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Abstract

This paper introduces a framework for quantum exact learning via
queries, the so-called quantum protocol. It is shown that usual pro-
tocols in the classical learning setting have quantum counterparts. A
combinatorial notion, the general halving dimension, is also introduced.
Given a quantum protocol and a target concept class, the general halv-
ing dimension provides a lower bound on the number of queries that
a quantum algorithm needs to learn. For usual protocols, this lower
bound is also valid even if only involution oracle teachers are con-
sidered. The general halving dimension also approximates the query
complexity of ordinary randomized learners. From these bounds we
conclude that any quantum polynomially query learnable concept class
must be also polynomially learnable in the classical setting.

1 Introduction

In recent years many efforts have been done in order to understand the power
of quantum devices that can get partial information about an unknown
function making some type of oracle calls, see for instance [4, 6, 9, 10, 11,
12, 13]. A main goal of this research is to know how many queries (or
oracle calls) a quantum device requires to find out some characteristic of
the hidden function , and how it relates to the number of oracle interactions
a classical algorithm needs. For example, Deutsch and Jozsa [9] show that
exponentially fewer black-box oracle calls (also called membership queries)
are needed in the quantum model in order to determine whether the hidden
function is constant or it is balanced between outputs 0 and 1.

Quantum concept learning can be seen as an special case of this type of
research where the goal of the algorithm is to figure out which the hidden
function is. Here several results are known. Bshouty and Jackson [8] define a

quantum version of the PAC model introduced by Valiant [15], and provide
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a quantum learning algorithm for DNF that do not require membership
queries, a type of queries used by its classical counterpart. Servedio and
Gortler [12] show several bounds on the number of oracle calls required to
learn on the quantum PAC setting and on the more demanding scenario
of exact learning from membership queries. For these both specific learning
settings they conclude that are not possible exponential improvements in the
number of oracle interactions. Finally, Hunziker et al [11] show a general
technique for quantum exact learning from membership and restricted
equivalence queries (equivalence queries without counterexamples) that is
shown to provide, in a couple of specific cases, more efficient learning
algorithms (in terms of number of queries) than is possible classically.

This paper has two goals. The first one is to introduce a general
framework for quantum exact learning via queries which sets when a
class of queries can be considered to define a learning game played by
quantum devices. We note that, as far as we know, the only queries
that have been used in the literature have been membership and restricted
equivalences [11, 12]. This contrast with the classical setting where a rich
variety of queries have been considered, see for instance Angluin [1]. The
second goal is to study the number of queries (or query complexity) required
by exact learners. We ideally want to obtain lower and upper bounds on the
query complexity that shall be valid under any choice of queries defining the
learning game.

According to the first goal, we introduce the quantum protocol con-
cept, a notion that allows us to define a learning game played by quantum
machines where popular queries from the classical setting, as membership,
equivalences, subset and others defined in [1] have natural quantum counter-
parts. Specific quantum protocols for these queries are presented. Learning
games defined by quantum protocols for membership and membership and
restricted equivalences agree with learning settings present in [12] and [11].

With respect to the second goal, we define a combinatorial function,
the general halving dimension, GHdim, having some nice features. In
the quantum learning scenario, we show a lower bound for the query
complexity in terms of GHdim that is valid for any quantum protocol and
for any target concept class. This lower bound extends the previous one
in [12] for the specific protocol of membership queries. In the classical
learning model, we prove that GHdim approximates the query complexity
of randomized learners. This characterization extends the previous ones
provided by Simon [14] for the specific ordinary protocols of membership and
membership and equivalence queries. From these two results we conclude
that, fixed an arbitrary set of queries, any quantum polynomially query



learnable concept class is also polynomially learnable in the ordinary setting.
This was only known for the specific case of membership queries [12].

