
Derandomized Squaring of Graphs∗

Eyal Rozenman
Department of Computer Science & Applied Mathematics

Weizmann Institute, Rehovot, Israel

Salil Vadhan†

Division of Engineering & Applied Sciences
Harvard University, Cambridge, Massachusetts

Abstract

We introduce a “derandomized” analogue of graph squaring. This op-
eration increases the connectivity of the graph (as measured by the second
eigenvalue) almost as well as squaring the graph does, yet only increases the
degree of the graph by a constant factor, instead of squaring the degree.

One application of this product is an alternative proof of Reingold’s re-
cent breakthrough result that S-T Connectivity in Undirected Graphs can be
solved in deterministic logspace.

1 Introduction

“Pseudorandom” variants of graph operations have proved to be useful in a va-
riety of settings. Alon, Feige, Wigderson, and Zuckerman [AFWZ] introduced
“derandomized graph products” to give a more illuminating deterministic reduc-
tion from approximating clique to within relatively small (eg constant) factors to
approximating clique to within relatively large (eg nε) factors. Reingold, Vadhan,
and Wigderson [RVW] introduced the “zig-zag graph product” to give a new con-
struction of constant-degree expander graphs. The zig-zag product and its relatives
found a number of applications, the most recent and most dramatic of which is
Reingold’s deterministic logspace algorithm [Rei2] for connectivity in undirected
graphs.

∗An extended abstract of this paper has appeared in RANDOM ‘05 [RV].
†Supported by NSF grant CCF-0133096, ONR grant N00014-04-1-0478, and US-Israel BSF

grant 2002246.

1

Electronic Colloquium on Computational Complexity, Report No. 92 (2005)

ISSN 1433-8092

In this paper, we present a pseudorandom analogue of graph squaring. The
square X2 of a graph X is the graph on the same vertex set whose edges are
paths of length 2 in the original graph. This operation improves many connectivity
properties of the graph, such as the diameter and mixing time of random walks of
the graph (both of which roughly halve). However, the degree of the graph squares.
In terms of random walks on the graph, this means that although half as many steps
are needed to mix, each step costs twice as many random bits. Thus, there is no
savings in the amount of randomness needed for mixing.

Our derandomized graph squaring only increases the degree by a constant fac-
tor rather than squaring it. Nevertheless, it improves the connectivity almost as
much as the standard squaring operation. The measure of connectivity for which
we prove this is the second eigenvalue of the graph, which is well-known to be a
good measure of the mixing time of random walks, as well as of graph expansion.
The standard squaring operation squares the second eigenvalue; we prove that the
derandomized squaring does nearly as well.

The main application of derandomized squaring we give here is a new logspace
algorithm for connectivity in undirected graphs, thereby giving a new proof of
Reingold’s theorem [Rei2]. Our algorithm, while closely related to Reingold’s
algorithm, is arguably more natural. Reingold’s algorithm is based on the zig-
zag product, and constructs a sequence of graphs with an increasing number of
vertices. Our analysis, based on derandomized squaring, only works on the vertex
set of the original input graph, and has a simpler analysis of the space requirements.
More significantly, it can be viewed as applying a natural pseudorandom generator,
namely that of Impagliazzo, Nisan, and Wigderson [INW], to random walks on the
input graph. Reingold himself [Rei1] conjectured that it should be possible to
use INW generator to solve undirected connectivity in logspace; we confirm his
conjecture by the relating the INW generator to derandomized squaring.

Below we describe the derandomized squaring and its application to undirected
s-t connectivity in more detail.

1.1 Derandomized Graph Squaring

Let X be an undirected regular graph of degree K .1 The square X2 of X has an
edge for every path of length 2 in X . One way to visualize it is that for every vertex
v in X , we place a clique on its K neighbours (this connects every pair of vertices
that has a length 2 path through v). The degree thus becomes K 2. (Throughout the
paper, we allow multiple edges and self-loops.)

1Actually, following [RTV], we actually work with regular directed graphs in the technical sec-
tions of the paper, but thinking of undirected graphs suffices for the informal discussion here.

2

In derandomized squaring, we use an auxiliary graph G on K vertices and
place it instead of a clique on the K neighbours of every vertex v (thus connecting
only some of the pairs of vertices which have a length 2 path through v). We denote
the resulting graph by X©s G.

If the degree of G is D, the derandomized square will have degree KD, which
will be smaller than K2. We will see, however, that if G is an expander, then even
if D is much smaller than K , the derandomized square of X with respect to G
improves connectivity similarly to standard squaring.

Our measure of connectivity is the second eigenvalue λ ∈ [0, 1] of (the random
walk on) the graph; small λ indicates that the random walk mixes rapidly and that
the graph has good expansion (i.e. is highly connected). If the second eigenvalue
of X is λ then the second eigenvalue of X2 is λ2. The second eigenvalue of the
derandomized square is not very far. For example, we prove that it is at most
λ2 + µ where µ is the second eigenvalue of G. In fact, we give a tight analysis of
the second eigenvalue of the derandomized square as a function of λ and µ.

1.2 A New Logspace Algorithm for Undirected Connectivity

Recall that the problem of undirected st-connectivity is: given an undirected graph
G and two vertices s, t, decide whether there is a path from s to t in G. The time
complexity of this problem is well understood — search algorithms like breadth-
first search (BFS) and depth-first search (DFS) solve it in linear time. The space
complexity is harder to tackle. A line of research starting in the log2(N)-space
deterministic algorithm of Savitch [Sav] and the randomized log(N)-space algo-
rithm of Aleliunas et. al. [AKL+] culminated in Reingold’s optimal deterministic
log(N)-space algorithm [Rei2] (See Reingold’s paper and the references therein
for more on the history and applications of this problem). We now shortly describe
Reingold’s algorithm, then present our algorithm and compare the two.

Reingold’s Algorithm.

Notice that undirected connectivity is solvable in log-space on bounded-degree
graphs with logarithmic diameter (simply enumerate all paths of logarithmic length
in the graph out of the origin vertex). Examples of graphs with logarithmic diam-
eter are expander graphs, i.e. graphs whose second eigenvalue is bounded away
from 1. Reingold’s idea is to transform the input graph into a bounded-degree
expander by gradually decreasing its second eigenvalue.

A natural attempt would be to square the graph. This indeed decreases the
second eigenvalue, but increases the degree. To decrease the degree, Reingold

3

uses the zig-zag graph product of [RVW], or the related replacement product. We
describe his algorithm in terms of the latter product.

Given a K-regular graph X on N vertices, and an auxiliary D-regular graph
G on K vertices, the replacement product X©r G is a D + 1-regular graph on NK
vertices. On each edge (v, w) in X put two vertices, one called ev “near” v and
another called ew “near” w, for a total of NK vertices. This can be thought of as
splitting each vertex v into K vertices forming a “cloud” near v. Place the graph
G on each cloud. Now for each edge e = (v, w) of X , put an edge between ev and
ew. The result is a (D + 1)-regular graph. Notice that X©r G is connected if and
only if both X and G are.

