
Proving NP-hardness for clique-width II:

non-approximability of clique-width

Michael R. Fellows∗, Frances A. Rosamond∗,

Udi Rotics†, and Stefan Szeider‡

August 24, 2005

Abstract

Clique-width is a graph parameter that measures in a certain sense the complexity of a
graph. Hard graph problems (e.g., problems expressible in Monadic Second Order Logic
with second-order quantification on vertex sets, that includes NP-hard problems) can
be solved efficiently for graphs of certified small clique-width. It is widely believed that
determining the clique-width of a graph is NP-hard; in spite of considerable efforts, no
NP-hardness proof has been found so far. We give the first hardness proof. We show
that the clique-width of a given graph cannot be absolutely approximated in polynomial
time unless P = NP. We also show that, given a graph G and an integer k, deciding
whether the clique-width of G is at most k is NP-complete. This solves a problem that
has been open since the introduction of clique-width in the early 1990s.

1 Introduction

The clique-width of a graph is the smallest number of labels that suffices to construct the
graph using the operations: creation of a new vertex v with label i, disjoint union, insertion
of edges between vertices of certain labels, and relabeling of vertices. Such a construction of
a graph by means of these four operations using at most k different labels can be represented
by an algebraic expression called a k-expression (more exact definitions are provided in
Section 1.2). This composition mechanism was first considered by Courcelle, Engelfriet, and
Rozenberg [4] in 1990; the term clique-width was introduced later.

By a general result of Courcelle, Makowsky, and Rotics [5], any graph problem that can
be expressed in Monadic Second Order Logic with second-order quantification on vertex sets
(that includes NP-hard problems) can be solved in linear time for graphs of clique-width
bounded by some constant k if the k-expression is provided as input to the algorithm (albeit
the running time involves a constant which is exponential in k). A main limit for applications
of this result is that it is not known how to obtain efficiently k-expressions for graphs with
clique-width k. Is it possible to compute the clique-width of a graph in polynomial time?
This question has been open since the introduction of clique-width. In the present paper
we answer this question negatively: We show that the clique-width of a graph cannot be

∗School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan 2308 NSW,

Australia, [mfellows|fran]@cs.newcastle.edu.au.
†School of Computer Science and Mathematics, Netanya Academic College, Netanya, Israel,

rotics@mars.netanya.ac.il.
‡Department of Computer Science, Durham University, Durham, England, UK,

stefan.szeider@durham.ac.uk.

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 81 (2005)

ISSN 1433-8092

computed in polynomial time unless P = NP, and given a graph G and an integer k, deciding
whether the clique-width of G is at most k is NP-complete.

With considerable efforts, polynomial-time algorithms could be developed for recognizing
graphs of clique-width at most 3 in polynomial time (see Corneil, Habib, Lanlignel, Reed,
and Rotics [3]). Recently, Oum and Seymour [10] obtained an algorithm that, for any fixed
k, runs in time O(n9 log n) and computes (23k+2 − 1)-expressions for graphs of clique-width
at most k. This result renders the notion “class of bounded clique-width” feasible; however,
since the running time of algorithms as suggested by Courcelle et al. [5] crucially depends
on k, closer approximations are desirable. The graph parameter “NLC-width” introduced
by Wanke [11] is defined similarly as clique-width using a single operation that combines
disjoint union and insertion of edges. Recently Gurski and Wanke [7] have reported that
computing the NLC-width is NP-hard. Since NLC-width and clique-width can differ by a
factor of 2 (see Johansson [8]), non-approximability with an absolute error guarantee for one
of the two parameters does not imply a similar result for the other parameter.

The main results of our paper are the following.

Theorem 1. The clique-width of graphs with n vertices of degree greater than 2 cannot be
approximated by a polynomial-time algorithm with an absolute error guarantee of nε for any
ε ∈ (0, 1), unless P = NP.

In particular, there is no polynomial-time absolute approximation algorithm for clique-
width unless P = NP.

Theorem 2. The problem cwd-minimization (that is, given a graph G and an integer k,
is the clique-width of G at most k?) is NP-complete.

In the first part of this series of papers [6] we have shown results similar to Theorems 1
and 2 for a weaker notion of clique-width, termed sequential clique-width (or linear clique-
width). The sequential clique-width of a graph is defined similarly as clique-width, except
that only k-expressions are considered where at least one of any two k-graphs put together by
disjoint union is an initial k-graph. The parse trees of such sequential k-expressions are path-
like (every node is either a leaf or adjacent to a leaf). Hence one can consider the relation
between sequential clique-width and clique-width as an analogue to the relation between
pathwidth and treewidth. The natural 2-expressions of complete graphs (see Section 1.2)
are sequential.

1.1 Proof outline

In what follows, let α be an integer-valued graph parameter. We consider the following
decision problem.

α-minimization

Instance: A graph G and a positive integer k.
Question: Is α(G) at most k?
In [6] we have shown the following lemma using results of Karpinski and Wirtgen [9],

Arnborg, et al. [1], and Bodlaender, et al. [2].

Lemma 1. Assume that there is a constant c such that |α(G)−pwd(G)| ≤ c holds for every
cobipartite graph G with minimum degree at least 3. Then the following statements are true.

1. For a graph G with n vertices and minimum degree at least 3, α(G) cannot be approx-
imated in polynomial-time with an absolute error guarantee of nε for any ε ∈ (0, 1)
unless P = NP.

2. α-minimization is NP-hard.

2

We shall use the following two constructions.
Let G be a graph. We obtain a graph G′ from G by replacing each edge xy of G by three

paths x− pi − qi − y, i = 1, 2, 3, where pi, qi are new vertices. Similarly, we obtain from G a
graph G′′ by replacing each edge xy of G by one path x − s − y where s is a new vertex.

In the companion paper [6] we have shown the following inequation (pwd(G) and cwd1(G)
denote the pathwidth and the sequential clique-width of G, respectively).

pwd(G) ≤ cwd1(G
′) ≤ pwd(G) + 4. (1)

In this paper we establish for cobipartite graphs of minimum degree at least 2 the following
inequation (cwd(G) denotes the clique-width of G).

cwd(G′) ≤ cwd1(G
′) ≤ cwd(G′) + 18. (2)

The non-trivial part of inequation (2) is obtained by means of the second construction G′′.
We show by Lemma 2, Theorem 3, and Lemma 5, respectively, that for every cobipartite
graph G we have

cwd1(G
′) ≤ cwd1(G

′′) + 9 ≤ cwd(G′′) + 15 ≤ cwd(G′) + 18. (3)

The hardest task for showing (3) is to bound the sequential clique-width of G′′ in terms of
the clique-width of G′′ plus a small constant; this is established in Theorem 3.

Consider now the graph parameter α(G) = cwd(G′); i.e., α(G) is the clique-width of the
graph G′ obtained from G by the first of the two construction given above. The inequations
(1) and (2) yield |α(G)− pwd(G)| ≤ 22, hence the assumption of Lemma 1 is met. It is now
easy to establish Theorems 1 and 2 as follows.

Assume that for a constant ε ∈ (0, 1) there exists a polynomial-time algorithm A that
outputs for a given graph G with n vertices of degree at least 3 an integer A(G) with
|A(G) − cwd(G)| ≤ nε. For a graph G with n vertices and minimum degree at least 3, G′

has exactly n vertices of degree at least 3; applying A to G′ gives now |A(G′) − cwd(G′)| =
|A(G′) − α(G)| ≤ nε. Hence, by the first part of Lemma 1 such algorithm A cannot exist
unless P = NP. A similar reasoning applies if the approximation error is bounded by some
fixed constant. Thus Theorem 1 is established.

The second part of Lemma 1 implies that α-minimization is NP-hard. We reduce
α-minimization to cwd-minimization by taking for an instance (G, k) of the former problem
the instance (G′, k) of the latter problem; obviously α(G) ≤ k if and only if cwd(G′) ≤ k.
Thus cwd-minimization is NP-hard as well. The problem is in NP since, given a graph G,
we can guess a k-expression and check in polynomial time whether it is indeed a k-expression
defining G. Thus Theorem 2 is established as well.

1.2 Definitions and preliminaries

All graphs considered in this paper are undirected and simple. Let k be a positive integer.
A k-graph is a graph whose vertices are labeled by integers from {1, . . . , k}. We consider an
arbitrary graph as a k-graph with all vertices labeled by 1. We call the k-graph consisting of
exactly one vertex v (say, labeled by i ∈ {1, . . . , k}) an initial k-graph and denote it by i(v).

The clique-width cwd(G) of a graph G is the smallest integer k such that G can be
constructed from initial k-graphs by means of repeated application of the following three
operations.

• Disjoint union (denoted by ⊕);

• Relabeling : changing all labels i to j (denoted by ρi→j);

3

• Edge insertion: connecting all vertices labeled by i with all vertices labeled by j, i 6= j

(denoted by ηi,j).

A construction of a k-graph using the above operations can be represented by an algebraic
term composed of ⊕, ρi→j , and ηi,j , (i, j ∈ {1, . . . , k}, and i 6= j). Such a term is called a
cwd-expression defining G.

For example, the complete graph on the vertices u, v, w, x is defined by the cwd-expression

ρ2→1(η1,2(ρ2→1(η1,2(ρ2→1(η1,2(2(u) ⊕ 1(v))) ⊕ 2(w))) ⊕ 2(x))).