1.1 Organization

We review basic definitions concerning classical exact learning and quantum
computation in Section 2. The quantum exact learning framework is defined
in Section 3, where concepts of quantum protocol (Section 3.1), quantum
teacher (Section 3.2) and answering scheme (Section 3.4) are introduced.
The query complexity of exact learners is analyzed in Section 4. First, we
introduce the general having dimension (Section 4.1). We show a lower
bound for the quantum query complexity in terms of GHdim (Theorem 8).
Finally, we prove that GHdim approximates the query complexity of
ordinary randomized learners (Theorems 10 and 12). The equivalence of
the classical and quantum exact learners with respect to the polynomial
learnability is shown in Section 5 (Theorem 13).

2 Preliminaries

2.1 Basic Definitions

Given a complex number «, we denote by o* its complex conjugate and by
|a| its module. For complex vectors v and w, the l3-norm (Euclidean norm)
of v is expressed by ||v||, the [;-norm by ||v||; and the inner product of v and
w by (v|w). Note that ||v]| = (v|v)'/2. Abusing notation, we also denote the
cardinality of a set A by |A|. For b,d € {0,1} we write b& d to denote b+ d
(mod 2). For n-bit strings @ = (z1,...,2,) and y = (y1,...,yn) we write
z @y to denote (21 B Y1, .., Tn D Yn)

The set of all Boolean functions defined on {0,1}" is denoted by B,. A
concept f is a function of B,. Equivalently, a concept f can be viewed as
the subset {z € {0,1}" | f(z) = 1}. A concept class C'is a subset of B,,.

2.2 Classical Exact Learning

In query learning two players, the learner and the teacher, play a game. The
learner is a (classical) randomized algorithm and the teacher is an oracle
function. Some concept class C' (the target concept class) is known to both
players and the teacher chooses a concept in C' (the target concept) that is
unknown to the learner. The goal of the learner is to find out what concept
is, asking the teacher some type of queries.



A query is a question that the learner poses to the teacher. The most
popular in the literature are membership queries and equivalence queries.
Other type of queries, as subset, superset and restricted equivalence, have
been defined, see [1]. In general, the setting of the learning game is complete
when the learning protocol is defined. The protocol is the agreement about
which the admissible queries are and, for each target concept, which the
possible answers for such queries are. Answers provide a property of the
target. A teacher is valid for the target concept f and the protocol P if it
replies to each query ¢ choosing one of the admissible answers in P for ¢
and f.

A concept class C' is learnable with k& queries under protocol P if there
exists a randomized learning algorithm L such that for any f € C' and for
any valid teacher T' that answers with respect to f using P, with probability
at least 2/3 the learner L outputs a circuit h such that h(z) = f(z) for all
x € {0,1}" after at most & interactions with T'. For a class C' C B, and
a protocol P, the query complezity, is the smallest & > 0 such that C is
learnable with k queries under P.

2.3 Quantum Computation

Detailed descriptions of quantum Turing machines and quantum oracle
computations are provided in [6, 7]. In spite of assuming the reader is
familiar with basic aspects of quantum computers, we provide below a short
summary of essential elements.

To each quantum Turing machine M corresponds a inner-product vector
space S. The vectors of S are finite complex linear combinations of
configurations (or instantaneous descriptions) of M. The elements of S
are also so-called superpositions and the complex coefficients defining a
vector of S are called amplitudes. The inner-product is defined by given
an orthonormal basis for S, the vectors of this basis are the configurations
of M. The time evolution operator of a quantum Turing machine M is fixed
by a unitary matrix Ups, which defines a linear operator on S that conserves
the distance. As any unitary operator on S has a unique unitary extension in
the Hilbert space defined as the Cauchy closure of S, we can think that Uy
is an unitary transformation in a Hilbert space. This is necessary to show
that computations performed by quantum Turing machines are consistent
with axioms of quantum mechanics.

At step j of the computation of M, the time evolution operator Ups
is applied to a superposition of configurations (a vector |v;) of S). The
initial superposition |vg) is the linear combination of configurations having



all amplitudes value 0 except the only one corresponding to the initial
configuration of the machine that has value 1.

