Proving NP-hardness for clique-width I: non-approximability of sequential clique-width

Michael R. Fellows, Frances A. Rosamond, Udi Rotics \dagger, and Stefan Szeider ${ }^{\ddagger}$

August 24, 2005

Abstract

Clique-width is a graph parameter, defined by a composition mechanism for vertexlabeled graphs, which measures in a certain sense the complexity of a graph. Hard graph problems (e.g., problems expressible in Monadic Second Order Logic, that includes NPhard problems) can be solved efficiently for graphs of certified small clique-width. It is widely believed that determining the clique-width of a graph is NP-hard; in spite of considerable efforts, no NP-hardness proof has been found so far.

In this paper we show a non-approximability result for restricted form of cliquewidth, termed " r-sequential clique-width", considering only such clique-width constructions where one of any two graphs put together by disjoint union must have r or fewer vertices. In particular, we show that for every positive integer r, the r-sequential cliquewidth cannot be absolutely approximated in polynomial time unless $\mathrm{P}=\mathrm{NP}$, and that given G and k the question of whether the r-sequential clique-width of G is at most k is NP-complete.

We show further that this non-approximability result holds even for graphs of a very particular structure: for graphs obtained from cobipartite graphs by replacing edges with induced paths. In part II of this series of papers we use this strengthened result to show that, unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial-time absolute approximation algorithm for (unrestricted) clique-width, and that, given a graph G and an integer k, deciding whether the the clique-width G is at most k is NP-complete. This solves a problem that has been open since the introduction of clique-width in the early 1990s.

1 Introduction

Clique-width is a graph parameter that measures in a certain sense the complexity of a graph. This parameter was first considered by Courcelle, Engelfriet, and Rozenberg [5] (the term clique-width was introduced later). The clique-width of a graph is the smallest number of labels that suffices to construct the graph using the operations: creation of a new vertex v with label i, disjoint union, insertion of edges between vertices of certain labels, and relabeling of vertices. Such a construction of a graph by means of these four operations using at most k different labels can be represented by an algebraic expression called a k-expression. (More exact definitions are provided in Section 2) By a general result of Courcelle, Makowsky, and

[^0]Rotics [6], any graph problem that can be expressed in Monadic Second Order Logic with second-order quantification on vertex sets (that includes NP-hard problems) can be solved in linear time for graphs of clique-width bounded by some constant k if the k-expression is provided as input to the algorithm (albeit the running time involves a constant which is exponential in k).

A main limit for applications of this result is that first one has to find a k-expression for the given graph (or decide that the clique-width of the given graph exceeds a given limit). The question whether there is a polynomial-time algorithm for computing the clique-width of a graph was already raised by Courcelle, et al. 51990 in

Clique-width can be considered to be more general than treewidth since (i) there are graphs of constant clique-width but arbitrarily high treewidth, e.g., complete graphs, but (ii) graphs of bounded clique-width have also bounded treewidth. The latter was shown by Courcelle and Olariu [7; the upper bound on the clique-width of a graph in terms of its treewidth was improved by Corneil and Rotics [4]. Since the computation of treewidth is well-known to be NP-hard (Arnborg, Corneil, and Proskurowski [1), it is obvious to assume that such a hardness result should also hold for the more general parameter clique-width. However, no hardness result for clique-width similar to to the treewidth result [1] is known!

With considerable efforts, polynomial-time algorithms could be developed for recognizing graphs of clique-width at most 3 (see Corneil, Habib, Lanlignel, Reed, and Rotics [3). Recently, Oum and Seymour [16] obtained an algorithm that, for any fixed k, runs in time $O\left(n^{9} \log n\right)$ and computes $\left(2^{3 k+2}-1\right)$-expressions for graphs of clique-width at most k. This result is interesting, as it makes the notion "graph class of bounded clique-width" feasible; however, since the running time of algorithms as suggested by Courcelle et al. [6] crucially depends on k, closer approximations are desirable.

The graph parameter "NLC-width", introduced by Wanke [18], is defined similarly as clique-width, however a single operation that combines disjoint union and insertion of edges is used. Recently Gurski and Wanke [11 have reported that computing the NLC-width is NP-hard. Since NLC-width and clique-width can differ by a factor of 2 (see Johansson [13]), non-approximability with an absolute error guarantee for one of the two parameters does not imply a similar result for the other parameter.

In the present paper we show that the computation of a restricted form of clique-width, termed r-sequential clique-width (or simply sequential clique-width for $r=1$), is NP-hard. Here we consider only clique-width constructions with skew disjoint unions; that is, where at least one of any two k-graphs put together by disjoint union is of order r or less $(r$ is an arbitrarily large constant).

Sequential clique-width as a special case of clique-width can be considered as an analog to pathwidth as a special case of treewidth; trees corresponding to sequential clique-width constructions are path-like. The natural clique-width constructions of complete graphs (see Section 2 for an example) are sequential.

Our main result can be stated as follows.
(1) For every $r \geq 1$, the r-sequential clique-width of a graph cannot be approximated in polynomial time with an absolute error guarantee, unless $\mathrm{P}=\mathrm{NP}$.
(2) The following decision problem is NP-complete for any $r \geq 1$:
r-SEQUENTIAL CLIQUE-WIDTH MINIMIZATION
Instance: A graph G and a positive integer k.
Question: Is the r-sequential clique-width of G at most k ?
Furthermore, we obtain structural results relating the parameters clique-width, sequential clique-width, and r-sequential clique-width:
(3) For every $r \geq 2$, the sequential clique-width of a graph exceeds the r-sequential cliquewidth at most by r.
(4) For every $r \geq 1$ there exist graphs of constant clique-width but arbitrarily high r-sequential clique-width.
We show that the hardness results (1) and (2) hold even for a special graph class \mathcal{D} consisting of graphs obtained from cobipartite graphs (complements of bipartite graphs) by replacing edges by induced paths. In a companion paper [9], we show that-in contrast to (4)-clique-width and sequential clique-width of graphs in \mathcal{D} differ at most by a small constant. This implies that the non-approximability of sequential clique-width carries over to (general) clique-width. Whence computing the clique-width of a graph is NP-hard; this solves the outstanding problem that has been open for 15 years.

