a) then set x, =z, = 1. If
fu(a) =0 and p,(a) # p,(a) with, say, p,(a) = 1 then set z,, = 1 and z, = 0. It is easy to
see that in all three cases the resulting assignment will be accepted by fs. Hence, at least

one extension of every assignment a € {0,1}" %"} will be accepted by f, implying that
et ()] =22 0

A more interesting fact is that quadratic forms of some graphs have small rectangle width.

Say that a graph is s-mized if every pair of disjoint sets of s vertices is joined by at least
one edge, that is, the complement of the graph contains no copies of K ;; the smaller s is,
the more is the graph mixed. The following lemma (inspired by the paper of Hayes [8])
says that if the graph G has constant degree and is still mixed enough, then f; has small
rectangle width.

Lemma 3.2. Let G be an n-vertex graph of mazximum degree d. If G is s-mized then
w(fg) <2727+ where § = 8%1 (1 - §)

Proof. Let g(X) = ¢1(X1) A g2(X3) be an arbitrary rectangle contained in fg; hence n/2 <
| X <n/2+1 for both i = 1,2. Recall that variables in X correspond to vertices of G, and
construct an induced matching M = {z1y1, ..., Tynym} from X; to X5 by repeatedly taking
an edge ry € E with x € X; and y € X5 and removing it together with all its neighbors.
Since the graph G is s-mixed and both parts X; and X, have at least n/2 vertices, the
procedure will run as long as n/2 — 2dm > s. Hence, m > (n/2 — s)/(2d) = 20n.

We now set to 0 all variables corresponding to vertices outside the matching M. Since
M is an induced subgraph of G, the obtained (from f;) function is just the inner product
function .

fu (T, Ty Y1y e ey Ym) = inyi mod 2.
i=1

Moreover, the obtained (from g) function ¢'(X’) = g1 (X]) A g5(X}) is a rectangle (on | X'| =
2m variables) with X| = {x,...,2,} and X} = {y1,...,yn}, and is contained in fy,
(because g(X) was contained in fg). Lindsey’s Lemma (see, e.g. [7]) implies that for every
two subsets A, B of {0,1}™,

> (~pen| < om 4l B
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In particular, fj; can be constant on A x B only if |A| - |B| < 2™. Hence, the rectangle ¢’
cannot have width larger than 27/2. Since at most | X;| —m < n/2+ 1 —m variables in each

block of the partition X = X; U X, were set to 0, the original rectangle can have width at
most 2m/2 . 2n/2+17m — 2n/2+17m/2 < 2n/275n+1. 0

According to Lemma 3.2 we need explicit constant-degree graphs with good expansion
properties. For this purpose we take Ramanujan graphs, i.e. (¢+ 1)-regular graphs with the
property that |A| < 2,/g for every nontrivial (i.e. # £(¢q + 1)) eigenvalue of their adjacency
matrix, this is almost optimal because A\ > 2,/q — o(1) for any (q + 1)-regular graph [2].
Explicit constructions of Ramanujan graphs on n vertices for every prime ¢ = 1 mod 4 (and
infinitely many values of n) were given in [13, 12]; these were later extended to the case
where ¢ is an arbitrary prime power in [14, 9|.

The so-called Expander Mixing Lemma (see, e.g., Corollary 9.2.5 in [3]) states that if G is
a d-regular graph on n vertices and \ is the second largest eigenvalue of its adjacency matrix,
then the number e(A, B) of edges between every two (not necessarily disjoint) subsets A and

B of vertices satisfies p
e(4.B) = ~| Al |BI| < A|A] | B].

According to this lemma, (g + 1)-regular Ramanujan graphs are s-mixed for s = 2n/,/g.

4 A lower bound for an explicit function

Let ¢ > 16 be a prime power, and let G = (V, E) be a (¢ + 1)-regular Ramanujan graph on
n vertices. By taking the AND with the parity function Parity(X) = > ,cy x, mod 2 we
ensure that the resulting function

f.(X) = fa(X) A Parity(X)
is good.

Theorem 4.1. There is a constant ¢ > 0 such that any deterministic branching program
computing f, with the replication number R = en requires size 2.

Proof. By Proposition 3.1, the function fs (and hence, also f,,) is a dense boolean function.
On the other hand, since G is s-mixed for s = 2n/,/q, Lemma 3.2 implies that w(f,) <
w(fq) < 27?7+ where

5:8(q1+1) <1_%) = 8(q£r1) (“%)

is a positive constant, as long as ¢ > 16. It remains to apply Theorem 2.1. U
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If a branching program computes a good boolean function in n variables and has length
(time) T', then its replication number R cannot exceed T — n. Hence, Theorem 4.1 yields
an exponential lower bound also for the class of time (1 + ¢)n branching programs for a
constant € > 0.

5 Proof of Theorem 2.1

We prove the following more general fact.

Theorem 5.1. Let f be a good and dense boolean function in n variables, and let S be the
minimum size of a deterministic branching program with replication number R computing f.