A quantum Turing machine M finishes at step t if the corresponding
superposition |v;) only has nonzero amplitudes on final configurations (those
whose state is a final one) and previous superpositions |v;) where j < t give
amplitude zero to each final configuration. Let us assume that M finishes
at step t and that |v;) = > ag|z) is the corresponding superposition. Now
the machine M chooses to be in a single configuration rather than in a
superposition of configurations making an observation (or measurement).
The superposition is then changed so that a single configuration has
amplitude 1 and all others are zero. Formally, the observation operation
provides configuration |z) with probability |a,|*. Note that Y. |az|* =
because |v;) has norm 1 (it is obtained by applying a unitary operator to an
initial |vg) superposition that has norm 1).

2.3.1 Oracle Quantum Turing Machine

We follow definitions in [6]. An oracle quantum Turing machine has an
special query tape (that has to accomplish some rules of behavior, see [6])
and two distinguished internal states: a pre-query state p; and a post-query
state py. A query is executed whenever the machine enters the pre-query
state. In this case, it applies a fixed unitary operator U to the current
contents |¢) of the query tape, replacing it by U|g). In order to ensure that
a single machine cycle ought not to make infinite changes in the tape, we
require that Ul|q) have amplitude zero on all but finitely many basis vectors.
The use of this kind of unitary oracles still provide unitary time evolution for,
in other aspects, well-defined quantum Turing machines. Another natural
restriction one may wish to impose upon U is that it be an involution,
U? = I, so that the effect of an oracle call can be undone by a further call
on the same oracle. This may be crucial to allow proper interference to take
place.

3 Quantum Exact Learning

The learning game is similar to classical one but now the learner is a
quantum algorithm and the teacher is a quantum oracle function. The game
is completely defined when the learning protocol is provided.



3.1 Quantum protocols

We review first the classical protocol notion introduced in [2, 3]. A classical
protocol specifies which the admissible queries are and, for each query, which
the valid answers are. Queries belong to a finite set () and answers are from
a finite set A. Formally, a classical protocol P is a subset of @ x A that
satisfies the two requirements listed below. Their justification can be found

in [2, 3].

e To each element (g,a) of P corresponds a subset of B,, so-called
consistent set. Fixed the query ¢, the Boolean functions of this set
are said to be consistent with answer a. It is also assumed that two
different answers to query ¢ define different consistent sets.

e Completeness: Given any query ¢ of () and any function f in B, there
exists an answer a such that (¢,a) is an element of P and function f
is consistent with a.

Abusing language we will also say that answer @ of ¢ is consistent with
function f when f is consistent with (g, a).

For technical convenience, we will impose two extra requirements to
a classical protocol P in order to be a valid quantum protocol. Before
stating the new requirements, let us see an example. Quantum membership
queries (or quantum black-box oracle calls) have been frequently used in the
literature, see for instance [4, 6, 9, 10, 11, 12]. A quantum black-box oracle
for function f in B, transforms (z,b) € {0,1}" x {0,1} to (2,06 f(z)).
Thus, in the corresponding protocol the set of queries and the set of answers
are {0,1}"x {0, 1}. Valid answers to query (z, b) are (z,b") where b’ € {0, 1}.
So, tuples of the protocol are ((z,b), (z,b")) for all z in {0,1}" and for all b
and b in {0,1}. Consistent Boolean functions with answer (z,d’) to query
(z,b) are those functions that evaluates to b’ @ b on z. It is easy to see that
this protocol satisfies the two requirements above.

Note that under this protocol we can think that queries (z,b) and (y, d)
are equivalent whenever x = y. Intuitively, the valid answers of query
(z,0) define the same set of consistent function sets as the answers of query
(z,1). Observe also that, for any valid answer a, the consistent function sets
defined by answer a to queries (z,0) and (z,1) are different. Moreover, if
x # y queries (z,b) and (y,d) do not share any answer.

We want that any quantum protocol preserve these properties pointed
out for the membership case. The reason will be clear later. In general,
given a classical protocol P C () X A, it defines an equivalence relation on



Q): queries ¢; and ¢; are related if their respective sets of consistent function
sets defined by their (respective) valid answers coincide. If queries ¢; and g,
belongs to the same equivalence class we say that they are equivalent ones.
The equivalence class of query ¢ is denoted by [¢] and the set of equivalence
classes by [Q].

