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Abstract

Clique-width is a graph parameter, defined by a composition mechanism for vertex-
labeled graphs, which measures in a certain sense the complexity of a graph. Hard graph
problems (e.g., problems expressible in Monadic Second Order Logic, that includes NP-
hard problems) can be solved efficiently for graphs of certified small clique-width. It
is widely believed that determining the clique-width of a graph is NP-hard; in spite of
considerable efforts, no NP-hardness proof has been found so far.

In this paper we show a non-approximability result for restricted form of clique-
width, termed “r-sequential clique-width”, considering only such clique-width construc-
tions where one of any two graphs put together by disjoint union must have r or fewer
vertices. In particular, we show that for every positive integer r, the r-sequential clique-
width cannot be absolutely approximated in polynomial time unless P = NP.

We show further that this non-approximability result holds even for graphs of a
very particular structure: for graphs obtained from cobipartite graphs by replacing
edges with induced paths. In part II of this series of papers we use this strengthened
result to show that, unless P = NP, there is no polynomial-time absolute approximation
algorithm for (unrestricted) clique-width; this solves a problem that has been open since
the introduction of clique-width in the early 1990s.

1 Introduction

Clique-width is a graph parameter that measures in a certain sense the complexity of a
graph. This parameter was first considered by Courcelle, Engelfriet, and Rozenberg [5] (the
term clique-width was introduced later). The clique-width of a graph is the smallest number
of labels that suffices to construct the graph using the operations: creation of a new vertex v
with label i, disjoint union, insertion of edges between vertices of certain labels, and relabeling
of vertices. Such a construction of a graph by means of these four operations using at most
k different labels can be represented by an algebraic expression called a k-expression. (More
exact definitions are provided in Section 2.) By a general result of Courcelle, Makowsky, and
Rotics [6], any graph problem that can be expressed in Monadic Second Order Logic with
second-order quantification on vertex sets (that includes NP-hard problems) can be solved
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in linear time for graphs of clique-width bounded by some constant k if the k-expression
is provided as input to the algorithm (albeit the running time involves a constant which is
exponential in k).

A main limit for applications of this result is that first one has to find a k-expression for
the given graph (or decide that the clique-width of the given graph exceeds a given limit).
The question whether there is a polynomial-time algorithm for computing the clique-width
of a graph was already raised by Courcelle, et al. [5] in 1990.

Clique-width can be considered to be more general than treewidth since (i) there are
graphs of constant clique-width but arbitrarily high treewidth, e.g., complete graphs, but
(ii) graphs of bounded clique-width have also bounded treewidth. The latter was shown by
Courcelle and Olariu [7]; the upper bound on the clique-width of a graph in terms of its
treewidth was improved by Corneil and Rotics [4]. Since the computation of treewidth is
well-known to be NP-hard (Arnborg, Corneil, and Proskurowski [1]), it is obvious to assume
that such a hardness result should also hold for the more general parameter clique-width.
However, no hardness result for clique-width similar to to the treewidth result [1] is known!

With considerable efforts, polynomial-time algorithms could be developed for recognizing
graphs of clique-width at most 3 (see Corneil, Habib, Lanlignel, Reed, and Rotics [3]).
Recently, Oum and Seymour [14] obtained an algorithm that, for any fixed k, runs in time
O(n9 log n) and computes (23k+2 − 1)-expressions for graphs of clique-width at most k. This
result is interesting, as it makes the notion “graph class of bounded clique-width” feasible;
however, since the running time of algorithms as suggested by Courcelle et al. [6] crucially
depends on k, closer approximations are desirable.

The graph parameter “NLC-width”, introduced by Wanke [16], is defined similarly as
clique-width, however a single operation that combines disjoint union and insertion of edges
is used. Recently Gurski and Wanke [10] have reported that computing the NLC-width is
NP-hard. Since NLC-width and clique-width can differ by a factor of 2 (see Johansson [11]),
non-approximability with an absolute error guarantee for one of the two parameters does
not imply a similar result for the other parameter.

In the present paper we show that the computation of a restricted form of clique-width,
termed r-sequential clique-width (or simply sequential clique-width for r = 1), is NP-hard.
Here we consider only clique-width constructions with skew disjoint unions; that is, where
at least one of any two k-graphs put together by disjoint union is of order r or less (r is an
arbitrarily large constant).