The key idea of our approach is to show NP-hardness of one graph parameter ((sequential) clique-width) by means of the non-approximability of another graph parameter (pathwidth). Such an approach might be applicable for showing intractability of other graph parameters.

2 Notation and preliminaries

A layout of a graph G with n vertices is a bijection $\varphi: V(G) \rightarrow\{1, \ldots, n\}$. For a layout φ of G we define the sets of vertices

$$
\begin{aligned}
L_{G}(i, \varphi) & =\{u \in V(G): \varphi(u) \leq i\} \\
R_{G}(i, \varphi) & =\{u \in V(G): \varphi(u)>i\} \\
L_{G}^{*}(i, \varphi) & =\left\{v \in L_{G}(i, \varphi): \exists u \in R_{G}(i, \varphi) \text { such that } u v \in E(G)\right\}, \\
R_{G}^{*}(i, \varphi) & =\left\{v \in R_{G}(i, \varphi): \exists u \in L_{G}(i, \varphi) \text { such that } u v \in E(G)\right\} .
\end{aligned}
$$

We call the maximum cardinality of $R_{G}^{*}(i, \varphi)$ and the maximum cardinality of $L_{G}^{*}(i, \varphi)$ the in-degree and the out-degree of the layout φ, respectively. The vertex separation number $\operatorname{vsn}(G)$ of G is defined as the smallest in-degree over all layouts of G (which equals the smallest out-degree over all layouts of G).

Let T be a tree and χ a labeling of the vertices of T by sets of vertices of G. The pair (T, χ) is a tree decomposition of G if (i) every vertex of G belongs to $\chi(t)$ for some vertex $t \in V(T)$; (ii) for every edge $v w \in E(G)$ there is some $t \in V(T)$ with $v, w \in \chi(t)$; (iii) for any vertices $t_{1}, t_{2}, t_{3} \in V(T)$, if t_{2} lies on a path from t_{1} to t_{3}, then $\chi\left(t_{1}\right) \cap \chi\left(t_{3}\right) \subseteq \chi\left(t_{2}\right)$. The width of (T, χ) is the maximum $|\chi(t)|-1$ over all vertices t of T. The treewidth $\operatorname{twd}(G)$ of G is the minimum width over all tree-decompositions of G. The pathwidth $\operatorname{pwd}(G)$ of G is the minimum width over all tree-decompositions (T, χ) of G where T is a path.

It is well-known that pathwidth and vertex separation number of a graph agree (see Kinnersley [15]).

Let k be a positive integer. A k-graph is a graph whose vertices are labeled by integers from $\{1, \ldots, k\}$. We consider an arbitrary graph as a k-graph with all vertices labeled by 1. We call the k-graph consisting of exactly one vertex v (say, labeled by $i \in\{1, \ldots, k\}$) an initial k-graph and denote it by $i(v)$. If a vertex v of a k-graph G is the only vertex with label i then we call v a singleton.

The clique-width $\operatorname{cwd}(G)$ of a graph G is the smallest integer k such that G can be constructed from initial k-graphs by means of repeated application of the following three operations.

- Disjoint union (denoted by \oplus);
- Relabeling: changing all labels i to j (denoted by $\rho_{i \rightarrow j}$);
- Edge insertion: connecting all vertices labeled by i with all vertices labeled by j (denoted by $\eta_{i, j}$).

We call the construction of a k-graph using the above operations a clique-width construction. A clique-width construction can be represented by an algebraic term composed of $\oplus, \rho_{i \rightarrow j}$, and $\eta_{i, j},(i, j \in\{1, \ldots, k\}$, and $i \neq j)$. Such a term is called a k-expression defining G.

For example, the complete graph on the vertices u, v, w, x is defined by the 2 -expression

$$
\rho_{2 \rightarrow 1}\left(\eta_{1,2}\left(\rho_{2 \rightarrow 1}\left(\eta_{1,2}\left(\rho_{2 \rightarrow 1}\left(\eta_{1,2}(2(u) \oplus 1(v))\right) \oplus 2(w)\right)\right) \oplus 2(x)\right)\right)
$$

In general, every complete graph $K_{n}, n \geq 2$, has clique-width 2 .

3 The r-sequential clique-width

In the sequel we consider clique-width constructions where disjoint union of two k-graphs is only allowed if at least one of them has r or fewer vertices. We call such clique-width constructions and the corresponding k-expressions r-sequential (or sequential for $r=1$). The r-sequential clique-width of a graph G, denoted by $\operatorname{cwd}_{r}(G)$, is defined as the smallest k such that G can be defined by an r-sequential k-expression. For example, the above 2-expression defining K_{4} is sequential. In general, we have $\operatorname{cwd}_{1}\left(K_{n}\right)=\operatorname{cwd}\left(K_{n}\right)$ for every $n \geq 1$.

It is convenient to consider a sequential k-construction as a process where to some initial k-graph a sequence of operations is applied, defining the addition of a new vertex as a single operation

$$
\alpha_{i(v)}(G)=G \oplus i(v)
$$

Thus we can rewrite the above sequential 2-expression for K_{4} as the sequence

$$
1(u), \alpha_{2(v)}, \eta_{1,2}, \rho_{2 \rightarrow 1}, \alpha_{2(w)}, \eta_{1,2}, \rho_{2 \rightarrow 1}, \alpha_{2(x)}, \eta_{1,2}, \rho_{2 \rightarrow 1}
$$

The next lemma shows that by considering r-sequential clique-width instead of sequential clique-width we cannot save more than r labels.