The extra requirements that a classical protocol has to accomplish in
order to be a quantum one impose some compatible behavior of the protocol
with respect to the equivalence relation just defined. Formally, they are the
following.

o If ¢; and ¢; are non-equivalent queries then they do not share any
answer.

o If @ is valid answer for two different queries ¢; and ¢; then the consistent
sets of (¢;,a) and (g;, a) are different.

One may wonder what the reason is to define protocols accepting
different queries to have the same role because they define the same
equivalence class. It is straightforward to see that this is useless in the
classical learning scenario. However, accepting this behavior for a quantum
protocol, it will allow us to define teachers that as quantum oracles, in
addition to be unitary operators are also involutions, a property that one
may wish to impose to a quantum oracle to allow proper interference to take
place, as we have noted in Section 2.3.1.

Example 1. Several examples of quantum protocols:

Membership query protocols.

Equivalence queries protocol. Fixed a hypothesis class H, where H
is a subset of B,, queries and answers are tuples (h,z,b) belonging to
H x {0,1}" x {0,1}. Valid answers to query (h,z,b) are (h,z & y,b) for
any y € {0,1}" and (h,z,1@b). The consistent set corresponding to answer
(h,z @& y,b) are those Boolean functions f such that f(y) # h(y). The
consistent set of answer (h,z,1 @ b) has only a single element, the function
h. Note that queries (h,z,b) and (g, z, d) are equivalent whenever h = g. It
is straightforward to see that this defines a quantum protocol.

Restricted equivalence queries protocol.

Subset query protocol. Queries and answers are tuples (h, z,b) belonging
to H x {0,1}" x {0,1}. Valid answers to query (h,z,b) are (h,z & y, b) for
any y € {0,1}" such that h(y) = 1 and (h,z,1 & b). The consistent set
corresponding to answer (h,z @ y,b) are those Boolean functions f such
that f(y) = 0. The consistent set of answer (h,z,16 b) are those functions



f such that f > h. Note that queries (h,z,b) and (g, z,d) are equivalent
whenever h = ¢g. This defines a quantum protocol.

3.2 Quantum Teachers

Let P C @ x A be a quantum protocol. We associate to the set of queries
() a Hilbert space Sg defined as follows. Vectors of Sg are superpositions
of query vectors |¢) where ¢ is a query of . The inner product of Sq is
the one defined by considering the set of query vectors {|¢) | ¢ € Q} as
an orthonormal basis. In a similar way, we also define a Hilbert space Sz
corresponding to the set of answers A.

Let f be a Boolean function. A quantum teacher for f under protocol
P is a unitary operator T transforming each basis query vector |¢) to a
superposition in S4 of valid answers according to P that are consistent with
f. Quantum teacher T for f is said to be a permutation teacher whether
it transforms each basis query |¢) to a consistent basis answer |a). When
Sg = S4 and the quantum teacher operator T' holds that 7% = I, we say
that T is an involution teacher. Involution teachers shall correspond with
involution oracle gates.

Example 2. Classical deterministic teachers for membership, equivalence,
subset and other popular queries trivially define corresponding permutation
teachers in the quantum setting. Note that they are also involutions
teachers.

3.3 Query Complexity

A superposition |@) of an oracle quantum machine is said to be a query
superposition if there is a configuration with nonzero amplitude in |¢) whose
state is the pre-query one. Let P be a quantum protocol. A concept class
C C B, is learnable under protocol P with m query superpositions if there
exists an oracle quantum Turing machine L —so-called learner— such that for
any target function f in C and for any quantum teacher T for f under P:

1. LT gets a final superposition and with probability at least 2/3, outputs
a circuit for f.

2. The computation of L7 yields at most m query superpositions.

For target class C' and quantum protocol P we define the quantum query
complezity, QC(C, P), as the smallest m such that C is learnable with m
query superpositions under P. We note that this query complexity notion



is consistent with the definition given in Beals et al [4] (see also Servedio et
al [12]) for quantum networks.