Sequential clique-width as a special case of clique-width can be considered as an analog
to pathwidth as a special case of treewidth; trees corresponding to sequential clique-width
constructions are path-like. The natural clique-width constructions of complete graphs (see
Section 2 for an example) are sequential.

Our main result can be stated as follows.

(1) For every r ≥ 1, the computation of the r-sequential clique-width of a graph is NP-hard
and remains NP-hard if we allow an absolute error of nε, where n is the number of
vertices of degree greater than 2 of the input graph and ε < 1.

In particular, unless P = NP, there is no polynomial-time absolute approximation algorithm
for clique-width. Of course, this result also shows that the following decision problem is
NP-complete for any r > 0:

minimum r-sequential clique-width

Instance: A graph G and a positive integer k.

question: Is the r-sequential clique-width of G at most k?

Furthermore, we obtain structural results relating the parameters clique-width, sequential
clique-width, and r-sequential clique-width:
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(2) For every r ≥ 2, the sequential clique-width of a graph exceeds the r-sequential clique-
width at most by r.

(3) For every r ≥ 1 there exist graphs of constant clique-width but arbitrarily high r-se-
quential clique-width.

We show that the non-approximability result (1) holds even for a special graph class D
consisting of graphs obtained from cobipartite graphs (complements of bipartite graphs) by
replacing edges by induced paths. In the second part of this series of articles [9], we show
that—in contrast to (3)—clique-width and sequential clique-width of graphs in D differ at
most by a small constant. This implies that the non-approximability of sequential clique-
width carries over to (general) clique-width. Whence computing the clique-width of a graph
is NP-hard; this solves the outstanding problem that has been open for 15 years.

The key idea of our approach is to show NP-hardness of one graph parameter ((sequential)
clique-width) by means of the non-approximability of another graph parameter (pathwidth).
Such an approach might be applicable for showing intractability of other graph parameters.

2 Notation and preliminaries

A layout of a graph G with n vertices is a bijection ϕ : V (G) → {1, . . . , n}. For a layout ϕ
of G we define the sets of vertices

LG(i, ϕ) = {u ∈ V (G) : ϕ(u) ≤ i },

RG(i, ϕ) = {u ∈ V (G) : ϕ(u) > i },

L∗
G(i, ϕ) = { v ∈ LG(i, ϕ) : ∃u ∈ RG(i, ϕ) such that uv ∈ E(G) },

R∗
G(i, ϕ) = { v ∈ RG(i, ϕ) : ∃u ∈ LG(i, ϕ) such that uv ∈ E(G) }.

We call the maximum cardinality of R∗
G(i, ϕ) and the maximum cardinality of L∗

G(i, ϕ) the
in-degree and the out-degree of the layout ϕ, respectively. The vertex separation number
vsn(G) of G is defined as the smallest in-degree over all layouts of G (which equals the
smallest out-degree over all layouts of G).

Let T be a tree and χ a labeling of the vertices of T by sets of vertices of G. The pair
(T, χ) is a tree decomposition of G if (i) every vertex of G belongs to χ(t) for some vertex
t ∈ V (T ); (ii) for every edge vw ∈ E(G) there is some t ∈ V (T ) with v, w ∈ χ(t); (iii) for
any vertices t1, t2, t3 ∈ V (T ), if t2 lies on a path from t1 to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2).
The width of (T, χ) is the maximum |χ(t)| − 1 over all vertices t of T . The treewidth of G is
the minimum width over all tree-decompositions of G. The pathwidth pwd(G) of G is the
minimum width over all tree-decompositions (T, χ) of G where T is a path.

It is well-known that pathwidth and vertex separation number of a graph agree (see
Kinnersley [13]).

Let k be a positive integer. A k-graph is a graph whose vertices are labeled by integers
from {1, . . . , k}. We consider an arbitrary graph as a k-graph with all vertices labeled by 1.
We call the k-graph consisting of exactly one vertex v (say, labeled by i ∈ {1, . . . , k}) an
initial k-graph and denote it by i(v). If a vertex v of a k-graph G is the only vertex with
label i then we call v a singleton.

The clique-width cwd(G) of a graph G is the smallest integer k such that G can be
constructed from initial k-graphs by means of repeated application of the following three
operations.

