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Abstract

We construct a secure protocol for any multi-party functionality that remains secure (under
a relaxed definition of security) when executed concurrently with multiple copies of itself and
other protocols. We stress that we do not use any assumptions on existence of trusted parties,
common reference string, honest majority or synchronicity of the network. The relaxation of
security, introduced by Prabhakaran and Sahai (STOC ’04), is obtained by allowing the ideal-
model simulator to run in quai-polynomial (as opposed to polynomial) time. Quasi-polynomial
simulation suffices to ensure security for most applications of multi-party computation. Fur-
thermore, Lindell (FOCS ’03, TCC’ 04) recently showed that such a protocol is impossible to
obtain under the more standard definition of polynomial-time simulation by an ideal adversary.
Our construction is the first such protocol under reasonably standard cryptographic assump-

tions. That is, existence of a hash function collection that is collision resistent with respect to
circuits of subexponential size, and existence of trapdoor permutations that are secure with
respect to circuits of quasi-polynomial size.
We introduce a new technique: “protocol condensing”. That is, taking a protocol that has

strong security properties but requires super-polynomial communication and computation, and
then transforming it into a protocol with polynomial communication and computation, that
still inherits the strong security properties of the original protocol. Our result is obtained by
combining this technique with previous techniques of Canetti, Lindell, Ostrovsky, and Sahai
(STOC ’02) and Pass (STOC ’04).
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1 Introduction

In the 1980’s a sequence of groundbreaking papers [SRA78, Sha79, Rab81, Blu82, GM82, GMR85, GMW86,
Yao86] led to the rather amazing result of Goldreich, Micali and Wigderson [GMW87] (henceforth
GMW) that it is possible in principle to obtain a secure protocol for essentially every cryptographic
task one can think of, whether it is secure electronic elections, auctions, privacy-preserving data
mining, or poker. GMW achieved this result by constructing a compiler that transformed a naive
protocol that achieves some task with no security whatsoever (e.g., in the case of elections, a
protocol where all parties send their votes to a party T which counts the votes and announces the
results) into a protocol that seemed to obtain the highest level of security one can hope for. That is,
the GMW protocol guaranteed that every party or coalition of parties, (even if they cheat and do
not follow the protocol), still cannot learn more information or have a larger effect on the outcome
than they are entitled to obtain by simply following the rules (e.g., in the example of elections, no
party or coalition of parties can vote more than their number or deduce about the other votes more
than can be deduced from the publicly announced results).
Although it was always clear that the GMW protocol is far from being practical in terms of its

computation and communication overhead, it might have seemed initially that there is not much
to improve on its security. However, with the advent of modern networks, it became clear that
this is not the case. The reason is that although GMW’s protocol (and also protocols for simpler
tasks such as zero knowledge) guarantees security in the case of an isolated execution, it does not
guarantee sufficient security in the increasingly common situation in which parties run the protocol
concurrently with other arbitrary network activity, which can include multiple executions of the
same protocol and other cryptographic and non-cryptographic protocols. In fact, there are there are
known successful attacks in the concurrent setting for instantiations of GMW and other stand-alone
protocols with particular choices for the underlying components [GK90, Fei90].
Thus, in the 1990’s, researchers began to work on definitions and protocols that are applicable for

this “general network” setting. Although, as we elaborate below, this very extensive line of research
had many successes, it still fell short of obtaining the corresponding stronger version of GMW’s
theorem: i.e., a general multi-party computation protocol (or even protocols for specific tasks
such as commitment schemes or zero-knowledge proofs) that remain secure in this setting under
standard cryptographic assumptions. Even more disturbingly, [Can01, CF01, CKL03, Lin03c, Lin04] gave
increasingly stronger negative results, showing that it is actually impossible to obtain a protocol
satisfying the natural strengthening of the stand-alone definition to the general-network setting.
As we discuss below (see Section 1.1) there have been many works suggesting approaches to

bypass the negative results. Most of these involved making some assumptions on trusted setup or
limits of the network’s synchronicity. Recently, Prabhakaran and Sahai [PS04] suggested a definition
which seemed to bypass the impossibility results without changing the network model or making
any setup assumptions. Their approach (which we follow here), is to allow the ideal-world simulator
to run in super-polynomial time (a notion first explicitly suggested by Pass [Pas03b]). As discussed
below, this relaxation still provides meaningful and strong security for the canonical application
of multi-party computation.1 However, the result of [PS04] was under a highly non-standard com-

1By “canonical application” we mean using a multi-party computation protocol to obtain a protocol for a specific
task satisfying task-specific security properties such as privacy, integrity, and input independence. That is, using
simulation as tool to derive security and not as an end result. Even though secure multi-party computation has other
applications beyond this, we believe that the name “canonical application” is appropriate as this is the application
that motivated both the constructions and the definitions of general secure computation protocols.
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putational assumption (see below) and hence it was not clear whether their definition is in fact
satisfiable.

Our results. In this work we obtain a protocol satisfying the [PS04] definition under reasonably
standard cryptographic assumptions (namely, existence of subexponentially strong hash functions
and quasipolynomially strong trapdoor permutations).2 For every polynomial-time functionality F
we construct a protocol that securely realizes F in the general network setting, without any setup
assumptions, with security defined as existence of an ideal-model simulator that runs in quasi-
polynomial time.3 That is, if the adversary runs in time T , our simulator runs in time 2(log T )c for
some constant c > 1, and hence we can simulate a polynomial-time adversary in quasi-polynomial
time, and a subexponential-time adversary (with a low enough exponent) in subexponential time.
At the heart of our construction is a fully concurrent and non-malleable zero-knowledge protocol

using quasi-polynomial simulation. This protocol has a constant number of rounds and is based on
the assumption that there exists a hash function collection that is collision-resistent with respect to
2k

ε
-sized circuits (where k is the security parameter and ε > 0 is some constant). Plugging this pro-

tocol into the results of Canetti, Lindell, Ostrovsky, and Sahai [CLOS02], we obtain a fully concurrent
and non-malleable protocol for computing any polynomial-time functionality under reasonably stan-
dard assumptions (i.e., existence of quasi-polynomially strong enhanced trapdoor permutations).
Again, security of this protocol is demonstrated by a quasi-polynomial simulator. Furthermore, our
zero-knowledge protocol utilizes only a constant 4 number of communication rounds and remains
secure also with respect to adaptive adversaries (without using memory erasures). See Section 2
below for formal statements and more details on our results.

Why is quasi-polynomial simulation good enough? In the simulation paradigm, we simply
define a protocol to be secure if its execution can be simulated in an ideal model where a polynomial-
time adversary has only access to “ideal boxes” that implement the functionality. In our opinion,
this standard definition is justified by two points:

1. It is the strongest possible, in the sense that it is impossible to prevent an attack that is
feasible in this ideal model.

2. Intuitively, simulation-based security should imply the actual security concerns of the user
such as privacy, integrity, input independence, etc. (although more often than not this impli-
cation is not explicitly spelled out).

In the definition we and [PS04] use, the ideal model is augmented to allow the adversary (some
fixed) super-polynomial computation while accessing these “ideal boxes”. This means that we
no longer enjoy Property 1 of the standard definition. However, it seems that we still, in many
cases, enjoy Property 2. The reason is that in most cases, if the security in the ideal model for

2Both these assumptions are implied by the assumption that there’s a constant ε > 0 such that the factoring
problem is hard for 2n

ε

-sized circuits.
3This is opposed to the standard (impossible to achieve) definition of polynomial-time simulation.
4Note however that the multi-party computation protocol of [CLOS02] uses a super-constant number of communi-

cation rounds when dealing with adaptive adversaries. So our final protocol for computing any functionality requires
a super-constant number of rounds, as well. Constructing a constant-round protocol for multi-party computation,
even without concurrent security, that is secure against adaptive adversaries without memory erasure, remains an
interesting open problem.
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polynomial-time adversaries indeed implies privacy, integrity, etc.., then this will actually hold
for all adversaries with running time at most T (n) for some explicit super-polynomial function
T (·) that depends on the hardness assumptions used.5 Thus, using quantitatively strong enough
hardness assumptions and large enough security parameter, we can ensure that T (n) is larger than
the time we allow our simulator to run. Note that this is not always the case (and hence the
“almost” in the title) – for some functionalities such as the game of Chess or proof-of-work schemes
[DN92] it is not possible to make even the ideal model secure against super-polynomial time. Note
however that such functionalities are also problematic for polynomial-time simulation. We also note
that typically in polynomial-simulation protocols the simulation time is not just polynomial-time
but is actually a fixed explicitly known polynomial in the adversary’s running time. This property,
which is lost in super-polynomial simulation, has been useful before in applications such as deniable
protocols [DDN91, DNS98, CDNO97, Nao02] and hence our protocol fails to achieve such applications.6

General composition or “chosen protocol attack”. Another requirement that was consid-
ered in the literature is that a concurrently-composable protocol should remain secure even if it is
used concurrently with arbitrary other protocols, including even protocols that were maliciously
designed to be insecure when interacting with the concurrently-composable protocol. This property
was called “chosen protocol attack” by [KSW97] and general composition by [Lin03c]. Although for
this requirement to make sense the other protocols have to be secure (as otherwise composition is
meaningless), in the case of super-polynomial simulation they have to be “strongly secure” (strong
even against super-polynomial time) and hence our protocols cannot be said to fully satisfy this
notion. Note however that similar restrictions hold also for protocols such as [CLOS02] in the com-
mon reference string model (where the other protocols are required not to use the reference string),
and [KLP05] (where the other protocols are required to introduce timeout and delay mechanisms),
although such restrictions do not hold for protocols in the honest majority setting such as [BOGW88].