3.4 Answering Schemes

Let P C @ x A be a quantum protocol. A subset 7 of P is said to be an
answering scheme if:

1. For any query ¢ € @ there is exactly one answer a such that (¢, a)
belongs to 7.

2. If (gi,a;) and (¢;,a;) are tuples of T and ¢; and ¢; are equivalent
queries then (g;,a;) and (g;,a;) define the same consistent set of
Boolean functions.

The following lemma is an immediate consequence of the quantum
protocol and the answering scheme definitions.

Lemma 3. Answers of an answering scheme are all different.

Thus, observe that answering schemes extend naturally to unitary
transformations from Sg to S4 and they can be considered as quantum
oracle functions. However, for an answering scheme 7T it is possible that
there is no function in B, consistent with all tuples in 7. This contrast
with the quantum teacher notion introduced above where there is always a
consistent Boolean function with all teacher answers. As we will see later,
answering schemes have an adversary role in our arguments in Section 4.2.

Let L be a quantum learner under protocol P and let 7 be a answering
scheme of P. We consider the computation of L when oracle calls are
solved according to 7 and we denote by L7 the resulting quantum oracle
machine. Let |#;) be the superposition of L7 at time i and let wy(|¢;)) be
the sum of squared amplitude modules of configurations in superposition |¢;)
which are querying ¢; i.e. wq(|¢i)) = >, |ac|?
configurations ¢ querying ¢ and «. denotes the amplitude of ¢ in |¢;). We
refer to wy(|¢;)) as the query magnitude of ¢ in |¢;). We naturally extend
this concept to query classes: wg(|¢)) is the sum of query magnitudes
wy(|¢;)) where ¢’ is any query equivalent to gq.

For the specific case of membership queries Bennet et al (Theorem 3.3
in [6]) showed that the final outcome of L’s computations cannot depend very
much on the oracle’s answers to queries of little magnitude. We extend this
result to any quantum protocol in Theorem 5 below. We give a fully detailed
proof for two reasons. First, we think that it is a non-trivial extension of

where the sum extends over



the original theorem statement. Second, as we point out later, there is an
incorrect assert in the proof given in [6]. We show first the following lemma
where we assume some arbitrary underlying protocol.

Lemma 4. Let |¢) be a valid superposition of LT. Let G C [Q] be a set of
query classes and let T be any answering scheme that agrees with T on any
query q such that [q] ¢ G. Let U and U be, respectively, the unitary time

operators of LT and LT. Then, ||U|¢) — U|#)||> < 43 gec wig([9)-

Proof. Let |E) = U|¢) — U|#) be the error vector. Assume that |¢) =
> eer6 @+ |p) where I is the set of configurations querying some query
equivalent to those defined by G and |¢) is a superposition of configurations
with no query in G. Then,

1E]? = ) acaj(UdUdy+ > acaiy(UcUdy -
c,deIG c,del
Y acai(UeUd) — Y acay(UcUd).
c,deIG c,delI

In this expression, by orthogonality the first two summands are both
equal to E[q]EG wig(|¢)). For the last two summands observe that all scalar

products are zero except for those configurations ¢ and d such that Ue = Ud.
Fixed a configuration ¢q there is at most one dy where this equality happens
because the answers in a answering scheme are all different, see Lemma 3.
Let J be the set of pairs (cg, dp) having this property. Then,

Z acai(Uc|Ud) + Z ooy (Uc|lUd) = Z Qg 00, + Z ady 0, =

C,dEIG C,dEIG (Co,do)EJ (Co,do)EJ

Y 2Re(agal) < Y 2agllag| < D a4 lag? <2 wy(4).
(co,do)€T (co,do)€JT (co,do)€T laleG
Thus, [|E||* < 43 ec wig(4)- O

We note that the proof of Theorem 3.3 in [6] states (see first line in the
last paragraph of the proof) that || E|? = 2 > jglec Wg)(|#), that is a better
characterization than the inequality given by Lemma 4. However, we provide
a counterexample for this equality under the membership query protocol
(which is the protocol considered in [6]) in Appendix A.