Lemma 1. $\operatorname{cwd}_{r}(G) \leq \operatorname{cwd}_{1}(G) \leq \operatorname{cwd}_{r}(G)+r$ holds for every graph G and every $r \geq 1$.
Proof. Let G be a k-graph and X an r-sequential k-expression of G. We show by induction on $n=|V(G)|$ that G has a sequential $(k+r)$-expression Y. If $n=1$ then we simply put $Y=X$, hence assume $n>1$. It follows that X describes a clique-width construction where G is obtained by edge insertions and relabelings from $G^{\prime} \oplus H ; G^{\prime}, H$ are k-graphs with $\operatorname{cwd}_{r}\left(G^{\prime}\right) \leq k$ and $|V(H)| \leq r$. Let $V(H)=\left\{u_{1}, \ldots, u_{p}\right\}$ and $E(H)=\left\{u_{a_{1}} u_{b_{1}}, \ldots, u_{a_{q}} u_{b_{q}}\right\}$, $p \leq r$ and $q \leq r^{2}$. We construct G from G^{\prime} by means of the following three steps.

1. First we add the vertices of H to G^{\prime} using new labels $k+1, \ldots, k+p$,

$$
G^{\prime \prime}=G^{\prime} \oplus(k+1)\left(u_{1}\right) \oplus \cdots \oplus(k+p)\left(u_{p}\right)
$$

Note that the disjoint unions are in accordance with the requirements of sequential clique-width.
2. Next we apply to $G^{\prime \prime}$ the edge insertions $\eta_{k+a_{i}, k+b_{i}}, i=1, \ldots, q$, and obtain the $(k+r)$-graph $G^{\prime \prime \prime}$. We observe that $G^{\prime \prime \prime}$ and $G^{\prime} \oplus H$ only differ in the labeling of the vertices of H. Since the vertices of H are singletons in $G^{\prime \prime \prime}$, we can apply relabelings (as described by X) to obtain $G^{\prime} \oplus H$ from $G^{\prime \prime \prime}$.
3. By assumption we can obtain G from $G^{\prime} \oplus H$ by edge insertions and relabelings.

[^1]The induction hypothesis applies to G^{\prime}, hence there is a sequential k-expression Y^{\prime} defining G^{\prime}. According to the three construction steps described above we extend Y^{\prime} to a sequential $(k+r)$-expression Y defining G. Hence the induction proof is completed and the lemma follows.

The upper bound of Lemma 1 can be improved to $\operatorname{cwd}_{1}(G) \leq \operatorname{cwd}_{r}(G)+f(r)$ where $f(r)$ is the largest clique-width of graphs with r vertices. In particular, since the clique-width of a graph with $r>2$ vertices is at most $r-1$, we have $\operatorname{cwd}_{1}(G) \leq \operatorname{cwd}_{r}(G)+r-1$ for $r>2$.

4 Proof of the main results

This section is devoted to the proof of our main results, namely, the non-approximability of r-sequential clique-width and the NP-completeness of the minimization problem.

Construction 1. Let G denote a fixed simple graph with $n \geq 2$ vertices. We obtain a graph G^{\prime} from G by replacing each edge uv of G by three internally disjoint paths $\left(u, x_{i}, y_{i}, v\right)$, $i=1,2,3$, of length 3 (see Figure 1); we call such paths bridges.

Figure 1: Construction of G^{\prime}.
For the remainder of this section let G denote a fixed simple graph with $n \geq 2$ vertices and let G^{\prime} denote the graph obtained from G by means of Construction 1

Lemma 2. Given a layout $\varphi: V(G) \rightarrow\{1, \ldots, n\}$ of G with out-degree k, we can construct in polynomial time a sequential $(k+4)$-expression defining G^{\prime}. Consequently, $\operatorname{cwd}_{1}\left(G^{\prime}\right) \leq$ $\operatorname{vsn}(G)+4=\operatorname{pwd}(G)+4$.

Proof. For $i=1, \ldots, n$ let Γ_{i} denote the set of vertices of G^{\prime} that belong to $L_{G}(i, \varphi)$ or are of distance at most 2 apart from $L_{G}(i, \varphi)$. (Thus, if at least one end of a bridge b belongs to $L_{G}(i, \varphi)$, then both internal vertices of b belong to Γ_{i}.) Let Δ_{i} denote the subset of Γ_{i} consisting of vertices that are adjacent in G^{\prime} with vertices outside of Γ_{i}. Furthermore, let G_{i}^{\prime} denote the subgraph of G^{\prime} induced by the set Γ_{i}.

We inductively obtain sequential $(k+4)$-expressions defining k-graphs $G_{i}, i=1, \ldots, n$, such that the labeling of G_{i} satisfies the following conditions.

1. vertices in $\Gamma_{i} \backslash \Delta_{i}$ are labeled by $1 ;$
2. vertices in Δ_{i} are labeled by integers from $5 \ldots, k+4$;
3. two vertices of Δ_{i} share the same label if and only if both vertices have a common neighbor in G^{\prime}.

We construct G_{1}^{\prime} as follows. Let $f: R_{G}^{*}(1, \varphi) \rightarrow\{5, \ldots, k+4\}$ be an injective map (such map exists since $\left.\left|R_{G}^{*}(1, \varphi)\right| \leq k\right)$. We introduce $u=\varphi^{-1}(1)$ as initial $(k+4)$-graph $2(u)$,
and for every pair x, y of vertices that lie on a bridge between u and some $v \in R_{G}^{*}(1, \varphi)$ we apply the operations

$$
\alpha_{3(x)}, \eta_{2,3}, \alpha_{4(y)}, \eta_{3,4}, \rho_{3 \rightarrow 1}, \rho_{4 \rightarrow f(v)}
$$