In general, every complete graph Kn, n ≥ 2, has clique-width 2.
For convenience, we assume that ηi,j and ηj,i denote the same operation.
For a cwd-expression t, we denote by val(t) the labeled graph defined by t. We denote

a cwd-expression which uses at most k labels as a k-expression; for convenience we assume
that the k labels are the integers 1, . . . , k. Often when it is clear from the context we shall
use the term expression instead of cwd-expression or k-expression. For a labeled graph G

we denote by labels(G) the number of labels used in G.
For a cwd-expression t defining a graph G, we denote by tree(t) the parse tree constructed

from t in the usual way. The leaves of this tree are the vertices of G with their initial
labels, and the internal nodes correspond to the operations of t and can be either binary
corresponding to ⊕, or unary corresponding to η or ρ. For a node a of tree(t), we denote
by tree(t)〈a〉 the subtree of tree(t) rooted at a. We denote by t〈a〉 the cwd-expression
corresponding to tree(t)〈a〉; i.e., tree(t)〈a〉 = tree(t〈a〉). Note that in t〈a〉 (and similarly in
tree(t〈a〉)) we assume that the operation a is already established.

For a vertex x of val(t〈a〉), we say that x is dead at a (or dead at val(t〈a〉)) if all the edges
incident to x in val(t) are included in val(t〈a〉). Otherwise we say that x is active at a (or
active at val(t〈a〉)). We say that label ` is a dead in t if it is not involved in any η-operation
in t. In other words, ` is dead in t if there is no η-operation in t of the form η`,`′ for any
label `′.

Let a be a ⊕-operation of a cwd-expression t. If z is a vertex of val(t〈a〉) and has label `

in val(t〈a〉) we say that z occurs at a with label `. Let b and c be the left and right children
of a, respectively. We say that vertex x occurs on the left (right) side of a if it occurs at b

(c).
Let r be a positive integer. We say that a is an r-⊕-operation if there are at most

r vertices occurring on the left side of a or there are at most r vertices occurring on the
right side of a. We say that a is a (> r)-⊕-operation if it is not an r-⊕-operation. We
say that t is an r-sequential cwd-expression (or sequential cwd-expression for r = 1) if all
⊕-operations in t are r-⊕-operations. We say that t is a sequential k-expression if t is a
sequential cwd-expression which uses k labels. For a graph G, cwdr(G) denotes the smallest
number k such that G can be defined by an r-sequential k-expression. For example, the
above 2-expression defining K4 is sequential. In general, we have cwd1(Kn) = cwd(Kn) for
every n ≥ 1.

For a graph G, we denote by G′ the graph obtained from G by replacing each edge xy of
G by three paths x−pi−qi−y, i = 1, 2, 3, where pi, qi are new vertices. Similarly, we denote
by G′′ the graph obtained from G by replacing each edge xy of G by one path x−s−y where
s is a new vertex which is denoted as sx,y. We call the vertices of G′ and G′′ which are also
vertices of G regular vertices. We call the vertices of G′ and G′′ which are not vertices of G

special vertices.

4

2 From G′′ to G′ and back

For this section let G denote a graph with minimum degree at least 2. We show that the
clique-width of G′′ is bounded by the clique-width of G′ plus a small constant, and that the
converse is true for sequential clique-width.

2.1 From G′′ to G′

Lemma 2. cwd1(G
′) ≤ cwd1(G

′′) + 9.

For the proof we shall use the following definition and lemmas.

Property 1. Let t be a sequential cwd-expression defining G′′. We say that t has Property 1
if for every two regular vertices x and y there is no node a in tree(t) such that x and y are
active at a and have the same label at a.

Lemma 3. Let t be a sequential k-expression defining G′′. Then there exists a sequential
(k + 2)-expression defining G′′ which has Property 1.

Proof. Let t be a sequential k-expression defining G′′. Let x and y be two regular vertices
such that there exists a node a in t such that x and y have the same label at a and are active
at a. Let b the lowest node in tree(t) corresponding to an operation which unifies the labels
of x and y. Clearly b corresponds to either a ρ or a 1-⊕-operation. Suppose b corresponds
to a 1-⊕-operation. This operation introduces either x or y (say that it introduces x). Since
x and y have the same label at b it follows that each neighbor of x is also a neighbor of y.
However, since G has minimum degree at least 2, there is a neighbor of x in G′′ which is not
a neighbor of y, a contradiction.

Let b1 be the child of b in tree(t). Clearly x and y are active at b. Since sx,y is the unique
vertex in G′′ which is adjacent to both x and y, it follows that if we add the edges connecting
x and y to sx,y immediately above b1, then x and y will not be active at b. We show below
how to construct an expression t1 which achieves this goal.

Let t′1 be the expression obtained by removing sx,y from t. Let t1 be the expression
obtained from t′1 by adding immediately above b1 the vertex sx,y with label k + 2, then
adding two η-operations which connect sx,y to both x and y and then renaming the label of
sx,y to k + 1. (Note that k + 1 will be a dead label, i.e., no edges will be added to a vertex
having label k + 1.) Since both edges connecting sx,y to x and y already exists at val(t1〈b〉),
it follows that x and y are not active at val(t1〈b〉).

Repeating the above construction for every pair of regular vertices x and y which have
the same label at a node a of tree(t) and are active at a, we finally get a sequential (k +
2)-expression t′ which defines G′′ and satisfies Property 1.

Note that whenever vertex sx,y gets label k + 2 at node a of t′ it is the unique vertex
having this label in val(t′〈a〉) and thus, it is possible to connect it to x and y using two
η-operations.

Lemma 4. Let t be a sequential k-expression defining G′′ that has Property 1. Then there
exists a sequential (k + 7)-expression defining G′.

Proof. Let t be a sequential k-expression defining G′′ that has Property 1. Let s = sx,y be a
special vertex of G′′. Let e1 and e2 denote the edges connecting s to x and y, respectively. If
the edges e1 and e2 are established in t by the same η-operation, then there is a node a in t

such that both x and y have the same label at a and are active at a, a contradiction. Thus,
we can assume without loss of generality that the edge e1 is established before e2 in t. Let
a denote the lowest node in tree(t) corresponding to the η-operation which establishes the

5

edge e1 in t. We can assume that node a is the only η-operation in t which connects x to s.
Otherwise, we can remove from t all the η-operations above a which connect x to s. Let t′1
denote the expression obtained by removing s from t. Let t1 denote the expression obtained
from t′1 by replacing the node a with the following sequence of operations:

1. Add vertices s1, . . . , s6 with labels k + 2, . . . , k + 7, respectively.
2. Add η-operations connecting s1, s2, and s3 to x.
3. Add η-operations connecting s1 to s4, s2 to s5, and s3 to s6.
4. Add ρ-operations which rename the labels of s1, s2, and s3 to k + 1 (k + 1 is used as

a dead label).
5. Add ρ-operations which rename the labels of s4, s5. and s6 to `, where ` is the label

that s has in val(t〈a〉).
It is easy to check that t1 defines the graph obtained from G′′ by replacing the path of

length two x − s − y with the 3 paths of length 3, x − si − si+3 − y, i = 1, 2, 3.
Repeating the above construction for every special vertex s of G′′, we finally obtain a

sequential (k + 7)-expression t′ which defines G′.
Note that whenever vertices s1, . . . , s6 get labels k + 2, . . . , k + 7 at node a of t′ they are

the unique vertices having these labels in val(t′〈a〉) and thus, it is possible to establish all
the connections and renamings mentioned in steps 2–5 above.

This completes the proof of the lemma.

Proof of Lemma 2. Suppose cwd1(G
′′) = k, there there exists a sequential k-expression t

which defines G′′. By Lemma 3 there exists a sequential (k + 2)-expression t1 which defines
G′′ and has Property 1. By Lemma 4 there exists a sequential (k + 9)-expression t2 which
defines G′. Thus cwd1(G

′) ≤ k + 9.

2.2 From G′ to G′′

Lemma 5. cwd(G′′) ≤ cwd(G′) + 3.

For proving this lemma we shall use the following definitions and lemma.
Let G be a graph and let D(G) denote the set of graphs which can be obtained from G

by replacing each edge of G either with a path of length two or with a path of length three.
Clearly, the graph G′′ belongs to D(G) and is obtained by replacing all edges of G with a
path of length two. For each graph G∗ in D(G) we call the vertices of G∗ which are also
vertices of G regular vertices and we call the other vertices of G∗ special vertices.

Property 2. Let t be a k-expression defining a graph G∗ in D(G). We say that t has
Property 2 if the following conditions hold:

Condition 2.1: there is no η-operation in t which uses label 1, i.e, there is no η1,`-operation
in t for any label `. In other words, 1 is a dead label.

Condition 2.2: if label 2 is used in t, then it is used as follows: a special vertex (say s)
is introduced with label 2 using a 1-⊕-operation say a, such that s is the only vertex having
label 2 at a. Above a in tree(t) there is a sequence of one or more η-operations followed by
a ρ2→`-operation where ` is any label different from 2 and 3.

Condition 2.3: if label 3 is used in t then it is used as follows: a regular vertex (say r) is
introduced with label 3 using a 1-⊕-operation, say a, such that r is the only vertex having
label 3 at a. Above a in tree(t) there is a sequence of operations which can be either η, ρ,
or 1-⊕-operations introducing special vertices, followed by a ρ3→`-operation where ` is any
label different from 2 and 3.

Condition 2.4: no regular vertex ever gets label 2 and no special vertex ever gets label 3.

Observation 1. Let G∗ be a graph in D(G) and let cwd(G∗) = k. Then there is a (k +
3)-expression t′ defining G∗ which has Property 2.

6

Proof. Let t be a k-expression defining G∗. Let t′ be the k + 3-expression obtained from t

by replacing all occurrences of the labels 1, 2 and 3 with the labels k + 1,k + 2 and k + 3,
respectively. Clearly t′ defines G∗. Since the labels 1, 2 and 3 are not used in t′, it is obvious
that t′ has Property 2.