Theorem 5. Let |¢;) be the superposition of LT at time i. Let e > 0.
Let F C {0,...,t — 1} x [Q] be a set of time-query class pairs such that

10



E(z‘,[q])eF'w[q](|¢i>) < i—i. For each i, let T; be any answering scheme that

agrees with T on any query q such that (i,[q]) ¢ F. Let |¢;) be the time t
superposition that L will get if the answer to each query instance (i,[q]) € F
is modified according to T;. Then, |||¢:1) — |¢1)]| < e.

Proof. Let U and Uj;, for i = 0,...,t — 1, be respectively the unitary time
operators of L7 and L7, We define |E;) to be the error vector in the ith
step caused by replacing answering scheme T by 7;. Then

|E;) = Ulgi) — Uil ).
So we have
|pr)y = Ulpi—1) = Up—i|dr—1) + |Ero) = ... =
Uiy - Upldo) + 23 Uiy - Ui [E).

Since all of the U; are unitary, ||U;—1 ...Ui+1|E;)|| = ||| Ei)||. By Lemma 4
we know the squared norm of each error vector |E;) is bounded by

42[‘1]6Fi wy(|¢i)) where set F; is {[¢] | (4, [¢]) € F}. Therefore,

llge) = |0)]1? < (e’ <
(SIS NENP) < 4 S gper wia(le) < €2

4 The Query Complexity of Exact Learners

4.1 The General Halving Dimension

Let C' C B,, be a concept class and let P be a quantum protocol. We
associate the parameter ghdim(V, P) to each subset V of C' with [V]| > 1.
This parameter is the smallest non-negative integer d satisfying the following
predicate: for any answering scheme 7 from P there exists a a subset S C T
of cardinality d such that at most half of the functions in V are consistent
whith all tuples in S. When there is no integer d satisfying the predicate,
ghdim (V, P) is defined to be co. The general halving dimension of C under
P, GHdim(C|, P), is the maximum of parameters ghdim(V, P). Thus,

GHdim(C, P) = max{ghdim(V,P) |V CCA|V]| > 1}.

11



The general halving dimension has two ancestors. One is the general
dimension concept introduced in [2], where it is shown to be a nice
characterization of the query complexity of deterministic learners in the
ordinary learning scenareo. The other one is the halving complexity
notion defined by Simon [14], that approximates the query complexity of
randomized learners in the classical setting. We prove below several bounds
for the query complexity in terms of the general halving dimension as much
for quantum protocols as for classical ones.

4.2 A Lower Bound for the Quantum Query Complexity

Lemma 6. Let us assume GHdim(C,P) > | > 1. There exists a set of
concepts V. C C with |V| > 1 and an answering scheme T such that for any

tuple (q,a) € T less than |ll| concepts from V do not satisfy (q,a).

Proof. For the sake of contradiction suppose that for each subset V of C
with |[V| > 1 and for any answering scheme 7 there exists a tuple (¢,a) € T
such that at least |ll| concepts from V' do not satisfy (¢,a). Fix a subset of
concepts V = V{ and let 7 be an answering scheme. Thus, it corresponds to
Vo a tuple (qo, ap) € T such that at least H;—"' concepts from Vj do not satisfy
(go,a0). Let Vi the subset of Vi consistent with (o, ag). By assumption,
[V1] <|V|[(1 —1/1). We repeat this process with V; instead of V and so on
and so forth. After [ iterations we get a subset V; of V' with |Vj| < |V]/2.
This implies that ghdim(V, P) <. O

Let [ be such that 1 <! < GHdim(C, P) and let V and 7 be respectively
the subset of C' and the answering scheme promised by Lemma 6. Inspired
by Servedio et al [12], we define the difference matriz M as the |V| x |Q|
zero/one matrix where rows are indexed by concepts in V, columns are
indexed by queries in @, and My, = 1 iff the Boolean function f is not
consistent with the answer a of ¢ in 7. By our choice of V and 7T, each

V]

column of M has less than -+ ones. Thus, the /; matrix norm of M is

|[M]|: < % The following lemma, which is a generalization of Lemma 6
from [12], shows that no quantum learning algorithm L with small query
complexity can effectively distinguish many concepts in V.