• Disjoint union (denoted by ⊕);

• Relabeling : changing all labels i to j (denoted by ρi→j);

• Edge insertion: connecting all vertices labeled by i with all vertices labeled by j
(denoted by ηi,j).
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We call the construction of a k-graph using the above operations a clique-width construction.
A clique-width construction can be represented by an algebraic term composed of ⊕, ρi→j ,
and ηi,j , (i, j ∈ {1, . . . , k}, and i 6= j). Such a term is called a k-expression defining G.

For example, the complete graph on the vertices u, v, w, x is defined by the 2-expression

ρ2→1(η1,2(ρ2→1(η1,2(ρ2→1(η1,2(2(u) ⊕ 1(v))) ⊕ 2(w))) ⊕ 2(x)))

In general, every complete graph Kn, n ≥ 2, has clique-width 2.

3 The r-sequential clique-width

In the sequel we consider clique-width constructions where disjoint union of two k-graphs
is only allowed if at least one of them has r or fewer vertices. We call such clique-width
constructions and the corresponding k-expressions r-sequential (or sequential for r = 1).
The r-sequential clique-width of a graph G, denoted by cwdr(G), is defined as the smallest
k such that G can be defined by an r-sequential k-expression. For example, the above
2-expression defining K4 is sequential. In general, we have cwd1(Kn) = cwd(Kn) for every
n ≥ 1.

It is convenient to consider a sequential k-construction as a process where to some initial
k-graph a sequence of operations is applied, defining the addition of a new vertex as a single
operation

αi(v)(G) = G ⊕ i(v).

Thus we can rewrite the above sequential 2-expression for K4 as the sequence

1(u), α2(v), η1,2, ρ2→1, α2(w), η1,2, ρ2→1, α2(x), η1,2, ρ2→1.

The next lemma shows that by considering r-sequential clique-width instead of sequential
clique-width we cannot save more than r labels.

Lemma 1. cwdr(G) ≤ cwd1(G) ≤ cwdr(G) + r holds for every graph G and every r ≥ 1.

Proof. Let G be a k-graph and X an r-sequential k-expression of G. We show by induction
on n = |V (G)| that G has a sequential (k + r)-expression Y . If n = 1 then we simply
put Y = X , hence assume n > 1. It follows that X describes a clique-width construction
where G is obtained by edge insertions and relabelings from G′⊕H ; G′, H are k-graphs with
cwdr(G

′) ≤ k and |V (H)| ≤ r. Let V (H) = {u1, . . . , up} and E(H) = {ua1
ub1 , . . . , uaq

ubq
},

p ≤ r and q ≤ r2. We construct G from G′ by means of the following three steps.

1. First we add the vertices of H to G′ using new labels k + 1, . . . , k + p,

G′′ = G′ ⊕ (k + 1)(u1) ⊕ · · · ⊕ (k + p)(up).

Note that the disjoint unions are in accordance with the requirements of sequential
clique-width.

2. Next we apply to G′′ the edge insertions ηk+ai ,k+bi
, i = 1, . . . , q, and obtain the

(k + r)-graph G′′′. We observe that G′′′ and G′ ⊕ H only differ in the labeling of the
vertices of H . Since the vertices of H are singletons in G′′′, we can apply relabelings
(as described by X) to obtain G′ ⊕ H from G′′′.

3. By assumption we can obtain G from G′ ⊕ H by edge insertions and relabelings.
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The induction hypothesis applies to G′, hence there is a sequential k-expression Y ′ defining
G′. According to the three construction steps described above we extend Y ′ to a sequential
(k + r)-expression Y defining G. Hence the induction proof is completed and the lemma
follows.

The upper bound of Lemma 1 can be improved to cwd1(G) ≤ cwdr(G)+f(r) where f(r)
is the largest clique-width of graphs with r vertices. In particular, since the clique-width of
a graph with r > 2 vertices is at most r − 1, we have cwd1(G) ≤ cwdr(G) + r − 1 for r > 2.

4 Proof of the main result

This section is devoted to the proof of our main result, namely, the non-approximability of
r-sequential clique-width.

Construction 1. Let G denote a fixed simple connected graph with n ≥ 2 vertices. We
obtain a graph G′ from G by replacing each edge uv of G by three internally disjoint paths
(u, xi, yi, v), i = 1, 2, 3, of length 3 (see Figure 1); we call such paths bridges.

u

v

=⇒

u

v

x1

y1

x2

y2

x3

y3

Figure 1: Construction of G′.

