Proving NP-hardness for clique-width II: non-approximability of clique-width

Michael R. Fellows, Frances A. Rosamond, Udi Rotics \dagger, and Stefan Szeider ${ }^{\ddagger}$

August 24, 2005

Abstract

Clique-width is a graph parameter that measures in a certain sense the complexity of a graph. Hard graph problems (e.g., problems expressible in Monadic Second Order Logic with second-order quantification on vertex sets, that includes NP-hard problems) can be solved efficiently for graphs of certified small clique-width. It is widely believed that determining the clique-width of a graph is NP-hard; in spite of considerable efforts, no NP-hardness proof has been found so far. We give the first hardness proof. We show that the clique-width of a given graph cannot be absolutely approximated in polynomial time unless $\mathrm{P}=\mathrm{NP}$. We also show that, given a graph G and an integer k, deciding whether the clique-width of G is at most k is NP-complete. This solves a problem that has been open since the introduction of clique-width in the early 1990s.

1 Introduction

The clique-width of a graph is the smallest number of labels that suffices to construct the graph using the operations: creation of a new vertex v with label i, disjoint union, insertion of edges between vertices of certain labels, and relabeling of vertices. Such a construction of a graph by means of these four operations using at most k different labels can be represented by an algebraic expression called a k-expression (more exact definitions are provided in Section 1.2). This composition mechanism was first considered by Courcelle, Engelfriet, and Rozenberg [4] in 1990; the term clique-width was introduced later.

By a general result of Courcelle, Makowsky, and Rotics [5], any graph problem that can be expressed in Monadic Second Order Logic with second-order quantification on vertex sets (that includes NP-hard problems) can be solved in linear time for graphs of clique-width bounded by some constant k if the k-expression is provided as input to the algorithm (albeit the running time involves a constant which is exponential in k). A main limit for applications of this result is that it is not known how to obtain efficiently k-expressions for graphs with clique-width k. Is it possible to compute the clique-width of a graph in polynomial time? This question has been open since the introduction of clique-width. In the present paper we answer this question negatively: We show that the clique-width of a graph cannot be

[^0]computed in polynomial time unless $\mathrm{P}=\mathrm{NP}$, and given a graph G and an integer k, deciding whether the clique-width of G is at most k is NP-complete.

With considerable efforts, polynomial-time algorithms could be developed for recognizing graphs of clique-width at most 3 in polynomial time (see Corneil, Habib, Lanlignel, Reed, and Rotics [3]). Recently, Oum and Seymour [10] obtained an algorithm that, for any fixed k, runs in time $O\left(n^{9} \log n\right)$ and computes $\left(2^{3 k+2}-1\right)$-expressions for graphs of clique-width at most k. This result renders the notion "class of bounded clique-width" feasible; however, since the running time of algorithms as suggested by Courcelle et al. [5] crucially depends on k, closer approximations are desirable. The graph parameter "NLC-width" introduced by Wanke [11] is defined similarly as clique-width using a single operation that combines disjoint union and insertion of edges. Recently Gurski and Wanke [7] have reported that computing the NLC-width is NP-hard. Since NLC-width and clique-width can differ by a factor of 2 (see Johansson [8]), non-approximability with an absolute error guarantee for one of the two parameters does not imply a similar result for the other parameter.

The main results of our paper are the following.
Theorem 1. The clique-width of graphs with n vertices of degree greater than 2 cannot be approximated by a polynomial-time algorithm with an absolute error guarantee of n^{ε} for any $\varepsilon \in(0,1)$, unless $\mathrm{P}=\mathrm{NP}$.

In particular, there is no polynomial-time absolute approximation algorithm for cliquewidth unless $\mathrm{P}=\mathrm{NP}$.

Theorem 2. The problem cwd-minimization (that is, given a graph G and an integer k, is the clique-width of G at most k ?) is NP-complete.

In the first part of this series of papers [6] we have shown results similar to Theorems 1 and 2 for a weaker notion of clique-width, termed sequential clique-width (or linear cliquewidth). The sequential clique-width of a graph is defined similarly as clique-width, except that only k-expressions are considered where at least one of any two k-graphs put together by disjoint union is an initial k-graph. The parse trees of such sequential k-expressions are pathlike (every node is either a leaf or adjacent to a leaf). Hence one can consider the relation between sequential clique-width and clique-width as an analogue to the relation between pathwidth and treewidth. The natural 2-expressions of complete graphs (see Section 1.2) are sequential.

1.1 Proof outline

In what follows, let α be an integer-valued graph parameter. We consider the following decision problem.
α-MINIMIZATION
Instance: A graph G and a positive integer k.
Question: Is $\alpha(G)$ at most k ?
In [6] we have shown the following lemma using results of Karpinski and Wirtgen [9], Arnborg, et al. [1], and Bodlaender, et al. [2].

Lemma 1. Assume that there is a constant c such that $|\alpha(G)-\operatorname{pwd}(G)| \leq c$ holds for every cobipartite graph G with minimum degree at least 3 . Then the following statements are true.

1. For a graph G with n vertices and minimum degree at least 3, $\alpha(G)$ cannot be approximated in polynomial-time with an absolute error guarantee of n^{ε} for any $\varepsilon \in(0,1)$ unless $\mathrm{P}=\mathrm{NP}$.
2. α-MINIMIZATION is NP-hard.

We shall use the following two constructions.
Let G be a graph. We obtain a graph G^{\prime} from G by replacing each edge $x y$ of G by three paths $x-p_{i}-q_{i}-y, i=1,2,3$, where p_{i}, q_{i} are new vertices. Similarly, we obtain from G a graph $G^{\prime \prime}$ by replacing each edge $x y$ of G by one path $x-s-y$ where s is a new vertex.

In the companion paper [6] we have shown the following inequation ($\operatorname{pwd}(G)$ and $\mathrm{cwd}_{1}(G)$ denote the pathwidth and the sequential clique-width of G, respectively).

$$
\begin{equation*}
\operatorname{pwd}(G) \leq \operatorname{cwd}_{1}\left(G^{\prime}\right) \leq \operatorname{pwd}(G)+4 \tag{1}
\end{equation*}
$$

In this paper we establish for cobipartite graphs of minimum degree at least 2 the following inequation $(\operatorname{cwd}(G)$ denotes the clique-width of $G)$.

$$
\begin{equation*}
\operatorname{cwd}\left(G^{\prime}\right) \leq \operatorname{cwd}_{1}\left(G^{\prime}\right) \leq \operatorname{cwd}\left(G^{\prime}\right)+18 \tag{2}
\end{equation*}
$$

The non-trivial part of inequation (2) is obtained by means of the second construction $G^{\prime \prime}$. We show by Lemma 2, Theorem 3, and Lemma 5, respectively, that for every cobipartite graph G we have

$$
\begin{equation*}
\operatorname{cwd}_{1}\left(G^{\prime}\right) \leq \operatorname{cwd}_{1}\left(G^{\prime \prime}\right)+9 \leq \operatorname{cwd}\left(G^{\prime \prime}\right)+15 \leq \operatorname{cwd}\left(G^{\prime}\right)+18 \tag{3}
\end{equation*}
$$

The hardest task for showing (3) is to bound the sequential clique-width of $G^{\prime \prime}$ in terms of the clique-width of $G^{\prime \prime}$ plus a small constant; this is established in Theorem 3.

Consider now the graph parameter $\alpha(G)=\operatorname{cwd}\left(G^{\prime}\right)$; i.e., $\alpha(G)$ is the clique-width of the graph G^{\prime} obtained from G by the first of the two construction given above. The inequations (1) and (2) yield $|\alpha(G)-\operatorname{pwd}(G)| \leq 22$, hence the assumption of Lemma 1 is met. It is now easy to establish Theorems 1 and 2 as follows.

Assume that for a constant $\varepsilon \in(0,1)$ there exists a polynomial-time algorithm \mathcal{A} that outputs for a given graph G with n vertices of degree at least 3 an integer $\mathcal{A}(G)$ with $|\mathcal{A}(G)-\operatorname{cwd}(G)| \leq n^{\varepsilon}$. For a graph G with n vertices and minimum degree at least $3, G^{\prime}$ has exactly n vertices of degree at least 3 ; applying \mathcal{A} to G^{\prime} gives now $\left|\mathcal{A}\left(G^{\prime}\right)-\operatorname{cwd}\left(G^{\prime}\right)\right|=$ $\left|\mathcal{A}\left(G^{\prime}\right)-\alpha(G)\right| \leq n^{\varepsilon}$. Hence, by the first part of Lemma 1 such algorithm \mathcal{A} cannot exist unless $\mathrm{P}=\mathrm{NP}$. A similar reasoning applies if the approximation error is bounded by some fixed constant. Thus Theorem 1 is established.

The second part of Lemma 1 implies that α-minimization is NP-hard. We reduce α-minimization to cwd-minimization by taking for an instance (G, k) of the former problem the instance $\left(G^{\prime}, k\right)$ of the latter problem; obviously $\alpha(G) \leq k$ if and only if $\operatorname{cwd}\left(G^{\prime}\right) \leq k$. Thus cwd-minimization is NP-hard as well. The problem is in NP since, given a graph G, we can guess a k-expression and check in polynomial time whether it is indeed a k-expression defining G. Thus Theorem 2 is established as well.

1.2 Definitions and preliminaries

All graphs considered in this paper are undirected and simple. Let k be a positive integer. A k-graph is a graph whose vertices are labeled by integers from $\{1, \ldots, k\}$. We consider an arbitrary graph as a k-graph with all vertices labeled by 1 . We call the k-graph consisting of exactly one vertex v (say, labeled by $i \in\{1, \ldots, k\}$) an initial k-graph and denote it by $i(v)$.

The clique-width $\operatorname{cwd}(G)$ of a graph G is the smallest integer k such that G can be constructed from initial k-graphs by means of repeated application of the following three operations.

- Disjoint union (denoted by \oplus);
- Relabeling: changing all labels i to j (denoted by $\rho_{i \rightarrow j}$);
- Edge insertion: connecting all vertices labeled by i with all vertices labeled by $j, i \neq j$ (denoted by $\eta_{i, j}$).

A construction of a k-graph using the above operations can be represented by an algebraic term composed of $\oplus, \rho_{i \rightarrow j}$, and $\eta_{i, j},(i, j \in\{1, \ldots, k\}$, and $i \neq j)$. Such a term is called a cwd-expression defining G.

For example, the complete graph on the vertices u, v, w, x is defined by the cwd-expression

$$
\rho_{2 \rightarrow 1}\left(\eta_{1,2}\left(\rho_{2 \rightarrow 1}\left(\eta_{1,2}\left(\rho_{2 \rightarrow 1}\left(\eta_{1,2}(2(u) \oplus 1(v))\right) \oplus 2(w)\right)\right) \oplus 2(x)\right)\right)
$$

In general, every complete graph $K_{n}, n \geq 2$, has clique-width 2 .
For convenience, we assume that $\eta_{i, j}$ and $\eta_{j, i}$ denote the same operation.
For a cwd-expression t, we denote by $\operatorname{val}(t)$ the labeled graph defined by t. We denote a cwd-expression which uses at most k labels as a k-expression; for convenience we assume that the k labels are the integers $1, \ldots, k$. Often when it is clear from the context we shall use the term expression instead of cwd-expression or k-expression. For a labeled graph G we denote by labels (G) the number of labels used in G.

For a cwd-expression t defining a graph G, we denote by tree (t) the parse tree constructed from t in the usual way. The leaves of this tree are the vertices of G with their initial labels, and the internal nodes correspond to the operations of t and can be either binary corresponding to \oplus, or unary corresponding to η or ρ. For a node a of tree (t), we denote by tree $(t)\langle a\rangle$ the subtree of tree (t) rooted at a. We denote by $t\langle a\rangle$ the cwd-expression corresponding to $\operatorname{tree}(t)\langle a\rangle$; i.e., $\operatorname{tree}(t)\langle a\rangle=\operatorname{tree}(t\langle a\rangle)$. Note that in $t\langle a\rangle$ (and similarly in tree $(t\langle a\rangle))$ we assume that the operation a is already established.