Lemma 7. Let L be a quantum learner with query complexity m. Lete > 0.
There are a set W C V and quantum teachers Ty for concepts f in W such
that:

LW > V|1 - 8

12



2. If |¢T1) denotes the final superposition of LT7 then, for any pair of
concepts f and g of W, it holds |||¢T7) — |¢T9)|| < e.

Proof. Let T be the answering scheme promised by Lemma 6. We define
a permutation teacher Ty for each f € V in the following way. Teacher
Ty answers to query ¢ with the answer a such that (¢,a) € 7 whenever f
is consistent with (¢, a). Otherwise, any consistent basis answer is chosen
in such a way that equivalent queries have equivalent answers. Note that
such permutation teacher can always be constructed and it defines a valid
answering scheme.

Let |¢7) be the i-th query superposition of L7. Let w(|¢7)) € RI®! be
the |@Q|-dimensional vector which has entries indexed by queries ¢ € @ and
which has wy(|#7)) as its ¢-th entry.

Let w¢(|¢7)) be the sum of all query magnitudes w,(|¢])) where query
¢q is such that f is not consistent with its corresponding tuple (¢,a) € T.
Note that w;(|¢])) is the magnitude in superposition |¢7) of those queries
where answering schemes T; and T are different. Moreover, observe
that Mw(|¢])) € RVl is a |V|-dimensional vector whose f-th entry is

precisely ws(|¢7)). Since ||M]||; < % and ||?U(|¢T>)||1 < 1 we have that
|Mw(i8T)ll < i e Epev wy(6])) < 7 Hence
m|V
33wl < L (1)

i=1 feV
Let us define the subset of concepts W = {f eV | X" wi(lo])) <
g%/8m}. By inequality 1, we have |[V\W| < 8m |V| . Finally, for any f € W,
Theorem 5 implies that |||qu Y — oI < 8/2. O

We can prove now a lower bound for the quantum query complexity

Theorem 8. Let P be a quantum protocol and let C' be a target concept
class. The learning query complezity of C' under P holds that

GHdim(C, P)
32 '

Proof. 1t is trivial if GHdim(C,P) is at most 1. Otherwise, let [ =
GHdim(C, P) — 1, let m = QC(C, P) and fix ¢ = 1/8. For the sake of
contradiction assume that m < +/1/32 and let L be a quantum learner
achieving this query complexity. By applying Lemma 7 there are at least
two target concepts f and g and, respectively, valid teachers T} and T,

QC(C,P) >

13



such that the final superposition |¢77) (respectively, |¢79), of LTs ( LT9)
satisfies |||¢77) — [¢T9)|| < 1/8. Tt is well known that performing the same
observation on two quantum superpositions of Euclidean distance at most
d induces distributions which have total variation distance at most 4§ [7].
So, distributions Dy and D, corresponding respectively to |¢77) and |¢7%)
are;lso that >-, g |Ds(h) — Dy(h)| < 1/2. This contradicts that L learns f
and g. U

We finally note that as teachers used in the proof of Theorem 8 are
permutation teachers. Thus, for popular protocols as the ones in Example 1,
the statement of this theorem is also valid even if only involution teachers
are considered as valid oracle functions.

4.3 An Upper Bound for the Query Complexity

In this section we provide an upper bound for deterministic learners
under classical protocols in terms of the general halving dimension. This
immediately yields an upper bound for the quantum query complexity. The
results below can be easily proved using arguments similar to those in [3, 2].
Here, P denotes any (classical) protocol.

Lemma 9. Let GHdim(C, P) = k. Then, any subset V of C with |[V| > 1
accomplish the followmg( ,?redicate. There exist a query q such that for any
valid answer a at least % concepts from V' do not satisfy (q,a).

(Proof omitted).
From Lemma 9 we get an upper bound for the query complexity.

Theorem 10. There is a deterministic leaner for the class C under protocol
P whose query complezity is bounded by 21n |C|GHdim(C, P).

(Proof omitted).