The replacement product reduces the degree from K to D + 1. It is proven
in [RVW] (and also follows from [MR]) that when G is a good enough expander,
replacement product roughly preserves the second eigenvalue of X . Suppose that
X is (D + 1) regular and G has (D + 1)2 vertices and degree D. Then X2©r G
is again a (D + 1)-regular graph, whose second eigenvalue is roughly the square
of the second eigenvalue of X . Iterating this procedure log N times leads to a
constant-degree expander on polynomially many vertices, since at each iteration
the number of vertices grows by a factor of about D2. On the resulting expander
we can therefore solve connectivity in logarithmic space. (One also must confirm
that the iterations can be computed in logarithmic space as well).

Our Algorithm.

Our approach also follows from this idea of increasing connectivity by squaring
the graph. However, instead of squaring, and then reducing the degree by a zigzag
product (and thus increasing the number of vertices) we will replace the squar-
ing by derandomized squaring, which maintains the vertex set (but increases the
degree). Iterating the derandomized squaring operation yields highly connected
graphs with relatively small degree compared to doing the same iterations with
standard squaring. In the next two paragraphs we compare the resulting graphs in
each case.

Let X be a regular graph on N vertices. Squaring the graph log N times, results
in the graph X2log N

= XN (whose edges are all paths of length N in X). This
graph is extremely well connected; it contains an edge between every two vertices
which are connected by a path in X . The degree however, is huge — exponential
in N . We want to simulate the behavior of XN with a graph that has much smaller
degree.

Suppose that instead of standard squaring at each step we apply derandomized
squaring to obtain a sequence of graphs X1, X2, At each step the degree in-

4

creases by a constant factor (instead of the degree squaring at each step).2 For
m = O(log N) the degree of Xm is only polynomial in N . But we will show that
is as well-connected as XN (as measured by the second eigenvalue). In particular,
Xm will contain an edge between every pair of vertices s, t that are connected by
a path in X . Deciding whether s, t are connected therefore reduces to enumerating
all neighbors of s in Xm and looking for t. There are only polynomially many
neighbors, so the search can be done in logarithmic space. We will show that com-
puting neighbors in Xm can also be done in logarithmic space. These two facts
yield a logarithmic space algorithm for undirected connectivity.

Comparing our approach to Reingold’s original solution, the main way in which
our algorithm differs from (and is arguably more natural than) Reingold’s algo-
rithm is that all the graphs we construct are on the same vertex set. Edges in the
graph Xm correspond to paths of length 2m in X . The price we pay is that the
degree increases, but, thanks to the use of derandomized squaring, only by a con-
stant factor (which we can afford). In contrast, each step of Reingold’s algorithm
creates a graph that is larger than the original graph (but maintains constant degree
throughout).

1.3 Embedding Expander Graphs in Arbitrary Graphs

Another consequence of our algorithm is a logspace algorithm to find an “embed-
ding” of an expander graph in every graph. Specifically, if X has spectral gap γ
(i.e., second eigenvalue 1 − γ), then for k = O(log(1/γ)), the graph Xk is an
expander in the sense that it has constant spectral gap. It is embedded in X in the
sense that edges in Xk correspond to paths of length ` = 2k = poly(1/γ) in X , and
if X has degree d, then the graph Xk has degree d · t for t = 2O(k) = poly(1/γ).
In addition, it can be shown that this embedding has low congestion, in the sense
that every edge of X is contained in precisely ` · t of the paths. This embedding
has a similar spirit to the “expander flows” of [ARV], though it does not seem to
provide a better algorithm or certificate for approximating a graph’s expansion.

1.4 Derandomized Squaring as a Pseudorandom Generator

Impagliazzo, Nisan, and Wigderson [INW] proposed the following pseudorandom
generator. Let G be an expander graph with K vertices and degree D. Choose a
random vertex x ← [K], a random edge label a ← [D], and output (x, x[a]) ∈
[K]× [K]. This pseudorandom generator is at the heart of derandomized squaring.

2Actually, for the last log log N steps, we use auxiliary graphs of nonconstant degree and thus
the degree increases by nonconstant factors, but the degrees are chosen in such a way that the total
increase is still polynomial in N .

5

Notice that using this pseudorandom generator to generate a pseudorandom walk
of length 2 in a graph X of degree K is equivalent to taking a random step in the
derandomized square of X using auxiliary graph G.

Impagliazzo, Nisan, and Wigderson [INW] suggested to increase the stretch
of the above generator by recursion. They proved that when the graphs G used
in the construction are sufficiently good expanders of relatively large degree, this
construction fools various models of computation (including randomized logspace
algorithms).3 However, the resulting generator has seed length O(log2 n), and
hence does not prove that RL=L.

Our construction of the graph Xm in our st-connectivity algorithm is precisely
the graph corresponding to using the INW generator to derandomize random walks
of length 2m in X . 4 However, we are able to use constant-degree expanders for G
(for most levels of recursion), thereby obtaining seed length O(log n) and hence a
logspace algorithm (albeit for undirected st-connectivity rather than all of RL).

Moreover, it follows from our analysis that taking the pseudorandom walk in X
corresponding to a random step in Xm (equivalently, according to the INW genera-
tor with appropriate parameters) will end at an almost-uniformly distributed vertex.
A pseudorandom generator with such a property was already given in [RTV] based
on Reingold’s algorithm and the zig-zag product, but again it is more natural in
terms of derandomized squaring.

1.5 Relation to Other Graph Products

The Zig-Zag Product. The reader may have noticed a similarity between the
derandomized squaring and the zig-zag product of [RVW] (which we define pre-
cisely later in the paper). Indeed, they are very closely related. When we use a
square graph G2 as auxiliary graph, the derandomized square X©s G2 turns out to
be a “projection” of the square of the zigzag product (X©z G)2. In the conference
version of this paper [RV], we used this observation to prove the expansion prop-
erty of the derandomized squaring by reduction to that of the zig-zag product. In
this version, however, we provide a direct analysis, which gives a cleaner and tight
bound.

We note that the derandomized squaring has complementary properties to the
zigzag product. In the zigzag product we are given a graph X and can decrease its
degree while (nearly) maintaining its second eigenvalue. We must pay by slightly
increasing the number of vertices. In the derandomized squaring we manage to

3Specifically, to fool an algorithm running in space log n, they use expanders of degree poly(n).
4This holds provided that the labelling of edges in X satisfies a certain consistency condition,

to be described in Sect. 3. The st-connectivity problem in general undirected graphs can easily be
reduced to st-connectivity in graphs with such a consistent labelling.

6

decrease the second eigenvalue while maintaining the number of vertices, and we
pay by slightly increasing the degree.

Derandomized Graph Products. Alon, Feige, Wigderson, and Zuckerman [AFWZ]
studied a “derandomization” of a different kind of graph product, where given a
graph G = (V,E), we consider the graph G(k) whose vertex set is V k and whose
edges are ((u1, . . . , uk), (v1, . . . , vk)) such that {u1, . . . , uk, v1, . . . , vk} is a clique
in G. A nice property of this product is that the clique number of G(k) is precisely
the k’th power of the clique number of G, and thus this allows one to “amplify”
inapproximability results for the Clique problem. A problem, however, is that the
number of vertices grows exponentially with k. Thus, Alon et al. [AFWZ] showed,
using random walks on expanders, how to pick a much smaller “pseudorandom”
subset of vertices of G(k) such that the clique number behaves in much the same
way. Thus, their “derandomization” is concerned with saving on the number of
vertices, whereas ours is concerned with the degree, and they are interested in
maintaining the clique number and similar parameters, whereas we are interested
in maintaining expansion.