For a vertex x of $\operatorname{val}(t\langle a\rangle)$, we say that x is dead at a (or dead at $\operatorname{val}(t\langle a\rangle)$) if all the edges incident to x in $\operatorname{val}(t)$ are included in $\operatorname{val}(t\langle a\rangle)$. Otherwise we say that x is active at a (or active at $\operatorname{val}(t\langle a\rangle))$. We say that label ℓ is a dead in t if it is not involved in any η-operation in t. In other words, ℓ is dead in t if there is no η-operation in t of the form $\eta_{\ell, \ell^{\prime}}$ for any label ℓ^{\prime}.

Let a be a \oplus-operation of a cwd-expression t. If z is a vertex of $\operatorname{val}(t\langle a\rangle)$ and has label ℓ in $\operatorname{val}(t\langle a\rangle)$ we say that z occurs at a with label ℓ. Let b and c be the left and right children of a, respectively. We say that vertex x occurs on the left (right) side of a if it occurs at b (c).

Let r be a positive integer. We say that a is an $r-\oplus$-operation if there are at most r vertices occurring on the left side of a or there are at most r vertices occurring on the right side of a. We say that a is a $(>r)-\oplus$-operation if it is not an $r-\oplus$-operation. We say that t is an r-sequential cwd-expression (or sequential cwd-expression for $r=1$) if all \oplus-operations in t are r - \oplus-operations. We say that t is a sequential k-expression if t is a sequential cwd-expression which uses k labels. For a graph $G, \operatorname{cwd}_{r}(G)$ denotes the smallest number k such that G can be defined by an r-sequential k-expression. For example, the above 2-expression defining K_{4} is sequential. In general, we have $\operatorname{cwd}_{1}\left(K_{n}\right)=\operatorname{cwd}\left(K_{n}\right)$ for every $n \geq 1$.

For a graph G, we denote by G^{\prime} the graph obtained from G by replacing each edge $x y$ of G by three paths $x-p_{i}-q_{i}-y, i=1,2,3$, where p_{i}, q_{i} are new vertices. Similarly, we denote by $G^{\prime \prime}$ the graph obtained from G by replacing each edge $x y$ of G by one path $x-s-y$ where s is a new vertex which is denoted as $s_{x, y}$. We call the vertices of G^{\prime} and $G^{\prime \prime}$ which are also vertices of G regular vertices. We call the vertices of G^{\prime} and $G^{\prime \prime}$ which are not vertices of G special vertices.

2 From $G^{\prime \prime}$ to G^{\prime} and back

For this section let G denote a graph with minimum degree at least 2 . We show that the clique-width of $G^{\prime \prime}$ is bounded by the clique-width of G^{\prime} plus a small constant, and that the converse is true for sequential clique-width.

2.1 From $G^{\prime \prime}$ to G^{\prime}

Lemma 2. $\operatorname{cwd}_{1}\left(G^{\prime}\right) \leq \operatorname{cwd}_{1}\left(G^{\prime \prime}\right)+9$.
For the proof we shall use the following definition and lemmas.
Property 1. Let t be a sequential cwd-expression defining $G^{\prime \prime}$. We say that t has Property 1 if for every two regular vertices x and y there is no node a in tree (t) such that x and y are active at a and have the same label at a.

Lemma 3. Let t be a sequential k-expression defining $G^{\prime \prime}$. Then there exists a sequential $(k+2)$-expression defining $G^{\prime \prime}$ which has Property 1.

Proof. Let t be a sequential k-expression defining $G^{\prime \prime}$. Let x and y be two regular vertices such that there exists a node a in t such that x and y have the same label at a and are active at a. Let b the lowest node in tree (t) corresponding to an operation which unifies the labels of x and y. Clearly b corresponds to either a ρ or a $1-\oplus$-operation. Suppose b corresponds to a $1-\oplus$-operation. This operation introduces either x or y (say that it introduces x). Since x and y have the same label at b it follows that each neighbor of x is also a neighbor of y. However, since G has minimum degree at least 2 , there is a neighbor of x in $G^{\prime \prime}$ which is not a neighbor of y, a contradiction.

Let b_{1} be the child of b in tree (t). Clearly x and y are active at b. Since $s_{x, y}$ is the unique vertex in $G^{\prime \prime}$ which is adjacent to both x and y, it follows that if we add the edges connecting x and y to $s_{x, y}$ immediately above b_{1}, then x and y will not be active at b. We show below how to construct an expression t_{1} which achieves this goal.

Let t_{1}^{\prime} be the expression obtained by removing $s_{x, y}$ from t. Let t_{1} be the expression obtained from t_{1}^{\prime} by adding immediately above b_{1} the vertex $s_{x, y}$ with label $k+2$, then adding two η-operations which connect $s_{x, y}$ to both x and y and then renaming the label of $s_{x, y}$ to $k+1$. (Note that $k+1$ will be a dead label, i.e., no edges will be added to a vertex having label $k+1$.) Since both edges connecting $s_{x, y}$ to x and y already exists at $\operatorname{val}\left(t_{1}\langle b\rangle\right)$, it follows that x and y are not active at $\operatorname{val}\left(t_{1}\langle b\rangle\right)$.

Repeating the above construction for every pair of regular vertices x and y which have the same label at a node a of tree (t) and are active at a, we finally get a sequential $(k+$ 2)-expression t^{\prime} which defines $G^{\prime \prime}$ and satisfies Property 1.

Note that whenever vertex $s_{x, y}$ gets label $k+2$ at node a of t^{\prime} it is the unique vertex having this label in $\operatorname{val}\left(t^{\prime}\langle a\rangle\right)$ and thus, it is possible to connect it to x and y using two η-operations.

Lemma 4. Let t be a sequential k-expression defining $G^{\prime \prime}$ that has Property 1. Then there exists a sequential $(k+7)$-expression defining G^{\prime}.

Proof. Let t be a sequential k-expression defining $G^{\prime \prime}$ that has Property 1. Let $s=s_{x, y}$ be a special vertex of $G^{\prime \prime}$. Let e_{1} and e_{2} denote the edges connecting s to x and y, respectively. If the edges e_{1} and e_{2} are established in t by the same η-operation, then there is a node a in t such that both x and y have the same label at a and are active at a, a contradiction. Thus, we can assume without loss of generality that the edge e_{1} is established before e_{2} in t. Let a denote the lowest node in tree (t) corresponding to the η-operation which establishes the
edge e_{1} in t. We can assume that node a is the only η-operation in t which connects x to s. Otherwise, we can remove from t all the η-operations above a which connect x to s. Let t_{1}^{\prime} denote the expression obtained by removing s from t. Let t_{1} denote the expression obtained from t_{1}^{\prime} by replacing the node a with the following sequence of operations:

1. Add vertices s_{1}, \ldots, s_{6} with labels $k+2, \ldots, k+7$, respectively.
2. Add η-operations connecting s_{1}, s_{2}, and s_{3} to x.
3. Add η-operations connecting s_{1} to s_{4}, s_{2} to s_{5}, and s_{3} to s_{6}.
4. Add ρ-operations which rename the labels of s_{1}, s_{2}, and s_{3} to $k+1(k+1$ is used as a dead label).
5. Add ρ-operations which rename the labels of s_{4}, s_{5}. and s_{6} to ℓ, where ℓ is the label that s has in $\operatorname{val}(t\langle a\rangle)$.

It is easy to check that t_{1} defines the graph obtained from $G^{\prime \prime}$ by replacing the path of length two $x-s-y$ with the 3 paths of length $3, x-s_{i}-s_{i+3}-y, i=1,2,3$.

Repeating the above construction for every special vertex s of $G^{\prime \prime}$, we finally obtain a sequential $(k+7)$-expression t^{\prime} which defines G^{\prime}.

Note that whenever vertices s_{1}, \ldots, s_{6} get labels $k+2, \ldots, k+7$ at node a of t^{\prime} they are the unique vertices having these labels in $\operatorname{val}\left(t^{\prime}\langle a\rangle\right)$ and thus, it is possible to establish all the connections and renamings mentioned in steps $2-5$ above.

This completes the proof of the lemma.
Proof of Lemma 2. Suppose $\operatorname{cwd}_{1}\left(G^{\prime \prime}\right)=k$, there there exists a sequential k-expression t which defines $G^{\prime \prime}$. By Lemma 3 there exists a sequential $(k+2)$-expression t_{1} which defines $G^{\prime \prime}$ and has Property 1. By Lemma 4 there exists a sequential $(k+9)$-expression t_{2} which defines G^{\prime}. Thus $\operatorname{cwd}_{1}\left(G^{\prime}\right) \leq k+9$.

2.2 From G^{\prime} to $G^{\prime \prime}$

Lemma 5. $\operatorname{cwd}\left(G^{\prime \prime}\right) \leq \operatorname{cwd}\left(G^{\prime}\right)+3$.
For proving this lemma we shall use the following definitions and lemma.
Let G be a graph and let $D(G)$ denote the set of graphs which can be obtained from G by replacing each edge of G either with a path of length two or with a path of length three. Clearly, the graph $G^{\prime \prime}$ belongs to $D(G)$ and is obtained by replacing all edges of G with a path of length two. For each graph G^{*} in $D(G)$ we call the vertices of G^{*} which are also vertices of G regular vertices and we call the other vertices of G^{*} special vertices.

Property 2. Let t be a k-expression defining a graph G^{*} in $D(G)$. We say that t has Property 2 if the following conditions hold:

Condition 2.1: there is no η-operation in t which uses label 1 , i.e, there is no $\eta_{1, \ell \text {-operation }}$ in t for any label ℓ. In other words, 1 is a dead label.

Condition 2.2: if label 2 is used in t, then it is used as follows: a special vertex (say s) is introduced with label 2 using a $1-\oplus$-operation say a, such that s is the only vertex having label 2 at a. Above a in tree (t) there is a sequence of one or more η-operations followed by a $\rho_{2 \rightarrow \ell^{-}}$operation where ℓ is any label different from 2 and 3 .

Condition 2.3: if label 3 is used in t then it is used as follows: a regular vertex (say r) is introduced with label 3 using a $1-\oplus$-operation, say a, such that r is the only vertex having label 3 at a. Above a in tree (t) there is a sequence of operations which can be either η, ρ, or $1-\oplus$-operations introducing special vertices, followed by a $\rho_{3 \rightarrow \ell^{-}}$-operation where ℓ is any label different from 2 and 3.

Condition 2.4: no regular vertex ever gets label 2 and no special vertex ever gets label 3 .
Observation 1. Let G^{*} be a graph in $D(G)$ and let $\operatorname{cwd}\left(G^{*}\right)=k$. Then there is a $(k+$ 3)-expression t^{\prime} defining G^{*} which has Property 2.

Proof. Let t be a k-expression defining G^{*}. Let t^{\prime} be the $k+3$-expression obtained from t by replacing all occurrences of the labels 1,2 and 3 with the labels $k+1, k+2$ and $k+3$, respectively. Clearly t^{\prime} defines G^{*}. Since the labels 1,2 and 3 are not used in t^{\prime}, it is obvious that t^{\prime} has Property 2.

The following is the key lemma for proving Lemma 5.
Lemma 6. Let G^{*} be a graph in $D(G)$ and let t be a k-expression which defines G^{*} and has Property 2. Let a be a lowest node in tree (t) such that there exists an induced path $x-p-q-y$ in $G^{\prime \prime}(x, y$ are regular vertices $)$ and x, p, q, y occur at a. Then there exists a k-expression t_{1} which has Property 2 and defines the graph G_{1}^{*} obtained from G^{*} by replacing the path $x-p-q-y$ with a path $x-s-y$ where s is a new special vertex.