For the remainder of this section let G denote a fixed simple connected graph with n ≥ 2
vertices and let G′ denote the graph obtained from G by means of Construction 1.

Lemma 2. Given a layout ϕ : V (G) → {1, . . . , n} of G with out-degree k, we can construct
in polynomial time a sequential (k + 4)-expression defining G′. Consequently, cwd1(G

′) ≤
vsn(G) + 4.

Proof. For i = 1, . . . , n let Γi denote the set of vertices of G′ that belong to LG(i, ϕ) or are
of distance at most 2 apart from LG(i, ϕ). (Thus, if at least one end of a bridge b belongs
to LG(i, ϕ), then both internal vertices of b belong to Γi.) Let ∆i denote the subset of Γi

consisting of vertices that are adjacent in G′ with vertices outside of Γi. Furthermore, let
G′

i denote the subgraph of G′ induced by the set Γi.
We inductively obtain sequential (k + 4)-expressions defining k-graphs Gi, i = 1, . . . , n,

such that the labeling of Gi satisfies the following conditions.

1. vertices in Γi \ ∆i are labeled by 1;

2. vertices in ∆i are labeled by integers from 5 . . . , k + 4;

3. two vertices of ∆i share the same label if and only if both vertices have a common
neighbor in G′.

We construct G′
1 as follows. Let f : R∗

G(1, ϕ) → {5, . . . , k + 4} be an injective map (such
map exists since |R∗

G(1, ϕ)| ≤ k). We introduce u = ϕ−1(1) as initial (k + 4)-graph 2(u),
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and for every pair x, y of vertices that lie on a bridge between u and some v ∈ R∗
G(1, ϕ) we

apply the operations
α3(x), η2,3, α4(y), η3,4, ρ3→1, ρ4→f(v).

Finally, we relabel u with 1, using the operation ρ2→1. This gives a k-expression defining
G′

1 and the claimed properties are evidently satisfied. Now assume that we have already a
k-expression Xi−1 defining G′

i−1 for some i ∈ {2, . . . , n} with a labeling that satisfies the
claimed properties. We extend Xi−1 to a k-expression Xi defining Gi as follows. First we
add a new vertex u = ϕ−1(i) labeled with 2 by disjoint union of the initial (k + 4)-graph
2(u) and Xi−1. Note that u is the only vertex labeled with 2. For vertices v ∈ R∗

G(i, ϕ) let
∆i−1(v) denote the set of vertices in ∆i−1 that are adjacent to v in G′. By assumption, there
is an injective map f : R∗

G(i − 1, ϕ) → {5, . . . , k + 4} such that all vertices in ∆i−1(u) have
the same label f(u) in G′

i−1, and no other vertex of G′
i−1 is labeled with f(u). Hence we

can make the vertices in ∆i−1(u) adjacent to u and relabel them with 1 using the operations
ηf(u),2 and ρf(u)→1, respectively.

Since |R∗
G(i, ϕ)| ≤ k, we can define an injective map f ′ : R∗

G(i, ϕ) → {5, . . . , k + 4} with
f ′(v) = f(v) for v ∈ R∗

G(i− 1, ϕ)∩R∗
G(i, ϕ). As above, for every pair x, y of vertices that lie

on a bridge between u and some v ∈ R∗
G(1, ϕ) we apply the operations

α3(x), η2,3, α4(y), η3,4, ρ3→1, ρ4→f ′(v).

Finally, we relabel u with 1, using the operation ρ2→1.
It is straightforward to verify that after performing the described construction steps

we are left with a k-graph G′
i that satisfies the claimed properties; the construction can be

described by a sequential (k+4)-expression Xi. Since G′
n = G′, it follows that the sequential

clique-width of G′ is at most k. The (k + 4) -expression Xn can certainly be constructed in
time proportional to |E(G′)| + |V (G′)|, hence the lemma is shown true.

The next lemma will allow us to bound the vertex separation number of G in terms of the
sequential clique-width of G′, a result inverse to Lemma 2. To this end let us fix a sequential
k-expression X defining G′. X gives rise to a sequence G′

1, . . . , G
′
s of k-graphs such that G′

1

is an initial k-graph, G′
s = G′, and G′

i is obtained from G′
i−1 by one of the operations η, ρ,

and α (i = 2, . . . , s). For every edge e ∈ E(G′) let j(e) := min{ 1 ≤ j ≤ s : e ∈ E(G′
j) }.