2 Overview of the Paper

In Section 3, we set notation and definitions, and state basic lemmas we will need
later. In Section 4, we define derandomized squares and state the main lemma on
them. In Section 5, we give a log-space algorithm for connectivity via iterated
applications of derandomized squaring, and deduce a pseudorandom generator for
walks in a graph. Section 6 extends the results to a more general notion of la-
belled graphs, where at each vertex, both incoming edges and outgoing edges are
numbered (whereas the earlier sections only consider labellings of outgoing edges,
and require the labelling to satisfy a certain consistency condition). In Section 7,
we give a logspace algorithm to find an expander embedded as paths in a regular
graph, with small dilation and congestion.

3 Preliminaries

Reingold, Trevisan, and Vadhan [RTV] generalized Reingold’s algorithm and the
zig-zag product to (regular) directed graphs, and working in this more general set-
ting turns out to be useful for us, too (even if we are only interested in solving
st-connectivity for undirected graphs). We present the necessary background on
such graphs in this section.

7

Let X be a directed graph (digraph for short) on N vertices. We say that X
is K-outregular if every node has outdegree K , K-inregular if every node has
indegree K , and K-regular if both conditions hold. Graphs may have self-loops
and multiple edges, where a self-loop is counted as both an outgoing and incoming
edge. All graphs in this paper are outregular directed graphs (and most are regular).

For a K-regular graph X on N vertices, we denote by MX the transition matrix
of the random walk on X , i.e. the adjacency matrix divided by K . Let uN =
(1/N, . . . , 1/N) ∈ R

N be the uniform distribution on the vertices of X . Then, by
regularity, MXuN = uN (so uN is an eigenvector of eigenvalue 1).

Following [Mih], we consider the following measure of the rate at which the
random walk on X converges to the stationary distribution uN :

λ(X) = max
v⊥uN

‖MX(v)‖
‖v‖ ∈ [0, 1]

where v ⊥ uN refers to orthogonality with respect to the standard dot product
〈x, y〉 =

∑

i xiyi on R
N and ‖x‖ =

√

〈x, x〉 is the L2 norm. The smaller λ(X),
the faster the random walk converges to the stationary distribution and the better
“expansion” properties X has. Hence, families of graphs with λ(X) ≤ 1 − Ω(1)
are referred to as expanders.

In case X is undirected, λ(X) equals the second largest eigenvalue of the sym-
metric matrix MX in absolute value. In directed graphs, it equals the square root
of the second largest eigenvalue of M T

XMX .
A K-regular directed graph X on N vertices with λ(X) ≤ λ will be called an

(N,K, λ)-graph. We define g(X) = 1− λ(X) to be the spectral gap of X .
The “best mixing” graph on N vertices is a clique with a loop on each vertex.

The transition matrix is JN , which has all elements equal 1/N . A random walk on
this graph reaches uniform distribution after a single step, and the second eigen-
value is 0. The next proposition shows that the transition matrix of any graph can
be decomposed into a convex combination of JN and another matrix with matrix
norm at most 1.

Definition 3.1. For an N×N matrix C define the matrix norm ‖C‖ = maxv∈Rn ‖Cv‖/‖v‖

The matrix norm satisfies

• ‖AB‖ ≤ ‖A‖ · ‖B‖ for every pair of matrices A,B.

• ‖A⊗B‖ ≤ ‖A‖ · ‖B‖.

• If A is the transition matrix of a graph then ‖A‖ = 1.

8

Proposition 3.2. Let A be the transition matrix of an (N,D, λ) - graph. Let JN be
the N ×N matrix with all entries equal 1/N . Then A = (1 − λ)JN + λC where
‖C‖ ≤ 1.

Intuitively, this proposition says that a random step on the graph can be viewed
as going to the uniform distribution with probability 1 − λ and “not getting any
further from uniform” with probability λ. This intuition would be precise if C
were a stochastic matrix, but it need not be.

Proof. Write C = (A − (1 − λ)J)/λ. Since AuN = JNuN = uN it follows that
C(uN) = uN . For v ⊥ uN we have Jv ⊥ uN and Av ⊥ uN which implies that
Cv ⊥ uN . It therefore suffices to show that ‖Cv‖ ≤ ‖v‖ for every v ⊥ uN . Since
Jv = 0 and ‖Av‖ ≤ λ‖v‖ then ‖Cv‖ ≤ ‖v‖, which proves the proposition.

A labelling of a K-outregular graph X is an assignment of a number in [K] to
every edge of X , such that the edges exiting every vertex have K distinct labels.
For a vertex v of X and an edge label x ∈ [K] we denote by v[x] the neighbor of v
via the outgoing edge labelled x. We say that a labelling is consistent if for every
vertex all incoming edges have distinct labels. Notice that if a graph has a con-
sistent labelling, then it is K-inregular (and hence K-regular). Conversely, it can
be shown (using matching theory) that every K-regular digraph has a consistent
labelling.

The notion of consistent labelling described above is the same as in [HW] and
[RTV]. We will work with consistently labelled graphs in this extended abstract
for simplicity and to make the connection between derandomized squaring and
the INW pseudorandom generator [INW] more apparent. But this condition can
be relaxed by allowing each edge (u, v) to have two labels, one as an outgoing
edge from u and one as an incoming edge to v, as formalized using the “rotation
maps” of [RVW, RTV]. We present generalizations of our results to this setting in
Section 6.

If G is a K-regular undirected graph, then we view it as a K-regular directed
graph by replacing each undirected edge {u, v} with two directed edges (u, v) and
(v, u). One can then consider a stronger notion of consistent labelling whereby
(u, v) is required to have the same label as (v, u). We call this an undirected
consistent labelling. Note that such a labelling has the property that v[i][i] = v,
and can be viewed as decomposing the set of edges into the union of K perfect
matchings. However, this property has the disadvantages that (a) not all undirected
graphs possess such a labelling (eg graphs with an odd number of vertices), (b) it
is not preserved under the operations we perform (such as the squaring operation
below). Therefore, even for undirected graphs, we will typically work with the
basic notion of consistency given in the previous paragraphs.

9

The square X2 of a graph X is the graph whose edges are paths of length 2 in
X . The square of a K-regular graph is K2-regular, and a consistent labelling of
X induces a consistent labelling of X2 in a natural way. Specifically, for a label
(x, y) ∈ [K]2, we define v[x, y] = v[x][y]. Notice that λ(X2) ≤ λ(X)2. (This
is always an equality for undirected graphs, but not necessarily so for directed
graphs). We similarly define the n-th power Xn using paths of length n in X .

Like undirected graphs, the mixing time of regular connected directed graphs
is bounded by a polynomial. One can give an inverse polynomial bound on the
spectral gap provided the graph has a self-loop on every vertex.5

Lemma 3.3. Let X be a connected D-regular graph with a loop on every vertex.
Then λ(X) ≤ 1− 1/(2D2N2).