Proof. Let a and x, p, q, y as in the statement of the lemma. In each of the following cases we obtain a k-expression t_{1} which defines G_{1}^{*} and has Property 2 . In all cases it is easy to see that the expression t_{1} obtained has Property 2 .

Case 1: suppose x and y occur on different sides of a. Assume without loss of generality that x is on the left side of a and y is on the right side of a.

Case 1.1: suppose that p and q occur on the same side of a. Assume without loss of generality that both p and q occur on the left side of a. Let a_{1} denote the lowest node in tree (t) such that both x and p are in $t\left\langle a_{1}\right\rangle$. Let a_{2} denote the lowest node in tree (t) such that both x and q are in $t\left\langle a_{2}\right\rangle$. By the above assumptions both a_{1} and a_{2} are descendants of a in tree (t).

Case 1.1.1: suppose a_{1} is a proper descendant of a_{2} in tree (t). If x and q have the same label at a_{2} it follows that y must be in $t\left\langle a_{2}\right\rangle$, a contradiction. Thus p and q must have unique labels at a_{2}. Let ℓ_{p} and ℓ_{q} denote the labels of p and q at a_{2}, respectively.

Case 1.1.1.1: suppose x has a unique label (say ℓ_{x}) at a_{2}. In this case, t_{1} is obtained from t as follows:

1. Add the following sequence operations immediately above a_{2} :
1.1. An $\eta_{\ell_{x}, \ell_{p}}$-operation which connects x to p.
1.2. A $\rho_{\ell_{p} \rightarrow \ell_{q}}$-operation which renames the label of p to the label of q.
2. Omit q.

Case 1.1.1.2: Suppose x does not have unique label at a_{2}. Thus the edge connecting x to p already exists at $\operatorname{val}\left(t\left\langle a_{2}\right\rangle\right)$. In this case, t_{1} is obtained from t as follows:

1. Add immediately above a_{2} a $\rho_{\ell_{p} \rightarrow \ell_{q}}$-operation which renames the label of p to the label of q.
2. Omit q.

In both cases 1.1.1.1 and 1.1.1.2, p is connected to y since after p gets the label of q, the η-operation above a which connects q to y will connect p to y. Thus, p can be considered as the new special vertex s in G_{1}^{*} and the expression t_{1} defines G_{1}^{*}.

Case 1.1.2: suppose a_{1} is equal to a_{2}. In this case x and p must have unique labels at a_{2}. This case is handled the same way as case 1.1.1.1.

Case 1.1.3: suppose a_{2} is a proper descendant of a_{1} in tree (t). Since y is not in $t\left\langle a_{1}\right\rangle, x$, p, and q must have unique labels at a_{1}. Let ℓ_{x}, ℓ_{p}, and ℓ_{q} denote the labels of x, p and q at a_{1}, respectively. In this case, t_{1} is obtained from t as follows:

1. Add the following sequence operations immediately above a_{1} :

1.2. A $\rho_{\ell_{p} \rightarrow \ell_{q}}$-operation which renames the label of p to the label of q.
2. Omit q.

As in the previous cases it is easy to see that t_{1} defines G_{1}^{*} and p is the new special vertex s.

Case 1.2: suppose that p and q occur on different sides of a.

Case 1.2.1: suppose p occurs on the left side of a and q occurs on the right side of a. It is easy to see that at least one of p and q must have a unique label at a. Assume without loss of generality that q has a unique label (say ℓ_{q}) at a. Let ℓ_{p} and ℓ_{y} denote the labels that p and y have at a, respectively. Note that y is the only vertex which can have the same label as p at a. In this case, t_{1} is obtained from t as follows:

1. Make changes to t such that y will have label ℓ_{q} at a. In particular let c be the lowest \oplus-operation in tree (t) which contains both y and q. Add a ρ-operation immediately above c which renames the label of y at c to the label of q at c (say ℓ_{q}). Then follow the path from c to a in tree (t) and for each node d corresponding to an $\eta_{\ell_{1}, \ell_{2} \text {-operation such that } y \text { has label }}$
 all the vertices $(\operatorname{except} q)$ which it was connected in $\operatorname{val}(t\langle a\rangle)$ and has label ℓ_{q} at a.
2. Omit q.
3. After the above changes to y, the label ℓ_{p} of p at a is unique. Add the following sequence of operations immediately above a:

3.2. A $\rho_{\ell_{q} \rightarrow \ell_{y}}$-operation which renames y to the label it has in $\operatorname{val}(t\langle a\rangle)$.

By steps 1 and 3.2 above it is clear that all the vertices (except q) which are connected to y in t are also connected to y in t_{1}. Thus, t_{1} defines G_{1}^{*} and p is the new special vertex s.

Case 1.2.2: suppose p occurs on the right side of a and q occurs on the left side of a. Since p is adjacent just to x and q, it follows that either x and q have unique labels at a or have the same label at a. If x and q have the same label at a, then there is no way to connect y to q without connecting it also to x, a contradiction. We conclude that the labels at a of p, q, x, and y (say $\ell_{p}, \ell_{q}, \ell_{x}$ and ℓ_{y}, respectively) are unique. In this case t_{1} is obtained from t by omitting q and adding an $\eta_{\ell_{p}, \ell_{y}}$-operation immediately above a.

Case 2: suppose x and y occur on the same side of a. Assume without loss of generality that x and y occur on the left side of a.

Case 2.1: suppose p and q occur on the same side of a. Since a is the lowest node in tree (t) which contains x, y, p, and q, it follows that p and q must occur on the right side of a. As in case 1.2 .2 it is easy to see that the labels at a of p, q, x and y (say $\ell_{p}, \ell_{q}, \ell_{x}$, and ℓ_{y}) are unique. In this case t_{1} is obtained from t by omitting q and adding an $\eta_{\ell_{p}, \ell_{y} \text {-operation }}$ immediately above a.

Case 2.2: suppose p and q occur on different sides of a. Assume without loss of generality that p occurs on the left side of a and q occurs on the right side of a. Let a_{1} denote the lowest node in tree (t) which contains both x and p. Let a_{2} denote the lowest node in tree (t) which contains x and y.

Case 2.2.1: suppose a_{1} is equal to a_{2} or a_{2} is a proper descendant of a_{1}. In this case it is easy to see that x, y and p must have unique labels at a_{1} (say ℓ_{x}, ℓ_{y}, and ℓ_{p}, respectively). In this case t_{1} is obtained from t by omitting q and adding an $\eta_{\ell_{p}, \ell_{y}}$-operation immediately above a_{1}.

Case 2.2.2: suppose a_{1} is a proper descendant of a_{2}.
Case 2.2.2.1: suppose y has unique label at a_{2} (say ℓ_{y}). In this case p must have unique label at $a_{2}\left(\right.$ say $\left.\ell_{p}\right)$ and t_{1} is obtained from t by omitting q and adding an $\eta_{\ell_{p}, \ell_{y} \text {-operation }}$ immediately above a_{2}.

Case 2.2.2.2: suppose y does not have unique label at a_{2}. Let ℓ_{p} and ℓ_{y} denote the labels of p and y at a_{2}, respectively. Since q is adjacent just to y and p, it follows that p is the only vertex which can share the label of y at a_{2}. Thus, $\ell_{p}=\ell_{y}$. Assume without loss of generality that y is on the right side of a_{2} and x and p are on the left side of a_{2}. Let b_{2} denote the right child of a_{2} in tree (t). Note that the complicated handling of this case (as described below) is needed when x is active at a_{2} and has the same label as another vertex which is on the right side of a_{2}. Since q is the only vertex which is adjacent to y and p, it follows that all the vertices which are adjacent to y (except q) must be in $\operatorname{val}\left(t\left\langle b_{2}\right\rangle\right)$. Let U
denote the set of all vertices (except q) which are adjacent to y. Since y is regular vertex, all vertices in U must be special and have degree exactly 2 . For each vertex u in U, let other (u) denote the neighbor of u which is not y. Let U_{1} denote the set of all vertices u in U such that other (u) is in $\operatorname{val}\left(t\left\langle b_{2}\right\rangle\right)$ and let $U_{2}=U \backslash U_{1}$. Let U_{11} denote the set of all vertices u in U_{1} such that the lowest node in tree (t) which contains u and other (u) does not contain y. Let $U_{12}=U_{1} \backslash U_{11}$.

In this case t_{1} is obtained from t as follows:

1. Omit q and all vertices of U_{2}.
2. Let c denote the lowest node in tree (t) which contains y. Follow the path from c to b_{2} in tree (t) and omit any $\eta_{\ell_{1}, \ell_{2}}$-operation such that the label of y at that point is ℓ_{1}.
3. Repeat the following step for each u in U_{11} : let c denote the lowest node in tree (t) which contains u and other (u). Let d denote the lowest node in tree (t) which contains y and u. Since u is in U_{11}, c is a descendant of d. Thus, u and other (u) have unique labels at c (say
 other (u). Add a ρ-operation immediately above d which renames the label of u to the label of y at d. Thus, after step 3 each vertex u in U_{11} is connected to other (u) and has label ℓ_{y} at a_{2}.
4. Repeat the following step for each u in U_{12} : let c denote the lowest node in tree (t) which contains u and other (u).
4.1. Suppose other (u) is a special vertex. If other (u) does not have a unique label at c then its label at c must be equal to the label of y at c, a contradiction, since q distinguishes y and other (u). Thus, other (u) must have unique label at c. If u does not have unique label at c, then the label of u at c must be equal to the label of the unique regular vertex (say z) which is adjacent to other (u). But then vertices of the induced path $z-\operatorname{other}(u)-u-y$ of $G^{\prime \prime}$ occur at a_{2}, and since a_{2} is a descendent of a, we have a contradiction to the selection of a as a lowest such node with that property. We conclude that both u and other (u) have unique labels at c. Thus, in this case add an η-operation immediately above c connecting u and other (u) and above it add a ρ-operation which renames the label of u to the label that y has at that point.
4.2. Suppose other (u) is a regular vertex. Since t has Property 2 , it follows that label 2 is not used at c. In this case omit u from t and add the following sequence of operations immediately above c :
4.2.1. A $1-\oplus$-operation introducing u with label 2 .

4.2.3. A $\rho_{2 \rightarrow \ell^{\prime}}$-operation where ℓ^{\prime} is the unique label that y has at c.

Thus, after step 4 each vertex u in U_{12} is connected to other (u) and has label ℓ_{y} at a_{2}.
5. Omit y from t and add the following sequence of operations immediately above a_{2} :
5.1. A $1-\oplus$-operation which introduces y with label 3 . Note that since t has Property 2 label 3 is not used at a_{2}.
5.2. An $\eta_{3, \ell_{y}}$-operation connecting y to p and all the vertices in U_{1}.

5.4. For each vertex u in U_{2} add the following sequence of operations:
5.4.1. A $1-\oplus$-operation introducing u with label 2 .
5.4.2. An $\eta_{2,3}$-operation connecting u and y.
5.4.3. A $\rho_{2 \rightarrow \ell \text {-operation where } \ell}$ is the label that u has in t at a_{2}.

Thus after step 5.4 all the vertices in U_{2} are connected to y and have the same label as they have in t at a_{2}.
5.5. A $\rho_{3 \rightarrow 1^{-}}$operation renaming the label of y to a dead label.

Each vertex u in U_{1} is connected to other (u) in step 3 or in step 4 and is connected to y in step 5.2. Each vertex u in U_{2} is connected to y at step 5.4.2 and the η-operation in t
above a_{2} which connects u to other (u) also exists in t_{1} and connects u to other (u) since after step 5.4 the label of u is the same as its label at a_{2} in t.