The following is the key lemma for proving Lemma 5.

Lemma 6. Let G∗ be a graph in D(G) and let t be a k-expression which defines G∗ and
has Property 2. Let a be a lowest node in tree(t) such that there exists an induced path
x − p − q − y in G′′ (x, y are regular vertices) and x, p, q, y occur at a. Then there exists a
k-expression t1 which has Property 2 and defines the graph G∗

1 obtained from G∗ by replacing
the path x − p − q − y with a path x − s − y where s is a new special vertex.

Proof. Let a and x, p, q, y as in the statement of the lemma. In each of the following cases
we obtain a k-expression t1 which defines G∗

1 and has Property 2. In all cases it is easy to
see that the expression t1 obtained has Property 2.

Case 1: suppose x and y occur on different sides of a. Assume without loss of generality
that x is on the left side of a and y is on the right side of a.

Case 1.1: suppose that p and q occur on the same side of a. Assume without loss of
generality that both p and q occur on the left side of a. Let a1 denote the lowest node in
tree(t) such that both x and p are in t〈a1〉. Let a2 denote the lowest node in tree(t) such
that both x and q are in t〈a2〉. By the above assumptions both a1 and a2 are descendants
of a in tree(t).

Case 1.1.1: suppose a1 is a proper descendant of a2 in tree(t). If x and q have the same
label at a2 it follows that y must be in t〈a2〉, a contradiction. Thus p and q must have unique
labels at a2. Let `p and `q denote the labels of p and q at a2, respectively.

Case 1.1.1.1: suppose x has a unique label (say `x) at a2. In this case, t1 is obtained
from t as follows:

1. Add the following sequence operations immediately above a2:
1.1. An η`x,`p

-operation which connects x to p.
1.2. A ρ`p→`q

-operation which renames the label of p to the label of q.
2. Omit q.
Case 1.1.1.2: Suppose x does not have unique label at a2. Thus the edge connecting x

to p already exists at val(t〈a2〉). In this case, t1 is obtained from t as follows:
1. Add immediately above a2 a ρ`p→`q

-operation which renames the label of p to the
label of q.

2. Omit q.
In both cases 1.1.1.1 and 1.1.1.2, p is connected to y since after p gets the label of q, the

η-operation above a which connects q to y will connect p to y. Thus, p can be considered as
the new special vertex s in G∗

1 and the expression t1 defines G∗

1.
Case 1.1.2: suppose a1 is equal to a2. In this case x and p must have unique labels at

a2. This case is handled the same way as case 1.1.1.1.
Case 1.1.3: suppose a2 is a proper descendant of a1 in tree(t). Since y is not in t〈a1〉, x,

p, and q must have unique labels at a1. Let `x, `p, and `q denote the labels of x, p and q at
a1, respectively. In this case, t1 is obtained from t as follows:

1. Add the following sequence operations immediately above a1:
1.1. An η`x,`p

-operation which connects x to p.
1.2. A ρ`p→`q

-operation which renames the label of p to the label of q.
2. Omit q.
As in the previous cases it is easy to see that t1 defines G∗

1 and p is the new special
vertex s.

Case 1.2: suppose that p and q occur on different sides of a.

7

Case 1.2.1: suppose p occurs on the left side of a and q occurs on the right side of a. It
is easy to see that at least one of p and q must have a unique label at a. Assume without
loss of generality that q has a unique label (say `q) at a. Let `p and `y denote the labels
that p and y have at a, respectively. Note that y is the only vertex which can have the same
label as p at a. In this case, t1 is obtained from t as follows:

1. Make changes to t such that y will have label `q at a. In particular let c be the lowest
⊕-operation in tree(t) which contains both y and q. Add a ρ-operation immediately above c

which renames the label of y at c to the label of q at c (say `q). Then follow the path from c

to a in tree(t) and for each node d corresponding to an η`1,`2-operation such that y has label
`1 at d, add an η`q ,`2-operation immediately above d. Thus, after this step y is connected to
all the vertices (except q) which it was connected in val(t〈a〉) and has label `q at a.

2. Omit q.
3. After the above changes to y, the label `p of p at a is unique. Add the following

sequence of operations immediately above a:
3.1. An η`p,`q

-operation which connects y to p.
3.2. A ρ`q→`y

-operation which renames y to the label it has in val(t〈a〉).
By steps 1 and 3.2 above it is clear that all the vertices (except q) which are connected

to y in t are also connected to y in t1. Thus, t1 defines G∗

1 and p is the new special vertex s.
Case 1.2.2: suppose p occurs on the right side of a and q occurs on the left side of a.

Since p is adjacent just to x and q, it follows that either x and q have unique labels at a or
have the same label at a. If x and q have the same label at a, then there is no way to connect
y to q without connecting it also to x, a contradiction. We conclude that the labels at a of
p, q, x, and y (say `p, `q, `x and `y, respectively) are unique. In this case t1 is obtained from
t by omitting q and adding an η`p,`y

-operation immediately above a.
Case 2: suppose x and y occur on the same side of a. Assume without loss of generality

that x and y occur on the left side of a.
Case 2.1: suppose p and q occur on the same side of a. Since a is the lowest node in

tree(t) which contains x, y, p, and q, it follows that p and q must occur on the right side of
a. As in case 1.2.2 it is easy to see that the labels at a of p, q, x and y (say `p, `q, `x, and `y)
are unique. In this case t1 is obtained from t by omitting q and adding an η`p,`y

-operation
immediately above a.

Case 2.2: suppose p and q occur on different sides of a. Assume without loss of generality
that p occurs on the left side of a and q occurs on the right side of a. Let a1 denote the
lowest node in tree(t) which contains both x and p. Let a2 denote the lowest node in tree(t)
which contains x and y.

Case 2.2.1: suppose a1 is equal to a2 or a2 is a proper descendant of a1. In this case it is
easy to see that x, y and p must have unique labels at a1 (say `x, `y, and `p, respectively).
In this case t1 is obtained from t by omitting q and adding an η`p,`y

-operation immediately
above a1.

Case 2.2.2: suppose a1 is a proper descendant of a2.
Case 2.2.2.1: suppose y has unique label at a2 (say `y). In this case p must have unique

label at a2 (say `p) and t1 is obtained from t by omitting q and adding an η`p,`y
-operation

immediately above a2.
Case 2.2.2.2: suppose y does not have unique label at a2. Let `p and `y denote the labels

of p and y at a2, respectively. Since q is adjacent just to y and p, it follows that p is the
only vertex which can share the label of y at a2. Thus, `p = `y. Assume without loss of
generality that y is on the right side of a2 and x and p are on the left side of a2. Let b2

denote the right child of a2 in tree(t). Note that the complicated handling of this case (as
described below) is needed when x is active at a2 and has the same label as another vertex
which is on the right side of a2. Since q is the only vertex which is adjacent to y and p, it
follows that all the vertices which are adjacent to y (except q) must be in val(t〈b2〉). Let U

8

denote the set of all vertices (except q) which are adjacent to y. Since y is regular vertex, all
vertices in U must be special and have degree exactly 2. For each vertex u in U , let other(u)
denote the neighbor of u which is not y. Let U1 denote the set of all vertices u in U such
that other(u) is in val(t〈b2〉) and let U2 = U \ U1. Let U11 denote the set of all vertices u

in U1 such that the lowest node in tree(t) which contains u and other(u) does not contain y.
Let U12 = U1 \ U11.

In this case t1 is obtained from t as follows:
1. Omit q and all vertices of U2.
2. Let c denote the lowest node in tree(t) which contains y. Follow the path from c to b2

in tree(t) and omit any η`1,`2-operation such that the label of y at that point is `1.
3. Repeat the following step for each u in U11: let c denote the lowest node in tree(t)

which contains u and other(u). Let d denote the lowest node in tree(t) which contains y and
u. Since u is in U11, c is a descendant of d. Thus, u and other(u) have unique labels at c (say
`u and `, respectively). Add an η`u,`-operation immediately above c which connects u and
other(u). Add a ρ-operation immediately above d which renames the label of u to the label
of y at d. Thus, after step 3 each vertex u in U11 is connected to other(u) and has label `y

at a2.
4. Repeat the following step for each u in U12: let c denote the lowest node in tree(t)

which contains u and other(u).
4.1. Suppose other(u) is a special vertex. If other(u) does not have a unique label at c

then its label at c must be equal to the label of y at c, a contradiction, since q distinguishes
y and other(u). Thus, other(u) must have unique label at c. If u does not have unique label
at c, then the label of u at c must be equal to the label of the unique regular vertex (say z)
which is adjacent to other(u). But then vertices of the induced path z − other(u) − u − y of
G′′ occur at a2, and since a2 is a descendent of a, we have a contradiction to the selection
of a as a lowest such node with that property. We conclude that both u and other(u) have
unique labels at c. Thus, in this case add an η-operation immediately above c connecting u

and other(u) and above it add a ρ-operation which renames the label of u to the label that
y has at that point.