New technique – “condensed protocols”7. To achieve our result, we introduce a new tech-
nique that allows us to take a protocol Π that has super-polynomial communication and compu-
tation requirements (but polynomial-sized inputs), and “condense” it to obtain a protocol Π′ with
only polynomial communication and computation requirements, while ensuring that the condensed
protocol Π′ retains the strong security properties of the super-polynomial protocol Π. (This is
useful since, using the techniques of Pass [Pas04], it is possible to construct such a super-polynomial
protocol Π with the attractive security properties we need.) Roughly speaking, the initial idea
behind this “condensation” is to replace every super-polynomially long message m in Π with its
short hash h(m), and use Universal Arguments [BG02] to prove correctness of the hashed value. This
by no means completes our task, as we have two fundamental problems: (1) the hashed messages
now contain too little information to allow for the other party to compute a proper response; and
(2) even if one had the long message to compute with, the computation time required to compute

5In fact, in many cases the ideal model is simple enough that this implication holds even if the adversary can run
in unbounded time.

6Note however that deniability is a delicate property that is hard even to define in the general concurrent network
setting, and some previous works in this area such as [CLOS02] also fail to achieve deniability, even when using setup
assumptions (e.g., see [Pas03a]).

7We use quite a few known techniques, and introduce several new techniques as well. We discuss in detail our
techniques in Section 3, and so in this paragraph we’ll restrict ourselves to a terse summary of the main new technique
introduced.
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a response would still be super-polynomial. Solving Problem (1) involves a few technical tricks
and is responsible for many of this work’s technical complications. To solve Problem (2), we use
the following approach: we “encrypt” all communication in the protocol, and then provide honest
parties an “honest backdoor” that allows them to successfully complete the protocol using their
private information. In the context of a zero-knowledge proof of the statement x ∈ L, this can be
done by allowing the prover to prove that either the encryption of the super-polynomial protocol
Π is accepting, or that x ∈ L is true. Since the honest prover will have a witness to the truth of
x ∈ L, it can use this knowledge to quickly (i.e. in polynomial time) prove the statement, without
ever actually participating in the super-polynomial protocol. Remarkably, because an adversary
can never be sure of which condition actually holds, we are able to argue that such a condensed
protocol Π′ retains the strong security properties of the super-polynomial protocol Π.

1.1 Related Works.

There has been a very large body of research on multi-party secure computation and on composition
of cryptographic protocols. In this section we will briefly describe some of the works relevant to
our results; we discuss the works relevant to the techniques of this paper in Section 3. See the
books by Goldreich [Gol04, Chapter 7] and Lindell [Lin03b], and the references therein for a more
comprehensive review of the literature.

Secure multi-party computations. Protocols for secure function evaluation in the stand-
alone setting were given by [Yao86, GMW87]. The latter paper also introduced the paradigm of
“forcing” honest but curious behavior using zero-knowledge proofs [GMR85, GMW87], which has
been widely used in many subsequent papers in this area (including the current one). A satisfactory
definition of security for such protocols (in the stand-alone setting) was given by [Can00], following
[GL90, MR91, Bea91]. A constant round protocol was given in [KOS03], and a simpler and improved
such protocol was given in [Pas04].

Concurrent setting. Security in the concurrent setting was first considered in the context of
zero-knowledge protocols by [DNS98]. A construction was given in [RK99], and improvements in
the number of rounds were made in [KP01, PRS02]. Some negative results were given in [KPR98,
Ros00, CKPR01]. The more general setting where the adversary can play different roles in each
execution (i.e., the person-in-the-middle attack) was first studied by [DDN91], who gave protocols
for commitment and zero knowledge that withstand such an attack in two concurrent executions.
Constant round protocols were given [Bar02], and simpler and improved such protocols were given by
[PR05]. Composition with arbitrary other protocols was considered by [PW00, PSW00]. Security in the
most general setting of an arbitrary polynomial number of concurrent executions, in which parties
can play different roles and interact in different protocols, was considered by [Can01] who termed such
protocols “universally composable” (UC). However, without some setup assumptions, very broad
impossibility results were shown to hold for the definition of [Can01] and even significantly relaxed
definitions, as long as they require polynomial-time simulation [Can01, CF01, CKL03, Lin03c, Lin04].

Security in relaxed models. Because of the failure to obtain secure protocols in a model
where there are no trusted parties, and parties interact in a fully asynchronous way, there were
several works considering more relaxed models. The CRS model: One such model is the common
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reference string (CRS) model, originally introduced in the context of non-interactive zero-knowledge
[BFM88], where the only assumption is that there is a publicly known string that was chosen once and
for all by some trusted party. In this model [CLOS02] gave a construction of multi-party computation
protocol satisfying the UC definition [Can01] which implies that it remains secure under general
concurrent composition. The main problem with the CRS model is that it places an enormous
amount of trust on the party choosing the common string. Indeed, by cheating in choosing this
string, this party can completely and undetectably break the security of the [CLOS02] protocol and
of essentially all other protocols in this model. An approach to distributing some of this trust was
recently taken by [BCNP04]. Honest majority: Another assumption which was used to construct
such protocols is the existence of a majority of honest parties [BOGW88, RBO89, Can01]. However,
this assumption seems to be less reasonable in a general network setting such as the Internet,
and in particular does not allow for 2-party protocols or subprotocols. Timing assumptions:
Yet another assumption that was used is the timing model [DNS98], in which one assumes that
all the parties have clocks with some bounds on the drift between the clocks and on the time to
transmit a message across the network. [DNS98] gave a concurrent zero-knowledge proof system in
this model. Recently, [KLP05] gave a multi-party computation protocol for this setting that remains
secure under general concurrent composition. The main problem with the protocol of [KLP05] (and
all other protocols in the timing model such as [DNS98, Gol02]) is that they require that every
message in every protocol running in the network will be delayed by amount of time that is larger
than the latency of the slowest link in the network. Thus, such protocols do not seem suitable for a
heterogenous network in which some parties have significantly faster connections than other parties.
Bounded concurrency: Yet another assumption, introduced in the context of zero knowledge in
[Bar01] and extended to the general case in [Lin03a], is that there is a fixed known polynomial upper-
boundM on length of all the communication throughout the entire network. [Lin03a], later improved
by [PR03, Pas04, PR05], gave constructions for multi-party computation protocols that remain secure
under general composition using this assumption. However, these protocols use computation and
communication that is larger than M , and this was shown to be necessary by [Lin03a]. Hence,
while bounded-concurrent protocols can be sometimes very useful tools in other constructions (and
indeed we use techniques from [Pas04, PR05] in this paper), they do not seem suitable as a solution
for obtaining secure computation in the general network setting.

Relaxed security in the standard model. Another approach, which is the one taken in
this work, is not to make stronger assumptions on the network or trust, but rather achieve a
weaker notion of security. Super-polynomial simulation: One natural relaxation (which is the
one considered in this work) is to allow the ideal-model simulator to run in time which not a
polynomial in the running time of the adversary but rather some super-polynomial (e.g., quasi-
polynomial) function in this time. This notion was implicit in some works (e.g., [CGGM00]) but was
first explicitly put forward in [Pas03b], who suggested this notion could be used as a way to obtain
concurrently composable protocols and in particular used this relaxation to obtain concurrent zero
knowledge. As argued above and in [Pas03b], super-polynomial simulation provides sufficient security
for almost all applications of multi-party computation. While allowing super-polynomial simulation
makes constructing concurrent zero-knowledge protocols much easier it did not seem to be so helpful
in constructing non-malleable protocols. Also, super-polynomial simulation seemed to ruin the most
attractive feature of the UC framework of [Can01], namely the UC composition theorem. Thus, it
might have seemed initially that it will be possible to generalize the extensive impossibility results
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of [Can01, CF01, CKL03, Lin03c, Lin04] to rule out even super-polynomial simulation. The PS paper:
The first positive result in this direction was given by Prabhakaran and Sahai [PS04]. They gave
a construction of a fully concurrent and non-malleable multi-party computation protocol in the
general-network setting, but they required new (quite unstudied and non-standard) computational
assumptions. Since the previous negative results were often interpreted that one must either use
setup assumptions, or give up on ideal-model simulation-based security, [PS04] offered the exciting
possibility of obtaining secure protocols without giving up either. However, in our opinion the weak
point of [PS04] is the computational assumption used, which essentially assumes that there exists
a cryptographic hash function (not a collection of functions) that is a non-malleable commitment
scheme. While, unlike the Random Oracle Model [BR93], the assumptions of [PS04] are well-defined
complexity-theoretic assumptions, they are not well-studied, and seem to be difficult to analyze
because of their complexity. On a more technical level, although [PS04] tackles some major technical
difficulties such as getting UC composition to work in this setting, they essentially do not tackle
non-malleability from a technical standpoint, and instead assume it to be present in the hash
function. The current work can be seen as subsuming the result of [PS04] by obtaining it under
standard assumptions8. Other relaxed security notions: There are other security definitions for
particular cryptographic tasks which are outside of the ideal-model simulation paradigm. However,
to the best of our knowledge, under standard assumptions, all such definitions are weaker than the
ideal-model simulation, and (assuming one uses a conservative enough security parameter), this
holds even if the simulator runs in quasi-polynomial time.