Proof. We will prove this by reduction to the bound for the undirected case, given
by [AS]. As mentioned above, λ(X)2 = λ(MT M). The matrix MT M is the
adjacency matrix of a D2-regular undirected graph Y on the vertex set of X , whose
edges are pairs {v, w} such that there exist edges (v, z) and (w, z) are edges of X
(counted with multiplicity according to the number of such pairs). In other words,
to obtain a neighbor of a vertex in Y , take a step on an edge X and followed by an
inverse of an edge of X .

Since X contains a loop on every vertex, the graph Y contains an undirected
edge {v, w} for every directed edge (v, w) ∈ E(X). In particular, in Y there
is a loop on every vertex. It follows that Y is connected, non-bipartite, and D2-
regular. From [AS], every such graph satisfies λ(Y) ≤ 1 − 1/D2N2. Therefore,
λ(X) ≤

√

1− 1/D2N2 ≤ 1− 1/2D2N2.
The next proposition shows that when the second eigenvalue is very small, the

graph is very well connected - it contains a clique.

Proposition 3.4. Let X be an (N,D, 1/2N 1.5)-graph. Then X contains an edge
between any pair of vertices. Indeed, for a pair of vertices v, w the probability that
a random neighbor of v is equal w is at least 1/N − 1/N 2.

Proof. The probability distribution of a random neighbor of vertex v is the vec-
tor MXev where ev is the vector which has 1 in coordinate v and 0 in the other
coordinates. We need to show that every coordinate of MXev has value at least
1/N − 1/N 2. Let u be the vector with value 1/n in all coordinates. Since
MXu = u, it suffices to show that MX(ev − u) has absolute value at most 1/N 2

5In the conference version of our paper [RV], instead of assuming that every vertex has a self-
loop, we erroneously used the standard notion of aperiodicity (the gcd of all cycle lengths is 1). In
that case, the the spectral gap can actually be zero, as shown by the following example: G = (V, E)
where V = {a, b, c, d} and E = {(a, b), (a, c), (b, b), (b, d), (c, c), (c, d), (d, a), (d, a)}.

10

in each coordinate. As ev −u has coordinate sum zero and ‖ev −u‖ ≤ 2 we know
that ‖MX(ev−u)‖2 ≤ 1/N3. Let m be the minimal absolute value of a coordinate
of MX(ev − u). Then Nm2 ≤ ‖MX(ev − u)‖2 ≤ 1/N3 which proves the result.

4 Derandomized Squaring

After giving a formal definition of derandomized squaring, we will show in Theo-
rem 4.4 that it decreases the second eigenvalue of a graph in a way comparable to
squaring it.

Definition 4.1. Let X be a labelled K-regular graph on vertex set [N], let G be a
labelled D-regular graph on vertex set [K]. The derandomized square graph X©s G
has vertex set [N] and is KD-outregular. The edges exiting a vertex v are paths
v[x][y] of length two in X such that y is a neighbor of x in G. Equivalently, when
x ∈ [K] is an edge label in X and a ∈ [D] is an edge label in G, the neighbor of
v ∈ [N] via the edge labelled (x, a) is v[x][x[a]].

The derandomized square may, in general, not produce an in-regular graph.
However, it will do so provided that X is consistently labelled.

Proposition 4.2. If X is consistently labelled, then X©s G is KD-regular. If, in
addition, G is consistently labelled, then X©s G is consistently labelled.

Notice that even if X and G are consistently labelled and undirected, i.e. for
every edge (u, v) there is a corresponding reverse edge (v, u), then the derandom-
ized square X©s G need not be undirected.6 In Section 6, we present a more general
formulation that is more amenable to maintaining undirectedness.

A Cayley graph is a graph whose vertices are elements of a group G and whose
edges are all pairs (g, gu) for all g ∈ G and all u ∈ U where U is a subset of G. A
Cayley graph is consistently labelled, by labelling the edge (g, gu) by u. The next
observation states that if X is a Cayley graph then so is X©s G. We will not use
Cayley graphs in other parts of the paper.

Observation 4.3. Let X be a Cayley graph given by a group G and subset U ⊂ G,
and let G be a consistently labelled |U |-regular graph. Then X©s G is a Cayley
graph given by the same group G and subset {uiuj|(i, j) ∈ E(G)}.

6If X satisfied the stronger notion of consistent labelling where (u, v) and (v, u) are required to
have the same label, then X ©s G would be undirected. Alas, this stronger notion is not preserved
under the derandomized square (or even the standard squaring).

11

Our main result on derandomized squares is that when G is a good expander,
then the expansion of X©s G is close to that of X2.

Theorem 4.4. If X is a consistently labelled (N,K, λ)-graph and G is a (K,D, µ)-
graph, then X©s G is an (N,KD2, f(λ, µ))-graph, where

f(λ, µ) = 1− (1− λ2) · (1− µ)

The function f is monotone increasing in λ and µ, and satisfies

• f(λ, µ) ≤ λ2 + µ,

• 1− f(1− γ, 1/100) ≥ (3/2) · γ , when γ < 1/4.

Notice that when µ → 0 (i.e. G is a good expander), then f(λ, µ) → λ2

(i.e. X©s G is nearly good an expander as we expect X2 to be.). After proving
the theorem, we show (Proposition 4.5) that the upper bound f(λ, µ) is tight in a
very strong sense. No such tightness result is known for the bounds on the second
eigenvalue of the zig-zag product.

In the conference version of this paper [RV], we analyze the derandomized
square by reduction to the zig-zag product, obtaining a weaker bound than above.
Below, we present a direct proof, which uses some of the ideas from the analysis
of the zig-zag product in [RVW, RTV], but is significantly simpler. Specifically, it
applies Proposition 3.2 to the expander G. Intuitively, this says that we can view the
random step on G in the derandomized square as going to the uniform distribution
on [K] with probability 1 − µ, and otherwise doing no harm. In case the step on
G goes to the uniform distribution, the derandomized square is identical to two
independent, random steps on X . This suggests a bound of (1 − µ) · λ2 + µ · 1,
which equals f(λ, µ). The proof below makes this intuition formal.

Proof. Let M be the transition matrix of the random walk on X©s G. We must
show that, for every vector v ∈ R

N orthogonal to the uniform distribution uN , Mv
is shorter than v by a factor of f(λ, µ).

In order to relate M to the transition matrices of X and G, we think of a random
step on X©s G started at a vertex u as consisting of the following steps:

1. Choose a uniformly at random in [K], to go to “state” (u, a) ∈ [N]× [K].

2. Go to state (u[a], a).

3. Go to state (u[a], b), where b is a random neighbor of a in G.

4. Go to state (u[a][b], b).

12

5. Output u[a][b].

Step 1 corresponds to mapping L that “lifts” probability distributions on [N] to
probability distributions on [N]× [K] given by L(v) = v ⊗ uK , where v ∈ R

N is
a probability distribution on [N], ⊗ is tensor product and uK is the uniform distri-
bution on [K]. Step 2 corresponds to the NK×NK matrix Ã, where Ã(u,a),(u′,a′)

is 1 iff a′ = a and u′ = u[a]. Since X is consistently labelled, Ã is a permutation
matrix. Step 3 corresponds to the matrix B̃ = IN ⊗ B, where IN is the N × N
identity matrix and B is the transition matrix for G. Step 4 is again given by Ã.
Step 5 is given by the linear map P that “projects” probability distributions on
[N] × [K] to probability distributions on [N] given by (Pz)u =

∑

a zu,a. (This is
inverse to Step 1 in the sense that PL(v) = v for any v ∈ R

N). Thus,

M = PÃB̃ÃL.