4.2. Suppose other(u) is a regular vertex. Since t has Property 2, it follows that label
2 is not used at c. In this case omit u from t and add the following sequence of operations
immediately above c:

4.2.1. A 1-⊕-operation introducing u with label 2.
4.2.2. An η2,`-operation, where ` is the unique label that other(u) has at c.
4.2.3. A ρ2→`′-operation where `′ is the unique label that y has at c.
Thus, after step 4 each vertex u in U12 is connected to other(u) and has label `y at a2.
5. Omit y from t and add the following sequence of operations immediately above a2:
5.1. A 1-⊕-operation which introduces y with label 3. Note that since t has Property 2

label 3 is not used at a2.
5.2. An η3,`y

-operation connecting y to p and all the vertices in U1.
5.3. A ρ`y→1-operation renaming p and all the vertices in U1 to a dead label.
5.4. For each vertex u in U2 add the following sequence of operations:
5.4.1. A 1-⊕-operation introducing u with label 2.
5.4.2. An η2,3-operation connecting u and y.
5.4.3. A ρ2→`-operation where ` is the label that u has in t at a2.
Thus after step 5.4 all the vertices in U2 are connected to y and have the same label as

they have in t at a2.
5.5. A ρ3→1-operation renaming the label of y to a dead label.
Each vertex u in U1 is connected to other(u) in step 3 or in step 4 and is connected to

y in step 5.2. Each vertex u in U2 is connected to y at step 5.4.2 and the η-operation in t

9

above a2 which connects u to other(u) also exists in t1 and connects u to other(u) since after
step 5.4 the label of u is the same as its label at a2 in t.

Thus, t1 defines G∗

1 and p is the new special vertex s.
This completes the proof of Lemma 6.

Proof of Lemma 5. Suppose cwd(G′) = k. Let G′

1 denote the induced subgraph of G′ ob-
tained by removing from G′ for every edge e = xy of G, the two pairs of vertices pi, qi,
i = 1, 2 where x − pi − qi − y, i = 1, 2 are two of the three paths of length 3 between x

and y. Since G′

1 is an induced subgraph of G′, it follows that cwd(G′

1) ≤ k. Clearly, G′

1

belongs to D(G). Let t be a k-expression which defines G′

1. By Observation 1, there is a
(k + 3)-expression t′ defining G′

1 which has Property 2. Let a be a lowest node in tree(t′)
such that for an induced path x− p− q − y of G′′ (x and y are regular vertices) the vertices
x, p, q, y occur at a. By Lemma 6 there exists a (k + 3)-expression t′1 which has Property 2
and defines the graph G∗

1 obtained from G′

1 by replacing the path x− p− q − y with a path
x − s − y where s is a new special vertex. We can repeat this process until we finally get a
(k + 3)-expression t′′ which defines the graph G′′ that is obtained from G′

1 by replacing all
induced paths of length 3 (with regular end vertices and special internal vertices) by induced
paths of length 2. This completes the proof of Lemma 5.

3 Cwd-expressions for G′′

Theorem 3. If G is a cobipartite graph with minimum degree at least 2, then cwd1(G
′′) ≤

cwd(G′′) + 6.

For the proof of Theorem 3 we shall use the following definitions and lemmas.
In this section we assume that G is a cobipartite graph with minimum degree at least 2.

Since G is cobipartite the vertices of G can be partitioned into two cliques A and B. The
regular vertices of G′′ which belong to A, B are called A-regular vertices, B-regular vertices,
respectively.

Let t be a cwd-expression defining G′′. Let a be a ⊕-operation of t. We say that there is
a separation at a between the A-regular vertices and the B-regular vertices if all A-regular
vertices of val(t〈a〉) occur on one side of a (say, on the left side of a) and all the B-regular
vertices of val(t〈a〉) occur on the other side of a (say, on the right side of a).

Proposition 1. Let t be a cwd-expression defining G′′. For each ⊕-operation a of t there
is at most one pair of A-regular (B-regular) vertices which occur on different sides of a and
have the same label at a.

Proof. Suppose there are two different pairs {x1, y1} and {x2, y2} of A-regular vertices such
that for i = 1, 2, xi and yi occur at different sides of a and have the same label at a. Assume
without loss of generality that x1 and x2 occur on the left side of a and y1 and y2 occur on
the right side of a. Clearly, either x1 6= x2 or y1 6= y2. Assume without loss of generality
that x1 6= x2. Consider the special vertex sy1,x2 . If sy1,x2 is not in val(t〈a〉), then when later
on the edge connecting sy1,x2 to y1 will be establish, also the edge connecting it to x1 will be
established, a contradiction. Thus sy1,x2 is in val(t〈a〉). If sy1,x2 occurs on the left side of a

then when the edge connecting it to y1 will be established, it will be connected also to x1, a
contradiction. If sy1,x2 is on the right side of a, then when the edge connecting it to x2 will
be established, it will be connected also to y2. Since the degree of sy1,x2 in G′′ is exactly 2,
it follows that y1 must be equal to y2. Thus, the three vertices x1, x2 and y1 have the same
label at a, which implies that the η-operation above a which connect sy1,x2 to x2 connect
it also to x1, a contradiction. The argument for two different pairs of B-regular vertices is
symmetric.

10

Proposition 2. Let t be a cwd-expression defining G′′. Let a be a ⊕-operation of t and let
{x1, y1} be a pair of A-regular (B-regular) vertices which occur on different sides of a and
have the same label at a. Then both x1 and y1 are active at a and for every other vertex (say
z) occurring at a the label of z is different from the label of x1 and y1 at a.

Proof. Since x1 and y1 have the same label at a, either they are both dead at a or they
are both active at a. Suppose x1 and y1 are dead at a. Consider sx1,y1 . If sx1,y1 is not
in val(t〈a〉), then it is not possible to connect it to x1 and y1 (as they are dead at a), a
contradiction. Assume without loss of generality that x1 and sx1,y1 are on the same side of
a. Since y1 is on the other side of a, and y1 is dead at a, it is not possible to connect sx1,y1 to
y1, a contradiction. We have shown that both x1 and y1 are active at a. If there is another
vertex z with the same label as x1 and y1 at a, then, when the edges connecting some vertex
of G′′ (say, w) to x1 and y1 will be established (such edges must be established since x1 and
y1 are active at a), also the edge connecting it to z will be established, a contradiction (no
vertex of G′′ is adjacent to x1, y1 and z).

Proposition 3. Let t be a cwd-expression defining G′′. Let a be an ⊕-operation of t and let
{x1, y1} be a pair of regular vertices which occur on different sides of a and have the same
label at a. Then all the edges connecting x1 (y1) to its neighbors in G′′ − sx1,y1 exist in
val(t〈a〉).

Proof. Let s be a vertex which is adjacent to x1 in G′′ − sx1,y1 . Clearly s must be a special
vertex of the form sx1,z for z 6= y1. If s is not connected to x1 in val(t〈a〉), then it is not
possible to connect s to x1 without connecting it also to y1, a contradiction.

3.1 Property 3

Property 3. We say that t has Property 3 if the following conditions hold for t:
Condition 3.1: The label 1 is dead in t.
Condition 3.2: For each (> 1)-⊕-operation a in t, there is no pair of A-regular (B-regular)

vertices which occur on different sides of a and have the same label at a.

Lemma 7. Let t be a k-expression defining G′′. Then there exists a (k + 4)-expression t′

defining G′′ such that t′ has Property 3.

Proof. Let t be a k-expression defining G′′. Let t1 denote the (k + 1)-expression obtained
from t by replacing each occurrence of the label 1 with the label k +1. Clearly, t1 defines G′′

and label 1 is dead in t1. Let a be a (> 1)-⊕-operation in t1 such that there exist at least
one pair of regular vertices that violate Condition 3.2. We define below a (k + 4)-expression
t2 which defines G′′ and has the additional property that there is no pair of regular vertices
of the same type which occur on different sides of a and have the same label in val(t2〈a〉).
Let b denote the left child of a in tree(t).

Case 1: Suppose there is exactly one pair (say {x1, y1}) of regular vertices of the same
type which occur on different sides of a and have the same label in val(t1〈a〉). Assume
without loss of generality that x1 occurs on the left side of a. By Proposition 2, both x1 and
y1 must be active at a and their label at a (say `) is different from the labels of all the other
vertices at a. In this case t2 is obtained from t1 as follows:

1. Add a ρ`→k+2-operation immediately above b.
2. Omit sx1,y1 .
3. Add the following sequence of operations immediately above a:
3.1. A 1-⊕-operation introducing sx1,y1 with label k + 4.
3.2. An ηk+4,`-operation which connects sx1,y1 to y1.
3.3. An ηk+4,k+2-operation which connects sx1,y1 to x1.

11

3.4 A ρk+4→1-operation renaming the label of sx1,y1 to a dead label.
3.5 A ρk+2→1-operation renaming the label of x1 to a dead label.
3.6 A ρ`→1-operation renaming the label of y1 to a dead label.
Case 2: Suppose there are exactly two pairs (say {x1, y1} and {x2, y2}) of regular vertices

of the same type which occur on different sides of a and have the same label in val(t1〈a〉).
Assume without loss of generality that x1 and x2 occur on the left side of a. By Proposition 2,
both x1 and y1 must be active at a and their label at a (say `1) is different from the labels
of all the other vertices at a. Similarly, x2 and y2 have the same unique label at a (say `2).
It follows that all the vertices x1, x2, y1, y2 are distinct.

In this case t2 is obtained from t1 as follows:
1. Add the following sequence of operations immediately above b:
1.1 A ρ`1→k+2-operation renaming the label of x1 to to k + 2.
1.1 A ρ`2→k+3-operation renaming the label of x2 to to k + 3.
2. Omit sx1,y1 and sx2,y2 .
3. Add the following sequence of operations immediately above a:
3.1. A 1-⊕-operation introducing sx1,y1 with label k + 4.
3.2. An ηk+4,`1 -operation which connects sx1,y1 to y1.
3.3. An ηk+4,k+2-operation which connects sx1,y1 to x1.
3.4 A ρk+4→1-operation renaming the label of sx1,y1 to a dead label.
3.5. A 1-⊕-operation introducing sx2,y2 with label k + 4.
3.6. An ηk+4,`2 -operation which connects sx2,y2 to y2.
3.7. An ηk+4,k+3-operation which connects sx2,y2 to x2.
3.8 A sequence of ρ-operations renaming all labels `1, `2, k + 2, k + 3, k + 4, to the dead

label 1.
In both cases 1 and 2 it follows from Proposition 3 that the expression t2 defines G′′.
Repeating the above procedure for every (> 1)-⊕-operation in t2 we finally get a (k +

4)-expression t′ defining G′′ such that t′ has Property 3.