1.2 Overview of this paper.

In Section 2 we discuss the definitions and model we use, state our results, and elaborate on
why these results provide a meaningful notion of security. In Section 3 we give an overview of
our techniques. The main component we construct — a fully concurrent and non-malleable zero-
knowledge protocol — is Protocol 4.1 (outlined in Page 17). A detailed description of the protocol
is given in Section 4, with the simulation soundness property proven in Section 5. The construction
of a general multi-party protocol from the zero-knowledge protocol (using the results of [CLOS02])
is described in Section 6.

2 Model and Results

The network model we consider is the same one as in [Can00, Can01, Lin03c] . There is a network of
point-to-point channels between a set of parties. Each party has a string that uniquely identifies
it (which we call the party’s ID). The parties do not need to be aware of each other’s existence.
An adversary can do the following: (1) control some of the parties (such parties are said to be
“corrupted”), (2) create new parties dynamically, (3) view all messages submitted on the network,
and (4) fully control the scheduling of these messages. We denote the strategy that an honest party

8Prabhakaran and Sahai [PS04], aside from obtaining their result on secure multiparty computation, also put
forward a new framework for security definitions. This is something we do not do in this paper. Our result can be
seen as holding within the “Angel” definitional framework of [PS04]. However, for the sake of being as self-contained
as possible, we instead prove our result directly in the context of the definitions of [Can01]. We also note that recently
[MMY05] gave a different construction in the [PS04] model, which is based on different non-standard assumptions of
a more number-theoretic nature (they assume some non-malleability of the discrete log problem).
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Pi uses as πi. This strategy models all the activity of Pi, including all protocols
9, cryptographic or

non-cryptographic, that are executed sequentially or concurrently by Pi. We denote the collection
of all these strategies for all parties by π. We note that in this model the adversary can control
all scheduling of messages to honest parties, and hence can indefinitely postpone the delivery of
messages to any honest party. Thus this work (as is the case with [CLOS02] and with [GMW87] in the
non honest-majority case) does not guarantee security against denial of service attacks or provide
the related guarantee of fairness [GL90].

Security definition. If F is some (possibly probabilistic, stateful) functionality, then the F-
hybrid model is the same model augmented by an additional trusted party that computes F . We
say that a protocol ρ securely computes F with polynomial simulation if the following holds: for
every polynomial-sized adversary Adv there exists an polynomial-sized adversary Adv′ in the F-
hybrid model such that if π is an honest parties strategy that includes calls to ρ as a subroutine,
then the view of Adv when interacting with π is indistinguishable from the view of Adv′ when
interacting with π′, where π′ is obtained from π by replacing all calls to the ρ subroutine with calls
to the ideal function F . We say that ρ securely computes F with quasi-polynomial simulation if

Adv′ is allowed to be of quasi-polynomial (i.e. , klog
O(1) k) size.

2.1 Our Results.

We consider the zero-knowledge ideal functionality FZK (for an NP-complete problem such as SAT)
which gets as input from party Pi two strings y and w and the identity of a party Pj , and sends
to Pj the tuple (ZK,Pi, Pj , y,) if w is a satisfying assignment for the formula y, and does nothing
otherwise.
Our main result is a construction of a protocol for securely implementing the FZK functionality

under general composition. Namely, we prove the following theorem:

Theorem 2.1 (General-concurrent zero knowledge). Suppose that there exists a hash function
collection that is collision resistent for 2kε-sized adversaries (where ε > 0 is a constant and k
denote the collection’s security parameter). Then, there exists a protocol that securely realizes the
FZK functionality with quasi-polynomial simulation.

Canetti et al. [CLOS02] showed how to securely compute any functionality in the FZK-hybrid
model. Thus, by observing that their results “scale up” and hold in our model, and by plugging in
Theorem 2.1, we obtain the following result:

Theorem 2.2 (General-concurrent secure function evaluation). Suppose that there exists a hash
function collection that is collision-resistent for 2kε-sized adversaries (where ε > 0 is a constant
and k denote the collection’s security parameter). Then, there exists c = c(ε) such that if there is
a collection of enhanced trapdoor permutations which is secure for klog

c k-sized adversaries then for
every (possibly probabilistic) polynomial-time functionality F , there is a protocol ρF that securely
realizes F with quasi-polynomial simulation.

9Another equivalent way to model this, following [Can01], is to have a special adversarial entity called an envi-

ronment that models all other protocols happening in the system, other than the one being analyzed. We follow this
modeling in the detailed description of our protocol.
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3 Overview of Our Techniques.

In this section we provide an rough overview of our approach to obtaining a zero-knowledge protocol
that is secure under general concurrent composition. That is, we describe our approach to proving
Theorem 2.1. We start by briefly describing some of the primitives and tools we use. We then
present how one can obtain such a protocol by combining two different approaches that fail with
some new techniques and tricks. We warn the reader that this description is missing a few important
subtleties and issues that make our actual construction and proof more complicated. Because
of these subtleties, our actual construction (Protocol 4.1) does not exactly follow the approach
illustrated in this section, but follows a more “low level” approach.

3.1 Preliminaries.

We will use the following primitives and sub protocols. Because this is an overview section, we
describe the primitives in an informal way, and also present each primitive in its simplest variant,
even if this variant requires stronger assumptions than the ones stated in Theorem 2.1. We will
use the following primitives:

Commitment schemes. A non-interactive perfectly binding and computationally hiding com-
mitment scheme Com [Blu82, Nao89].

Zero-Knowledge proofs of knowledge. A constant-round zero-knowledge proof/argument
of knowledge for NP [FS89, GK96]. We will also sometimes use the weaker notion of a
witness indistinguishable proof, which we denote by WIP [FS90]. We note that witness-
indistinguishability, unlike zero-knowledge, is closed under concurrent composition. Indeed,
under some strong but reasonable assumptions it is even possible to have two-message or even
one-message WI proofs, which are trivially closed under concurrent composition [DN00, BOV03].

Collision resistant hash functions. A collection Hash of functions that map arbitrarily long
strings into polynomial-sized strings such that it is hard given a random h ∈ Hash to find x, y
such that h(x) = h(y). We note that by combining a hash function with a commitment scheme
we can obtain a commitment scheme that allows us to commit to messages of unbounded
size.10

Universal arguments. A constant-round public-coin argument of knowledge for Ntime(T )
for a super-polynomial function T (·) (e.g., T (k) = klog k). Universal arguments were first
constructed by [Kil92], with improved analysis in [Mic94] and [BG02] (with the latter work
showing they are a proof of knowledge). We’ll also use constructions of universal arguments
that are zero knowledge and witness indistinguishable [Kil92, BG02, Bar04]. Universal arguments
have the property that the total communication and running time of the verifier is always
polynomial, even if the statement proven is not in NP. Furthermore, the running time of the
prover is polynomial in the time to actually verify the instance being proven. For example, if
L ∈ NP and L′ ∈ Ntime(klog k) and one is proving using universal arguments that x ∈ L∪L′

10We ignore here the issue of who gets to choose the hash function – the sender or the receiver. Although intuitively
it seems that the receiver should choose the hash function, it turns out that in some cases we actually want the sender
to choose it. For the sake of this overview, the reader can assume that each party chooses its own hash function and
then they use the function that on input x returns the concatenation of both functions applied to x. This function
is guaranteed to be collision resistant if one of the parties is honest.
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then if x is in fact in L and the prover is given a witness to this fact, then the prover can
execute the proof in polynomial time.

Knowledge commitments. We denote by KCom the protocol in which a sender commits to
a string x using Com(·) and then proves knowledge of the committed string using a zero-
knowledge proof of knowledge. We denote by UAKCom the same protocol in which the sender
commits to h(x) and proves knowledge of x using a zero-knowledge universal argument.

Weak commitments. We denote by Comweak a commitment scheme that can be completely
broken in time that is smaller than the time to violate the security of all the other primitives
we use. Such a commitment scheme can be constructed under our assumptions using the
complexity leveraging technique of [CGGM00].

Brute force breaking opportunity. We denote by BFOP the protocol in which a verifier sends
Comweak(r) and then the prover sends KCom(r′) for some string r′. We say that the prover
broke this instance if r′ = r. Note that this protocol can be broken by breaking Comweak.
Similar tricks were used in several previous works such as [CGGM00, Pas03b].

3.2 First Attempt: The Brute Force Protocol

Recall that we’re trying to prove Theorem 2.1 by constructing a general-concurrent secure zero-
knowledge argument. Here’s a naive attempt at such a protocol (that was used by Pass [Pas03b] in a
similar context), which we denote by ΠBF: let L be an NP-language with a corresponding relation
R. To prove that x ∈ L, given w such that (x,w) ∈ R, the prover and verifier interacts as follows:

1. Prover sends Comweak(w) to the verifier.

2. Prover and verifier interact in a brute-force breaking opportunity BFOP.

3. Prover proves to verifier in WI that it either committed to the witness in the first step or that
it broke the BFOP in the second step.