Note that Theorem 10 also applies to quantum protocols because any
quantum protocol is also a classical one. Moreover, since reversible Turing
machines can simulate any deterministic algorithm [5] the upper bound in
Theorem 10 also applies to the quantum query complexity.

Corollary 11. Let P be a quantum protocol. It holds that QC(C,P) <
21n |C|GHdim(C, P)
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4.4 The General Halving Dimension and the Query Com-
plexity of Randomized Learners

We show below that the general halving dimension also provides a charac-
terization of the query complexity of randomized learners (under classical
protocols) that is slightly better than the characterization given for the
quantum query complexity. The results in this section are straightforward
extensions of results by Simon [14].

Given a classical protocol P and a target concept class C, Simon defines a
halving game between two deterministic players and associates a complexity
to each halving game, the halving complezity. It can be easily shown that
GHdim exactly characterizes this complexity, as it is shown in [14] for the
halving dimension function under the specific protocol of membership and
equivalence queries. The halving dimension defined in [14] is nothing more
than an incarnation of the general halving dimension for the membership
and equivalence queries protocol, as it can be shown following arguments
in [3]. Theorem 3.1 in [14] provides a lower bound of the query complexity
of randomized learners in terms of the halving complexity. This theorem
immediately yields the following lower bound in terms of the general halving
dimension —where the constant is different from the one in the original
version because Simon defines the query complexity as an expected value—.

Theorem 12. Any randomized learner for the target class C under protocol
P with success probability 2/8 makes at least %GHdim(C’ , P) queries.

This theorem, jointly with Theorem 10, gives the promised characteri-
zation for the query complexity of randomized learners.

5 Polynomial Learnability

We assume in this section some fixed underlying protocol. In order to discuss
the polynomial learnability, we need to extend the concept class notion used
until now. In this section a concept class C' will be the union of former
concept classes, i.e. C' = U,C,, where C), is a subset of B,,. We also need a
fixed length notion / defined on concepts in C'. For instance, the length can
be the circuit size. In this case, the length of concept f, denoted by I(f),
is the length of the minimum circuit description for function f. We assume
that length notions are so that at most 2! concepts from C' have length less
than /.

Fixed a concept class C' = U,,C), and a length notion [/, a learner L for C
and [ is an algorithm that accomplish the following predicate. For each n and
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for any target concept f € C,,, given as inputs /(f) and n and provided that
a valid teacher answers the queries according to f, the algorithm L learns

f. Moreover, L is a polynomial query learner when its query complexity is

bounded by a polynomial on /(f) and n. A concept class is polynomially

query learnable when it has a polynomial query learner.

The following theorem can be shown from Theorems 8 and 10 by using

standard arguments.

Theorem 13. If C is quantum polynomially learnable, then C also has a
deterministic polynomial query learner.
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A Appendix

Let |¢o) be the superposition

1
A /2n-|-1

Y (l0) —[21)).

ze{0,1}"

Note that |¢p) can be easily obtained from |0"*!) by applying first the
operator H®"t! and then I®" @ Z, where H, Z and I are respectively the
Hadamard, Pauli-Z, and Identity unitary operators. Let f be the singleton
Boolean function that only evaluates to one on 0”. If a membership query
to f is done on superposition |¢y) we obtain as a result the superposition

L om1) - 070y + 3 J20) - [21)

|¢1> B \/W #07

Assume now the membership query on |¢g) is done to the null function
instead of f. This oracle call does not have any effect, so the superposition
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|¢) after the query is equal to |¢g). Note that according Definition 3.2
in [6], qono(]®0)) + qom1(|¢o)) is 5. On the other hand, the error vector

E) = |én) — |6}) is "

2 n n

(0D - [070)
whose squared norm is 5=. This number is greater than 2(qgono(|¢o) +
gon1(|¢0))), in contrast with the assert in the first line of the last paragraph
of the proof of Theorem 3.3 in [6].

Note that for n = 1, ¢ = 1/v/2, F = {(0,00),(0,01)} and T = 1 and
following the lines above, a counterexample for the theorem statement can
be easily obtained.
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