3.2 Property 4

The following property is similar to Property 2.

Property 4. Let t be a k-expression defining G′′ which has Property 3. We say that t has
Property 4, if the following conditions hold:

Condition 4.1: if label 2 is used in t, then it is used as follows: a special vertex (say s)
is introduced with label 2 using a 1-⊕-operation say a, such that s is the only vertex having
label 2 at a. Above a in tree(t) there is a sequence of one or more η-operations followed by
a ρ2→`-operation where ` is any label different from 2 and 3.

Condition 4.2: if label 3 is used in t then it is used as follows: a regular vertex (say r) is
introduced with label 3 using a 1-⊕-operation, say a, such that r is the only vertex having
label 3 at a. Above a in tree(t) there is a sequence of operations which can be either η, ρ,
or 1-⊕-operations introducing special vertices, followed by a ρ3→`-operation where ` is any
label different from 2 and 3.

Condition 4.3: no regular vertex ever gets label 2 and no special vertex ever gets label 3.

Lemma 8. Let t be a k-expression defining G′′ such that t has Property 3. Then there exists
a (k + 2)-expression t′ defining G′′ such that t′ has Property 4.

Proof. Let t be a k-expression defining G′′ such that t has Property 3. Let t′ denote the
(k + 2)-expression obtained from t by replacing each occurrence of the label 2 with the label
k + 1 and replacing each occurrence of the label 3 with the label k + 2. Clearly, t′ defines
G′′. Since labels 2 and 3 are not used in t′, it is obvious that t′ has Property 4.

12

3.3 Property 5

Property 5. Let t be a k-expression defining G′′ which has Property 4. We say that t has
Property 5, if the following condition holds:

Condition 5: For each (> 1)-⊕-operation a in t, there is no regular vertex which occurs
at a and has a unique label at a which is different from label 1.

Lemma 9. Let t be a k-expression defining G′′ such that t has Property 4. Then there exists
a k-expression t′ defining G′′ such that t′ has Property 5.

For proving this lemma we use the following definitions and auxiliary results. Let t be a
k-expression defining G′′. For each (> 1)-⊕-operation a in t let n(t〈a〉) denote the number of
regular vertices which occur at a and have unique labels at a which are different from label 1.
Let n(t) denote the sum of n(t〈a〉) over all (> 1)-⊕-operations in t. Clearly, if a k-expression
t defines G′′ and has Property 4, then n(t) = 0 implies that t has also Property 5.

Lemma 10. Let t be a k-expression defining G′′ such that t has Property 4 and n(t) > 0.
Then there exists a k-expression t′ defining G′′ such that t′ has Property 4 and n(t′) < n(t).

Proof. Let t be a k-expression defining G′′ such that t has Property 4 and n(t) > 0. Since
n(t) > 0, there exists a (> 1)-⊕-operation a in t and a regular vertex x such that x has
unique label (say `x) in val(t〈a〉). We will construct below a k-expression t′ defining G′′,
such that in t′, x is introduced by a 1-⊕-operation above a. We shall use the following
notation and proceed similarly as in the proof of Lemma 6. Let b denote the child of a in
tree(t) such that x is in val(t〈b〉). Let U denote the set of all vertices which are adjacent to
x and occur in val(t〈b〉). Since x is a regular vertex, all vertices in U must be special and
have degree exactly 2. For each vertex u ∈ U , let other(u) denote the neighbor of u which is
not x. Let U1 denote the set of all vertices u ∈ U such that other(u) is in val(t〈b〉) and let
U2 = U \U1. Let U11 denote the set of all vertices u ∈ U1 such that the lowest node in tree(t)
which contains u and other(u) does not contain x. Let U12 = U1 \ U11. The k-expression t′

is obtained from t as follows:
1. Omit all vertices of U2.
2. Let c denote the lowest node in tree(t) which contains x. Follow the path from c to b

in tree(t) and omit any η`1,`2-operation such that the label of x at that point is `1.
3. Repeat the following step for each u ∈ U11: let d denote the lowest node in tree(t)

which contains u and other(u). Let e denote the lowest node in tree(t) which contains x and
u. Since u is in U11, d is a descendant of e. Thus, u and other(u) have unique labels at d

(say `u and `, respectively). Add an η`u,`-operation immediately above d which connects u

and other(u). Add a ρ-operation immediately above e which renames the label of u to the
label of x at e. Thus, after step 3 each vertex u ∈ U11 is connected to other(u) and has label
`x at a.

4. Repeat the following step for each u ∈ U12: let d denote the lowest node in tree(t)
which contains u and other(u). Since t has Property 4, and u and other(u) occur on different
sides of d it follows that the only vertex which can have label 2 at d is u. Omit u from t and
add the following sequence of operations immediately above d:

4.1. A 1-⊕-operation introducing u with label 2.
4.2. An η2,`-operation connecting u and other(u), where ` is the unique label that other(u)

has at d.
4.2.3. A ρ2→`′-operation where `′ is the unique label that x has at d.
Thus, after step 4 each vertex u ∈ U12 is connected to other(u) and has label `x at a.
5. Omit x from t and add the following sequence of operations immediately above a:
5.1. A 1-⊕-operation which introduces x with label 3. Note that since t has Property 4

and a is a (> 1)-⊕-operation label 3 is not used at a.

13

5.2. An η3,`x
-operation connecting x to all the vertices in U1.

5.3. A ρ`x→1-operation renaming the label of all the vertices in U1 to a dead label.
5.4. For each vertex u ∈ U2 add the following sequence of operations:
5.4.1. a 1-⊕-operation introducing u with label 2;
5.4.2. an η2,3-operation connecting u to x;
5.4.3. a ρ2→`-operation where ` is the label that u has in t at a.
Thus after step 5.4 all the vertices in U2 are connected to x and have the same label as

they have in t at a.
5.5. A ρ3→`x

-operation renaming the label of x to the label it has in val(t〈a〉).
Each vertex u ∈ U1 is connected to other(u) in step 3 or in step 4 and is connected to x in

step 5.2. Each vertex u ∈ U2 is connected to x at step 5.4.2 and the η-operation in t above
a which connects u to other(u) also exists in t′ and connects u to other(u). Since after step
5.5. the label of x is the same as its label in val(t〈a〉), it follows that all the vertices which
are adjacent to x and are not in U will be connected to x in t′ by the same η-operations
which connect them to x in t.

Thus, t′ defines G′′. Since the above changes to t did not violate the rules of Property 4,
it follows that t′ has Property 4. Finally, since in t′, x is introduced by a 1-⊕-operation above
a, and all other regular vertices are not moved, it follows that n(t′) < n(t). This completes
the proof of Lemma 10.

Proof of Lemma 9. Follows easily by applying Lemma 10 (at most) n(t) times until a k-ex-
pression t′ is obtained such that t′ defines G′′ and n(t′) = 0.

Proposition 4. Let t be a k-expression defining G′′ such that t has Property 5. Let a be
a (> 1)-⊕-operation in t such that at least one regular vertex occurs on the left side of a

and at least one regular vertex occurs on the right side of a. Then there is a separation at a

between the A-regular and the B-regular vertices.

Proof. Let a be a (> 1)-⊕-operation in t and let x and y be two regular vertices occurring
on different sides of a. Assume without loss of generality that x occurs on the left side of
a and y occurs on the right side of a. Suppose x and y are both A-regular vertices. By
Condition 3.2, x and y do not have the same label at a. Suppose x or y (say x) has label
1 at a. By Condition 5, there exists vertex z which have the same label as y at a. The
special vertex s = sx,y must occur on the left side of a, or else no η-operation connect s

and x in t, a contradiction. Thus, the η-operation above a in tree(t) which connects s to y

connects it also to z, a contradiction. We conclude that both x and y do not have label 1
at a. By Condition 5, there are two vertices w and z which have the same label as x and
y at a, respectively. Let s = sx,y. If s does not occur at a, then the η-operation in t which
connects s to x, connects it also to w, a contradiction. If s occurs on the left side of a,
then the η-operation which connects s to y connects it also to z, a contradiction. If s occurs
on the right side of a, then the η-operation which connects s to x connects it also to w, a
contradiction. Thus x and y can not be both A-regular vertices.

Similarly, x and y cannot be both B-regular vertices. Thus, one of x and y (say, x) must
be A-regular and the other (say, y) must be B-regular. If there is a B-regular vertex (say, z)
on the left side then there are two B-regular vertices (z and y) occurring on different sides
of a, which is not possible by the above argument. Thus all the A-regular vertices occur on
the left side of a and all the B-regular vertices occur on the right side of a.

3.4 Property 6

Property 6. Let t be a k-expression defining G′′. We say that t has Property 6 if it has
Property 5 and the following condition holds:

14

Condition 6: Either there are no (> 1)-⊕-operations in t or there is just one (> 1)-
⊕-operation in t (say, a) and there is a separation at a between the A-regular and the
B-regular vertices.

Lemma 11. Let t be a k-expression defining G′′ such that t has Property 5. Then there
exists a k-expression t′ which defines G′′ and has Property 6.