It is not hard to verify that this protocol satisfies completeness and soundness. In fact, in
a real concurrent interaction, whenever the verifier is honest, the probability that it accepts a
proof without the weak commitment actually containing a witness is negligible. There is a natural
straight-line black-box simulator for ΠBF [Pas03b]: when simulating an interaction in which the
adversary is a verifier, the simulator commits to 0k instead of to the witness, and then breaks
BFOP and uses this fact to run the WI proof of Step 3. It is not hard to prove that the simulator’s
output is indeed indistinguishable from a real execution.11

When simulating an interaction in which the adversary is the prover, the simulator will attempt
to extract a witness by breaking the weak commitment sent by the adversary. However, in this case,
we are not sure that it will succeed. The property we’re looking for, that even during the simulation
the adversary’s proof must contain a real witness, is called simulation soundness [Sah99], and this
property lies at the heart of constructing non-malleable zero-knowledge protocols. Unfortunately,
it can be shown that protocol ΠBF does not satisfy this property (i.e., there is a known attacking
strategy on instantiations of ΠBF with particular primitives).

11Thus, as shown in [Pas03b], the protocol ΠBF is a concurrent zero knowledge (cZK) protocol with quasi-polynomial
simulation. However note that we need stronger security than cZK, because in our case the adversary can play both
the roles of prover and verifier during the attack.
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3.3 Second Attempt: The Condensed Protocol

The problem with the first attempt was that that protocol did not satisfy simulation soundness /
non-malleability (it is essentially the same property). There are very few simulation-sound zero-
knowledge protocols without setup assumptions [DDN91, Bar02, Pas04, PR05] and most of these are
only analyzed in the scenario where there are only two executions occurring concurrently: one in
which the adversary is the verifier and another in which the adversary is the prover. Pass [Pas04]
constructed the first protocol which remained simulation sound even when the adversary interacts
not just in two executions but in k (where k is the security parameter) executions – playing the
role of prover in some, and playing the role of verifier in others. Here, k is the security parameter.
However, that protocol used O(k) rounds which will be problematic in this setting. Nonetheless,
it was observed in [BCL+05] that using the ideas of Pass and Rosen [PR05], it is possible to convert
a different protocol of Pass [Pas04] to a constant-round protocol with this property.12 We denote
this protocol (which is essentially based on [Pas04]) by bgcZK (for bounded general-concurrent zero
knowledge).

A strange idea. This leads us to the following strange idea - why don’t we try to use Protocol
bgcZK, but set the security parameter to super-polynomial size? Unfortunately there is a good
reason cryptographers do not set the security parameter to super-polynomial values: because this
yields a protocol with super-polynomial communication and computation even for the honest par-
ties. Can we overcome this difficulty? We do have a way to compress at least the communication,
using hash functions combined with universal arguments. That is, we define Πcondensed to be the
protocol that is the result of executing bgcZK with security parameter klog k (where k is our “true”
security parameter), but replacing each message m in bgcZK(klog k) which is of super-polynomial
size with h(m) followed by a universal argument proving knowledge of m. Now, it is not at all
clear that this protocol makes sense, because if a party needs to change its action in bgcZK(k log k)
according to the contents of a super-polynomially sized message m, then during an interaction in
Πcondensed, this party won’t be able to recover m regardless of its computation powers (indeed, the
polynomial-sized transcript simply does not contain enough information about m).
Thus we are left with two problems: (1) Πcondensed is not a valid protocol since the parties needs to

run in super-polynomial time, if they can work at all and (2) Even though klog k concurrent sessions
of bgcZK(klog k) can be simulated, that does not mean that the same holds for Πcondensed, since now
the simulator needs to rewind to extract the long messages sent and rewinding in a concurrent
setting is notoriously problematic. Both problems are rather serious but can be resolved by moving
to a third protocol that tries to combine the good properties of ΠBF and Πcondensed.

12Pass [Pas04] did give a also a constant-round protocol satisfying this property assuming the ID’s of each party
come from a polynomial-sized domain. Pass and Rosen [PR05] showed how one can convert this protocol to a
standard simulation-sound protocol by having a party with ID α = α1, . . . , αk run k parallel executions of Pass’s
protocol using the ID 〈i, αi〉 for the ith execution. Barak et al.[BCL+05] observed that if one first encodes the ID
using an error-correcting code with poly(k) alphabet-size and relative distance larger than 1 − 1/k then the [PR05]
protocol actually handles k concurrent sessions. We note that in our actual protocol we use a different trick, based
on signature schemes, to achieve a similar goal.
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3.4 The Combined Protocol: Two Protocols with Two Simulators.

We now present our third protocol, which will actually be (almost) a concurrently simulation-sound
zero-knowledge protocol.13 The idea is the following: we will run both ΠBF and Πcondensed, but we’ll
run Πcondensed in an “encrypted” form, that is replacing every message m of bgcZK by KCom(m) if m
is of polynomial size and UAKCom(m) if m is of super-polynomial size. At the end, we will prove
in a witness indistinguishable way that one of these protocols succeeded. That is, our combined
protocol, which we denote by Πcombined will operate as follows, when proving x ∈ L with w a witness
for x:

1. Prover sends to verifier Comweak(w).

2. Prover and verifier engage in a brute-force breaking opportunity BFOP.

3. Prover and verifier engage in “encrypted and condensed” version of bgcZK(k log k): any message
m is replaced with KCom(m) if m is polynomial size and UAKCom(m) if m is of super-
polynomial size.

4. Prover and verifier engage in a witness indistinguishable universal argument that either :
(a) the commitment in Step 1 is indeed a witness or (b) prover broke BFOP or (c) there
exists a transcript for bgcZK(klog k) that the honest verifier of that protocol accepts, and this
transcript is consistent with the “encrypted condensed” transcript of Step 2.

What is this good for? First of all note that, unlike Πcondensed, in Πcombined both parties can be
implemented using only polynomial time computation, and so at least we got rid of one of our
problems. Like ΠBF, Protocol Πcombined has a simple straight-line black-box simulator. However, our
intention is that unlike in the case of ΠBF this simulator will enjoy the simulation soundness property
and furthermore that we will be able to prove that this is the case. Our idea is to prove simulation
soundness using what we call a virtual simulator. The virtual simulator will have two properties:
(1) it will satisfy the simulation-soundness property and (2) it will be strongly indistinguishable
from the output of the straight-line simulator, in the sense that it will be indistinguishable even for
algorithms with enough running time to break Comweak. These two properties together will imply
that our straight-line simulator must also satisfy the simulation soundness requirement.

Why do we need the straight-line simulator? If the virtual simulator already satisfies the
simulation soundness condition, why do we need to use the straight-line simulator at all? The
reason is that the virtual simulator will actually use the witness as part of its input. This is OK
since the virtual simulator is not the “real” simulator and is only used as part of the security proof.
Note that it is not at all clear that using the witness helps the virtual simulator as we can’t commit
to the witness in Step 1 without destroying the strong indistinguishability property.

The operation of the virtual simulator. The virtual simulator will try to run the simulator
of the protocol bgcZK(klog k), which does enjoy the simulation-soundness property. The question
is how do we solve our second problem above – namely, how do can we use the simulator of

13The qualifier “almost” is because there are still some subtleties that we ignore here. Some of these are discussed
below, while others are only handled in the full proof presented in the later sections.
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bgcZK(klog k) when we are unable to rewind in a concurrent setting. The trick is that we are able
to rewind using the witnesses. That is, in order to produce the auxiliary sessions we need for
rewinding we actually use the witness to perform a straight-line simulation. The reason we can get
away with using the witness in these auxiliary sessions is that the auxiliary sessions don’t need to be
strongly indistinguishable from the main simulation, but rather only need to be indistinguishable
“enough” to ensure successful extraction. The reason we can’t use the breaking opportunity is that
in order to ensure the simulation soundness we need to make sure that the running time of the
virtual simulator is less even than the time to break Comweak.

3.5 Some issues and subtleties.

Witness-based continuation: To actually implement this idea, we need to make sure that
regardless at which point we are in the simulation, we can always continue in a straight-line fashion
using the witness alone, without requiring the internal state of any of the parties. Toward this end,
we use a compiler, which we call a witness-based-continuation (WBC) compiler that transforms the
protocol to a protocol that satisfies this property. Loosely speaking, we first make sure that the
only prover messages that unavoidably depend on internal state are the last messages sent in some
proof system used as a sub-protocol. We then change the prover to have these messages not sent
in the clear but rather in a weak commitment, along with a weak commitment to a string w ′ and
a WI proof that either the committed message causes the verifier to accept or w′ is a witness.14

“Forcing” scheduling constraints on adversary: Another point is that when we transformed
bgcZK into its condensed version, we converted each message into an interactive universal argument,
thus ruining the “atomicity” of individual messages. The security proof of bgcZK actually relies
on this atomicity and hence we need to do something to restore it. Our solution is to use brute
force breaking opportunities as “buffers” between individual messages. It turns out that if during
a session in which the adversary is a verifier, it schedules the universal arguments for two messages
during the same time as it schedules the universal argument for a single message in the session where
it is a prover, then in this case it is actually “safe” for the virtual simulator to break the BFOP

(even though this requires more running time than the virtual simulator is officially “allowed”).
Thus, we can use the straight-line simulator in the cases where the adversary’s scheduling violates
the atomicity condition.