Finally, we relabel u with 1 , using the operation $\rho_{2 \rightarrow 1}$. This gives a k-expression defining G_{1}^{\prime} and the claimed properties are evidently satisfied. Now assume that we have already a k-expression X_{i-1} defining G_{i-1}^{\prime} for some $i \in\{2, \ldots, n\}$ with a labeling that satisfies the claimed properties. We extend X_{i-1} to a k-expression X_{i} defining G_{i} as follows. First we add a new vertex $u=\varphi^{-1}(i)$ labeled with 2 by disjoint union of the initial $(k+4)$-graph $2(u)$ and X_{i-1}. Note that u is the only vertex labeled with 2 . For vertices $v \in R_{G}^{*}(i, \varphi)$ let $\Delta_{i-1}(v)$ denote the set of vertices in Δ_{i-1} that are adjacent to v in G^{\prime}. By assumption, there is an injective map $f: R_{G}^{*}(i-1, \varphi) \rightarrow\{5, \ldots, k+4\}$ such that all vertices in $\Delta_{i-1}(u)$ have the same label $f(u)$ in G_{i-1}^{\prime}, and no other vertex of G_{i-1}^{\prime} is labeled with $f(u)$. Hence we can make the vertices in $\Delta_{i-1}(u)$ adjacent to u and relabel them with 1 using the operations $\eta_{f(u), 2}$ and $\rho_{f(u) \rightarrow 1}$, respectively.

Since $\left|R_{G}^{*}(i, \varphi)\right| \leq k$, we can define an injective map $f^{\prime}: R_{G}^{*}(i, \varphi) \rightarrow\{5, \ldots, k+4\}$ with $f^{\prime}(v)=f(v)$ for $v \in R_{G}^{*}(i-1, \varphi) \cap R_{G}^{*}(i, \varphi)$. As above, for every pair x, y of vertices that lie on a bridge between u and some $v \in R_{G}^{*}(1, \varphi)$ we apply the operations

$$
\alpha_{3(x)}, \eta_{2,3}, \alpha_{4(y)}, \eta_{3,4}, \rho_{3 \rightarrow 1}, \rho_{4 \rightarrow f^{\prime}(v)}
$$

Finally, we relabel u with 1 , using the operation $\rho_{2 \rightarrow 1}$.
It is straightforward to verify that after performing the described construction steps we are left with a k-graph G_{i}^{\prime} that satisfies the claimed properties; the construction can be described by a sequential $(k+4)$-expression X_{i}. Since $G_{n}^{\prime}=G^{\prime}$, it follows that the sequential clique-width of G^{\prime} is at most k. The $(k+4)$-expression X_{n} can certainly be constructed in time proportional to $\left|E\left(G^{\prime}\right)\right|+\left|V\left(G^{\prime}\right)\right|$, hence the lemma is shown true.

The next lemma will allow us to bound the vertex separation number of G in terms of the sequential clique-width of G^{\prime}, a result inverse to Lemma 2 To this end let us fix a sequential k-expression X defining G^{\prime}. X gives rise to a sequence $G_{1}^{\prime}, \ldots, G_{s}^{\prime}$ of k-graphs such that G_{1}^{\prime} is an initial k-graph, $G_{s}^{\prime}=G^{\prime}$, and G_{i}^{\prime} is obtained from G_{i-1}^{\prime} by one of the operations η, ρ, and $\alpha(i=2, \ldots, s)$. For every edge $e \in E\left(G^{\prime}\right)$ let $j(e):=\min \left\{1 \leq j \leq s: e \in E\left(G_{j}^{\prime}\right)\right\}$. We call a bridge (u, x, y, v) well-behaved if u is a singleton in $G_{j(u x)}^{\prime}$ and v is a singleton in $G_{j(y v)}^{\prime}$.

Lemma 3. At least one of any three parallel bridges of G^{\prime} is well-behaved.
Proof. For an edge $u v \in E(G)$ let $b_{i}=\left(u, x_{i}, y_{i}, v\right), i=1,2,3$, denote the parallel bridges of G^{\prime}. For $i=1,2,3$ we put $\alpha_{i}=\max \left(j\left(u x_{i}\right), j\left(y_{i} v\right)\right)$.

Claim A: $j\left(u x_{i}\right)$ and $j\left(y_{i} v\right)$ must be distinct for $i=1,2,3$. Otherwise, either u would have the same label as y_{i} or the same label as v in $G_{j\left(u x_{i}\right)}^{\prime}$. In the first case, the addition of the edge $y_{i} v$ causes the addition of the edge $u v$. In the second case, the addition of the edge $y_{i} v$ causes the addition of the edge $y_{i} u$. However, neither $u v$ nor $y_{i} u$ is present in G^{\prime}. Hence Claim A is shown.

Claim B: if $j\left(u x_{i}\right)<j\left(y_{i} v\right)$, then u is singleton in $G_{j\left(u x_{i}\right)}^{\prime}$ for $i=1,2,3$. Assume to the contrary that there is a vertex $w \in V\left(G_{j\left(u x_{i}\right)}^{\prime}\right) \backslash\{u\}$ which shares the label with u. It follows that $w x_{i} \in E\left(G^{\prime}\right)$, hence $w=y_{i}$. This, however, implies that in $G_{j\left(y_{i} v\right)}^{\prime}$ the edge $u v$ is inserted, a contradiction. Hence Claim B is shown.

Now we proceed with the proof of the lemma. We consider two cases.
Case 1: $\left|\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}\right| \leq 2$. We assume, w.l.o.g., $\alpha_{1}=\alpha_{2}=j\left(y_{1} v\right)$. Clearly $\alpha_{2}=j\left(y_{2} v\right)$, since otherwise, if $\alpha_{2}=j\left(u x_{2}\right)$, then some of the edges $u y_{1}$, $u v$ were present in G^{\prime}. Let w be a vertex of $G_{j\left(y_{1} v\right)}^{\prime}$ that shares the label with v. It follows that $w y_{1}, w y_{2} \in E\left(G^{\prime}\right)$, hence
$w=v$. Thus v is a singleton in $G_{j\left(y_{1} v\right)}^{\prime}$. Since $j\left(u x_{1}\right)<j\left(y_{1} v\right)$, it follows from Claim B that u is a singleton in $G_{j\left(u x_{1}\right)}^{\prime}$. Hence the bridge b_{1} is well-behaved.