Thus, t_{1} defines G_{1}^{*} and p is the new special vertex s.
This completes the proof of Lemma 6.
Proof of Lemma 5. Suppose $\operatorname{cwd}\left(G^{\prime}\right)=k$. Let G_{1}^{\prime} denote the induced subgraph of G^{\prime} obtained by removing from G^{\prime} for every edge $e=x y$ of G, the two pairs of vertices p_{i}, q_{i}, $i=1,2$ where $x-p_{i}-q_{i}-y, i=1,2$ are two of the three paths of length 3 between x and y. Since G_{1}^{\prime} is an induced subgraph of G^{\prime}, it follows that $\operatorname{cwd}\left(G_{1}^{\prime}\right) \leq k$. Clearly, G_{1}^{\prime} belongs to $D(G)$. Let t be a k-expression which defines G_{1}^{\prime}. By Observation 1, there is a $(k+3)$-expression t^{\prime} defining G_{1}^{\prime} which has Property 2. Let a be a lowest node in tree $\left(t^{\prime}\right)$ such that for an induced path $x-p-q-y$ of $G^{\prime \prime}$ (x and y are regular vertices) the vertices x, p, q, y occur at a. By Lemma 6 there exists a $(k+3)$-expression t_{1}^{\prime} which has Property 2 and defines the graph G_{1}^{*} obtained from G_{1}^{\prime} by replacing the path $x-p-q-y$ with a path $x-s-y$ where s is a new special vertex. We can repeat this process until we finally get a $(k+3)$-expression $t^{\prime \prime}$ which defines the graph $G^{\prime \prime}$ that is obtained from G_{1}^{\prime} by replacing all induced paths of length 3 (with regular end vertices and special internal vertices) by induced paths of length 2. This completes the proof of Lemma 5 .

3 Cwd-expressions for $G^{\prime \prime}$

Theorem 3. If G is a cobipartite graph with minimum degree at least 2 , then $\operatorname{cwd}_{1}\left(G^{\prime \prime}\right) \leq$ $\operatorname{cwd}\left(G^{\prime \prime}\right)+6$.

For the proof of Theorem 3 we shall use the following definitions and lemmas.
In this section we assume that G is a cobipartite graph with minimum degree at least 2 . Since G is cobipartite the vertices of G can be partitioned into two cliques A and B. The regular vertices of $G^{\prime \prime}$ which belong to A, B are called A-regular vertices, B-regular vertices, respectively.

Let t be a cwd-expression defining $G^{\prime \prime}$. Let a be a \oplus-operation of t. We say that there is a separation at a between the A-regular vertices and the B-regular vertices if all A-regular vertices of $\operatorname{val}(t\langle a\rangle)$ occur on one side of a (say, on the left side of a) and all the B-regular vertices of $\operatorname{val}(t\langle a\rangle)$ occur on the other side of a (say, on the right side of a).

Proposition 1. Let t be a cwd-expression defining $G^{\prime \prime}$. For each \oplus-operation a of there is at most one pair of A-regular (B-regular) vertices which occur on different sides of a and have the same label at a.

Proof. Suppose there are two different pairs $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$ of A-regular vertices such that for $i=1,2, x_{i}$ and y_{i} occur at different sides of a and have the same label at a. Assume without loss of generality that x_{1} and x_{2} occur on the left side of a and y_{1} and y_{2} occur on the right side of a. Clearly, either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$. Assume without loss of generality that $x_{1} \neq x_{2}$. Consider the special vertex $s_{y_{1}, x_{2}}$. If $s_{y_{1}, x_{2}}$ is not in $\operatorname{val}(t\langle a\rangle)$, then when later on the edge connecting $s_{y_{1}, x_{2}}$ to y_{1} will be establish, also the edge connecting it to x_{1} will be established, a contradiction. Thus $s_{y_{1}, x_{2}}$ is in $\operatorname{val}(t\langle a\rangle)$. If $s_{y_{1}, x_{2}}$ occurs on the left side of a then when the edge connecting it to y_{1} will be established, it will be connected also to x_{1}, a contradiction. If $s_{y_{1}, x_{2}}$ is on the right side of a, then when the edge connecting it to x_{2} will be established, it will be connected also to y_{2}. Since the degree of $s_{y_{1}, x_{2}}$ in $G^{\prime \prime}$ is exactly 2 , it follows that y_{1} must be equal to y_{2}. Thus, the three vertices x_{1}, x_{2} and y_{1} have the same label at a, which implies that the η-operation above a which connect $s_{y_{1}, x_{2}}$ to x_{2} connect it also to x_{1}, a contradiction. The argument for two different pairs of B-regular vertices is symmetric.

Proposition 2. Let t be a cwd-expression defining $G^{\prime \prime}$. Let a be $a \oplus$-operation of t and let $\left\{x_{1}, y_{1}\right\}$ be a pair of A-regular (B-regular) vertices which occur on different sides of a and have the same label at a. Then both x_{1} and y_{1} are active at a and for every other vertex (say $z)$ occurring at a the label of z is different from the label of x_{1} and y_{1} at a.

Proof. Since x_{1} and y_{1} have the same label at a, either they are both dead at a or they are both active at a. Suppose x_{1} and y_{1} are dead at a. Consider $s_{x_{1}, y_{1}}$. If $s_{x_{1}, y_{1}}$ is not in $\operatorname{val}(t\langle a\rangle)$, then it is not possible to connect it to x_{1} and y_{1} (as they are dead at a), a contradiction. Assume without loss of generality that x_{1} and $s_{x_{1}, y_{1}}$ are on the same side of a. Since y_{1} is on the other side of a, and y_{1} is dead at a, it is not possible to connect $s_{x_{1}, y_{1}}$ to y_{1}, a contradiction. We have shown that both x_{1} and y_{1} are active at a. If there is another vertex z with the same label as x_{1} and y_{1} at a, then, when the edges connecting some vertex of $G^{\prime \prime}$ (say, w) to x_{1} and y_{1} will be established (such edges must be established since x_{1} and y_{1} are active at a), also the edge connecting it to z will be established, a contradiction (no vertex of $G^{\prime \prime}$ is adjacent to x_{1}, y_{1} and z).

Proposition 3. Let t be a cwd-expression defining $G^{\prime \prime}$. Let a be an \oplus-operation of t and let $\left\{x_{1}, y_{1}\right\}$ be a pair of regular vertices which occur on different sides of a and have the same label at a. Then all the edges connecting $x_{1}\left(y_{1}\right)$ to its neighbors in $G^{\prime \prime}-s_{x_{1}, y_{1}}$ exist in $\operatorname{val}(t\langle a\rangle)$.

Proof. Let s be a vertex which is adjacent to x_{1} in $G^{\prime \prime}-s_{x_{1}, y_{1}}$. Clearly s must be a special vertex of the form $s_{x_{1}, z}$ for $z \neq y_{1}$. If s is not connected to x_{1} in $\operatorname{val}(t\langle a\rangle)$, then it is not possible to connect s to x_{1} without connecting it also to y_{1}, a contradiction.

3.1 Property 3

Property 3. We say that t has Property 3 if the following conditions hold for t :
Condition 3.1: The label 1 is dead in t.
Condition 3.2: For each (>1) - \oplus-operation a in t, there is no pair of A-regular (B-regular) vertices which occur on different sides of a and have the same label at a.

Lemma 7. Let t be a k-expression defining $G^{\prime \prime}$. Then there exists a $(k+4)$-expression t^{\prime} defining $G^{\prime \prime}$ such that t^{\prime} has Property 3.

Proof. Let t be a k-expression defining $G^{\prime \prime}$. Let t_{1} denote the $(k+1)$-expression obtained from t by replacing each occurrence of the label 1 with the label $k+1$. Clearly, t_{1} defines $G^{\prime \prime}$ and label 1 is dead in t_{1}. Let a be a $(>1)-\oplus$-operation in t_{1} such that there exist at least one pair of regular vertices that violate Condition 3.2. We define below a $(k+4)$-expression t_{2} which defines $G^{\prime \prime}$ and has the additional property that there is no pair of regular vertices of the same type which occur on different sides of a and have the same label in $\operatorname{val}\left(t_{2}\langle a\rangle\right)$. Let b denote the left child of a in tree (t).

Case 1: Suppose there is exactly one pair (say $\left\{x_{1}, y_{1}\right\}$) of regular vertices of the same type which occur on different sides of a and have the same label in $\operatorname{val}\left(t_{1}\langle a\rangle\right)$. Assume without loss of generality that x_{1} occurs on the left side of a. By Proposition 2, both x_{1} and y_{1} must be active at a and their label at a (say ℓ) is different from the labels of all the other vertices at a. In this case t_{2} is obtained from t_{1} as follows:

2. Omit $s_{x_{1}, y_{1}}$.
3. Add the following sequence of operations immediately above a :
3.1. A $1-\oplus$-operation introducing $s_{x_{1}, y_{1}}$ with label $k+4$.

3.4 A $\rho_{k+4 \rightarrow 1^{-}}$operation renaming the label of $s_{x_{1}, y_{1}}$ to a dead label.

3.6 A $\rho_{\ell \rightarrow 1^{-}}$operation renaming the label of y_{1} to a dead label.

Case 2: Suppose there are exactly two pairs (say $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$) of regular vertices of the same type which occur on different sides of a and have the same label in val $\left(t_{1}\langle a\rangle\right)$. Assume without loss of generality that x_{1} and x_{2} occur on the left side of a. By Proposition 2, both x_{1} and y_{1} must be active at a and their label at a (say ℓ_{1}) is different from the labels of all the other vertices at a. Similarly, x_{2} and y_{2} have the same unique label at a (say ℓ_{2}). It follows that all the vertices $x_{1}, x_{2}, y_{1}, y_{2}$ are distinct.

In this case t_{2} is obtained from t_{1} as follows:

1. Add the following sequence of operations immediately above b :

2. Omit $s_{x_{1}, y_{1}}$ and $s_{x_{2}, y_{2}}$.
3. Add the following sequence of operations immediately above a :
3.1. A $1-\oplus$-operation introducing $s_{x_{1}, y_{1}}$ with label $k+4$.
3.2. An $\eta_{k+4, \ell_{1}}$-operation which connects $s_{x_{1}, y_{1}}$ to y_{1}.

3.5. A $1-\oplus$-operation introducing $s_{x_{2}, y_{2}}$ with label $k+4$.
3.6. An $\eta_{k+4, \ell_{2}}$-operation which connects $s_{x_{2}, y_{2}}$ to y_{2}.

3.8 A sequence of ρ-operations renaming all labels $\ell_{1}, \ell_{2}, k+2, k+3, k+4$, to the dead label 1.

In both cases 1 and 2 it follows from Proposition 3 that the expression t_{2} defines $G^{\prime \prime}$.
Repeating the above procedure for every (>1)- \oplus-operation in t_{2} we finally get a $(k+$ $4)$-expression t^{\prime} defining $G^{\prime \prime}$ such that t^{\prime} has Property 3.

3.2 Property 4

The following property is similar to Property 2.
Property 4. Let t be a k-expression defining $G^{\prime \prime}$ which has Property 3. We say that t has Property 4, if the following conditions hold:

Condition 4.1: if label 2 is used in t, then it is used as follows: a special vertex (say s) is introduced with label 2 using a $1-\oplus$-operation say a, such that s is the only vertex having label 2 at a. Above a in tree (t) there is a sequence of one or more η-operations followed by a $\rho_{2 \rightarrow \ell^{-}}$operation where ℓ is any label different from 2 and 3 .

Condition 4.2: if label 3 is used in t then it is used as follows: a regular vertex (say r) is introduced with label 3 using a $1-\oplus$-operation, say a, such that r is the only vertex having label 3 at a. Above a in tree (t) there is a sequence of operations which can be either η, ρ, or $1-\oplus$-operations introducing special vertices, followed by a $\rho_{3 \rightarrow \ell}$-operation where ℓ is any label different from 2 and 3.