3.6 Guide to the actual protocol and proof.

Our general-concurrent zero knowledge argument scheme is Protocol 4.1(Page 17). This protocol
follows broadly the approach sketched above, but its analysis and design are more “low level”. That
is, instead of combining “generic” components such as ΠBF and bgcZK and proving something about
the composition of any two such components, we use the ideas behind ΠBF and bgcZK to construct
our protocol which we then analyze. The reason is that there are some subtleties, especially
involving the ability of the adversary to dynamically schedule messages and choose the statements
to be proven, that make the low level approach preferable. Some points in which we deviate from
the description above include using more complexity levels than just two, and using verification
keys of digital signatures to avoid issues with dynamically chosen statements.

14We use a variant of this compiler with trapdoor commitments a la [FS89, CLOS02] to obtain security with respect
to adaptive adversaries.
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4 Construction of a Concurrent and Non-Malleable Zero-Knowledge
Protocol

4.1 Preliminaries

Hardness assumptions. We will make use of a number of “complexity levels” in our protocol
and its analysis. As the analysis is quite delicate, and for sake of understandability, we do not
attempt to optimize the number of complexity levels (described below), but rather we choose a
very conservative setting of parameters in order to simplify the presentation to the best extent
possible. We assume we have primitives that with security parameter k′ are secure against 2k

′ε

sized circuits, (in the sense that no 2k′ε-size circuit can break them with success better than 2−k′ε)
but can be completely broken in time 2k′ . We assume that our adversary’s running time is T0(k)

(e.g., T0(k) = klog k or T0(k) = 2
kδ). Define Ti(k) = 2

log(T0(k))(1/ε)
30i

. By appropriate scaling, we
can obtain for every constant i, a primitive that is secure against Ti(k)-sized adversaries but is
completely broken in time much less than Ti+0.1(k). We call such a primitive Ti(k)-secure and we
sometimes use a subscript i to denote it (e.g., Comi). We say that a probabilistic event is Ti(k)-
observable if there is a Ti(k)-time computable predicate that decides whether or not the event
holds. Note that we’ll sometimes drop k when it can be inferred from the context. We say that

f(k)¿ g(k) if 2log
(1/ε) f(k) = g(k)o(1).

Throughout this paper negligible will mean probability that is less than 1/T0(k)
c for any fixed

c > 0. We say that two random variables X and Y are (s, ε)-computational indistinguishable if no
sO(1)-sized circuit can distinguish between X and Y with εΩ(1) advantage. We say that they are s
indistinguishable if they are (s, 1/s)-indistinguishable.
For sake of visual simplicity, we will often drop the dependence on the global security parameter

k, and simply write Ti for Ti(k).

Complexity levels. Throughout the protocol and analysis, we make an extensive use of various
complexity levels. For convenience we list all these levels in Table 1 (Page 16) up to polynomial
factors (e.g., identifying T0 and (T0)

5). We again stress that we have not tried to minimize the
number of complexity levels used.
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Size and time of adversary, number of sessions. T0

Value of M in definition of statement [KOLM]. T0.1

Distinguishing advantage between VSim and Sim, between Sim and real execution. 1
T0.5

Probability of simulation soundness failure in VSim, Sim. 1
T0.6

Strength of commitment to verification key V K (cVK). T1

Running time of VSim verifier (VHV). T1.1

Running time of VSim prover (VHP) in Case 3: win = ‘UA’. T1.5

Security of Beasy. T2

Running time of VSim prover (VHP) in Case 2: win = ‘SIG’. T2.5

Security of Bhard. T3
Running time of Sim prover algorithm.

Running time of VSim prover (VHP) in Case 1: win = ‘BFOP’.
T3.5

Security of commitment to witness cwit, commitments to witness and response in

WBC protocol.

T4

Running time of Sim verifier (time to extract witness). T4.1
Security of all other commitments in protocol.

Indistinguishability of WI and ZK protocol used.
T5

Soundness and knowledge soundness of all proof system used.

Strength of hash function and signature scheme.
T6

Table 1: Complexity levels and quantities used in the protocol and proof (up to polynomial factors).
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Public input: 1k: security parameter , x ∈ {0, 1}`stmt (statement to

be proved is “x ∈ L”)

Prover’s auxiliary input: w ∈ {0, 1}`wit (a witness that x ∈ L)

w
↓

1k, x
↓

P V

Step V1.1 (Verifier’s hash): Verifier chooses a random hash
function h←R Hash6 and sends h. h←R Hash6←−−−−−−−−−−−−

Steps P,V1.2 (Prover’s “verification key”): Prover chooses
V K = 0`VK and sends cVK = Com1(V K) to the verifier. cVK = Com1(V K [= 0`VK ] )

−−−−−−−−−−−−−−−−−−−−−−→

Slot 1Steps V,P2.x (Verifier’s first challenge): Verifier chooses
r1 = 0

k, computes cr1 = Com5(h(r1)) and proves knowledge
of r1 using a ZKUA.

cr1=UAKComh
5(r1 [= 0

k] )
←−−−−−−−−−−−−−−−−−−−−−−

“Unsafe” periodSteps P,V3.x (Breaking opportunities): Prover and verifier
engage in a T2(k) and T3(k)-secure brute force breaking op-
portunities, denoted Beasy and Bhard.

Beasy=BFOP2;Bhard=BFOP3

Slot 2Steps V,P4.x (Verifier’s second challenge): Verifier chooses
r2 = 0

k, computes cr2 = Com5(h(r2)) and proves knowledge
of r2 using a ZKUA.

cr2=UAKComh
5(r2 [= 0

k] )
←−−−−−−−−−−−−−−−−−−−−−−

Step P,V5.x (Commitment to “Signature”): Prover lets
σ = 0`sig and sends csig = KCom5(σ) to the verifier. csig=Com5(σ [= 0

`sig ] )
−−−−−−−−−−−−−−−−−−−→

Steps P,V6.x (“committed” universal argument):
Prover and verifier run T6(k)-sound universal ar-
gument UA for [KOLM] where prover sends T5-
strong commitments to its messages . Honest prover
uses commitments to “junk” (i.e. 0k) in this stage.

Statement [KOLM]: Let M = 2T0.1(k). For j ∈ [`VK] let `j =

(V Kj) · `VK + j (i.e., `j ∈ [2`VK]) and let `1

j = `j ·M and `2j = (4`VK +

1− `j)M .

Then, for every j ∈ [`VK] there exist s∈{1, 2}, a TM Πs of description

size ≤ `s
j − k and a string rs such that: (a) Πs outputs rs within

≤ T1.4(k) steps and (b) rs is consistent with crs . That is, h(rs) ∈

Com−1(crs).

cUA=Com5UA6 of [KOLM]
−−−−−−−−−−−−−−−−−−−−−−−−→

Step P.7.1 (Commitment to Witness): Prover sends cwit =
Com4(w) to the verifier. cwit=Com4(w)

−−−−−−−−−−−−−→

Steps P,V7.2.x (WI proof): Prover proves to verifier using a
T5(k)-WI proof that one of the following holds: either

[WIT] Com−1(cwit) is a witness for x or
[BFOP] Broke Bhard or
[UA] Com−1(cUA) is accepting transcript. or
[SIG] Broke Beasy and csig is commit to sig on x.

−−−−−−−−−−−−−−−−−−−−−→
WIP5 that [WIT] /
[BFOP] / [UA] / [SIG]

(The WBC compiler changes a last prover message m of a sub-proof systems (i.e., Beasy,Bhard and the final WIP) to

Com4(m) , Com4(w
′ [= 0`wit ] ) and WI-proof that either m convinces the verifier or w′ is a witness for x.)

Protocol 4.1. Non-Malleable Concurrent Zero Knowledge (before WBC-compiler)



4.2 The protocol.

Our general-concurrent zero knowledge argument scheme is Protocol 4.1 (Page 17). This protocol
follows broadly the approach sketched in Section 3, but its analysis and design are more “low level”.
That is, instead of combining “generic” components such as ΠBF and bgcZK and proving something
about the composition of any two such components, we use the ideas behind ΠBF and bgcZK (and
in particular the “two slot technique” of [Pas04]) to construct our protocol which we then analyze.
The reason is that there are some subtleties, especially involving the ability of the adversary to
dynamically schedule messages and choose the statements to be proven, that make the low level
approach preferable.
Let L be an NP language, where the statement is of length `stmt and the witness is of length

`wit (both polynomially related to k). We now describe a concurrent non-malleable T4.1(k)
O(1)-

time simulateable zero-knowledge protocol for L. A concurrent execution of the protocol involves
poly(k) ≤ T0(k) concurrent session in which the adversary plays the verifier, and one session (also
concurrent with the others) in which the adversary plays the prover. We will present a T4.1(k)

O(1)-
time simulator that outputs a string indistinguishable to the transcript of all these executions,
along with a witness to the statement proven by the adversary (unless this statement is a copy of
a statement proven in one of the other sessions).

4.2.1 Components.

We use the following components in our protocol:

• A T6-secure signature scheme. We denote by `VK the length of the verification key and by `sig

the length of a signature on messages of length `stmt.

• A T6-secure hash function ensemble Hash6 of functions mapping {0, 1}
∗ to {0, 1}`h .