Case 2: $\left|\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}\right|=3$. We assume, w.l.o.g., that $j\left(y_{1} v\right)=\alpha_{1}<\alpha_{2}<\alpha_{3}$.
Subcase 2a: $j\left(y_{2} v\right)>j\left(y_{1} v\right)$ or $j\left(y_{3}, v\right)>j\left(y_{1} v\right)$. W.l.o.g., $j\left(y_{2} v\right)>j\left(y_{1} v\right)$. Similarly as above we conclude that for any vertex w of $G_{j\left(y_{1} v\right)}^{\prime}$ that shares the label with v, the edges $y_{1} w, y_{2} w$ are added in $G_{j\left(y_{1} v\right)}^{\prime}, G_{j\left(y_{2} v\right)}^{\prime}$, respectively. Hence $w=v$ and so v is a singleton in $G_{j\left(y_{i} v\right)}^{\prime}$. Furthermore, since $j\left(u x_{1}\right)<j\left(y_{1} v\right)$, it follows by Claim B that u is a singleton in $G_{j\left(u x_{1}\right)}^{\prime}$. Hence the bridge b_{1} is well-behaved.

Subcase 2b: $j\left(y_{2} v\right) \leq j\left(y_{1} v\right)$ and $j\left(y_{3}, v\right) \leq j\left(y_{1} v\right)$. It follows that $\alpha_{2}=j\left(u x_{2}\right)$ and $\alpha_{3}=j\left(u x_{3}\right)$. We show that u is a singleton in $G_{j\left(u x_{2}\right)}^{\prime}$. Let w be a vertex of $G_{j\left(u x_{2}\right)}^{\prime}$ that shares the label with u. Consequently, the edges $w x_{2}, w x_{3}$ are added in $G_{j\left(u x_{2}\right)}^{\prime}$ and $G_{j\left(u x_{3}\right)}^{\prime}$, respectively. Thus $u=w$ and so u is indeed a singleton in $G_{j\left(u x_{2}\right)}^{\prime}$. Using a symmetrical version of Claim B, we conclude from $j\left(y_{2} v\right)<j\left(u x_{2}\right)$ that v is a singleton in $G_{j\left(y_{2} v\right)}^{\prime}$. Hence the bridge b_{2} is well-behaved.

Lemma 4. From a sequential k-expression defining G^{\prime} we can construct in polynomial time a layout for G with out-degree at most k. Consequently, $\operatorname{vsn}(G)=\operatorname{pwd}(G) \leq \operatorname{cwd}_{1}\left(G^{\prime}\right)$.

Proof. For a vertex $v \in V(G)$ let $\beta(v)$ denote the smallest integer in $\{1, \ldots, s\}$ such that v is not a singleton of $G_{\beta(v)}^{\prime}$. Note that $\beta(v)$ is defined for every v of $V(G)$, since we assume that G has more than one vertex and all vertices of the final G^{\prime} have label 1. Note also that if $\beta(v)=\beta\left(v^{\prime}\right)=j$ holds for two vertices $v, v^{\prime} \in V(G)$, then v and v^{\prime} have the same label in G_{j}^{\prime}, but no other vertex in G_{j}^{\prime} shares its label with v and v^{\prime} (either v and v^{\prime} are singletons in G_{j-1}^{\prime} and one of the two vertices is relabeled with the other's label in G_{j}^{\prime}, or one of the two vertices is a singleton in G_{j-1}^{\prime} and the other vertex is introduced in G_{j}^{\prime} with the same label). Let $\varphi: V(G) \rightarrow\{1, \ldots, n\}$ be a layout satisfying $\varphi(v)<\varphi\left(v^{\prime}\right)$ whenever $\beta(v)<\beta\left(v^{\prime}\right)$.

It remains to show that the out-degree of the layout φ is at most k. Choose $i \in\{1, \ldots, n-$ $1\}$ arbitrarily. We show that $\left|R_{G}^{*}(i, \varphi)\right| \leq k$. Let $w=\varphi^{-1}(i), j=\beta(w)$, and consider the graph G_{j}^{\prime}. By construction, the vertices of $L_{G}(i, \varphi)$ are not singletons of G_{j}^{\prime}. We assign to every vertex $v \in R_{G}^{*}(i, \varphi)$ a label $f(v) \in\{1, \ldots, k\}$ as follows (it will turn out that f is an injective map). Choose arbitrarily a vertex $v \in R_{G}^{*}(i, \varphi)$. By definition, v is in G adjacent to a vertex $u \in L_{G}(i, \varphi)$. Thus u and v are joined by three parallel bridges in G^{\prime}. By Lemma 3] at least one of the bridges between u and v, say $b=\left(u, x_{v}, y_{v}, v\right)$, is well-behaved. For vertices z of G_{j}^{\prime} let $\ell(z)$ denote the label of z in G_{j}^{\prime}. We put

$$
f(v)=\left\{\begin{array}{lll}
\ell(v) & \text { if } v \in V\left(G_{j}^{\prime}\right) ; & \text { (case 1) } \\
\ell\left(y_{v}\right) & \text { if } v \notin V\left(G_{j}^{\prime}\right) \text { and } y_{v} \in V\left(G_{j}^{\prime}\right) ; & \text { (case 2) } \\
\ell\left(x_{v}\right) & \text { if } v, y_{v} \notin V\left(G_{j}^{\prime}\right) . & \text { (case 3) }
\end{array}\right.
$$

Since u is not a singleton in G_{j}^{\prime}, the edge $u x_{v}$ must already be present in G_{j}^{\prime} as the bridge $\left(u, x_{v}, y_{v}, v\right)$ is well-behaved. Consequently the above case distinction is exhaustive. We split the set $R_{G}^{*}(i, \varphi)$ into sets C_{1}, C_{2}, and C_{3}, such that a vertex v belongs to C_{i} if $f(v)$ is assigned by means of the above case i. We further split C_{1} into sets $C_{1}^{=}$and $C_{1}^{<}$such that $v \in C_{1}$ belongs to $C_{1}^{=}$if $\beta(w)=\beta(v)$ and v belongs to $C_{1}^{<}$if $\beta(w)<\beta(v)$.