Condition 4.3: no regular vertex ever gets label 2 and no special vertex ever gets label 3 .
Lemma 8. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 3. Then there exists $a(k+2)$-expression t^{\prime} defining $G^{\prime \prime}$ such that t^{\prime} has Property 4.

Proof. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 3. Let t^{\prime} denote the $(k+2)$-expression obtained from t by replacing each occurrence of the label 2 with the label $k+1$ and replacing each occurrence of the label 3 with the label $k+2$. Clearly, t^{\prime} defines $G^{\prime \prime}$. Since labels 2 and 3 are not used in t^{\prime}, it is obvious that t^{\prime} has Property 4 .

3.3 Property 5

Property 5. Let t be a k-expression defining $G^{\prime \prime}$ which has Property 4. We say that t has Property 5, if the following condition holds:

Condition 5: For each (>1) - \oplus-operation a in t, there is no regular vertex which occurs at a and has a unique label at a which is different from label 1 .

Lemma 9. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 4. Then there exists a k-expression t^{\prime} defining $G^{\prime \prime}$ such that t^{\prime} has Property 5.

For proving this lemma we use the following definitions and auxiliary results. Let t be a k-expression defining $G^{\prime \prime}$. For each (>1)- \oplus-operation a in t let $n(t\langle a\rangle)$ denote the number of regular vertices which occur at a and have unique labels at a which are different from label 1. Let $n(t)$ denote the sum of $n(t\langle a\rangle)$ over all (>1) - \oplus-operations in t. Clearly, if a k-expression t defines $G^{\prime \prime}$ and has Property 4, then $n(t)=0$ implies that t has also Property 5.

Lemma 10. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 4 and $n(t)>0$. Then there exists a k-expression t^{\prime} defining $G^{\prime \prime}$ such that t^{\prime} has Property 4 and $n\left(t^{\prime}\right)<n(t)$.

Proof. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 4 and $n(t)>0$. Since $n(t)>0$, there exists a (>1) - \oplus-operation a in t and a regular vertex x such that x has unique label (say ℓ_{x}) in $\operatorname{val}(t\langle a\rangle)$. We will construct below a k-expression t^{\prime} defining $G^{\prime \prime}$, such that in t^{\prime}, x is introduced by a $1-\oplus$-operation above a. We shall use the following notation and proceed similarly as in the proof of Lemma 6 . Let b denote the child of a in tree (t) such that x is in $\operatorname{val}(t\langle b\rangle)$. Let U denote the set of all vertices which are adjacent to x and occur in $\operatorname{val}(t\langle b\rangle)$. Since x is a regular vertex, all vertices in U must be special and have degree exactly 2 . For each vertex $u \in U$, let other (u) denote the neighbor of u which is not x. Let U_{1} denote the set of all vertices $u \in U$ such that other (u) is in $\operatorname{val}(t\langle b\rangle)$ and let $U_{2}=U \backslash U_{1}$. Let U_{11} denote the set of all vertices $u \in U_{1}$ such that the lowest node in tree (t) which contains u and other (u) does not contain x. Let $U_{12}=U_{1} \backslash U_{11}$. The k-expression t^{\prime} is obtained from t as follows:

1. Omit all vertices of U_{2}.
2. Let c denote the lowest node in tree (t) which contains x. Follow the path from c to b in tree (t) and omit any $\eta_{\ell_{1}, \ell_{2}}$-operation such that the label of x at that point is ℓ_{1}.
3. Repeat the following step for each $u \in U_{11}$: let d denote the lowest node in tree (t) which contains u and other (u). Let e denote the lowest node in tree (t) which contains x and u. Since u is in U_{11}, d is a descendant of e. Thus, u and other (u) have unique labels at d (say ℓ_{u} and ℓ, respectively). Add an $\eta_{\ell_{u}, \ell^{-} \text {operation immediately above } d \text { which connects } u}$ and other (u). Add a ρ-operation immediately above e which renames the label of u to the label of x at e. Thus, after step 3 each vertex $u \in U_{11}$ is connected to other (u) and has label ℓ_{x} at a.
4. Repeat the following step for each $u \in U_{12}$: let d denote the lowest node in tree (t) which contains u and other (u). Since t has Property 4, and u and other (u) occur on different sides of d it follows that the only vertex which can have label 2 at d is u. Omit u from t and add the following sequence of operations immediately above d :
4.1. A $1-\oplus$-operation introducing u with label 2.
 has at d.

Thus, after step 4 each vertex $u \in U_{12}$ is connected to other (u) and has label ℓ_{x} at a.
5. Omit x from t and add the following sequence of operations immediately above a :
5.1. A $1-\oplus$-operation which introduces x with label 3 . Note that since t has Property 4 and a is a $(>1)-\oplus$-operation label 3 is not used at a.

5.4. For each vertex $u \in U_{2}$ add the following sequence of operations:
5.4.1. a $1-\oplus$-operation introducing u with label 2 ;
5.4.2. an $\eta_{2,3}$-operation connecting u to x;
5.4.3. a $\rho_{2 \rightarrow \ell^{-}}$-operation where ℓ is the label that u has in t at a.

Thus after step 5.4 all the vertices in U_{2} are connected to x and have the same label as they have in t at a.
5.5. A $\rho_{3 \rightarrow \ell_{x}}$-operation renaming the label of x to the label it has in $\operatorname{val}(t\langle a\rangle)$.

Each vertex $u \in U_{1}$ is connected to other (u) in step 3 or in step 4 and is connected to x in step 5.2. Each vertex $u \in U_{2}$ is connected to x at step 5.4 .2 and the η-operation in t above a which connects u to other (u) also exists in t^{\prime} and connects u to other (u). Since after step 5.5. the label of x is the same as its label in $\operatorname{val}(t\langle a\rangle)$, it follows that all the vertices which are adjacent to x and are not in U will be connected to x in t^{\prime} by the same η-operations which connect them to x in t.

Thus, t^{\prime} defines $G^{\prime \prime}$. Since the above changes to t did not violate the rules of Property 4, it follows that t^{\prime} has Property 4. Finally, since in t^{\prime}, x is introduced by a $1-\oplus$-operation above a, and all other regular vertices are not moved, it follows that $n\left(t^{\prime}\right)<n(t)$. This completes the proof of Lemma 10.

Proof of Lemma 9. Follows easily by applying Lemma 10 (at most) $n(t)$ times until a k-expression t^{\prime} is obtained such that t^{\prime} defines $G^{\prime \prime}$ and $n\left(t^{\prime}\right)=0$.

Proposition 4. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 5. Let a be $a(>1)$ - \oplus-operation in t such that at least one regular vertex occurs on the left side of a and at least one regular vertex occurs on the right side of a. Then there is a separation at a between the A-regular and the B-regular vertices.

Proof. Let a be a (>1)- \oplus-operation in t and let x and y be two regular vertices occurring on different sides of a. Assume without loss of generality that x occurs on the left side of a and y occurs on the right side of a. Suppose x and y are both A-regular vertices. By Condition 3.2, x and y do not have the same label at a. Suppose x or y (say x) has label 1 at a. By Condition 5, there exists vertex z which have the same label as y at a. The special vertex $s=s_{x, y}$ must occur on the left side of a, or else no η-operation connect s and x in t, a contradiction. Thus, the η-operation above a in tree (t) which connects s to y connects it also to z, a contradiction. We conclude that both x and y do not have label 1 at a. By Condition 5, there are two vertices w and z which have the same label as x and y at a, respectively. Let $s=s_{x, y}$. If s does not occur at a, then the η-operation in t which connects s to x, connects it also to w, a contradiction. If s occurs on the left side of a, then the η-operation which connects s to y connects it also to z, a contradiction. If s occurs on the right side of a, then the η-operation which connects s to x connects it also to w, a contradiction. Thus x and y can not be both A-regular vertices.

Similarly, x and y cannot be both B-regular vertices. Thus, one of x and y (say, x) must be A-regular and the other (say, y) must be B-regular. If there is a B-regular vertex (say, z) on the left side then there are two B-regular vertices (z and y) occurring on different sides of a, which is not possible by the above argument. Thus all the A-regular vertices occur on the left side of a and all the B-regular vertices occur on the right side of a.

3.4 Property 6

Property 6. Let t be a k-expression defining $G^{\prime \prime}$. We say that t has Property 6 if it has Property 5 and the following condition holds:

Condition 6: Either there are no (>1)- \oplus-operations in t or there is just one (>1)-\oplus-operation in t (say, a) and there is a separation at a between the A-regular and the B-regular vertices.

Lemma 11. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 5. Then there exists a k-expression t^{\prime} which defines $G^{\prime \prime}$ and has Property 6 .

Proof. Let t be a k-expression which defines $G^{\prime \prime}$ and has Property 5. Let a be a (>1)-\oplus-operation in t such that one side of a (say, the left side) contains just special vertices (say, $\left.s_{1}, \ldots, s_{m}\right)$. Clearly, s_{1}, \ldots, s_{m} are isolated vertices in $\operatorname{val}(t\langle a\rangle)$ and have unique labels in $\operatorname{val}(t\langle a\rangle)$. Let $\ell_{1}, \ldots, \ell_{m}$ denote the labels of s_{1}, \ldots, s_{m} in $\operatorname{val}(t\langle a\rangle)$, respectively. Let b be the right child of a. Let t_{1} be the expression obtained from t by replacing $t\langle a\rangle$ with

$$
t\langle b\rangle \oplus \ell_{1}\left(s_{1}\right) \oplus \cdots \oplus \ell_{m}\left(s_{m}\right)
$$

It is easy to verify that t_{1} also defines $G^{\prime \prime}$ and has Property 5 .
Let t^{\prime} denote the expression obtained from t_{1} by repeating the above process for each (>1)- \oplus-operation a in t_{1} such that one side of a contains just special vertices. Let a be a (>1) - \oplus-operation in t^{\prime}. By the above construction, each side of a contains at least one regular vertex. By Proposition 4, since Property 5 holds for t^{\prime}, there is a separation at a in t^{\prime} between the A-regular vertices and the B-regular vertices. Suppose there is another (>1) - \oplus-operation (say a^{\prime}) in t^{\prime}. By the above argument each side of a^{\prime} contains at least one regular vertex and there is a separation at a^{\prime} in t^{\prime} between the A-regular and the B regular vertices. If a is a descendant of a^{\prime} in tree $\left(t^{\prime}\right)$, then there cannot be a separation at a^{\prime} between the A-regular and the B-regular vertices, a contradiction. Similarly, a^{\prime} is not a descendant of a in tree $\left(t^{\prime}\right)$. Let $a^{\prime \prime}$ be the lowest node in tree $\left(t^{\prime}\right)$ which contains both a and a^{\prime}. Clearly $a^{\prime \prime}$ must be a (>1)- \oplus-operation. By Proposition 4 there is a separation at $a^{\prime \prime}$ in t^{\prime} between the A-regular and the B-regular vertices. Since a occurs on one side of $a^{\prime \prime}$, this side of $a^{\prime \prime}$ contains both A-regular and B-regular vertices, a contradiction. We conclude that a is a unique (>1) - \oplus-operation in t^{\prime}. Thus t^{\prime} is a k-expression which defines $G^{\prime \prime}$ and has Property 6.

3.5 Property 7

Property 7. Let t be a k-expression defining $G^{\prime \prime}$. We say that t has Property 7 if it has Property 6 and either t is sequential or the following condition holds:

Condition 7: Let a be the unique (>1)- \oplus-operation in t. Then for each A-regular ($B-$ regular) vertex x, which is active at a and occurs on one side (say left side) of a, there is a unique B-regular (A-regular) vertex y which is active at a and occurs on the other side (say right side) of a and has the same label as x in $\operatorname{val}(t\langle a\rangle)$.

Lemma 12. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 6. Then there exists a k-expression t^{\prime} which defines $G^{\prime \prime}$ and has Property 7.