Then n Sen
logy S > log, | f71(1)] — 9 logy w(f) — Rlog, R 3.
Theorem 2.1 is a direct consequence of this fact: if w(f) < 2%/279" for some constant

d > 0, then it is enough to take R = en for a constant ¢ > 0 such that elog,(2¢/€) < 0.

Proof. Take an arbitrary deterministic branching program computing f. Let S be the size
and R be the replication number of this program. For an input z € f~!(1), let comp(x)
denote the (accepting) computation path on z. Since f is good, all n bits are tested at least
once along each of these paths. Split each of the paths comp(z) into two parts comp(z) =
(ps, gz) where p, is an initial segment of comp(z) along which n/2 different bits are tested.
Hence, the remaining part ¢, can test at most n/2 + R + 1 different bits.?

If we replace each test x; = 1 by the variable z; and each test x; = 0 by its negation —x;,
then we can look at segments p, and ¢, as monoms, i.e. as ANDs of corresponding variables
or their negations. This way we obtain that f can be written as an OR of at most S ANDs
Dy N\ Dy of DNFs such that

(i) All monoms have length at most k = n/2 + R+ 1 and at least n/2. This holds by the
choice of segments p, and g¢,.

(ii) Any two monoms in each DNF are inconsistent, i.e. one contains a variable x; and the
other contains its negation —z;. This holds because the program is deterministic: the
paths must split before they meet.

(iii) For all p; € D; and py € D, either pyps = 0 or | X(p1) N X(p2)| < R where X (p)
is the set of variables in monom p. This holds because the program has replication
number R.

2Note that we count only the number of tests of different bits—the total length of (the number of tests
along) comp(z) may be much larger than n + R.



By (i), each monom of D; accepts at least a 27* fraction of all 2" vectors and, by (ii), no
two of them accept the same vector. Hence, each of the DNFs D; and D, can have at most
2% monoms.

Fix now one AND g = D; A D, for which the set B = g~!(1) is the largest one; hence,
S > |f~Y(1)|/|B]. To finish the proof of the theorem, it is enough to show that B contains
a rectangle of width (recall that k =n/2+ R+ 1)

.__|BI

LB
Poar()”

w >

For every a € B there are monoms p; € D; such that p;ps(a) = 1. The (potential) problem,
however, is that for different vectors a the corresponding monoms p; and p, may share
different variables in common. This may prohibit their combination into a rectangle. To
avoid this problem, we use the last property (iii) and fix a set Y of |Y'| < R variables for
which the set

A={ae B:3dp; € D;i: pip2(a) =1 and X(p1) N X(p2) =Y}

is the largest one. Hence,

Al > |B\/g @ > |B|- (%)—R.

Each a € A is an extension of some monom p € Dy, i.e. pg(a) = 1 for some p € D; and
q € Dy with X(p) N X(q) =Y. Since the monoms of D; are mutually inconsistent, no two
of them can have a common extension. Hence, the sets

exta(p) ={a€ A:3g€ Dsy: pgla) =1and X(p)NX(q) =Y}

with p € D; form a partition of A into |D;| blocks. Since the average size of a block is
|A|/|D;| > |A]/2", at least a 2 fraction of all vectors of A must belong to blocks of size at
least 3 - |A[/2¥. The same holds also for the partition of A given by the extensions of the
monoms from the second DNF D,. Hence, if we set

A;={a€ A: p(a) =1 for some p € D; with |ext(p)| > 1 - |A]/2F},

then both A; and A, consist of at least 2| A| vectors of A, implying that A; N Ay # 0.

Fix a vector a € A; N Ay and let p; € Dy and ps € Ds be the corresponding monoms for
which p;(a) = 1, lexta(p;)| > 5|Al/2" and X (p1) N X (p2) =Y. The combined monom p;p,
is consistent (with a) and contains all n variables (since A is good).

Let b be the projection of the vector a onto Y. All the vectors in ext 4(p;) and in ext 4(p2)
coincide with b on Y. Consider the rectangle C' = C x {b} x Cy where C; is the projection of
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ext 4(ps_;) onto the set of variables X (p;)\ S. (This is a rectangle, because both | X (p;)| and
| X (p2)| are at least n/2.) Hence, we have a rectangle of width |Cj| = |ext4(ps_;)| > 3| Al/2",
and it remains to show that all the vectors of this rectangle are accepted by g = Dy A Ds.

Claim 5.2. g(c) =1 for all c € C.

Proof. The vector a belongs to C' and has the form a = (ay,b,a;) with a; € {0, 1}XP\S,
Take now an arbitrary vector ¢ = (¢1,b,¢o) in C.

The vector (ap,b,cy) is in ext4(p;). Hence, there must be a monom ¢, € D, such that
p1q2 accepts this vector and X (p;) N X(¢g2) = Y. Since all bits of a; are tested in p; and
none of them belongs to Y, none of these bits is tested in ¢». Hence, ¢» must accept also the
vector ¢ = (c1,b, ¢y). Similarly, using the fact that (c1,b,as) is in ext4(ps), we can conclude
that the vector ¢ = (c1,b,¢) is accepted by some monom p, € D;. Hence, the vector c is
accepted by both DNFs D; and D», as desired.

This completes the proof of the claim, and thus, the proof of the theorem. O
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