To show that f is an injective map, suppose to the contrary that $f(v)=f\left(v^{\prime}\right)$ for two distinct vertices $v, v^{\prime} \in R_{G}^{*}(i, \varphi)$. Since the vertices of $C_{1}^{<}$are singletons in $G_{j}^{\prime}, v, v^{\prime} \notin C_{1}^{<}$ follows. For any $v \in C_{3}$, the vertex x_{v} is a singleton in G_{j}^{\prime} since the edge $x_{v} y_{v}$ is still missing, hence $v, v^{\prime} \notin C_{3}$. Furthermore, v and v^{\prime} cannot both belong to $C_{1}^{=}$since then both would share the label with w in G_{j}^{\prime}, but as seen above, any $v \in C_{1}^{=}$shares its label only with w. Similarly, if $v \in C_{1}^{=}$and $v^{\prime} \in C_{2}$, then v and $x_{v^{\prime}}$ would share the label with w in G_{j}^{\prime}, which is not possible for the same reason. Hence we are left with the case $v, v^{\prime} \in C_{2}$.

Thus $f(v)$ is the label of y_{v} and $f\left(v^{\prime}\right)$ is the label of $y_{v^{\prime}}$. The edges $y_{v} v, y_{v^{\prime}} v^{\prime}$ are not yet present in G_{j}^{\prime} since the vertices v, v^{\prime} are not yet present in G_{j}^{\prime} either. If at a further step the edge $y_{v} v$ is added, also the edge $y_{v} v^{\prime}$ is added, in contradiction to $y_{v} v^{\prime} \notin E\left(G^{\prime}\right)$. Thus $f: R_{G}^{*}(i, \varphi) \rightarrow\{1, \ldots, k\}$ is indeed an injective map, and so $\left|R_{G}^{*}(i, \varphi)\right| \leq k$ follows.

In the proof of the next theorem we shall use a result of Bodlaender, Gilbert, Hafsteinsson, and Kloks [2], which states that, unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial-time approximation algorithm for the pathwidth (i.e., the vertex separation number) of a graph G with an absolute error of at most $|V(G)|^{\varepsilon}$ for any $\varepsilon \in(0,1)$. Moreover, Karpinski and Wirtgen [14] observed that this non-approximability result also holds for cobipartite graphs.

Construction 2. Given a graph G, and an integer $q \geq 1$, we obtain a graph G^{q} by replacing each vertex v of G by q vertices v_{1}, \ldots, v_{q}, and by joining two vertices v_{i}, w_{j} by an edge if either $v=w$ and $i \neq j$ or $v \neq w$ and $v w \in E(G)$.

Note that if G is cobipartite then so is G^{q}. Bodlaender, et al. 2] show the following equation (the proof stated in [2] for treewidth applies literally to pathwidth as well).

$$
\begin{equation*}
\operatorname{pwd}\left(G^{q}\right)=q(\operatorname{pwd}(G)+1)-1 \tag{1}
\end{equation*}
$$

Let α be an integer-valued graph parameter. We consider the following decision problem.
α-MINIMIZATION
Instance: A graph G and a positive integer k.
question: Is $\alpha(G)$ at most k ?
Arnborg, et al. 1] have shown that pwd-minimization is NP-complete, even for cobipartite graphs.

Lemma 5. Assume that there is a constant c such that $|\alpha(G)-\operatorname{pwd}(G)| \leq c$ holds for every cobipartite graph G with minimum degree at least 3 . Then the following statements are true.

1. For a graph G with n vertices and minimum degree at least 3, $\alpha(G)$ cannot be approximated in polynomial-time with an absolute error guarantee of n^{ε} for any $\varepsilon \in(0,1)$ unless $\mathrm{P}=\mathrm{NP}$.

2. α-minimization is NP-hard.

Proof. Part 1. Let $\varepsilon \in(0,1)$ be a fixed constant, and assume that there exists a polynomialtime algorithm \mathcal{A} that outputs for a given graph G with n vertices and minimum degree at least 3 an integer $\mathcal{A}(G)$ such that $|\mathcal{A}(G)-\alpha(G)| \leq n^{\varepsilon}$. Let G be any given cobipartite graph with n vertices. We form the graph G^{3} using Construction 2 Note that G^{3} is a cobipartite, of minimum degree at least 3 , and the number of vertices of G^{3} is $3 n$. We apply algorithm \mathcal{A} to G^{3} and get $\left|\mathcal{A}\left(G^{3}\right)-\alpha\left(G^{3}\right)\right| \leq(3 n)^{\varepsilon}$. The assumption of the lemma gives $\left|\mathcal{A}\left(G^{3}\right)-\operatorname{pwd}\left(G^{3}\right)\right| \leq(3 n)^{\varepsilon}+c$. Using equation (11) we get $\left|\mathcal{A}\left(G^{3}\right) / 3-\operatorname{pwd}(G)\right| \leq$ $3^{\varepsilon-1} n^{\varepsilon}+(c+2) / 3 \leq n^{\varepsilon}+(c+2) / 3$. For sufficiently large $n,|\mathcal{A}(G) / 3-\operatorname{pwd}(G)| \leq n^{\sqrt{\varepsilon}}$ follows, which, by the aforementioned result of Karpinski and Wirtgen [14], is not possible unless $\mathrm{P}=\mathrm{NP}$.