Proof. Let a be the unique (>1)- \oplus-operation in t. Assume without loss of generality that all the A-regular vertices of $\operatorname{val}(t\langle a\rangle)$ occur on the left side of a and all the B-regular vertices of $\operatorname{val}(t\langle a\rangle)$ occur on the right side of a. Let x be a regular vertex which is active at a. Let ℓ denote the label of x at a. Since Condition 5 holds for t, the label of x at a is not unique. Suppose there are two vertices u and v which are distinct from x and have label ℓ at a. Since x is active at a, there is an η-operation above a in tree (t) which connects some special vertex (say, s) to x. This η-operation connects s also to u and v, a contradiction (since s is adjacent in $G^{\prime \prime}$ to exactly two vertices). Thus, for each regular vertex x which has label ℓ at a and is active at a there is a unique second vertex (say y) which is active at a and has label ℓ at a.

By a similar argument no η-operation above a in tree (t) connects a vertex other than $s_{x, y}$ to x or to y. Thus, all edges incident to x or y in $G^{\prime \prime}$, except $x s_{x, y}$ and $y s_{x, y}$, already exist in $\operatorname{val}(t\langle a\rangle)$.

We now define the cwd-expression t_{1} depending on the following cases:
Case 1: One of the vertices x, y is A-regular and one is B-regular. Since Condition 7 holds in this case for x and y we set $t_{1}=t$.

Case 2: Both x and y are A-regular. Let b denote the left child of a. In this case t_{1} is obtained from t as follows:

1. Omit $s_{x, y}$ from t.
2. Add immediately above b the following sequence of operations:
2.1. A $1-\oplus$-operation which introduces $s_{x, y}$ with label 2. Note that since t has Property 2, and a is a (>1) - \oplus-operation, label 2 is not used in $\operatorname{val}(t\langle a\rangle)$.
2.2. An $\eta_{2, \ell \text {-operation which connects } s_{x, y} \text { to } x \text { and } y \text {, where } \ell \text { is the label that } x \text { and } y ~}^{\text {on }}$ have in $\operatorname{val}(t\langle b\rangle)$.
2.3. A $\rho_{2 \rightarrow 1^{-o p e r a t i o n ~ r e n a m i n g ~ t h e ~ l a b e l ~ o f ~} s_{x, y} \text { to the dead label } 1 . ~ . ~ . ~}^{\text {- }}$.
2.4. A $\rho_{\ell \rightarrow 1^{-}}$operation renaming the label of x and y to the dead label 1 .

Case 3: Both x and y are B-regular. This case is symmetric to Case 2.
Let t^{\prime} denote the expression obtained by repeating the above process for each regular vertex which is active at a. It is easy to see that t^{\prime} defines $G^{\prime \prime}$ and has Property 7, as required.

3.6 Sequential expressions for $G^{\prime \prime}$

In the the proof of Lemma 13 we shall use the following definition and Proposition.
Let t be an expression which defines $G^{\prime \prime}$, let a be any node of tree (t) and let $s_{x, y}$ be any special vertex in $\operatorname{val}(t\langle a\rangle)$. The label of $s_{x, y}$ at a is called an x-connecting label at a (a y-connecting label at a) if val $(t\langle a\rangle)$ includes the edge connecting $s_{x, y}$ to $y(x)$ but does not include the edge connecting $s_{x, y}$ to $x(y)$.

Proposition 5. Let t be an expression which defines $G^{\prime \prime}$, let a be any node of tree (t), and let y_{1}, y_{2} be two distinct regular vertices of $G^{\prime \prime}$. Suppose that there is a y_{1}-connecting label and a y_{2}-connecting label at a. Then these two labels are different.

Proof. Let s_{1} and s_{2} be two special vertices that have a y_{1}-connecting label and a y_{2}-connecting label at a, respectively. By definition, s_{1} is a special vertex of the form $s_{x_{1}, y_{1}}$ where s_{1} is connected to x_{1} and is not connected to y_{1} in $\operatorname{val}(t\langle a\rangle)$. Similarly, s_{2} is a special vertex of the form $s_{x_{2}, y_{2}}$ where s_{2} is connected to x_{2} and is not connected to y_{2} in val $(t\langle a\rangle)$. Suppose that the labels of s_{1} and s_{2} are the same in $\operatorname{val}(t\langle a\rangle)$. The η-operation above a which connects s_{1} to y_{1} connects also s_{2} to y_{1}. Thus s_{2} is connected to x_{2}, y_{2} and y_{1}. Since $y_{1} \neq y_{2}$ and $x_{2} \neq y_{2}$ and s_{2} has degree 2 , it follows that $x_{2}=y_{1}$. By a symmetric argument we get that x_{1} is equal to y_{2}. We conclude that $s_{1}=s_{2}$. But this is not possible since $s_{1}=s_{2}$ is connected to x_{1} and is not connected to $y_{2}=x_{1}$.

Lemma 13. Let t be a k-expression defining $G^{\prime \prime}$ such that t has Property 7. Then there is a sequential k-expression which defines $G^{\prime \prime}$.

Proof. If there is no $(>1)-\oplus$-operation in t, the claim follows immediately. Let a be the unique (>1)- \oplus-operation in t. Let b and c denote the left child and the right child of a in tree (t), respectively. Assume without loss of generality that all the regular vertices in $\operatorname{val}(t\langle b\rangle)$ are A-regular and all regular vertices in val $(t\langle c\rangle)$ are B-regular.

First we introduce the following notation. Let $A_{1}\left(B_{1}\right)$ denote the set of A-regular (B-regular) vertices of $\operatorname{val}(t\langle b\rangle)(\operatorname{val}(t\langle c\rangle))$ and put $A_{2}=A \backslash A_{1}$ and $B_{2}=B \backslash B_{1}$. Let Active $\left(A_{1}\right)\left(\operatorname{Active}\left(B_{1}\right)\right)$ denote the set of vertices of $A_{1}\left(B_{1}\right)$ which are active at a. Let
$\operatorname{Dead}\left(A_{1}\right)\left(\operatorname{Dead}\left(B_{1}\right)\right)$ denote the set of vertices of $A_{1}\left(B_{1}\right)$ which are dead at a. Clearly, $A_{1}=\operatorname{Active}\left(A_{1}\right) \cup \operatorname{Dead}\left(A_{1}\right)$ and $B_{1}=\operatorname{Active}\left(B_{1}\right) \cup \operatorname{Dead}\left(B_{1}\right)$. By Condition $7,\left|\operatorname{Active}\left(A_{1}\right)\right|=$ $\left|\operatorname{Active}\left(B_{1}\right)\right|$. For each B-regular vertex $u \in \operatorname{Active}\left(B_{1}\right)$ we denote by mate (u) the unique A-regular vertex (guaranteed by Condition 7) which is in $\operatorname{Active}\left(A_{1}\right)$ and has the same label as u in $\operatorname{val}(t\langle a\rangle)$. Let $\left|\operatorname{Dead}\left(A_{1}\right)\right|=q$. Let $x_{i}, 1 \leq i \leq q$, be the i th vertex in $\operatorname{Dead}\left(A_{1}\right)$ which gets a non-unique label or label 1 in $t\langle b\rangle$ (if there is more than one such vertex, choose one of them arbitrarily) and let w_{i} be the highest node in tree $(t\langle b\rangle)$ such that x_{i} has a unique label (which is different from label 1) in $t\left\langle w_{i}\right\rangle$. Note that w_{i} is well defined since each regular vertex in $G^{\prime \prime}$ is a leaf of tree (t) having a unique initial label (which is different from label 1).

Let $X_{i}=\left\{x_{1}, \ldots, x_{i}\right\}, 1 \leq i \leq q$. Let $N X_{i}, 1 \leq i \leq q$, denote the set of B-regular vertices which have a neighbor (in G) in the set X_{i}. For convenience we set $N X_{0}=\emptyset$.

Observation 2. Let v be a vertex which is adjacent to x_{i} (in G) and is not in val $\left(t\left\langle w_{i}\right\rangle\right)$. Then the special vertex $s_{x_{i}, v}$ has the v-connecting label at w_{i}.

Proof of Observation 2. Suppose the vertex $s=s_{x_{i}, v}$ is not adjacent to x_{i} in val $\left(t\left\langle w_{i}\right\rangle\right)$. Let w_{i}^{\prime} denote the parent of w_{i} in tree (t). The label of x_{i} at w_{i}^{\prime} is either 1 or the label of another vertex (say u). If the label of x_{i} at w_{i}^{\prime} is 1 then no η-operation in t connects s and x_{i}, a contradiction. Thus, the label of x_{i} is is the same as the label of u at w_{i}^{\prime}. If $u \neq v$ then the η-operation above w_{i}^{\prime} which connects s to x_{i} connects it also to u, a contradiction. If $u=v$ then w_{i}^{\prime} must correspond to a $1-\oplus$-operation which introduces v with the label of x_{i}. Since v and x_{i} have the same label at w_{i}^{\prime} it follows that each neighbor of v is also a neighbor of x_{i}. However, since G has minimum degree at least 2 , there is a neighbor of v in $G^{\prime \prime}$ which is not a neighbor of x_{i}, a contradiction.

Observation 3. For $1 \leq i \leq q$, labels $\left(\operatorname{val}\left(t\left\langle w_{i}\right\rangle\right)\right) \geq|A|+\left|N X_{i}\right|+1-i$.
Proof of Observation 3. Let v be a vertex in Active $\left(A_{1}\right)$. If v occurs at w_{i}, then v has a unique label at $\operatorname{val}\left(t\left\langle w_{i}\right\rangle\right)$. If v does not occur at w_{i}, then by Observation 2 the vertex $s_{x_{i}, v}$ has a v-connecting label at w_{i}. Thus, so far we have $\left|\operatorname{Active}\left(A_{1}\right)\right|$ different labels in val $\left(t\left\langle w_{i}\right\rangle\right)$. Let v be a vertex in $\operatorname{Dead}\left(A_{1}\right) \backslash X_{i}$. If v occurs at w_{i}, then by definition v must have a unique label at w_{i}. If v does not occur at w_{i}, then by Observation 2 the vertex $s_{x_{i}, v}$ has a v-connecting label at w_{i}. Thus, by Proposition 5, we have additional $\left|\operatorname{Dead}\left(A_{1}\right) \backslash X_{i}\right|=q-i$ labels in $\operatorname{val}\left(t\left\langle w_{i}\right\rangle\right)$. Let v be a vertex in A_{2}. By Observation 2, the vertex $s_{x_{i}, v}$ has the v-connecting label in $\operatorname{val}\left(t\left\langle w_{i}\right\rangle\right)$. Thus, additional $\left|A_{2}\right|$ labels exists in $\operatorname{val}\left(t\left\langle w_{i}\right\rangle\right)$. Let v be a vertex in $N X_{i}$. By definition there exists a vertex in $X_{i}\left(\right.$ say $\left.x_{j}\right)$ such that v is adjacent to x_{j} in G. By Observation 2, vertex $s_{x_{j}, v}$ has the v-connecting label at w_{j}. Since v is not in val $\left(t\left\langle w_{i}\right\rangle\right)$, the vertex $s_{x_{j}, v}$ also has the v-connecting label in $\operatorname{val}\left(t\left\langle w_{i}\right\rangle\right)$. Thus, additional $\left|N X_{i}\right|$ labels exists in $\operatorname{val}\left(t\left\langle w_{i}\right\rangle\right)$. Finally, by definition x_{i} has a unique label at w_{i}. Summarizing all the labels counted so far gives $\left|\operatorname{Active}\left(A_{1}\right)\right|+\left|A_{2}\right|+\left|N X_{i}\right|+1+q-i=|A|+\left|N X_{i}\right|+1-i$.