• Non-interactive computationally-hiding, perfect binding commitment schemes at various strengths.
Comi indicates a commitment secure against Ti(k)-time adversaries and breakable in time
¿ Ti+0.1.

• A T6-sound constant-round public coin universal argument, which we denote by UA [BG02].
By combining this with a standard constant-round zero-knowledge argument of knowledge for
NP (e.g., [FS90] or [Bar01]15), we also have a T6(k)-sound, zero-knowledge universal argument
(ZKUA) where the zero-knowledge property holds with polynomial simulation overhead (for
adversaries of size ≤ T6) and the output of the simulator is indistinguishable for T5(k)-sized
adversaries. See [Bar01, BG02, Bar04] for more details.

• We denote by KComi (short for “knowledge commitment”) the interactive commitment scheme
where the sender commits to a value x using Comi and then proves knowledge of x using a
constant-round zero-knowledge argument of knowledge, which is sound against T6(k)-sized
adversaries and indistinguishable for Ti(k)-sized adversaries. (Again, we’ll use the protocol
of [Bar01] as the zero-knowledge argument in this scheme.)

15We’ll actually use the latter protocol, since it will be convenient for us to assume that the proof systems we use
as sub-protocols are public-coin systems.
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• We denote by UAKComh
i for the protocol where the sender uses the hash function h to first

hash x and then commits to h(x) using Comi and proves knowledge of x using a zero-knowledge
universal argument which is sound against T6(k)-sized adversaries and indistinguishable for
Ti(k)-sized adversaries.

• Ti(k)-secure one way functions for various levels i. We use the notation OWFi : {0, 1}
`OWFi →

{0, 1}`OWFi .

• We call the following sub-protocol a brute force breaking oppurtunity of level i: the verifier
chooses r ←R {0, 1}

`OWFi and sends y = OWFi(r) to the prover. The prover responds with
Com5(r

′) (where the honest prover chooses r′ = 0`OWFi ) and a proof of knowledge of r′ using
a constant-round zero-knowledge argument of knowledge for NP (with T6(k) soundness and
T5(k) indistinguishability). We denote this protocol by BFOPi and we say the prover broke
this instance of the protocol if r′ ∈ OWF−1(y). We assume that OWF is a permutation
for simplicity (as otherwise the verifier may send an element y that is not in the range of
OWF). This assumption is not necessary, as we can also have the verifier prove in ZK that
its challenge y is in the range, or replace the one-way function with a commitment scheme.
However, we avoid this complication in describing the protocol and its simulation.

Note: We assume that all the proof systems we use as components (WI,ZK) etc.. have the following
properties:

• The verifier is stateless. By this we mean that each message of the verifier can be computed
using fresh randomness and the previous public transcript. (In particular, this holds for public
coins (a.k.a. Arthur-Merlin) protocols.)

• The prover’s messages are composed of a sequence of unopened commitments and then at the
end a message m. The verifier then decides whether to accept by applying a publicly known
polynomial-time predicate on the entire transcript.

It is not hard to verify that such components exist under our assumptions.
Note also that for the proofs of knowledge we will use the property that given a prover algorithm

P∗ of size T that causes the verifier to accept the statement x with probability at least µ, the
knowledge extractor can using poly(T/µ) steps to output a witness for x with probability at least
1− µ.16

4.2.2 Operation of the protocol.

Our non-malleable zero-knowledge protocol is Protocol 4.1 (Page 17).17 It consists of the following
stages:

Initial phase (Steps V1.1 , P1.2): Verifer chooses a hash function h in Hash6. Prover commits
using Com1 to a string V K. (Honest prover lets V K = 0`VK .)

16This is actually a weaker property than standard proof of knowledge, which requires the extractor to run in time
1
µ
poly(T ). However, in our context of super-polynomial simulation, this weaker property will be sufficient.
17Actually, as noted below, Protocol 4.1 is not a complete description of the protocol as it ignores a “compiler”

that we apply to it to get the final protocol. However, this compiler can and should be ignored in the first reading.
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First “slot” (Steps V,P2.x): Verifier chooses a string r1 and commits to prover to r1 using
UAKComh

5 . (Honest verifier uses r1 = 0
k.)

“Unsafe period” - brute force challenge (Steps P,V3.x): Prover and verifier engage in two
breaking opportunities (in parallel, although this doesn’t matter) one that is T2-secure which
we call Beasy and the other that is T3-secure which we call Bhard.

Second “slot” (Steps V,P4.x): Verifier chooses a string r2 and commits to prover to r2 using
UAKComh

5 . (Honest verifier uses r2 = 0
k.)

Commitment to “signature” (Step P5): Prover sends to verifier Com5(σ) where σ = 0
`sig .

“Committed” universal argument (Steps P,V6.x): Prover and verifier run a T6-sound uni-
versal argument for the statement [KOLM] (see below), but the prover does not send its
messages in the clear but rather using T5-secure commitments. Note that the universal argu-
ment is a public-coins/Arthur-Merlin protocol and hence the verifier does not need to view
the prover’s messages to compute its own. However, of course, the verifier cannot verify the
correctness of the universal argument.

Commitment to witness (Step P7.1): Prover sends a T4-secure commitment to the witness
cwit = Com4(w).

WI Proof (Steps P,V7.2.x): Prover proves to verifier using a statistically-sound (with sound-
ness error 2−k which we assume is¿ 1/T6)

18, T5-WI proof that one of the following conditions
hold [WIT] or [BFOP] or [UA] or [SIG] (see below).

The statements proven. The statements used in the above proof systems are the following:

[KOLM] Let M = 2T0.1. For j ∈ [`VK] let `j = (V Kj) · `VK + j. In other words, `j maps 〈j, V Kj〉
to [2`VK] in a one-to-one manner. Let `

1
j = `j ·M and `2j = (4`VK+1− `j)M . Then, for every

j ∈ [`VK], for either s = 1 or s = 2, there exists a TM Πs of description size ≤ `sj − k and a
string rs such that: (a) Πs outputs rs within ≤ T1.4(k) steps and (b) rs is consistent with
crs . That is, h(rs) ∈ Com−1(crs).

[WIT] The commitment cwit contains a witness to the statement x.

[BFOP] Bhard is broken: Let y be the first message sent by the verifier in the Bhard protocol of
Steps P,V3.x. Let c be the second message sent by the prover in this protocol. Then c contains
a commitment to r′ such that y = OWF(r′).

[UA] The committed universal argument transcript is is an accepting transcript for the statement
[KOLM].

[SIG] The commitment csig is a valid signature on the statement x with respect to the public key
V K that is committed to in cVK, and Beasy is broken: let y be the first message sent by the
verifier in the Beasy protocol of Steps P,V3.x. Let c be the second message sent by the prover
in this protocol. Then c contains a commitment to r′ such that y = OWF2(r

′).

18We can use also a T6-computationally sound argument here.
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4.2.3 Witness-based continuation (WBC) compiler.

We will need to apply the following transformation to the prover strategy of this protocol. It
may be better to ignore this transformation in the first reading. The crucial observation for this
transformation is that all messages sent by the prover during the protocol fall into one of the
following categories:

Commitments - messages that contain only unopened commitments.

Verification messages for UAKCom - messages that the prover sends when it is acting as a
verifier in Steps V,P2.x and V,P4.x. We assume that these can be computed in a stateless
way, without any need for internal state, just by looking at the transcript.

Final messages of a WI/ZK proof - the last message in a WI/ZK proof. We note that we can
ensure that all of the prover messages in the zero-knowledge or WI proof are commitments
except for the last message. We also note that given the proof transcript so far, it can be
decided in polynomial-time whether or not this message causes the verifier of the proof to
accept. These messages occur in the following places: the last messages of Beasy and Bhard of
Steps V,P3.x and the last message of the final WIP of Steps P,V7.2.x.

Our compiler does not change the prover’s behavior on the first two kinds of messages. However,
instead of sending a message m of the last type, it will send Com4(m),Com4(w) and a WI proof
of knowledge that either m causes the verifier to accept this particular sub-proof or that w is a
witness for x. The WI proof will be statistically sound and witness indistinguishable for T5-sized
adversaries. We can use a standard 3-round proof for this part (e.g. parallelized [Blu87]). Even
the honest prover will use a commitment to 0`wit instead of a commitment to the witness in this
compiler. The final protocol that is obtained after the WBC compiler is applied to Protocol 4.1 is
called Protocol X .

Inner and outer prover algorithms. It is useful to separate the prover algorithm for Protocol X
into two components: the inner prover and the outer prover. The inner prover is the prover strat-
egy for the uncompiled protocol (i.e., Protocol 4.1). The outer prover stands between the inner
prover and the verifier for Protocol X , and adds the WBC layer to the behavior of the inner prover.
We consider two strategies for the outer prover. The relaying strategy: in this strategy the outer
provers simply relays the messages from the inner prover to the verifier, and when given the last
message m of some WI/ZK proof, it uses Com4(m),Com4(0

`wit) as its message and then runs the
WI proofs proving that m causes the verifier to accept. If m does not cause the verifier to accept
then the outer provers does not continue in the execution (however, this will never happen if the
inner prover is honest). Note that to use this strategy the outer prover does not need to have any
private input, such as the witness for the statement being proven. The witness-based strategy:
We will want to maintain the property that it is possible for the outer prover to switch over from
using the relaying strategy to using the witness-based strategy at any point during the proof. In
the witness-based strategy, the outer prover, knowing a witness to x ∈ L, acts as follows:

• If the prover reaches a point when it must send a commitment, it commits to “junk” (i.e., all
zeros) messages of appropriate length.
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• If the prover reaches a point when it must send a “stateless” message because it is playing a
verifier within a proof, then it acts honestly.