We call a bridge (u, x, y, v) well-behaved if u is a singleton in G′
j(ux) and v is a singleton in

G′
j(yv).

Lemma 3. At least one of any three parallel bridges of G′ is well-behaved.

Proof. For an edge uv ∈ E(G) let bi = (u, xi, yi, v), i = 1, 2, 3, denote the parallel bridges of
G′. For i = 1, 2, 3 we put αi = max(j(uxi), j(yiv)).

Claim A: j(uxi) and j(yiv) must be distinct for i = 1, 2, 3. Otherwise, either u would
have the same label as yi or the same label as v in G′

j(uxi)
. In the first case, the addition of

the edge yiv causes the addition of the edge uv. In the second case, the addition of the edge
yiv causes the addition of the edge yiu. However, neither uv nor yiu is present in G′. Hence
Claim A is shown.

Claim B: if j(uxi) < j(yiv), then u is singleton in G′
j(uxi)

for i = 1, 2, 3. Assume to

the contrary that there is a vertex w ∈ V (G′
j(uxi)

) \ {u} which shares the label with u. It

follows that wxi ∈ E(G′), hence w = yi. This, however, implies that in G′
j(yiv) the edge uv

is inserted, a contradiction. Hence Claim B is shown.
Now we proceed with the proof of the lemma. We consider two cases.
Case 1: |{α1, α2, α3}| ≤ 2. We assume, w.l.o.g., α1 = α2 = j(y1v). Clearly α2 = j(y2v),

since otherwise, if α2 = j(ux2), then some of the edges uy1, uv were present in G′. Let w
be a vertex of G′

j(y1v) that shares the label with v. It follows that wy1, wy2 ∈ E(G′), hence
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w = v. Thus v is a singleton in G′
j(y1v). Since j(ux1) < j(y1v), it follows from Claim B that

u is a singleton in G′
j(ux1). Hence the bridge b1 is well-behaved.

Case 2: |{α1, α2, α3}| = 3. We assume, w.l.o.g., that j(y1v) = α1 < α2 < α3.
Subcase 2a: j(y2v) > j(y1v) or j(y3, v) > j(y1v). W.l.o.g., j(y2v) > j(y1v). Similarly as

above we conclude that for any vertex w of G′
j(y1v) that shares the label with v, the edges

y1w, y2w are added in G′
j(y1v), G′

j(y2v), respectively. Hence w = v and so v is a singleton in

G′
j(yiv). Furthermore, since j(ux1) < j(y1v), it follows by Claim B that u is a singleton in

G′
j(ux1). Hence the bridge b1 is well-behaved.

Subcase 2b: j(y2v) ≤ j(y1v) and j(y3, v) ≤ j(y1v). It follows that α2 = j(ux2) and
α3 = j(ux3). We show that u is a singleton in G′

j(ux2). Let w be a vertex of G′
j(ux2) that

shares the label with u. Consequently, the edges wx2, wx3 are added in G′
j(ux2) and G′

j(ux3),

respectively. Thus u = w and so u is indeed a singleton in G′
j(ux2). Using a symmetrical

version of Claim B, we conclude from j(y2v) < j(ux2) that v is a singleton in G′
j(y2v). Hence

the bridge b2 is well-behaved.

Lemma 4. From a sequential k-expression defining G′ we can construct in polynomial time
a layout for G with out-degree at most k. Consequently, vsn(G) ≤ cwd1(G

′).

Proof. For a vertex v ∈ V (G) let β(v) denote the smallest integer in {1, . . . , s} such that v
is not a singleton of G′

β(v). Note that β(v) is defined for every v of V (G), since we assume

that G has more than one vertex and all vertices of the final G′ have label 1. Note also that
if β(v) = β(v′) = j holds for two vertices v, v′ ∈ V (G), then v and v′ have the same label in
G′

j , but no other vertex in G′
j shares its label with v and v′ (either v and v′ are singletons in

G′
j−1 and one of the two vertices is relabeled with the other’s label in G′

j , or one of the two
vertices is a singleton in G′

j−1 and the other vertex is introduced in G′
j with the same label).