By Proposition 3.2 we can decompose B = (1 − µ)J + µC where ‖C‖ ≤ 1,
which induces the decomposition B̃ = IN⊗B = (1−µ)(IN ⊗J)+µ(IN ⊗C) =
(1− µ)J̃ + µC̃. Therefore

M = (1− µ)PÃJ̃ÃL + µPÃC̃ÃL.

Now, the key observation is that

PÃJ̃ÃL = PÃLPÃL = A2,

because J̃ = LP and PÃL = A. Since ‖Ã‖, ‖C̃‖ ≤ 1, ‖L‖ = 1/
√

K , and
‖P‖ =

√
K , we conclude that ‖P ÃC̃ÃL‖ ≤ 1. Therefore, for some matrix D

with ‖D‖ ≤ 1
M = (1− µ)A2 + µD.

The last equation implies that λ(M) ≤ (1− µ)λ2 + µ, which is equal f(λ, µ).

The next proposition shows that the bound of Theorem 4.4 is tight in a strong
sense. The proof of the proposition also clarifies the intuition of the proof of The-
orem 4.4.

Proposition 4.5. For every K ∈ N and rational µ ∈ [0, 1], there is a D ∈ N,
and an undirected (K,D, µ)-graph G such that for every (N,K, λ)-graph X with
an undirected, consistent labelling, we have λ(X©s G) ≥ f(λ, µ), for f(λ, µ) =
1 − (1 − µ)(1 − λ2). (Recall that in an undirected labelling we have v[i][i] = v
for all v, i).

13

Proof. We choose G to be the undirected graph whose transition matrix is B =
µIK + (1 − µ)JK , where IK is the K ×K identity matrix and JK is the K ×K
matrix all of whose entries 1/K . That is, a random step on G stays in place with
probability µ and goes to a uniformly random vertex with probability 1−µ. Thus a
random step on the derandomized square X©s G amounts to taking two steps on X ,
using the same random edge label for both steps with probability µ and using two
independent edge labels with probability 1− µ. The fact that X has an undirected
consistent labelling implies that using the same edge label twice brings you back to
the same vertex. Thus the transition matrix for X©s G is µIN + (1− µ)A2, where
A is the transition matrix for X , and thus has second eigenvalue µ+(1−µ) ·λ2 =
f(λ, µ).

5 A Log-Space Algorithm for Undirected Connectivity

We describe how to solve undirected st-connectivity on an undirected graph X with
N vertices in logarithmic space.

Overview.

We will assume that the input graph X is 4-regular, consistently labelled and con-
tains a loop on each vertex. Prop. 5.3 shows that this assumption does not lose
generality. By Lemma 3.3, every 4-regular connected graph with a loop on each
vertex has second eigenvalue 1−Ω(1/N). Our goal is to use derandomized squar-
ing to decrease the second eigenvalue (of each connected component) to less than
1/N3 (we will need to square O(log N) times). By Prop. 3.4, the resulting graph
must contain a clique on every connected component of X . We can therefore go
over all the neighbors of s in the resulting graph and search for vertex t.

Starting with (some power of) X , we define a sequence of graphs Xm, each of
which is a derandomized square of its predecessor using a suitable auxiliary graph.
The algorithm works in two phases. Phase one works for m ≤ 100 log N , and
reduces the second eigenvalue to a constant (3/4), by using as auxiliary graphs a
sequence Gm of fixed-degree expanders. We will see that the spectral gap g(Xm)
grows by at least a factor of 3/2 at each step. Therefore, after m0 = O(log N)
steps, we obtain an expander Xm0 with second eigenvalue at most 3/4 and degree
polynomial in N .

At this point we cannot use fixed-degree expanders as auxiliary graphs any
more. If we did, the second eigenvalue of the derandomized square would be dom-
inated by the second eigenvalue of the auxiliary graph, which is constant. Thus we
would not be able to decrease the eigenvalue to 1/N 3. In phase two, we therefore

14

use auxiliary graphs Gm with non-constant degrees. Specifically, for m > m0,
the auxiliary graph Gm will have degree doubly-exponential in m−m0. The fast
growth of the degree allows the eigenvalue of the auxiliary graph to remain small
enough to imply that λ(Xm+1) ≤ c · λ(Xm)2 for some c > 1 quite close to 1.
Therefore, after an additional log log N + O(1) steps we obtain a graph Xm1 with
second eigenvalue at most 1/N 3.

Since the graph Xm1 has degree polynomial in N , we can enumerate all the
neighbors of s in logarithmic space. We will show (in Prop. 5.7) that neighbors in
Xm1 are log-space computable, making the whole algorithm work in logarithmic
space.

The Auxiliary Expanders.

We will need a family of logspace-constructible constant-degree expanders with
the following parameters, (which can be obtained from e.g. [GG] or [RVW]).

Lemma 5.1. For some constant Q = 4q, there exists a sequence Hm of consistently
labelled (Qm, Q, 1/100)-graphs. Neighbors in Hm are computable in space O(m)
(i.e. given a vertex name v ∈ [Qm] and an edge label x ∈ [Q], we can compute
v[x] in space O(m) and time poly(m)).

Definition 5.2. Let Hm be the graph sequence of Lemma 5.1. For a positive integer
N , we set m0 = d100 log Ne, we define a graph sequence Gm by

When m ≤ m0: Gm = (Hm)

When m > m0: Gm = (Hm0−1+2m−m0)2
m−m0 .

Neighbors in Gm are computable in space O(m + 2m−m0).

The Algorithm.

Let (X, s, t) be an instance of undirected st-connectivity; we want to decide whether
there is a path from vertex s to t in X .

Proposition 5.3. We may assume without loss of generality that the input graph is
4-regular, contains a loop on every vertex, and is consistently labelled.

Proof. The easy proof appears in [Rei2]. We repeat it for completeness. We are
given a (not necessarily regular) undirected graph X . Suppose X is described by
a function that, given a vertex v of X , returns the degree deg(v) of v and an array
of neighbors v[1], . . . , v[deg(v)]. Define a 4-regular directed graph Xreg whose

15

vertices are pairs (v, i) for every vertex v of X and 0 ≤ i ≤ deg(v). The neighbors
of (v, i) are

(v, i)[1] = (v, i + 1 mod deg(v))
(v, i)[2] = (v, i− 1 mod deg(v))
(v, i)[3] = (v[i], location of v in the array of neighbors of v[i]).
(v, i)[4] = (v, i).

This is equivalent to replacing each vertex v by a cycle of length deg[v], and
connecting each vertex on the cycle of v to exactly one of the neighbors of v, and
adding a loop on each vertex. This operation can be done in logarithmic space.
The result is a 4-regular directed graph Xreg, and the labelling used to define the
graph is consistent.