• If the prover reaches a point when it must begin giving aWI proof of knowledge corresponding
to the last message of an inner proof, then it replaces Com4(m) with a commitment to “junk”
(all zeros), and commits to the witness Com4(w). It then uses the witness condition to
complete the WI proof of knowledge.

• If the prover has already committed according to the relaying strategy Com4(m),Com4(0
`wit),

then the prover finishes the WI proof of knowledge using knowledge of m and the rest of
the inner transcript so far. This is possible because in order to prove that the verifier would
accept m within the inner proof, one only needs to look at the (inner) transcript – this is
because the verifier is stateless.

As noted above, the honest prover for the protocol will be using the relaying strategy (although
this is not crucial, and will be changed for the adaptive case).

Properties of the WBC compiler. We note that the WBC compiler has the following effects
on the WI or ZK proofs it is applied to:

1. It does not ruin the WI or ZK property.

2. The compiled proof is still sound as a proof system of the combined statement (i.e., that the
original statement holds or that the commitment contains a witness).

3. It does not ruin the proof of knowledge property (if the original proof system had such a
property) in the following sense: if with probability ≥ µ it holds that the combined proof
succesfully ends and the commitment of the WBC layer does not contain witness, then we can
extract a witness for original statement in time poly(T/µ) (where T is the prover’s running
time).

4. We can continue the proof at any point with a witness without access to the internal coins of
the original WI/ZK prover.

4.3 The (actual) simulator Sim.

Our simulator for Protocol X , which we denote by Sim, is a straight-line black-box simulator19.
This simulator does not get a witness as input, and hence will break Bhard to facilitate the simulation.
That is, when simulating the prover Sim will deviate from the honest prover strategy by:

• Choosing a verification key V K for the signature scheme, and use a commitment to this key
(as opposed to 0`VK) in the commitment cVK of Step P1.2. (Sim will use the same verification
key in all honest-prover sessions).20

19This simulator Sim will actually be the simulator we use to prove that Protocol X UC-realizes the ideal zero-
knowledge functionality with quasi-polynomial overhead, in the UC framework. However, for ease of understanding
for those not intimately familiar with the UC framework, we describe Sim here informally. This is easily converted
to a formal description in the UC framework (which we do in Section 6).

20We note that by some slight complication to the protocol, it is possible to have the simulator follow the honest
strategy also in this step.
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• Using a commitment to 0`wit instead of the real witness in Step P7.1.

• Breaking Bhard and use that to facilitate the WIP of Steps P,V7.2.x.

Like the honest prover, the simulator Sim will use the relaying outer-prover strategy for the
WBC layer.
When simulating the verifier, Sim will follow the honest verifier strategy. However, when the

execution of such a session is completed successfully and the statement proven was not proven
in some previous honest-prover session, , the simulator Sim will use T4.1-time to break all Com4

commitments used by the adversary that may contain a witness (i.e., the commitment cwit and all
commitments of the WBC-compiler). If it finds such a witness, Sim will output this witness as
an auxiliary output. Otherwise, it will output ss-failure. A more detailed description of Sim

appears in Section 6, in the language of the UC framework.

We’ll prove that Sim satisfies two properties:

Indistinguishable output The simulator Sim’s output is (T4(k), 1/T0(k))-computationally indis-
tinguishable from the transcript of a real concurrent execution of Adv with the honest provers
and verifier.

Simulation soundness The probability that in an honest verifier’s session of the simulated tran-
script it holds that the verifier accepts a statement x that was not proved before in an honest
prover session, and none of the T4-strong commitments contains a witness for x is less than
1/T0.5.

We’ll first prove the simulation soundness property. We then prove the indistinguishable output
property in Section 6 (in the proof of Theorem 6.2).21

5 The Virtual Simulator VSim.

We now prove that Sim satisfies simulation soundness. That is, we prove the following lemma:

Lemma 5.1 (Simulation soundness pf Sim). The probability that in an honest verifier’s session of
the simulated transcript it holds that the verifier accepts a statement x that was not proved before
in an honest prover session, and none of the T4-strong commitments contains a witness for x is
less than 1/T0.5.

To prove Lemma 5.1, we will construct a“virtual simulator”, denoted by VSim. This will not be
a “real” simulator in the sense that, unlike Sim, VSim will get as an additional input all the honest
parties’ private inputs (and hence in particular it will have access to all the witnesses used by these
parties when proving)22. Nevertheless this simulator will be useful to prove simulation soundness
since we’ll prove that (a) the virtual simulator’s output is computationally indistinguishable from
from the output of the real simulator even by poly(T5)-sized distinguishers, and (b) for the virtual
simulator, the probability that the “bad” event of Lemma 5.1 (namely the event that in an honest

21The proof of the indistinguishable output property uses the simulation soundness property.
22In the language of the UC framework, the environment Z will provide witnesses for honest prover sessions to

VSim.
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verifier’s session there is an accepted proof for a new theorem without a commitment to the witness)
only happens with roughly 1/T0.6 probability. Since this event is observable in time T4.1 ¿ T5 this
would imply Lemma 5.1.23

The following observation will be very useful for us: it is enough to provide such a simulator for
the case that there are some m (≤ T0(k)) honest provers interacting with the adversary and only
one honest verifier, with no other interaction going on. This is shown in detail in Section 6.

Organization of this section. We start by describing the virtual simulator VSim in Section 5.1.
After we describe VSim we will prove that it satisfies the following three properties:

Completeness: (Section 5.2) The probability that VSim fails to simulate and aborts the compu-
tation is ¿ 1/T0.6.

Strong indistinguishability: (Section 5.3) The output of VSim is (T5, 1/T0)-indistinguishable
from the output of the “real” simulator Sim.

Simulation soundness: (Section 5.4) The probability that in the transcript outputted by VSim,
in the session where the adversary interacts with the honest verifier the verifier accepts a
statement x but yet cwit does not contain a commitment to a witness for x is ¿ 1/T0.6.

5.1 Description of the Virtual Simulator VSim

Similarly to Sim, the simulator VSim will be composed of m + 1 separate interactive strategies
for simulating the m honest provers and the honest verifier, where we denote these strategies by
VHP1, . . . ,VHPm and VHV. However, these strategies will not be completely independent, and will
use some global variables as means of coordination. We assume that the execution happens in
discrete time, where at time t the adversary adaptively decides in which session it wants to send its
next message. The virtual simulator’s strategy is sketched in Figure 1 (Page 25) although this figure
would probably be easier to parse after at least skimming through the following subsections.24

5.1.1 Notations, inputs and global variables.

Notation. Since there is only one session in which the adversary interacts with the honest verifier,
we will call this session the honest verifier session. Also, we will typically use primes to denote
the messages sent in this session (e.g., use c′wit for the commitment to the witness in this session).
Whenever a computation of a particular step by the simulator uses super-polynomial time or
memory, we will explicitly note the resources taken in square brackets.

Inputs. VSim uses the following inputs (whose total size is bounded by (T0)
2 ).

• The adversary’s code25 Adv.

23Note that this means that the virtual simulator can not commit to a real witness in the cwit commitment in the
view it outputs. Nor can it depart from the relaying strategy for its outer prover.

24For the benefit of the reader who is not intimately familiar with the UC framework, we present VSim in an
intuitive manner here, not referring to the environment Z and ideal process. However, we will make use of VSim

inside a hybrid experiment within the UC framework in Section 6. This will be done in a way that is obvious given
our description of VSim.

25In the UC framework, this would include the code of the environment Z and the code of the adversary A, as well
as the code of any other aspects of the simulation outside of what VSim does.
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Figure 1: Operation of the virtual simulator VSim
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• All private and public inputs used by all the honest parties in the protocol26.

Global Variables. VSim will use the following global variables:

• t - will always store the current time.

• (V K, SK) - initialized to be a verification and signing key pair chosen using the signature
key-generating algorithm.

• V K ′ - represents the verification key that the adversary uses in the honest verifier session. It
is initially empty.

• vS - the current internal state of the simulated honest verifier VHV. In addition, VSim

maintains the history of all updates to this string. Thus, we will use the notation vS[t] to
denote the contents of vS just after the step of time t.

Note: When the verifier uses fresh randomness to compute its message at time t, this ran-
domness is only added to the string vS at time t, and not before that. Also, we only add to vS
the internal state of the verifier. Hence, if the verifier is running a public-coin sub-protocol
(in which it is stateless) then we do not add anything to vS during this sub-protocol.

• safe - a Boolean flag, initially set to true. Intuitively, this flag tells the simulated honest
provers when it is safe to break the Bhard challenge.

• in-trans - the transcript of the inner prover messages. That is, all the messages sent by the
inner provers during the protocol (essentially containing aside from the public transcript the
plain-texts m of the last messages in the various WI/ZK subproofs). The virtual simulator’s
goal is that in-trans will be (T5, 1/T0.6)-indistinguishable from the corresponding “inner tran-
script” of Sim. Of all the global variables, only in-trans will be modified by the simulated
prover.