Let ϕ : V (G) → {1, . . . , n} be a layout satisfying ϕ(v) < ϕ(v′) whenever β(v) < β(v′).
It remains to show that the out-degree of the layout ϕ is at most k. Choose i ∈ {1, . . . , n−

1} arbitrarily. We show that |R∗
G(i, ϕ)| ≤ k. Let w = ϕ−1(i), j = β(w), and consider the

graph G′
j . By construction, the vertices of LG(i, ϕ) are not singletons of G′

j . We assign to
every vertex v ∈ R∗

G(i, ϕ) a label f(v) ∈ {1, . . . , k} as follows (it will turn out that f is an
injective map). Choose arbitrarily a vertex v ∈ R∗

G(i, ϕ). By definition, v is in G adjacent
to a vertex u ∈ LG(i, ϕ). Thus u and v are joined by three parallel bridges in G′. By
Lemma 3, at least one of the bridges between u and v, say b = (u, xv, yv , v), is well-behaved.
For vertices z of G′

j let `(z) denote the label of z in G′
j . We put

f(v) =







`(v) if v ∈ V (G′
j); (case 1)

`(yv) if v /∈ V (G′
j) and yv ∈ V (G′

j); (case 2)
`(xv) if v, yv /∈ V (G′

j). (case 3)

Since u is not a singleton in G′
j , the edge uxv must already be present in G′

j as the bridge
(u, xv, yv, v) is well-behaved. Consequently the above case distinction is exhaustive. We
split the set R∗

G(i, ϕ) into sets C1, C2, and C3, such that a vertex v belongs to Ci if f(v) is
assigned by means of the above case i. We further split C1 into sets C=

1 and C<
1 such that

v ∈ C1 belongs to C=
1 if β(w) = β(v) and v belongs to C<

1 if β(w) < β(v).
To show that f is an injective map, suppose to the contrary that f(v) = f(v′) for two

distinct vertices v, v′ ∈ R∗
G(i, ϕ). Since the vertices of C<

1 are singletons in G′
j , v, v′ /∈ C<

1

follows. For any v ∈ C3, the vertex xv is a singleton in G′
j since the edge xvyv is still missing,

hence v, v′ /∈ ∪C3. Furthermore, v and v′ cannot both belong to C=
1 since then both would

share the label with w in G′
j , but as seen above, any v ∈ C=

1 shares its label only with w.
Similarly, if v ∈ C=

1 and v′ ∈ C2, then v and xv′ would share the label with w in G′
j , which

is not possible for the same reason. Hence we are left with the case v, v′ ∈ C2.
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Thus f(v) is the label of yv and f(v′) is the label of yv′ . The edges yvv, yv′v′ are not yet
present in G′

j since the vertices v, v′ are not yet present in G′
j either. If at a further step

the edge yvv is added, also the edge yvv
′ is added, in contradiction to yvv

′ /∈ E(G′). Thus
f : R∗

G(i, ϕ) → {1, . . . , k} is indeed an injective map, and so |R∗
G(i, ϕ)| ≤ k follows.

In the proof of the next theorem we shall use a result of Bodlaender, Gilbert, Hafsteinsson,
and Kloks [2], which states that, unless P = NP, there is no polynomial-time approximation
algorithm for the pathwidth (i.e., the vertex separation number) of a graph G with an
absolute error of at most |V (G)|ε for any ε ∈ (0, 1). Moreover, Karpinski and Wirtgen [12]
observed that this non-approximability result also holds for cobipartite graphs.

Theorem 1. The r-sequential clique-width of graphs with n vertices of degree greater than
2 cannot be approximated by a polynomial-time algorithm with an absolute error guarantee
of nε for any ε ∈ (0, 1) and any r ≥ 1, unless P = NP.

This holds true for graphs obtained by means of Construction 1 from cobipartite graphs
with minimum degree 3.

Proof. Let ε ∈ (0, 1) and r ≥ 1 fixed constants, and assume to the contrary that there exists
a polynomial-time algorithm A that outputs for a given graph G′ with n vertices of degree
greater than 2 an integer A(G′) such that

|A(G′) − cwdr(G
′)| ≤ nε.