Part 2. We reduce pwd-minimization to α-minimization. Let (G, k) be an instance of pwd-minimization. Since pwd-minimization is NP-hard for cobipartite graphs, we may assume that G is cobipartite. We obtain in polynomial time an instance $\left(G^{*}, k^{*}\right)$ of α-MINimization, putting $G^{*}=G^{2 c+3}$ and $k^{*}=(2 c+3)(k+1)+c-1$. Observe that G^{*} is cobipartite and has minimum degree at least 3 . We show that (G, k) is a yes-instance of pwd-minimization if and only if $\left(G^{*}, k^{*}\right)$ is a yes-instance of α-minimization; that is,
$\operatorname{pwd}(G) \leq k$ if and only if $\alpha\left(G^{*}\right) \leq k^{*}$. First assume $\operatorname{pwd}(G) \leq k$. Now by equation (1), $\alpha\left(G^{*}\right) \leq \operatorname{pwd}\left(G^{*}\right)+c=(2 c+3)(\operatorname{pwd}(G)+1)-1+c \leq(2 c+3)(k+1)+c-1=k^{*}$, thus $\alpha\left(G^{*}\right) \leq k^{*}$ follows. Conversely, assume $\alpha\left(G^{*}\right) \leq k^{*}$. We have $(2 c+3)(\operatorname{pwd}(G)+1)-1=$ $\operatorname{pwd}\left(G^{*}\right) \leq \alpha\left(G^{*}\right)+c \leq k^{*}+c=(2 c+3)(k+1)+c-1+c$. Hence, $\operatorname{pwd}(G) \leq k+2 c /(2 c+3)$. Since $\operatorname{pwd}(G)$ and k are integers, $\operatorname{pwd}(G) \leq k$ follows.

Theorem 1. Let r be any positive integer.

1. The r-sequential clique-width of graphs with n vertices of degree greater than 2 cannot be approximated by a polynomial-time algorithm with an absolute error guarantee of n^{ε} for any $\varepsilon \in(0,1)$, unless $\mathrm{P}=\mathrm{NP}$.
2. cwd_{r}-MINIMIZATION is NP-complete.

Proof. For a graph G we define the parameter $\alpha(G)=\operatorname{cwd}_{r}\left(G^{\prime}\right)$. That is, $\alpha(G)$ is the r-sequential clique-width of the graph G^{\prime} obtained from G by means of Construction We take the constant $c=r+4$. By Lemmas 2 and [4] $|\alpha(G)-\operatorname{pwd}(G)| \leq c$ follows; thus the assumption of Lemma 5 is met.

For showing the first part of the theorem, assume that for a constant $\varepsilon \in(0,1)$ there exists a polynomial-time algorithm \mathcal{A} that outputs for a given graph G with n vertices of degree at least 3 an integer $\mathcal{A}(G)$ with $\left|A(G)-\operatorname{cwd}_{r}(G)\right| \leq n^{\varepsilon}$. For a graph G with n vertices and minimum degree at least $3, G^{\prime}$ has exactly n vertices of degree at least 3 ; applying \mathcal{A} to G^{\prime} gives now $\left|A\left(G^{\prime}\right)-\operatorname{cwd}_{r}\left(G^{\prime}\right)\right|=\left|A\left(G^{\prime}\right)-\alpha(G)\right| \leq n^{\varepsilon}$. Hence, by the first part of Lemma 5 such algorithm \mathcal{A} cannot exist unless $\mathrm{P}=\mathrm{NP}$.

By the second part of Lemma 5 -minimization is NP-hard. We reduce α-minimization to cwd_{r}-minimization by reducing an instance (G, k) of the former problem to the instance $\left(G^{\prime}, k\right)$ of the latter problem; obviously $\alpha(G) \leq k$ if and only if $\operatorname{cwd}_{r}\left(G^{\prime}\right) \leq k$. Thus cwd $_{r}$-MInimization is NP-hard as well. We can guess an r-sequential k-expression for a given graph G and verify in polynomial time whether it is indeed an r-sequential k-expression for G, hence cwd_{r}-MINImIzATION is in NP. Thus cwd_{r}-MINImIZATION is NP-complete.

5 Clique-width versus r-sequential clique-width

In this final section we show that clique-width and r-sequential clique-width can differ significantly.

Theorem 2. For every $r \geq 1$ there exist graphs of constant clique-width but arbitrarily high r-sequential clique-width.

This result follows from the next two lemmas. In the remainder of this section, H denotes a ternary rooted tree. That is, every non-leaf of H has exactly three children. H^{\prime} denotes the graph obtained from H by Construction 1

We call a k-expression X to be 1-terminal if it does not contain the operations $\eta_{1, i}, \eta_{i, 1}$, or $\rho_{1 \rightarrow i}$. That is, the clique-width construction described by X has the property that after a vertex v has once received the label 1 , no edges incident to v are inserted any more, and the label of v is not changed anymore.

Lemma 6. H^{\prime} has a 1-terminal 4-construction, thus $\operatorname{cwd}\left(H^{\prime}\right) \leq 4$.
Proof. We proceed by induction on the number n of vertices of H. The lemma holds by trivial reasons if $n=1$. For $n=4$, let u_{1}, u_{2}, u_{3} denote the leaves and v the root of H. The
edge $u_{i} v$ is replaced in H^{\prime} by the bridges $\left(u_{i}, x_{i}^{j}, y_{i}^{j}, v\right), j=1,2,3$. We put

$$
\begin{aligned}
F_{i}^{j} & =\eta_{3,4}\left(4\left(x_{i}^{j}\right) \oplus 3\left(y_{i}^{j}\right)\right), \quad(1 \leq i, j \leq 3) \\
F^{i} & =\rho_{4 \rightarrow 1}\left(\rho_{2 \rightarrow 1}\left(\eta_{2,4}\left(F_{1}^{i} \oplus F_{2}^{i} \oplus F_{3}^{i} \oplus 2\left(u_{i}\right)\right)\right)\right) \\
F & =\rho_{3 \rightarrow 1}\left(\eta_{2,3}\left(F^{1} \oplus F^{2} \oplus F^{3} \oplus 2(v)\right)\right) \\
H^{\prime} & =\rho_{2 \rightarrow 1}(F)
\end{aligned}
$$