Proof. Let t be a k-expression which defines G′′ and has Property 5. Let a be a (> 1)-
⊕-operation in t such that one side of a (say, the left side) contains just special vertices (say,
s1, . . . , sm). Clearly, s1, . . . , sm are isolated vertices in val(t〈a〉) and have unique labels in
val(t〈a〉). Let `1, . . . , `m denote the labels of s1, . . . , sm in val(t〈a〉), respectively. Let b be
the right child of a. Let t1 be the expression obtained from t by replacing t〈a〉 with

t〈b〉 ⊕ `1(s1) ⊕ · · · ⊕ `m(sm).

It is easy to verify that t1 also defines G′′ and has Property 5.
Let t′ denote the expression obtained from t1 by repeating the above process for each

(> 1)-⊕-operation a in t1 such that one side of a contains just special vertices. Let a be
a (> 1)-⊕-operation in t′. By the above construction, each side of a contains at least one
regular vertex. By Proposition 4, since Property 5 holds for t′, there is a separation at a

in t′ between the A-regular vertices and the B-regular vertices. Suppose there is another
(> 1)-⊕-operation (say a′) in t′. By the above argument each side of a′ contains at least
one regular vertex and there is a separation at a′ in t′ between the A-regular and the B-
regular vertices. If a is a descendant of a′ in tree(t′), then there cannot be a separation at
a′ between the A-regular and the B-regular vertices, a contradiction. Similarly, a′ is not a
descendant of a in tree(t′). Let a′′ be the lowest node in tree(t′) which contains both a and
a′. Clearly a′′ must be a (> 1)-⊕-operation. By Proposition 4 there is a separation at a′′ in
t′ between the A-regular and the B-regular vertices. Since a occurs on one side of a′′, this
side of a′′ contains both A-regular and B-regular vertices, a contradiction. We conclude that
a is a unique (> 1)-⊕-operation in t′. Thus t′ is a k-expression which defines G′′ and has
Property 6.

3.5 Property 7

Property 7. Let t be a k-expression defining G′′. We say that t has Property 7 if it has
Property 6 and either t is sequential or the following condition holds:

Condition 7: Let a be the unique (> 1)-⊕-operation in t. Then for each A-regular (B-
regular) vertex x, which is active at a and occurs on one side (say left side) of a, there is a
unique B-regular (A-regular) vertex y which is active at a and occurs on the other side (say
right side) of a and has the same label as x in val(t〈a〉).

Lemma 12. Let t be a k-expression defining G′′ such that t has Property 6. Then there
exists a k-expression t′ which defines G′′ and has Property 7.

Proof. Let a be the unique (> 1)-⊕-operation in t. Assume without loss of generality that
all the A-regular vertices of val(t〈a〉) occur on the left side of a and all the B-regular vertices
of val(t〈a〉) occur on the right side of a. Let x be a regular vertex which is active at a. Let
` denote the label of x at a. Since Condition 5 holds for t, the label of x at a is not unique.
Suppose there are two vertices u and v which are distinct from x and have label ` at a. Since
x is active at a, there is an η-operation above a in tree(t) which connects some special vertex
(say, s) to x. This η-operation connects s also to u and v, a contradiction (since s is adjacent
in G′′ to exactly two vertices). Thus, for each regular vertex x which has label ` at a and is
active at a there is a unique second vertex (say y) which is active at a and has label ` at a.

15

By a similar argument no η-operation above a in tree(t) connects a vertex other than sx,y

to x or to y. Thus, all edges incident to x or y in G′′, except xsx,y and ysx,y, already exist
in val(t〈a〉).

We now define the cwd-expression t1 depending on the following cases:
Case 1: One of the vertices x, y is A-regular and one is B-regular. Since Condition 7

holds in this case for x and y we set t1 = t.
Case 2: Both x and y are A-regular. Let b denote the left child of a. In this case t1 is

obtained from t as follows:
1. Omit sx,y from t.
2. Add immediately above b the following sequence of operations:
2.1. A 1-⊕-operation which introduces sx,y with label 2. Note that since t has Property 2,

and a is a (> 1)-⊕-operation, label 2 is not used in val(t〈a〉).
2.2. An η2,`-operation which connects sx,y to x and y, where ` is the label that x and y

have in val(t〈b〉).
2.3. A ρ2→1-operation renaming the label of sx,y to the dead label 1.
2.4. A ρ`→1-operation renaming the label of x and y to the dead label 1.
Case 3: Both x and y are B-regular. This case is symmetric to Case 2.
Let t′ denote the expression obtained by repeating the above process for each regular

vertex which is active at a. It is easy to see that t′ defines G′′ and has Property 7, as
required.

3.6 Sequential expressions for G′′

In the the proof of Lemma 13 we shall use the following definition and Proposition.
Let t be an expression which defines G′′, let a be any node of tree(t) and let sx,y be

any special vertex in val(t〈a〉). The label of sx,y at a is called an x-connecting label at a (a
y-connecting label at a) if val(t〈a〉) includes the edge connecting sx,y to y (x) but does not
include the edge connecting sx,y to x (y).

Proposition 5. Let t be an expression which defines G′′, let a be any node of tree(t), and
let y1, y2 be two distinct regular vertices of G′′. Suppose that there is a y1-connecting label
and a y2-connecting label at a. Then these two labels are different.

Proof. Let s1 and s2 be two special vertices that have a y1-connecting label and a y2-con-
necting label at a, respectively. By definition, s1 is a special vertex of the form sx1,y1 where
s1 is connected to x1 and is not connected to y1 in val(t〈a〉). Similarly, s2 is a special vertex
of the form sx2,y2 where s2 is connected to x2 and is not connected to y2 in val(t〈a〉). Sup-
pose that the labels of s1 and s2 are the same in val(t〈a〉). The η-operation above a which
connects s1 to y1 connects also s2 to y1. Thus s2 is connected to x2, y2 and y1. Since y1 6= y2

and x2 6= y2 and s2 has degree 2, it follows that x2 = y1. By a symmetric argument we get
that x1 is equal to y2. We conclude that s1 = s2. But this is not possible since s1 = s2 is
connected to x1 and is not connected to y2 = x1.

Lemma 13. Let t be a k-expression defining G′′ such that t has Property 7. Then there is
a sequential k-expression which defines G′′.

Proof. If there is no (> 1)-⊕-operation in t, the claim follows immediately. Let a be the
unique (> 1)-⊕-operation in t. Let b and c denote the left child and the right child of a

in tree(t), respectively. Assume without loss of generality that all the regular vertices in
val(t〈b〉) are A-regular and all regular vertices in val(t〈c〉) are B-regular.

First we introduce the following notation. Let A1 (B1) denote the set of A-regular
(B-regular) vertices of val(t〈b〉) (val(t〈c〉)) and put A2 = A \ A1 and B2 = B \ B1. Let
Active(A1) (Active(B1)) denote the set of vertices of A1 (B1) which are active at a. Let

16

Dead(A1) (Dead(B1)) denote the set of vertices of A1 (B1) which are dead at a. Clearly,
A1 = Active(A1)∪Dead(A1) and B1 = Active(B1)∪Dead(B1). By Condition 7, |Active(A1)| =
|Active(B1)|. For each B-regular vertex u ∈ Active(B1) we denote by mate(u) the unique
A-regular vertex (guaranteed by Condition 7) which is in Active(A1) and has the same label
as u in val(t〈a〉). Let |Dead(A1)| = q. Let xi, 1 ≤ i ≤ q, be the ith vertex in Dead(A1) which
gets a non-unique label or label 1 in t〈b〉 (if there is more than one such vertex, choose one
of them arbitrarily) and let wi be the highest node in tree(t〈b〉) such that xi has a unique
label (which is different from label 1) in t〈wi〉. Note that wi is well defined since each regular
vertex in G′′ is a leaf of tree(t) having a unique initial label (which is different from label 1).

Let Xi = {x1, . . . , xi}, 1 ≤ i ≤ q. Let NXi, 1 ≤ i ≤ q, denote the set of B-regular
vertices which have a neighbor (in G) in the set Xi. For convenience we set NX0 = ∅.

Observation 2. Let v be a vertex which is adjacent to xi (in G) and is not in val(t〈wi〉).
Then the special vertex sxi,v has the v-connecting label at wi.

Proof of Observation 2. Suppose the vertex s = sxi,v is not adjacent to xi in val(t〈wi〉). Let
w′

i denote the parent of wi in tree(t). The label of xi at w′

i is either 1 or the label of another
vertex (say u)). If the label of xi at w′

i is 1 then no η-operation in t connects s and xi, a
contradiction. Thus, the label of xi is is the same as the label of u at w′

i. If u 6= v then the
η-operation above w′

i which connects s to xi connects it also to u, a contradiction. If u = v

then w′

i must correspond to a 1-⊕-operation which introduces v with the label of xi. Since
v and xi have the same label at w′

i it follows that each neighbor of v is also a neighbor of
xi. However, since G has minimum degree at least 2, there is a neighbor of v in G′′ which is
not a neighbor of xi, a contradiction.

Observation 3. For 1 ≤ i ≤ q, labels(val(t〈wi〉)) ≥ |A| + |NXi| + 1 − i.