Let G be an arbitrarily chosen cobipartite graph with n vertices. We are going to devise an
approximation algorithm for the pathwidth of G. If G has vertices of degree 1 or 2, then the
pathwidth can be computed in polynomial time (vertices of degree 1 are irrelevant for the
pathwidth; if G has a vertex of degree 2 it must be a clique with an attached path of length
2 or 3). Hence we may assume, without loss of generality, that the minimum degree of G is
at least 3. First we obtain from G the graph G′ according to Construction 1. We observe
that G′ has exactly n = |V (G)| vertices of degree greater than 2. Next we apply algorithm
A to G′. By Lemma 1 we have cwd1(G

′) ≤ cwdr(G
′) ≤ cwd1(G

′) + r, hence

|A(G′) − cwd1(G
′)| ≤ nε + r.

Further, by Lemmas 2 and 4 we have vsn(G) ≤ cwd1(G
′) ≤ vsn(G)+4, and since pwd(G) =

vsn(G), we get
|A(G′) − pwd(G)| ≤ nε + r + 4.

For sufficiently large n we get

|A(G′) − pwd(G)| ≤ n
√

ε,

which, by the aforementioned result of Bodlaender et al. [2], is not possible unless P =
NP.

5 Clique-width versus r-sequential clique-width

In this final section we show that clique-width and r-sequential clique-width can differ sig-
nificantly.

Theorem 2. For every r ≥ 1 there exist graphs of constant clique-width but arbitrarily high
r-sequential clique-width.
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This result follows from the next two lemmas. In the remainder of this section, H denotes
a ternary rooted tree. That is, every non-leaf of H has exactly three children. H ′ denotes
the graph obtained from H by Construction 1.

We call a k-expression X to be 1-terminal if it does not contain the operations η1,i, ηi,1,
or ρ1→i. That is, the clique-width construction described by X has the property that after
a vertex v has once received the label 1, no edges incident to v are inserted any more, and
the label of v is not changed anymore.

Lemma 5. H ′ has a 1-terminal 4-construction, thus cwd(H ′) ≤ 4.

Proof. We proceed by induction on the number n of vertices of H . The lemma holds by
trivial reasons if n = 1. For n = 4, let u1, u2, u3 denote the leaves and v the root of H . The
edge uiv is replaced in H ′ by the bridges (ui, x

j
i , y

j
i , v), j = 1, 2, 3. We put

F j
i = η3,4(4(xj

i ) ⊕ 3(yj
i )), (1 ≤ i, j ≤ 3);

F i = ρ4→1(ρ2→1(η2,4(F
i
1 ⊕ F i

2 ⊕ F i
3 ⊕ 2(ui))));

F = ρ3→1(η2,3(F
1 ⊕ F 2 ⊕ F 3 ⊕ 2(v)));

H ′ = ρ2→1(F ).

The corresponding 4-expression is evidently 1-terminal, and we have cwd(H ′) ≤ 4 for n = 4.
Now assume n > 4. We can choose a vertex v ∈ V (H) that is adjacent to three leaves
u1, u2, u3. We put H0 = H − (u1, u2, u3). By induction hypothesis, H ′

0 has a 1-terminal
4-expression X0. The vertex v is introduced in X0 as initial 4-graph i(v) with 2 ≤ i ≤ 4;
we assume, w.l.o.g., that i = 2. We obtain a 4-expression X from X0 by replacing 2(v) with
the 4-expression defining the 4-graph F as defined above. Since all vertices of F except v
have the terminal label 1, and since X0 is 1-terminal, we conclude that X is a 1-terminal
4-expression defining H ′.

Lemma 6. If H is the complete ternary tree of height h then cwdr(H
′) ≥ h − r for any

r ≥ 1.

Proof. From results of Schaeffler [15] and Ellis et al. [8] it follows that the pathwidth of H
is h. Lemmas 4 and 1 yield pwd(H) ≤ cwd1(H

′) ≤ cwdr(H
′) + r.

6 Final remarks

In this paper we have established the first step for proving that computing the clique-width
of a graph is NP-hard. For the second step [9] we consider the following simple construction:
from a given graph G we obtain a graph G′′ by replacing every edge of G by an induced
path of length two. We show that

1. clique-width and sequential clique-width of G′′ differ at most by a small constant if G
is cobipartite, and

2. sequential cliquewidth of G′ and sequential cliquewidth of G′′ differ at most by a small
constant.

This, together with Theorem 1, shows that, unless P = NP, the clique-width of a graph
cannot be absolutely approximated in polynomial time.
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