The corresponding 4-expression is evidently 1-terminal, and we have $\operatorname{cwd}\left(H^{\prime}\right) \leq 4$ for $n=4$. Now assume $n>4$. We can choose a vertex $v \in V(H)$ that is adjacent to three leaves u_{1}, u_{2}, u_{3}. We put $H_{0}=H-\left(u_{1}, u_{2}, u_{3}\right)$. By induction hypothesis, H_{0}^{\prime} has a 1-terminal 4-expression X_{0}. The vertex v is introduced in X_{0} as initial 4-graph $i(v)$ with $2 \leq i \leq 4$; we assume, w.l.o.g., that $i=2$. We obtain a 4 -expression X from X_{0} by replacing $2(v)$ with the 4 -expression defining the 4 -graph F as defined above. Since all vertices of F except v have the terminal label 1, and since X_{0} is 1-terminal, we conclude that X is a 1-terminal 4-expression defining H^{\prime}.

Lemma 7. If H is the complete ternary tree of height h then $\operatorname{cwd}_{r}\left(H^{\prime}\right) \geq h-r$ for any $r \geq 1$.

Proof. From results of Schaeffler [17] and Ellis et al. 8] it follows that the pathwidth of H is h. Lemmas 4 and yield $\operatorname{pwd}(H) \leq \operatorname{cwd}_{1}\left(H^{\prime}\right) \leq \operatorname{cwd}_{r}\left(H^{\prime}\right)+r$.

6 Final remarks

In this paper we have established the first step for proving that computing the clique-width of a graph is NP-hard. For the second step [9] we consider the following simple construction: from a given graph G we obtain a graph $G^{\prime \prime}$ by replacing every edge of G by an induced path of length two. We show that

1. clique-width and sequential clique-width of $G^{\prime \prime}$ differ at most by a small constant if G is cobipartite, and
2. sequential clique-width of G^{\prime} and sequential clique-width of $G^{\prime \prime}$ differ at most by a small constant.

This, together with Theorem 1 shows that, cwd-minimization is NP-complete, and that the clique-width of a graph cannot be absolutely approximated in polynomial time unless $\mathrm{P}=\mathrm{NP}$.

Acknowledgement

We thank Derek Corneil for introducing us to the problem and for all the inspiring discussions. We also thank Frank Gurski for suggesting us the use of Construction 2 for the NP-completeness proof.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277-284, 1987.
[2] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238255, 1995.
[3] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. A. Reed, and U. Rotics. Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract). In G. H. Gonnet, D. Panario, and A. Viola, editors, Theoretical Informatics, 4 th Latin American Symposium (LATIN 2000), volume 1776 of Lecture Notes in Computer Science, pages 126-134, 2000.
[4] D. G. Corneil and U. Rotics. On the relationship between clique-width and treewidth. SIAM J. Comput. To appear. An extended abstract appeared in the Proceedings of Graph-theoretic Concepts in Computer Science (WG 2001), LNCS 2204, pp. 78-90, Springer, 2001.
[5] B. Courcelle, J. Engelfriet, and G. Rozenberg. Context-free handle-rewriting hypergraph grammars. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Graph-Grammars and their Application to Computer Science, 4 th International Workshop, Bremen, Germany, March 5-9, 1990, Proceedings, volume 532 of Lecture Notes in Computer Science, pages 253-268, 1991.
[6] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33:125-150, 2000.
[7] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discr. Appl. Math., 101(1-3):77-114, 2000.
[8] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and search number of a graph. Information and Computation, 113(1):50-79, 1994.
[9] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Proving NP-hardness for clique-width II: non-approximability of clique-width. Electronic Colloquium on Computational Complexity, Technical report TR05-080, Revision 01, 2005.
[10] F. V. Fomin, P. Heggernes, and J. A. Telle. Graph searching, elimination trees, and a generalization of bandwidth. In Fundamentals of computation theory, volume 2751 of Lecture Notes in Computer Science, pages 73-85. Springer Verlag, 2003.
[11] F. Gurski and E. Wanke. Minimizing NLC-width is NP-complete. Extended abstract accepted for WG 2005.
[12] F. Gurski and E. Wanke. On the relationship between NLC-width and linear NLC-with. Theoretical Computer Science, to appear.
[13] Ö. Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition-relationships and results for random graphs. In Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1998), volume 132 of Congr. Numer., pages 39-60, 1998.
[14] M. Karpinski and J. Wirtgen. On approximation hardness of the bandwidth problem. Technical Report TR97-041, ECCC, Electronic Colloquium on Computational Complexity, 1997.
[15] N. G. Kinnersley. The vertex separation number of a graph equals its path-width. Information Processing Letters, 42(6):345-350, 1992.
[16] S. Oum and P. Seymour. Approximating clique-width and branch-width. Submitted, Oct. 2004.
[17] P. Scheffler. A linear algorithm for the pathwidth of trees. In Topics in combinatorics and graph theory (Oberwolfach, 1990), pages 613-620. Physica, 1990.
[18] E. Wanke. k-NLC graphs and polynomial algorithms. Discr. Appl. Math., 54(2-3):251266, 1994. Efficient algorithms and partial k-trees.

[^0]: *School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan 2308 NSW, Australia, [mfellows|fran]@cs.newcastle.edu.au.
 ${ }^{\dagger}$ School of Computer Science and Mathematics, Netanya Academic College, Netanya, Israel, rotics@mars.netanya.ac.il.
 ${ }^{\ddagger}$ Department of Computer Science, Durham University, Durham, England, UK, stefan.szeider@durham.ac.uk.

[^1]: ${ }^{1}$ Sequential cliquewidth was also considered by Gurski and Wanke 12 under the term linear clique-width.