Let X be a 4-regular graph with a loop on each vertex, given by a consistent la-
belling. Given two vertices s, t connected in X , we describe a log-space algorithm
that outputs a path between s and t. For simplicity, assume that X is connected
(else carry out the analysis below on each connected component of X).

Define X1 = Xq, where Q = 4q is from Lemma 5.1. Define inductively
Xm+1 = Xm©s Gm. It can be verified by induction that the degree Dm of Xm is
equal to the number of vertices of Gm, so the operation Xm©s Gm is indeed well-
defined. Specifically, we have Dm = Qm for m ≤ m0, and Dm = Qm0+2m−m0−1

for m > m0.

Phase One.

By Lemma 3.3 we have g(X1) ≥ 1/32N 2. We will reduce the second eigenvalue
to 3/4. From Theorem 4.4 it follows that

g(Xm+1) ≥ g(Xm) · (3/2) ≥ g(X1) · (3/2)m

as long as g(Xm−1) ≤ 1/4. Therefore for some m < 100 log N we will get
λ(Xm) ≤ 3/4. The inequality λ(Xm) ≤ 1/4 holds for all larger m due to the
monotonicity mentioned in Theorem 4.4. We deduce the following corollary.

Corollary 5.4. Let m0 be the smallest integer such that m0 ≥ 100 log N . Then
λ(Xm0) < 3/4.

Phase Two.

We now decrease the second eigenvalue from 3/4 to 1/2N 3.

Proposition 5.5. For m ≥ m0 we have λ(Xm) ≤ (7/8)2
(m−m0)

.

16

Proof. Define λm = (64/65) · (7/8)2(m−m0)
, µm = (1/100)2

m−m0 . We will show
that λ(Xm) ≤ λm for m ≥ m0. This is true for m = m0, and suppose by induction
that it holds for some m. Since λ(Gm) ≤ µm < λ2

m/64 we can use Theorem 4.4
to deduce that

λ(Xm+1) ≤ λ2
m + µm ≤ λ2

m(1 +
1

64
) ≤

(

64

65

)2

·
(

7

8

)2(m+1−m0)

· 65
64
≤ λm+1

which proves the proposition.

Corollary 5.6. Let m1 = m0 + log log N + 10. Then λ(Xm1) ≤ 1/2N 3.

By Proposition 3.4 the graph Xm1 contains a clique on the N vertices. More-
over, it has degree Dm1 = Q100 log N+2log log N+10−1 = poly(N). If we could
compute neighbors in Xm1 in space O(log N) we could find a path from s to t in
logarithmic space.

Proposition 5.7. Neighborhoods in Xm1 are computable in space O(log N).

Proof. Edge labels in Xm are vectors ym = (y1, a1, . . . , am−1) where y1 is an
edge label in X1 and ai is an edge label on Gi. Given a vertex v and an edge label
ym in Xm we wish to compute the neighbor v[ym] in Xm.

Every edge in Xm corresponds to a path of length 2m in X . It suffices to give
a (log-space) algorithm that, given v,y and an integer b in the range [1, 2m], returns
the edge label in X of the b-th edge in this path of length 2m. As we will see below,
this edge label is actually independent of the vertex v (and thus can be computed
given only y and b).

The path of length 2m originating from v corresponding to the edge label ym

consists of two paths of length 2m−1 corresponding to two edges in Xm−1. These
two edges in Xm−1 have labels ym−1 = (y1, a1, . . . , am−2) and ym−1[am−1],
where the latter is a neighbor computation in Gm−1.

From these observations the algorithm is simple. If b ≤ 2m−1 then solve the
problem encoded by ym−1, b in Xm−1. If b > 2m−1 then instead set ym−1 ←
ym−1[am−1], b ← b − 2m−1, and now solve the problem encoded by ym−1, b on
Xm−1.

Here is a pseudo code for the algorithm. Write b−1 as a binary string (bm−1, . . . , b0),
and let yi be the string y1, a1, . . . , ai−1.

for i = m− 1 to 0 do
if bi = 1 then

set yi = yi[ai] (this is a computation in Gi).
end if

end for

17

output y0

Now we argue that this can be computed in space O(log N) when m = m1.
Notice that the input length to the algorithm is m + log Dm1 = O(log N). By
Lemma 5.1, the computation in the Gi-computation steps in the loop described in
the code can be performed in space O(m+2m−m0) = O(log N), and we are done.

This ends the log-space algorithm for undirected connectivity. We now use
the same construction idea to generate a (log-space computable) pseudorandom
generator for random walks on consistently labelled graphs.

A Pseudorandom Generator for Walks on Consistently Labelled Graphs.

We solved the undirected connectivity problem by using the fact that the graph
Xm1 contains a clique on all the vertices (assuming X was connected). Actually,
by Proposition 3.4, a random neighbor of a vertex v in Xm1 has distribution which
is 1/N2-close to uniform. Every edge exiting v in Xm1 corresponds to a path with
length 2m1 (polynomial in N) in X . As the degree of Xm1 is only polynomial in
N , we deduce that O(log N) uniformly random input bits (encoding an edge of
Xm1) suffice to generate a “pseudorandom” walk in X of poynomial length, such
that the endpoint is almost uniformly distributed, as it would be for a truly random
walk of polynomial length (which needs poly(N) random bits). Moreover, the
edge labels in the walk do not depend on graph X , but only on the edge label
chosen in Xm1 and the number of vertices N . Indeed, the algorithm given in
Proposition 5.7 describes how to compute the labels in the output walk given the
input edge label ym1 in Xm1 . In fact, the map from ym1 to the sequence of edge
labels in the walk is precisely the Impagliazzo–Nisan–Wigderson pseudorandom
generator [INW] constructed using the expanders G1, . . . , Gm−1.

We state the properties of this generator precisely and in a more general form
in the following theorem.

Theorem 5.8. For given parameters (N,D, λ) there is a pseudorandom generator
PRG : {0, 1}r → [D]` with seed length O(log(DN)) and walk length

` = O

(

log N

1 + log (1/λ)

)

· poly

(

1

1− λ

)

,

such that for every consistently labelled (N,D, λ)-graph X and every vertex v
in X , if we choose a random seed s ← {0, 1}r then following the walk PRG(s)
from v ends at a distribution that is (1/N 2)-close to uniform. Given N , D, λ, and
1 ≤ i ≤ `, the i’th step of PRG(s) is computable in space O(log(DN)) and time
poly(log N log D).

18

The above theorem is more general than the one implicit in our undirected con-
nectivity algorithm in that it produces shorter walks when the graphs are known to
have better expansion than the bound of λ = 1− 1/(2D2N2) from Lemma 3.3. A
pseudorandom walk generator with similar properties was given by Reingold, Tre-
visan, and Vadhan [RTV] based on Reingold’s algorithm (which uses the zig-zag
product). However, the generator does not have as simple a description as above.
In particular, computing the i’th step in the walk seems to require computing all
the previous i − 1 labels of the walk (which may take time poly(N)), rather than
being computable directly as above (in time poly(log(ND))). Reingold, Trevisan,
and Vadhan [RTV] also proved that if a similar pseudorandom generator could be
given for walks on regular digraphs with arbitrary labellings (as opposed to con-
sistent labellings), then every problem in solvable in randomized logspace is also
solvable in deterministic logspace (i.e., RL = L).