Proof of Observation 3. Let v be a vertex in Active(A1). If v occurs at wi, then v has a unique
label at val(t〈wi〉). If v does not occur at wi, then by Observation 2 the vertex sxi,v has a
v-connecting label at wi. Thus, so far we have |Active(A1)| different labels in val(t〈wi〉). Let
v be a vertex in Dead(A1)\Xi. If v occurs at wi, then by definition v must have a unique label
at wi. If v does not occur at wi, then by Observation 2 the vertex sxi,v has a v-connecting
label at wi. Thus, by Proposition 5, we have additional |Dead(A1) \ Xi| = q − i labels in
val(t〈wi〉). Let v be a vertex in A2. By Observation 2, the vertex sxi,v has the v-connecting
label in val(t〈wi〉). Thus, additional |A2| labels exists in val(t〈wi〉). Let v be a vertex in
NXi. By definition there exists a vertex in Xi (say xj) such that v is adjacent to xj in G.
By Observation 2, vertex sxj ,v has the v-connecting label at wj . Since v is not in val(t〈wi〉),
the vertex sxj ,v also has the v-connecting label in val(t〈wi〉). Thus, additional |NXi| labels
exists in val(t〈wi〉). Finally, by definition xi has a unique label at wi. Summarizing all the
labels counted so far gives |Active(A1)|+ |A2|+ |NXi|+ 1 + q − i = |A|+ |NXi|+ 1− i.

Since t has Properties 3 and 4 we may assume that the labels 1, 2, and 3 are already
considered in the counting of the k labels of t. Since the labels 1, 2, and 3 are not counted
in the formula of Observation 3, the next observation follows.

Observation 4. For 1 ≤ i ≤ q, k ≥ |A| + |NXi| + 4 − i.

Observation 5. k ≥ |A| + 3.

Proof of Observation 5. If Dead(A1) 6= ∅ the claim follows from Observation 4 for i = 1.
Suppose Dead(A1) = ∅. Let x be any vertex of Active(A1). For each vertex v in A2 the vertex
sx,v must have an x-connecting label at a. Thus, so far we have |A2| different labels at a.
Since all the vertices in Active(A1) have different labels at a we get |A2|+ |Active(A1)| = |A|
different labels at a. Since we did not count labels 1, 2, and 3, the claim follows.

17

Observation 6. labels(val(t〈a〉)) ≥ |Active(A1)| + |A2| + |B2|.

Proof of Observation 6. By Property 7, each vertex v ∈ Active(A1) has a unique label in
val(t〈b〉). Thus there are at least |Active(A1)| labels in val(t〈a〉). Let v be a vertex in A2

and let u be any vertex in A1. First assume u ∈ Dead(A1). If su,v is not connected to u

in val(t〈a〉), there is no η-operation above a that will connect it to u, a contradiction. Now
assume u ∈ Active(A1). If su,v is not connected to u in val(t〈a〉), then an η-operation above a

that connects su,v to u connects it also to the vertex x ∈ Active(B1) such that u = mate(x),
a contradiction. Hence, in any case su,v is connected to u and has the v-connecting label in
val(t〈a〉). Thus additional |A2| labels must exists in val(t〈a〉). By symmetry, additional |B2|
vertices must exists in val(t〈a〉).

Since labels 1, 2, and 3 are not counted in the formula of Observation 6 the next obser-
vation follows.

Observation 7. k ≥ |Active(A1)| + |A2| + |B2| + 3.

Now we start the process of constructing a sequential k-expression which defines G′′. At
each step we show that no more than k labels are used. Moreover, the η-operations added
at each step connect special vertices of the form sx,y to x and y, which implies that all edges
added in the process belong to G′′. Finally, we show in a sequence of observations that for
each regular vertex x of G′′ the edges which connect x to all its neighbors in G′′ exist in the
sequential cwd-expression that we construct. Thus this expression satisfies the conditions of
the lemma.

Let e1 denote the expression obtained from t〈c〉 as follows:
1. Omit all the special vertices of the form sx,y such that both x and y do not occur in

val(t〈c〉).
2. Add immediately above c the following sequence of η-operations: for each special

vertex s = sx,y such that s and x (y) occur in val(t〈c〉) but are not adjacent in val(t〈c〉), add
an η-operation which connects s and x (y).

Observation 8. For each vertex u ∈ Dead(B1), val(e1) includes all the edges connecting u

to all its neighbors in G′′.

Proof of Observation 8. Let u be a vertex in Dead(B1) and let s be a neighbor of u in G′′.
Clearly, s is a special vertex of the form s = su,v where v is a regular vertex which is a
neighbor of u in G. Suppose u is not adjacent to s in val(t〈c〉). Since u has a dead label in
val(t〈c〉), it follows that u is not adjacent to s in val(t), a contradiction. Thus, u is adjacent
to s in val(t〈c〉), and therefore the special vertex s is not omitted in step 1 of the construction
of e1. Thus, u is adjacent to s in e1.

Let e2 denote the expression obtained from e1 as follows:
1. For each vertex x such that val(e1) includes all the edges connecting x to all its

neighbors in G′′, add a ρ-operation which renames the label of x to the dead label 1.
2. Omit all the special vertices of the form sx,y such that x ∈ Active(B1) and y = mate(x).
3. For each regular vertex u ∈ Active(B1) add the following sequence of operations:
3.1. A ρ-operation which introduces mate(u) with label 3. Note that since t has Prop-

erty 2, label 3 is not used in val(t〈a〉), which implies that this label is not used at the root
of e1.

3.2. A 1-⊕-operation which introduces s = su,mate(u) with label 2. Note that since t has
Property 2, label 2 is not used in val(t〈a〉), which implies that this label is not used at the
root of e1.

3.3. An η2,3-operation which connects mate(u) and s.
3.4. An η2,`-operation which connects u and s, where ` is the label that u has in val(t〈a〉).

18

3.5. A ρ2→1-operation renaming the label of s to the dead label 1.
3.6. A ρ`→1-operation renaming the label of u to the dead label 1.
3.7. A ρ3→`-operation renaming the label of mate(u) to the label it has in val(t〈a〉).

Observation 9. For each vertex u ∈ Active(B1), val(e2) includes all the edges connecting u

to all its neighbors in G′′.

Proof of Observation 9. Let u ∈ Active(B1) and let s be a neighbor of u in G′′. Clearly, s

is a special vertex of the form s = su,v where v is a regular vertex which is a neighbor of u

in G. Suppose v 6= mate(u). If s is not in val(t〈c〉) then the η-operation above c in tree(t)
which connects s to u connects it also to mate(u), a contradiction. Thus, both s and u are
in val(t〈c〉). By step 2 of the construction of e1, u and s are adjacent in val(e2). Suppose
v = mate(u). By step 3.4 of the construction of e2, s and u are adjacent in val(e2).

Let e3 denote the expression obtained from e2 by adding the following sequence of oper-
ations immediately above the root of tree(e2):

1. For each vertex u ∈ A2 ∪ B2, if there is no u-connecting label in val(e2), add a 1-
⊕-operation which introduces u with a unique label `u (distinct from 1, 2, and 3). Otherwise,
let ` denote the u-connecting label in val(e2) (note that we assume that the label ` is unique,
otherwise we can add ρ-operations which unify all the u-connecting labels to a unique label),
and add the following sequence of operations:

1.1. A 1-⊕-operation which introduces u with label 3.
1.2. An η3,`-operation which connects u to all the vertices having a u-connecting label

in val(e2).
1.3. A ρ`→1-operation renaming label ` to the dead label 1.
1.4. A ρ3→`-operation renaming the label of u to `.
2. For each special vertex s = sx,y such that both x and y are in Active(A1) ∪ A2 ∪ B2,

add the following sequence of operations:
2.1. A 1-⊕-operation which introduces s with label 2.
2.2. An η2,`x

-operation, which connects s to x, where `x is the (unique) label of x at that
point.

2.3. An η2,`y
-operation, which connects s to y, where `y is the (unique) label of y at that

point.
2.4. A ρ2→1-operation renaming the label of s to the dead label 1.
3. For each regular vertex u ∈ B2 \NXq, add a ρ`u→1-operation renaming the label of u

to the dead label 1, where `u is the (unique) label that u has at that point.

Observation 10. e3 is a k-expression, and labels(val(e3)) ≤ |Active(A1)|+ |NXq|+ |A2|+1.

Proof of Observation 10. The expression e1 is constructed from t〈c〉 without adding new
labels. The expression e2 is constructed from e1 using the labels of e1 in addition to the
labels 1, 2, and 3 which are already considered in counting the k labels of t. Thus, e2 is a
k-expression.

In the construction of e3 from e2 (described above) the highest number of labels used is
immediately before the completion of step 2 (which is the same as the number of labels used
immediately before the completion of step 1). At that point all the vertices in Active(A1) ∪
A2∪B2 have unique labels, the vertices in B1 have label 1, the last special vertex considered
has label 2 and all the other special vertices have label 1. Thus the total number of labels
used at that point is at most |Active(A1)| + |A2| + |B2| + 2 which, by Observation 7, is less
than k. When step 2 is completed the number of labels is reduced by one, since the last
special vertex considered gets label 1. After step 3 is completed the number of labels is
reduced by |B2 \ NXq|.

19

Let f0 = e3 and for 1 ≤ i ≤ q let fi be the expression obtained by adding the following
sequence of operations immediately above the root of tree(fi−1):

1. A 1-⊕-operation which introduces xq−(i−1) with a unique label, denoted by `(xq−(i−1)).
2. For each special vertex s = sx,y such that x = xq−(i−1) and y is in NXq−(i−1) add the

following sequence of operations:
2.1. A 1-⊕-operation which introduces s with label 2.
2.2. An η2,`(xq−(i−1))-operation, which connects s to xq−(i−1).
2.3. An η2,`y

-operation, which connects s to y, where `y is the (unique) label of y at that
point.

2.4 A ρ2→1-operation renaming the label of s to the dead label 1.
3. For each regular vertex u ∈ NXq−(i−1) \NXq−i, add a ρ`u→1-operation renaming the

label of u to the dead label, where `u is the (unique) labels that u has at that point.