Since t has Properties 3 and 4 we may assume that the labels 1, 2, and 3 are already considered in the counting of the k labels of t. Since the labels 1,2 , and 3 are not counted in the formula of Observation 3, the next observation follows.

Observation 4. For $1 \leq i \leq q, k \geq|A|+\left|N X_{i}\right|+4-i$.
Observation 5. $k \geq|A|+3$.
Proof of Observation 5. If Dead $\left(A_{1}\right) \neq \emptyset$ the claim follows from Observation 4 for $i=1$. Suppose $\operatorname{Dead}\left(A_{1}\right)=\emptyset$. Let x be any vertex of $\operatorname{Active}\left(A_{1}\right)$. For each vertex v in A_{2} the vertex $s_{x, v}$ must have an x-connecting label at a. Thus, so far we have $\left|A_{2}\right|$ different labels at a. Since all the vertices in $\operatorname{Active}\left(A_{1}\right)$ have different labels at a we get $\left|A_{2}\right|+\left|\operatorname{Active}\left(A_{1}\right)\right|=|A|$ different labels at a. Since we did not count labels 1,2 , and 3 , the claim follows.

Observation 6. labels $(\operatorname{val}(t\langle a\rangle)) \geq\left|\operatorname{Active}\left(A_{1}\right)\right|+\left|A_{2}\right|+\left|B_{2}\right|$.
Proof of Observation 6. By Property 7, each vertex $v \in \operatorname{Active}\left(A_{1}\right)$ has a unique label in $\operatorname{val}(t\langle b\rangle)$. Thus there are at least \mid Active $\left(A_{1}\right) \mid$ labels in $\operatorname{val}(t\langle a\rangle)$. Let v be a vertex in A_{2} and let u be any vertex in A_{1}. First assume $u \in \operatorname{Dead}\left(A_{1}\right)$. If $s_{u, v}$ is not connected to u in $\operatorname{val}(t\langle a\rangle)$, there is no η-operation above a that will connect it to u, a contradiction. Now assume $u \in \operatorname{Active}\left(A_{1}\right)$. If $s_{u, v}$ is not connected to u in $\operatorname{val}(t\langle a\rangle)$, then an η-operation above a that connects $s_{u, v}$ to u connects it also to the vertex $x \in \operatorname{Active}\left(B_{1}\right)$ such that $u=\operatorname{mate}(x)$, a contradiction. Hence, in any case $s_{u, v}$ is connected to u and has the v-connecting label in $\operatorname{val}(t\langle a\rangle)$. Thus additional $\left|A_{2}\right|$ labels must exists in val $(t\langle a\rangle)$. By symmetry, additional $\left|B_{2}\right|$ vertices must exists in $\operatorname{val}(t\langle a\rangle)$.

Since labels 1, 2, and 3 are not counted in the formula of Observation 6 the next observation follows.

Observation 7. $k \geq\left|\operatorname{Active}\left(A_{1}\right)\right|+\left|A_{2}\right|+\left|B_{2}\right|+3$.
Now we start the process of constructing a sequential k-expression which defines $G^{\prime \prime}$. At each step we show that no more than k labels are used. Moreover, the η-operations added at each step connect special vertices of the form $s_{x, y}$ to x and y, which implies that all edges added in the process belong to $G^{\prime \prime}$. Finally, we show in a sequence of observations that for each regular vertex x of $G^{\prime \prime}$ the edges which connect x to all its neighbors in $G^{\prime \prime}$ exist in the sequential cwd-expression that we construct. Thus this expression satisfies the conditions of the lemma.

Let e_{1} denote the expression obtained from $t\langle c\rangle$ as follows:

1. Omit all the special vertices of the form $s_{x, y}$ such that both x and y do not occur in $\operatorname{val}(t\langle c\rangle)$.
2. Add immediately above c the following sequence of η-operations: for each special vertex $s=s_{x, y}$ such that s and $x(y)$ occur in $\operatorname{val}(t\langle c\rangle)$ but are not adjacent in $\operatorname{val}(t\langle c\rangle)$, add an η-operation which connects s and $x(y)$.
Observation 8. For each vertex $u \in \operatorname{Dead}\left(B_{1}\right)$, val $\left(e_{1}\right)$ includes all the edges connecting u to all its neighbors in $G^{\prime \prime}$.

Proof of Observation 8. Let u be a vertex in Dead $\left(B_{1}\right)$ and let s be a neighbor of u in $G^{\prime \prime}$. Clearly, s is a special vertex of the form $s=s_{u, v}$ where v is a regular vertex which is a neighbor of u in G. Suppose u is not adjacent to s in $\operatorname{val}(t\langle c\rangle)$. Since u has a dead label in $\operatorname{val}(t\langle c\rangle)$, it follows that u is not adjacent to s in $\operatorname{val}(t)$, a contradiction. Thus, u is adjacent to s in $\operatorname{val}(t\langle c\rangle)$, and therefore the special vertex s is not omitted in step 1 of the construction of e_{1}. Thus, u is adjacent to s in e_{1}.

Let e_{2} denote the expression obtained from e_{1} as follows:

1. For each vertex x such that $\operatorname{val}\left(e_{1}\right)$ includes all the edges connecting x to all its neighbors in $G^{\prime \prime}$, add a ρ-operation which renames the label of x to the dead label 1.
2. Omit all the special vertices of the form $s_{x, y}$ such that $x \in \operatorname{Active}\left(B_{1}\right)$ and $y=\operatorname{mate}(x)$.
3. For each regular vertex $u \in \operatorname{Active}\left(B_{1}\right)$ add the following sequence of operations:
3.1. A ρ-operation which introduces mate (u) with label 3 . Note that since t has Property 2, label 3 is not used in $\operatorname{val}(t\langle a\rangle)$, which implies that this label is not used at the root of e_{1}.
3.2. A $1-\oplus$-operation which introduces $s=s_{u \text {,mate }(u)}$ with label 2 . Note that since t has Property 2, label 2 is not used in $\operatorname{val}(t\langle a\rangle)$, which implies that this label is not used at the root of e_{1}.

3.4. An $\eta_{2, \ell}$-operation which connects u and s, where ℓ is the label that u has in $\operatorname{val}(t\langle a\rangle)$.
3.5. A $\rho_{2 \rightarrow 1}$-operation renaming the label of s to the dead label 1.
3.6. A $\rho_{\ell \rightarrow 1^{-}}$-operation renaming the label of u to the dead label 1 .

Observation 9. For each vertex $u \in \operatorname{Active}\left(B_{1}\right)$, val $\left(e_{2}\right)$ includes all the edges connecting u to all its neighbors in $G^{\prime \prime}$.

Proof of Observation 9. Let $u \in \operatorname{Active}\left(B_{1}\right)$ and let s be a neighbor of u in $G^{\prime \prime}$. Clearly, s is a special vertex of the form $s=s_{u, v}$ where v is a regular vertex which is a neighbor of u in G. Suppose $v \neq \operatorname{mate}(u)$. If s is not in $\operatorname{val}(t\langle c\rangle)$ then the η-operation above c in tree (t) which connects s to u connects it also to mate (u), a contradiction. Thus, both s and u are in $\operatorname{val}(t\langle c\rangle)$. By step 2 of the construction of e_{1}, u and s are adjacent in val $\left(e_{2}\right)$. Suppose $v=$ mate (u). By step 3.4 of the construction of e_{2}, s and u are adjacent in val $\left(e_{2}\right)$.

Let e_{3} denote the expression obtained from e_{2} by adding the following sequence of operations immediately above the root of tree $\left(e_{2}\right)$:

1. For each vertex $u \in A_{2} \cup B_{2}$, if there is no u-connecting label in val $\left(e_{2}\right)$, add a 1-\oplus-operation which introduces u with a unique label ℓ_{u} (distinct from 1,2 , and 3). Otherwise, let ℓ denote the u-connecting label in $\operatorname{val}\left(e_{2}\right)$ (note that we assume that the label ℓ is unique, otherwise we can add ρ-operations which unify all the u-connecting labels to a unique label), and add the following sequence of operations:
1.1. A 1 - \oplus-operation which introduces u with label 3 .
1.2. An $\eta_{3, \ell}$-operation which connects u to all the vertices having a u-connecting label in $\operatorname{val}\left(e_{2}\right)$.
1.3. A $\rho_{\ell \rightarrow 1^{-}}$-operation renaming label ℓ to the dead label 1 .

2. For each special vertex $s=s_{x, y}$ such that both x and y are in $\operatorname{Active}\left(A_{1}\right) \cup A_{2} \cup B_{2}$, add the following sequence of operations:
2.1. A $1-\oplus$-operation which introduces s with label 2 .
2.2. An $\eta_{2, \ell_{x}}$-operation, which connects s to x, where ℓ_{x} is the (unique) label of x at that point.
 point.
2.4. A $\rho_{2 \rightarrow 1^{-}}$operation renaming the label of s to the dead label 1.
3. For each regular vertex $u \in B_{2} \backslash N X_{q}$, add a $\rho_{\ell_{u} \rightarrow 1^{1} \text {-operation renaming the label of } u}$ to the dead label 1 , where ℓ_{u} is the (unique) label that u has at that point.

Observation 10. e_{3} is a k-expression, and labels $\left(\operatorname{val}\left(e_{3}\right)\right) \leq\left|\operatorname{Active}\left(A_{1}\right)\right|+\left|N X_{q}\right|+\left|A_{2}\right|+1$.
Proof of Observation 10. The expression e_{1} is constructed from $t\langle c\rangle$ without adding new labels. The expression e_{2} is constructed from e_{1} using the labels of e_{1} in addition to the labels 1,2 , and 3 which are already considered in counting the k labels of t. Thus, e_{2} is a k-expression.

In the construction of e_{3} from e_{2} (described above) the highest number of labels used is immediately before the completion of step 2 (which is the same as the number of labels used immediately before the completion of step 1). At that point all the vertices in Active $\left(A_{1}\right) \cup$ $A_{2} \cup B_{2}$ have unique labels, the vertices in B_{1} have label 1, the last special vertex considered has label 2 and all the other special vertices have label 1. Thus the total number of labels used at that point is at most \mid Active $\left(A_{1}\right)\left|+\left|A_{2}\right|+\left|B_{2}\right|+2\right.$ which, by Observation 7 , is less than k. When step 2 is completed the number of labels is reduced by one, since the last special vertex considered gets label 1. After step 3 is completed the number of labels is reduced by $\left|B_{2} \backslash N X_{q}\right|$.

Let $f_{0}=e_{3}$ and for $1 \leq i \leq q$ let f_{i} be the expression obtained by adding the following sequence of operations immediately above the root of tree $\left(f_{i-1}\right)$:

1. A $1-\oplus$-operation which introduces $x_{q-(i-1)}$ with a unique label, denoted by $\ell\left(x_{q-(i-1)}\right)$.
2. For each special vertex $s=s_{x, y}$ such that $x=x_{q-(i-1)}$ and y is in $N X_{q-(i-1)}$ add the following sequence of operations:
2.1. A 1- \oplus-operation which introduces s with label 2.
2.2. An $\eta_{2, \ell\left(x_{q-(i-1)}\right)}$-operation, which connects s to $x_{q-(i-1)}$.
2.3. An $\eta_{2, \ell_{y}}$-operation, which connects s to y, where ℓ_{y} is the (unique) label of y at that point.
$2.4 \mathrm{~A} \rho_{2 \rightarrow 1}$-operation renaming the label of s to the dead label 1.
3. For each regular vertex $u \in N X_{q-(i-1)} \backslash N X_{q-i}$, add a $\rho_{\ell_{u} \rightarrow 1^{-}}$-operation renaming the label of u to the dead label, where ℓ_{u} is the (unique) labels that u has at that point.

Observation 11. For each vertex $u \in B_{2}$, $\operatorname{val}\left(f_{q}\right)$ includes all the edges connecting u to all its neighbors in $G^{\prime \prime}$.