Proof. To simplify the proof we will show the proof when λ ≤ 3/4, and after-
wards mention the approach for larger λ. Define X1 = X2, which is a consistently
labelled (N,D2, λ2)-graph. Define Xm inductively by Xm+1 = Xm©s Gm as
in Section 5. However, we use slightly different auxiliary graphs Gm. Similar
to Lemma 5.1 one can show that for some constant Q and every D there exists a
consistently labelled (D2Qm−1, Q, 1/100)-graph Hm such that neighbors in Hm

are computable in space O(log D + m) and time poly(log D,m). The auxiliary
graph sequence is defined by G1 = Hk

1 where k = O(log(1/λ)) is the minimal
integer such that λ(Hk) ≤ λ4/64 and Gm = (H1+k·(2m−1−1))

k·2m−1
. Simi-

lar to the analysis of Phase two in Section 5, we obtain graphs Xm with degree
D2Qk·(2m−1−1) and second eigenvalue λ(Xm) ≤ (1.1λ)2

m−1
. Let m1 be the

minimal integer satisfying λ(Xm) ≤ 1/N3. This holds for some m1 satisfying
2m1 = O(log N/ log(1/λ)).

We can now define the generator. The seed is an edge label in Xm1 , encoded by
O(log D + k · 2m1) bits. Every edge (v, w) exiting a vertex v of Xm1 corresponds
to a walk from v to w of length 2m1−1 in X1. This walk corresponds to a walk
of length 2m1 in X . This walk the is the output of the generator. As in the proof
of Proposition 5.7, the edge labels in the walk do not depend on the graph X (but
only on the auxiliary expanders G1, . . . , Gm).

By Proposition 3.4, walking on a random edge in Xm1 results in a distribution
on the vertices that is 1/N 2-close to uniform. This proves the pseudorandomness
property of our generator. The seed length is O(log D + k · 2m1) = O(log(DN)).
The walk length is 2m1−1 = O(log N/ log(1/λ)).

To compute the i-th step in the walk we use the same algorithm used in Propo-
sition 5.7. The algorithm runs in m1 steps, each requiring a computation in some
graph Gm for some m ≤ k · 2m1 , and manipulation of strings of length O(k2m1).

19

Each step requires space O(log(DN)) and time poly(log(ND)), and there are
m1 = O(log log N) steps, so the total required time is poly(log(ND)).

For λ > 3/4 we first take m0 derandomized square steps with auxiliary graphs
of constant degree Q. Each step increases the spectral gap by a factor of 3/2, so
when (1−λ)·(3/2)m0 > 1/4 we obtain a graph with spectral gap at least 1/4. This
holds for some m0 = O(log(1/1−λ)). We can now proceed as in the proof above.
The walk length increases by a multiplicative factor of 2m0 = poly(1/(1−λ)), but
the seed length increases only by an additive factor of O(m0) = O(log N), since
the degree of the final graph increases by a multipicative factor of Qm0 .

6 Extension to Two-Way Labellings

Until now, we have focused on applying the derandomized square to graphs X that
are consistently labelled. Indeed, if if X is not consistently labelled, then X©s G
may not even be inregular (in which case its stationary distribution will not be
uniform). Nevertheless, working with consistently labelled graphs sufficed for our
Undirected s-t Connectivity algorithm (via Proposition 5.3).

In this section, we consider a more general notion of labelling (previously used
for the zig-zag product in [RVW, RTV]), and show how both the derandomized
square and Theorem 4.4 can be extended to this more general notion. This exten-
sion has several benefits, and in particular addresses two deficiencies of the basic
notion of consistent labelling considered in previous sections:

• Even though every K-regular digraph has a consistent labelling, it may not
be possible to find such a labelling in logspace. Indeed, this problem is
equivalent to decomposing a regular bipartite graph into the union of perfect
matchings, and matching is not known to be in logspace. (Nevertheless,
s− t connectivity on regular digraphs can be reduced to s − t connectivity
on consistently labelled graphs, as in Proposition 5.3.) The more general
labelling notion presented below is easy to achieve in logspace.

• The derandomized square of a consistently labelled undirected graph need
not be undirected. One can impose a stronger condition on consistent la-
belling for undirected graphs that does ensure that the derandomized square
is undirected, but alas this condition itself is not preserved under the deran-
domized square. (See Footnote 4.) The labelling notion presented below has
an undirected analogue for which the derandomized square preserves both
undirectedness as well as the labelling notion itself.

If X is a K-regular digraph, a two-way labelling of X provides, for each vertex
v, a numbering from 1, . . . ,K of the K edges leaving v as well as a numbering

20

from 1, . . . ,K of the K edges entering v. So each edge (u, v) has two numbers,
one as an outgoing edge from u and one as an incoming edge to v. Clearly, given a
K-regular digraph, a two-way labelling for it can be found in logarithmic space. A
graph together with a two-way labelling can be specified by the following notion
of a “rotation map,” taken from [RVW, RTV].

Definition 6.1. For a K-regular graph G on N vertices with a two-way labelling,
the rotation map RotG : [N]×[K]→ [N]×[K] is defined as follows: RotG(v, i) =
(w, j) if the i-th outgoing edge from vertex v leads to w, and this edge is the j-th
incoming edge of w.

Notice that the rotation function of a K-regular directed graph is a permutation
on [N] × [K], and conversely, every permutation on [N] × [K] specifies a K-
regular digraph on N vertices together with a two-way labelling. Observe that if a
K-regular graph G has a consistent labelling, then the function Rot(v, i) = (v[i], i)
is a permutation, corresponding to the two-way labelling that takes the incoming
label for each edge to be the same as its outgoing label.

Recall that if G is a K-regular undirected graph, then we view it as a K-regular
directed graph by replacing undirected edge {u, v} with two directed edges (u, v)
and (v, u). Then it is natural to insist that the label of (u, v) as an edge leaving
u is the same as the label of (v, u) as an edge entering u. Indeed, such a two-
way labelling corresponds to simply numbering the K undirected edges incident
to each vertex; thus we refer to it as a two-way labelling. Notice that the resulting
rotation map Rot is an involution, i.e. Rot2 is the identity map. Conversely, every
involution on [N]× [K] corresponds to a regular undirected graph together with an
undirected labelling.

Now, we generalize the definition of the derandomized square to support two-
way labellings, specified by rotation maps.

Definition 6.2. Let X be a K-regular graph on vertex set [N] with a two-way
labelling, let G be a D-regular graph on vertex set [K] with a two-way labelling.
The derandomized square graph X©s G has vertex set [N] and rotation map Rot

X©s G

defined as follows: (v0 ∈ [N], i0 ∈ [K],j0 ∈ [D]):
Rot

X©s G
(v0, (i0, j0)):

1. Let (v1, i1) = RotX(v0, i0).

2. Let (i2, j1) = RotG(i1, j0).

3. Let (v2, i3) = RotX(v1, i2).

4. Output (v2, (i3, j1)).

21

Since the three operations above are permutations on [N]× [K]× [D], we have
indeed defined a regular directed graph, with a two-way labelling. Moreover, if
X and G are undirected graphs with undirected labellings (i.e. their rotation maps
are involutions), then the rotation map of X©s G is an involution and in particular,
X©s G is undirected. Finally, we note that when the rotation maps of X and G are
obtained from a consistent labelling (i.e. Rot(v, i) = (v[i], i)), then Definition 6.2
coincides with Definition 4.1.