Observation 11. For each vertex u ∈ B2, val(fq) includes all the edges connecting u to all
its neighbors in G′′.

Proof of Observation 11. Let u be a vertex in B2 and let s be a neighbor of u in G′′. Clearly,
s is a special vertex of the form s = su,v where v is a regular vertex which is a neighbor of u

in G. If v ∈ Active(A1)∪A2∪B2, then the s is connected to u by one of the two η-operations
added in steps 2.2 and 2.3 of the construction of e3. Suppose v ∈ B1. By Observations 8 and
9, s is connected to v in val(e2). Thus, s has a u-connecting label in val(e2) and is connected
to u in step 1.2 of the construction of e3. The last case to consider is when v is in Dead(A1).
In this case v = xq−(i−1) for some i ∈ {1, . . . , q} and u must be in NXq−(i−1). Thus, u

(denoted as y) is connected to s in step 2.3 of the construction of fi.

Observation 12. For 0 ≤ i ≤ q, the fi is a k-expression, and labels(val(fi)) ≤ |Active(A1)|+
|A2| + |NXq−i| + 1 + i = |A| + |NXq−i| + 1 − (q − i).

Proof of Observation 12. The proof is by induction on i. For i = 0 the claim follows from
Observation 10, hence assume i > 0. It follows by Observation 10 that the number of
labels used in e3 is at most k. The highest number of labels used in the construction of fi

from fi−1 is immediately after step 2.1 is completed. At that point the number of labels
used is equal to labels(val(fi−1)) plus one new label for xq−(i−1) plus the label 2 used for
introducing the special vertex at step 2.1. By the inductive hypothesis this number is at
most |A| + |NXq−(i−1)| + 3 − (q − (i − 1)) which by Observation 4 is less than k. At the
completion of step 2 of the construction of fi the number of labels is reduced by one since
the label 2 is renamed to 1. At the completion of step 3. the number of labels is reduced by
|NXq−(i−1) \NXq−(i)| which gives the claimed formula for labels(val(fi)).

Let t′ denote the expression obtained from fq by adding the following sequence of oper-
ations immediately above the root of tree(fq):

1. For each special vertex s = sx,y such that x ∈ Dead(A1) and y ∈ A add the following
sequence of operations:

1.1. A 1-⊕-operation which introduces s with label 2.
1.2. An η2,`x

-operation, which connects s to x, where `x is the unique label of x in val(fq).
1.3. An η2,`y

-operation, which connects s to y, where `y is the unique label of y in val(fq).
1.4. A ρ2→1-operation renaming the label of s to the dead label 1.

Observation 13. For each vertex u ∈ A, val(t′) includes all the edges connecting u to all
its neighbors in G′′.

20

Proof of Observation 13. Let u be a vertex in A and let s be a neighbor of u in G′′. Clearly,
s is a special vertex of the form s = su,v where v is a regular vertex which is a neighbor of
u in G. We consider the following cases:

Case 1: Suppose u ∈ Active(A1). If v ∈ Active(A1) ∪ A2 ∪ B2, then u is connected to s

in step 2.2 or step 2.3 of the construction of e3. If v ∈ Active(B1), then u must be equal to
mate(v) and is connected to s in step 3.3 of the construction of e2. If v ∈ Dead(A1), then
u (denoted as y) is connected to s in step 1.3 of the construction of t′. The last case to
consider is when v is in Dead(B1). In this case s must occur at c which implies that the
η-operation above a in tree(t) which connects s to u also connects s to the vertex z such that
u = mate(z), a contradiction. Thus, the case when v is in Dead(B1) is not possible.

Case 2: Suppose u ∈ A2. If v ∈ Active(A1) ∪ A2 ∪ B2, then u is connected to s in step
2.2 or step 2.3 of the construction of e3. If v ∈ B1, then s must have a u-connecting label in
val(e2) and is connected to u in step 1.2 of the construction of e3. If v ∈ Dead(A1), then u

(denoted as y) is connected to s in step 1.3 of the construction of t′.
Case 3: Suppose u ∈ Dead(A1). If v ∈ A, then u (denoted as x) is connected to s in

step 1.2. of the construction of t′. If v ∈ Active(B1), then s must occur at b, which implies
that the η-operation above a in tree(t) which connects s to v also connects s to mate(v),
a contradiction. If v ∈ Dead(B1) then, since s must occur at b, s is not connected to v in
val(t), a contradiction. The last case to consider is v ∈ B2. Since u ∈ Dead(A1), u = xq−(i−1)

for some i ∈ {1, . . . , q}, and v ∈ NXq−(i−1). Thus, u is connected to s in step 2.2 of the
construction of fi.

Observation 14. The expression t′ defines G′′.

Proof of Observation 14. From the construction of t′, it is clear that all the η-operations of
t′′ add edges which belong to G′′. To complete the proof we show that all edges of G′′ exist
in val(t′). Let e = uv be an edge of G′′. By definition of G′′ one of the two endpoints of
e (say u) is a regular vertex. If u ∈ A, then e is present in val(t′′) by Observation 13. If
u ∈ B1, then e is present in val(t′′) by Observations 8 and 9. If u ∈ B2, then e is present in
val(t′′) by Observation 11.

Observation 15. The expression t′ is a sequential k-expression.

Proof of Observation 15. Since t has Property 6, a is the unique (> 1)-⊕-operation in t,
which implies that t〈c〉 is sequential. The expression t′ is constructed by adding to t〈c〉 a
sequence of operations which are either η, ρ, or 1-⊕-operations. Thus, t′ is a sequential
expression. To complete the proof we show that at most k labels are used in t′. By Ob-
servation 12, the number of labels used in fq is at most k. The highest number of labels
used in the construction of t′ from fq is equal to labels(val(fq)) plus one new label which is
used to introduce special vertices (with label 2). By Observation 12 this number is at most
|A| + |NX0| + 1 which, by Observation 5, is less than k.

Lemma 13 follows now from Observations 14 and 15.

Combining the previous lemmas we now get a proof of Theorem 3.

Proof of Theorem 3. Let t be a k-expression defining G′′.
By Lemma 7, there exists a (k+4)-expression t1 defining G′′ such that t1 has Property 3.
By Lemma 8, there exists a (k+6)-expression t2 defining G′′ such that t2 has Property 4.
By Lemma 9, there exists a (k+6)-expression t3 defining G′′ such that t3 has Property 5.
By Lemma 11, there exists a (k+6)-expression t4 defining G′′ such that t4 has Property 6.
By Lemma 12, there exists a (k+6)-expression t5 defining G′′ such that t5 has Property 7.
By Lemma 13, there exists a sequential (k + 6)-expression t′ which defines G′′. This

completes the proof of Theorem 3.

21

4 Final remarks

We have shown that the clique-width of a graph cannot be computed in polynomial time
unless P = NP, and we are left with the question on the parameterized complexity of clique-
width: what is the complexity of deciding whether the clique-width of a graph does not
exceed a fixed parameter k? In particular, the following questions remain open:

Question 1. Is it possible to recognize graphs of clique-width at most 4 in polynomial
time?

Question 2. If k is a fixed constant, is it possible to recognize graphs of clique-width at
most k in polynomial time?

Question 3. Is the recognition of graphs of clique-width at most k fixed-parameter
tractable? I.e., is it possible to recognize graphs of clique-width at most k in time O(f(k)nc),
where n denotes the size of the given graph, f is a computable function, and c is a constant
which does not depend on k.

Obviously, a positive answer to Question 1 is a necessary pre-condition for a positive
answer to Question 2, and a positive answer to Question 2 is a necessary pre-condition for a
positive answer to Question 3.

Acknowledgement

We thank Derek Corneil for introducing us to the problem and for all the inspiring discus-
sions.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a
k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, 1987.

[2] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth,
pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238–255, 1995.

[3] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. A. Reed, and U. Rotics. Polynomial time
recognition of clique-width ≤ 3 graphs (extended abstract). In G. H. Gonnet, D. Panario,
and A. Viola, editors, Theoretical Informatics, 4th Latin American Symposium (LATIN
2000), volume 1776 of Lecture Notes in Computer Science, pages 126–134, 2000.

[4] B. Courcelle, J. Engelfriet, and G. Rozenberg. Context-free handle-rewriting hypergraph
grammars. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Graph-Grammars and
their Application to Computer Science, 4th International Workshop, Bremen, Germany,
March 5–9, 1990, Proceedings, volume 532 of Lecture Notes in Computer Science, pages
253–268, 1991.

[5] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory of Computing Systems, 33:125–150, 2000.

[6] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Proving NP-hardness for
clique-width I: non-approximability of sequential clique-width. Electronic Colloquium on
Computational Complexity, Technical Report TR05-081, Revision 01, 2005.

[7] F. Gurski and E. Wanke. Minimizing NLC-width is NP-complete. Extended abstract
accepted for WG 2005.

[8] Ö. Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition—
relationships and results for random graphs. In Proceedings of the Twenty-ninth South-
eastern International Conference on Combinatorics, Graph Theory and Computing (Boca
Raton, FL, 1998), volume 132 of Congr. Numer., pages 39–60, 1998.22

[9] M. Karpinski and J. Wirtgen. On approximation hardness of the bandwidth problem.
Technical Report TR97-041, ECCC, Electronic Colloquium on Computational Complex-
ity, 1997.

[10] S. Oum and P. Seymour. Approximating clique-width and branch-width. Submitted,
Oct. 2004.

[11] E. Wanke. k-NLC graphs and polynomial algorithms. Discr. Appl. Math., 54(2-3):251–
266, 1994. Efficient algorithms and partial k-trees.

23

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