Proof of Observation 11. Let u be a vertex in B_{2} and let s be a neighbor of u in $G^{\prime \prime}$. Clearly, s is a special vertex of the form $s=s_{u, v}$ where v is a regular vertex which is a neighbor of u in G. If $v \in \operatorname{Active}\left(A_{1}\right) \cup A_{2} \cup B_{2}$, then the s is connected to u by one of the two η-operations added in steps 2.2 and 2.3 of the construction of e_{3}. Suppose $v \in B_{1}$. By Observations 8 and $9, s$ is connected to v in $\operatorname{val}\left(e_{2}\right)$. Thus, s has a u-connecting label in $\operatorname{val}\left(e_{2}\right)$ and is connected to u in step 1.2 of the construction of e_{3}. The last case to consider is when v is in $\operatorname{Dead}\left(A_{1}\right)$. In this case $v=x_{q-(i-1)}$ for some $i \in\{1, \ldots, q\}$ and u must be in $N X_{q-(i-1)}$. Thus, u (denoted as y) is connected to s in step 2.3 of the construction of f_{i}.

Observation 12. For $0 \leq i \leq q$, the f_{i} is a k-expression, and labels $\left(\operatorname{val}\left(f_{i}\right)\right) \leq\left|\operatorname{Active}\left(A_{1}\right)\right|+$ $\left|A_{2}\right|+\left|N X_{q-i}\right|+1+i=|A|+\left|N X_{q-i}\right|+1-(q-i)$.

Proof of Observation 12. The proof is by induction on i. For $i=0$ the claim follows from Observation 10, hence assume $i>0$. It follows by Observation 10 that the number of labels used in e_{3} is at most k. The highest number of labels used in the construction of f_{i} from f_{i-1} is immediately after step 2.1 is completed. At that point the number of labels used is equal to labels $\left(\operatorname{val}\left(f_{i-1}\right)\right)$ plus one new label for $x_{q-(i-1)}$ plus the label 2 used for introducing the special vertex at step 2.1. By the inductive hypothesis this number is at most $|A|+\left|N X_{q-(i-1)}\right|+3-(q-(i-1))$ which by Observation 4 is less than k. At the completion of step 2 of the construction of f_{i} the number of labels is reduced by one since the label 2 is renamed to 1 . At the completion of step 3 . the number of labels is reduced by $\left|N X_{q-(i-1)} \backslash N X_{q-(i)}\right|$ which gives the claimed formula for labels(val $\left.\left(f_{i}\right)\right)$.

Let t^{\prime} denote the expression obtained from f_{q} by adding the following sequence of operations immediately above the root of tree $\left(f_{q}\right)$:

1. For each special vertex $s=s_{x, y}$ such that $x \in \operatorname{Dead}\left(A_{1}\right)$ and $y \in A$ add the following sequence of operations:
1.1. A 1- \oplus-operation which introduces s with label 2 .

1.3. An $\eta_{2, \ell_{y}}$-operation, which connects s to y, where ℓ_{y} is the unique label of y in $\operatorname{val}\left(f_{q}\right)$.
1.4. A $\rho_{2 \rightarrow 1}$-operation renaming the label of s to the dead label 1.

Observation 13. For each vertex $u \in A$, val $\left(t^{\prime}\right)$ includes all the edges connecting u to all its neighbors in $G^{\prime \prime}$.

Proof of Observation 13. Let u be a vertex in A and let s be a neighbor of u in $G^{\prime \prime}$. Clearly, s is a special vertex of the form $s=s_{u, v}$ where v is a regular vertex which is a neighbor of u in G. We consider the following cases:

Case 1: Suppose $u \in \operatorname{Active}\left(A_{1}\right)$. If $v \in \operatorname{Active}\left(A_{1}\right) \cup A_{2} \cup B_{2}$, then u is connected to s in step 2.2 or step 2.3 of the construction of e_{3}. If $v \in \operatorname{Active}\left(B_{1}\right)$, then u must be equal to mate (v) and is connected to s in step 3.3 of the construction of e_{2}. If $v \in \operatorname{Dead}\left(A_{1}\right)$, then u (denoted as y) is connected to s in step 1.3 of the construction of t^{\prime}. The last case to consider is when v is in $\operatorname{Dead}\left(B_{1}\right)$. In this case s must occur at c which implies that the η-operation above a in tree (t) which connects s to u also connects s to the vertex z such that $u=\operatorname{mate}(z)$, a contradiction. Thus, the case when v is in $\operatorname{Dead}\left(B_{1}\right)$ is not possible.

Case 2: Suppose $u \in A_{2}$. If $v \in \operatorname{Active}\left(A_{1}\right) \cup A_{2} \cup B_{2}$, then u is connected to s in step 2.2 or step 2.3 of the construction of e_{3}. If $v \in B_{1}$, then s must have a u-connecting label in $\operatorname{val}\left(e_{2}\right)$ and is connected to u in step 1.2 of the construction of e_{3}. If $v \in \operatorname{Dead}\left(A_{1}\right)$, then u (denoted as y) is connected to s in step 1.3 of the construction of t^{\prime}.

Case 3: Suppose $u \in \operatorname{Dead}\left(A_{1}\right)$. If $v \in A$, then u (denoted as x) is connected to s in step 1.2. of the construction of t^{\prime}. If $v \in \operatorname{Active}\left(B_{1}\right)$, then s must occur at b, which implies that the η-operation above a in tree (t) which connects s to v also connects s to mate (v), a contradiction. If $v \in \operatorname{Dead}\left(B_{1}\right)$ then, since s must occur at b, s is not connected to v in $\operatorname{val}(t)$, a contradiction. The last case to consider is $v \in B_{2}$. Since $u \in \operatorname{Dead}\left(A_{1}\right), u=x_{q-(i-1)}$ for some $i \in\{1, \ldots, q\}$, and $v \in N X_{q-(i-1)}$. Thus, u is connected to s in step 2.2 of the construction of f_{i}.
Observation 14. The expression t^{\prime} defines $G^{\prime \prime}$.
Proof of Observation 14. From the construction of t^{\prime}, it is clear that all the η-operations of $t^{\prime \prime}$ add edges which belong to $G^{\prime \prime}$. To complete the proof we show that all edges of $G^{\prime \prime}$ exist in $\operatorname{val}\left(t^{\prime}\right)$. Let $e=u v$ be an edge of $G^{\prime \prime}$. By definition of $G^{\prime \prime}$ one of the two endpoints of e (say u) is a regular vertex. If $u \in A$, then e is present in val $\left(t^{\prime \prime}\right)$ by Observation 13. If $u \in B_{1}$, then e is present in val $\left(t^{\prime \prime}\right)$ by Observations 8 and 9 . If $u \in B_{2}$, then e is present in $\operatorname{val}\left(t^{\prime \prime}\right)$ by Observation 11.

Observation 15. The expression t^{\prime} is a sequential k-expression.
Proof of Observation 15. Since t has Property $6, a$ is the unique (>1)- \oplus-operation in t, which implies that $t\langle c\rangle$ is sequential. The expression t^{\prime} is constructed by adding to $t\langle c\rangle$ a sequence of operations which are either η, ρ, or $1-\oplus$-operations. Thus, t^{\prime} is a sequential expression. To complete the proof we show that at most k labels are used in t^{\prime}. By Observation 12, the number of labels used in f_{q} is at most k. The highest number of labels used in the construction of t^{\prime} from f_{q} is equal to labels $\left(\operatorname{val}\left(f_{q}\right)\right)$ plus one new label which is used to introduce special vertices (with label 2). By Observation 12 this number is at most $|A|+\left|N X_{0}\right|+1$ which, by Observation 5 , is less than k.

Lemma 13 follows now from Observations 14 and 15.
Combining the previous lemmas we now get a proof of Theorem 3.
Proof of Theorem 3. Let t be a k-expression defining $G^{\prime \prime}$.
By Lemma 7, there exists a $(k+4)$-expression t_{1} defining $G^{\prime \prime}$ such that t_{1} has Property 3 .
By Lemma 8, there exists a $(k+6)$-expression t_{2} defining $G^{\prime \prime}$ such that t_{2} has Property 4.
By Lemma 9 , there exists a $(k+6)$-expression t_{3} defining $G^{\prime \prime}$ such that t_{3} has Property 5 .
By Lemma 11, there exists a $(k+6)$-expression t_{4} defining $G^{\prime \prime}$ such that t_{4} has Property 6.
By Lemma 12, there exists a $(k+6)$-expression t_{5} defining $G^{\prime \prime}$ such that t_{5} has Property 7 .
By Lemma 13, there exists a sequential $(k+6)$-expression t^{\prime} which defines $G^{\prime \prime}$. This completes the proof of Theorem 3.

4 Final remarks

We have shown that the clique-width of a graph cannot be computed in polynomial time unless $P=\mathrm{NP}$, and we are left with the question on the parameterized complexity of cliquewidth: what is the complexity of deciding whether the clique-width of a graph does not exceed a fixed parameter k ? In particular, the following questions remain open:

Question 1. Is it possible to recognize graphs of clique-width at most 4 in polynomial time?

Question 2. If k is a fixed constant, is it possible to recognize graphs of clique-width at most k in polynomial time?

Question 3. Is the recognition of graphs of clique-width at most k fixed-parameter tractable? I.e., is it possible to recognize graphs of clique-width at most k in time $O\left(f(k) n^{c}\right)$, where n denotes the size of the given graph, f is a computable function, and c is a constant which does not depend on k.

Obviously, a positive answer to Question 1 is a necessary pre-condition for a positive answer to Question 2, and a positive answer to Question 2 is a necessary pre-condition for a positive answer to Question 3.

Acknowledgement

We thank Derek Corneil for introducing us to the problem and for all the inspiring discussions.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277-284, 1987.
[2] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238-255, 1995.
[3] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. A. Reed, and U. Rotics. Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract). In G. H. Gonnet, D. Panario, and A. Viola, editors, Theoretical Informatics, 4 th Latin American Symposium (LATIN 2000), volume 1776 of Lecture Notes in Computer Science, pages 126-134, 2000.
[4] B. Courcelle, J. Engelfriet, and G. Rozenberg. Context-free handle-rewriting hypergraph grammars. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Graph-Grammars and their Application to Computer Science, 4th International Workshop, Bremen, Germany, March 5-9, 1990, Proceedings, volume 532 of Lecture Notes in Computer Science, pages 253-268, 1991.
[5] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33:125-150, 2000.
[6] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Proving NP-hardness for clique-width I: non-approximability of sequential clique-width. Electronic Colloquium on Computational Complexity, Technical Report TR05-081, Revision 01, 2005.
[7] F. Gurski and E. Wanke. Minimizing NLC-width is NP-complete. Extended abstract accepted for WG 2005.
[8] Ö. Johansson. Clique-decomposition, NLC-decomposition, and modular decompositionrelationships and results for random graphs. In Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1998), volume 132 of Congr. 22umer., pages 39-60, 1998.
[9] M. Karpinski and J. Wirtgen. On approximation hardness of the bandwidth problem. Technical Report TR97-041, ECCC, Electronic Colloquium on Computational Complexity, 1997.
[10] S. Oum and P. Seymour. Approximating clique-width and branch-width. Submitted, Oct. 2004.
[11] E. Wanke. k-NLC graphs and polynomial algorithms. Discr. Appl. Math., 54(2-3):251266, 1994. Efficient algorithms and partial k-trees.

[^0]: *School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan 2308 NSW, Australia, [mfellows|fran]@cs.newcastle.edu.au.
 ${ }^{\dagger}$ School of Computer Science and Mathematics, Netanya Academic College, Netanya, Israel, rotics@mars.netanya.ac.il.
 \ddagger Department of Computer Science, Durham University, Durham, England, UK, stefan.szeider@durham.ac.uk.