Just like the analysis of the zig-zag product [RVW, RTV], the eigenvalue bound
on the derandomized square given by Theorem 4.4 also holds for graphs given by
rotation maps:

Theorem 6.3. If X is an (N,K, λ)-graph with a two-way labelling and G is a
(K,D, µ)-graph with a two-way labelling, then X©s G is an (N,KD2, f(λ, µ))-
graph, where

f(λ, µ) = 1− (1− λ2) · (1− µ) ≤ λ2 + µ.

Proof. The only change in the proof of Theorem 4.4 is that the matrix Ã should
now be taken to be the permutation matrix corresponding to the permutation RotX .
The only facts used about Ã in the proof were that Ã is of norm at most 1, and that
PÃL = A. Both of these still hold.

7 Embedding expanders in general graphs

Another consequence of our algorithm for undirected connectivity is a logspace
algorithm to find an “embedding” of an expander graph in every regular graph
with congestion and dilation that is polynomially related to the spectral gap.

Theorem 7.1. Let X be an (N,D, 1−γ)-graph. Then there exists an (N, D̂, 1/2)-
graph X̂ on the same vertex set with the following properties:

• D̂/D = poly(1/γ).

• There is an embedding function f mapping edges of X̂ to paths of length at
most l = poly(1/γ) in X .

• Each edge of X is contained in exactly l · D̂/D = poly(1/γ) paths corre-
sponding to edges in X̂ under f .

Furthermore, given X and the value γ, the graph X̂ and embedding f can be
computed in space O(log N).

22

Proof. Add self-loops to each vertex of X until it has degree that is a power Qb

of Q (where Q is from Lemma 5.1) to obtain a graph X1, and construct any two-
way labelling of X1. (We do not use a consistent one-way labelling, because it
may not be feasible to find in logspace.) It is easy to check that g(X1) ≥ γ/Q.
(Recall that g(()G) = 1 − λ(G) is the spectral gap of graph G.) Similar to the
construction of the sequence Xm given in Section 5, define inductively Xm+1 =
Xm©s Hm+b−1 where Hm are defined in Lemma 5.1 and we use the generalization
of the derandomized square to two-way labellings from Section 6.

One can check that the degree of Xm and the size of Hm are both Qb ·Qm−1.
Observe that g(Xm+1) ≥ (3/2)g(Xm) as long as g(Xm) ≤ 1/4. Take m0 to be the
smallest integer larger than 10 log(Q/γ). The graph Xm0 has second eigenvalue
at most 3/4, and degree D̂ = Qb ·Qm0−1 = D ·poly(1/γ). We will embed Xm0 in
X with the properties claimed in the theorem. Each edge of Xm0 corresponds to a
path of length exactly l = 2m0−1 = poly(1/γ) in X1. Each such path corresponds
to a path in X by ignoring the steps on the added self-loops of X1. The path in X
therefore has length at most l.

We now prove the congestion claim in the theorem. This follows by induction
from the following fact: Let X be an (N,D, λ)-graph and let G be a (D,K, µ)-
graph. The edges of X©s G correspond to paths of length 2 in X , and each edge of
X is covered by exactly 2K of these paths of length 2. It follows by induction that
if one draws all the paths in X corresponding to edges of Xm0 , every edge of X is
covered exactly (2Q)m0−1 paths.

Finally, we note that, even though we have used two-way labellings, the con-
struction of the graph Xm0 and the embedding f can be computed in logspace.
This is not as simple to see as for the case of consistent one-way labellings, but can
be shown using a similar recursive algorithm to the one presented in [Rei2].

The embedding above resembles the “expander flow” embedding of [ARV],
where an (N,D, 1/2)-graph is embedded as paths in an input graph X on N ver-
tices. The maximal number of times an edge of X is covered by these paths de-
pends linearly on the edge expansion of X up to a multiplicative factor of

√
log N ,

providing a certificate for the edge expansion of X . In our embedding the number
of times each edge of X is covered by paths depends polynomially on the spectral
gap of X , but does not depend on the graph size N . Furthermore, we find our
embedding in X in logarithmic space (rather than polynomial time).

Acknowledgments

This work emerged from of our collaborations with Omer Reingold, Luca Trevisan,
and Avi Wigderson. We are deeply grateful to them for their insights on this topic

23

and their encouragement in writing this paper. We also thank Avi, Omer, and
Nandakumar Raghunathan for helpful comments on the write-up.

References

[AKL+] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Ran-
dom walks, universal traversal sequences, and the complexity of maze
problems. In 20th Annual Symposium on Foundations of Computer Sci-
ence (San Juan, Puerto Rico, 1979), pages 218–223. IEEE, New York,
1979.

[AFWZ] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized
graph products. Comput. Complexity, 5(1):60–75, 1995.

[AS] N. Alon and B. Sudakov. Bipartite subgraphs and the smallest eigen-
value. Combin. Probab. Comput., 9(1):1–12, 2000.

[ARV] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embed-
dings and graph partitioning. In STOC ’04: Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, pages 222–231,
New York, NY, USA, 2004. ACM Press.

[GG] O. Gabber and Z. Galil. Explicit Constructions of Linear-Sized Super-
concentrators. J. Comput. Syst. Sci., 22(3):407–420, June 1981.

[HW] S. Hoory and A. Wigderson. Universal Traversal Sequences for Ex-
pander Graphs. Inf. Process. Lett., 46(2):67–69, 1993.

[INW] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for
Network Algorithms. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on the Theory of Computing, pages 356–364, Montréal,
Québec, Canada, 23–25 May 1994.

[MR] R. A. Martin and D. Randall. Sampling Adsorbing Staircase Walks Using
a New Markov Chain Decomposition Method. In Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, pages 492–
502, Redondo Beach, CA, 17–19 Oct. 2000. IEEE.

[Mih] M. Mihail. Conductance and convergence of markov chains: a combina-
torial treatment of expanders. In In Proc. of the 37th Conf. on Founda-
tions of Computer Science, pages 526–531, 1989.

[Rei1] O. Reingold. Personal communication. December 2004.

24

[Rei2] O. Reingold. Undirected ST-Connectivity in Log-Space. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pages
376–385, New York, NY, USA, 2005. ACM Press.

[RTV] O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom Walks in
Biregular Graphs and the RL vs. L Problem. Electronic Colloquium on
Computational Complexity Technical Report TR05-022, February 2005.
http://www.eccc.uni-trier.de/eccc.

[RVW] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders. Ann. of Math. (2),
155(1):157–187, 2002.

[RV] E. Rozenman and S. Vadhan. Derandomized Squaring of Graphs. In
Proceedings of the 8th International Workshop on Randomization and
Computation (RANDOM ‘05), number 3624 in Lecture Notes in Com-
puter Science, pages 436–447, Berkeley, CA, August 2005. Springer.

[Sav] W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. J. Comput. System. Sci., 4:177–192, 1970.

25

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