The witness-assisted continuation procedure Cont. We denote the residual strategy of a
simulated honest prover VHPi at time t by VHPi,t. We will have a poly(k)-time procedure called
Cont which will take a number i ∈ [m] which identifies a simulated honest prover VHPi and a time
t. It will then return a different residual prover strategy ˜VHPi,t. This residual prover strategy will
be a poly(k)-time interactive algorithm which we’ll later prove to be (T4, 1/T0.6) indistinguishable
from the “real” simulated prover residual strategy VHPi,t. We describe the procedure Cont in
Section 5.1.4.

5.1.2 Simulation of Honest Verifier VHV.

We denote the “virtual honest verifier” algorithm used by VSim by VHV. We describe its operation
by describing where it departs from the strategy used by the actual honest verifier.

• In all steps the verifier will add its internal state to the global variable vS as it proceeds.
However, we note that in most parts of the proof, the verifier is stateless and hence has no
internal state. The only place where it will need to maintain internal state is when executing

26In the UC framework, these would be provided by the environment Z.
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the two instances of UAKCom. We will explicitly describe below the data that the verifier
is recording and deleting during these steps. Important Note: we assume that VHV does
not choose all its random tape in advance, but selects the randomness required to compute a
particular message when needed. Thus, the state variable vS at time t does not contain the
randomness that will be used by VHV at time t′ > t.

• After adversary commits to V K ′ (Step P1.2), the verifier breaks this commitment using T1.1
time and records V K ′. [Time needed for this step: T1.1, Memory needed: poly(k)]

• If V K ′ 6= V K, the verifier lets j0 be the first index such that V K
′
j0
6= V Kj0 . Otherwise it lets

j0 = 1. It lets `
′(j0) = V K ′

j0
· `VK+ j0 and lets `

′
1 = `′(j0) ·M and `′2 = (4`VK+1− `

′(j0)) ·M .
Note that `′1 and `

′
2 can be computed from the global variables V K and V K ′, and hence we

may assume that they are global variables as well. Recall that M = 2T0.1.

• When entering into Steps V,P2.x (the UAKCom of r1) the verifier will choose r
′
1 as a random

string in {0, 1}`
′
1 . It will record r′1 in vS (note that |r′1| = `′1). It will also record the

(polynomial-sized) randomness used in computing the proof. At the end of the proof the
verifier will remove the string r′1 from vS. [Time required for this step: poly(T0), Memory
required during the computation of step: `′1 + poly(k)]

• At the start of Steps P,V3.x (breaking opportunity), VHV will set the safe global variable to
false. At the end of these steps it will set this variable back to true.

• The verifier will also perform the analogous computation in Steps V,P4.x, choosing r′2 at
random from {0, 1}`

′
2 . [Time required for this step: poly(T0), Memory required during the

computation of step: `′2 + poly(k)]

Note: The only times vS will contain a super-polynomial sized string will be during the
computation of these two steps. See Figure 1 for a graphic depiction of the verifier’s operation
and the size of vS.

5.1.3 Simulation of the honest prover VHP

We now describe the operation of the simulated honest prover VHPi. Note that, apart from using
the global variables, VHPi is a straight-line interactive algorithm. As before, we only describe the
ways in which VHPi deviates from the honest prover strategy. Important note: Like Sim, VHPi

will use the relaying outer prover strategy. Thus, when describing the simulated strategy, we only
describe the strategy for the inner prover. Because the outer prover strategies of both VSim and
Sim are identical, later it will be sufficient to prove this strategy is (T5, 1/T0.6) indistinguishable
from the simulated inner strategy. Whenever, computing an output message of the inner strategy,
VHPi will add that message to the in-trans global variable.

• The prover has an internal variable win which can take a value in {‘none’, ‘BFOP’, ‘SIG’, ‘UA’}.
Initially it is set to ‘none’. Intuitively, this variable tells the simulated prover in which way
it can “win” the session and convince the verifier in the final WI proof.

• The prover computes a signature σ on the statement proven in this session using the signing
key SK.
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• When the prover obtains the first message of the UAKComh
5(r1) of Steps V,P2.x (i.e., the

commitment cr1 = Com5 (h(r1)) ) it lets t1 store the current time.

• When the prover obtains the first “challenge” message of the breaking opportunity in Steps V,P3.x,
it checks whether the global safe flag is set to true. If so, then it breaks the Bhard challenge
[using T3.5 steps] and sets win = BFOP. Note this is depicted as Case 1 in Figure 1. Oth-
erwise, we must already be finished with Slot 1 and in particular with KCom5(V K

′) in the
honest verifier session. Therefore, the variable V K ′ is already set. If V K ′ = V K then the
prover breaks Beasy and sets win = ‘SIG’ [using T2.1 steps]. Note that this is Case 2 of Fig-
ure 1. In both cases the prover now has information which will allow it to successfully run
the WI proof of Steps P,V7.2.x.

• When the prover obtains the first message of the UAKComh
5(r2) of Steps V,P4.x (i.e., the

commitment cr2 = Com5(h(r2))) it lets t2 store the current time.

• When the simulated prover gets to the start of the “committed” universal argument (Steps P,V6.x),
if win 6= ‘none’ then it just uses “junk” commitments in this part. It then uses its win strat-
egy to continue and finish the WI proof. If win = ‘none’ then the simulated prover does the
following: (note that in this case we are in Case 3 of Figure 1)

1. For s = 1, 2 do the following:

(a) The prover obtains for each j ∈ [m] \ {i}, ˜VHPj,ts = Cont(j, ts). Note that all of
these are polynomial-time and polynomial-size algorithms. Thus, the advice needed
for all of them together is less than m · poly(k) ≤ (T0)

2. Note that the procedure
Cont is described below.

(b) It then uses vS[ts] to obtain the residual VHV algorithm at time ts. Note that
the residual verifier’s running time is bounded by poly(T1.1) and its description is
bounded by `′s + poly(k).

(c) Note that the advice needed to describe these residual algorithms is bounded by
`′s + o(T0.1).

(d) It combines all the algorithms described in (a) and (b) above with the adversary’s
algorithm to obtain a stand-alone prover algorithm P∗ for the universal argument
of knowledge of slot s.27

(e) It lets Π̃s be the probabilistic program that on the empty input does the following:

– Let µ = 1/(T0.6)
3.

– Use the knowledge extractor of the universal argument to obtain from P∗ the
string r∗ that is compatible with the hash given at the start of the universal
argument, with probability 1−µ, assuming that the probability that P∗ convinces
the universal argument verifier is at least µ.

(f) Note that Π̃s can be described with `′s + O(T0.1) bits and its running time is
poly(1/µ) · (m · poly(k) + poly(T1.1)¿ T1.2.

(g) Let Πs be the deterministic program that is obtained by derandomizing Π̃s using a
pseudorandom generator for size T1.2, going over all options for the pseudorandom

27The crucial point here is that none of these algorithm utilize the internal coins that VHPi uses during the execution
of the UA of slot s, in the session where VHPi plays the role of the verifier.
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generator’s seed, outputting rs and v such that Com(h(rs); v) = crs if such strings
are found. Under our assumption there exists such a generator with seed size <
log(T1.3(k)). Hence that Πs has the same description size as Π̃ and its running time
is poly(T1.3) steps.

(h) If Πs does not output such a witness on the empty string then abort the simulation
and output ext-failure.

2. For every j ∈ [`VK], because 〈j0, V K
′
j0
〉 6= 〈j, V Kj〉, there is an s ∈ {1, 2} such that

`′s ≤ `sj −M . Thus, we can use Πs (whose size is `
′
s + o(M)) as a witness to run the

universal argument. Note that running the universal argument on a statement verifiable
in time poly(T1.3) will take us time ¿ T1.4.

3. After the universal argument is finished it sets win = ‘UA’ and continues with the
simulation.

• By the time we get to the WIP of Steps P,V7.2.x, win is already different from ‘none’ and
prover has information that allows to finish successfully this step.

5.1.4 Description of Cont.

The procedure Cont takes as input a number i ∈ [m] which identifies a simulated honest prover
VHPi and a time t. It retrieves from the common inputs and global variables the inner transcript up
to the point t, and the witness w for the statement proved by VHPi. It then returns a poly(k)-time
residual prover strategy ˜VHPi,t. This residual prover strategy is a true interactive algorithm in the
sense that it will not access any of the global variables and only use what is hardwired into it. The
procedure Cont runs in poly(k)-time. We’ll later prove that ˜VHPi,t is (T4, 1/T0.6) indistinguishable
from the “real” simulated prover residual strategy VHPi,t even if the distinguisher gets access to
the contents of all global variables at time t as an additional input.

Operation of Cont. To describe the operation of Cont, we can simply describe the residual
strategy ˜VHPi,t. The residual strategy will be basically to use the witness-based outer prover
strategy. That is, it will get as input the inner transcript of the ith session up to point t and the
witness for the statement proven in that session. Given the WBC-compiler we use, it is quite obvious
what ˜VHPi,t will do: continue from this point using only “junk” commitments for commitment
type messages, use the honest strategy for verification messages (which are stateless, and so can
be computed from the public transcript.), and use the witness instead of the actual message to
facilitate the WI proof.

5.2 Completeness of VSim

Recall that as we described VSim, there is a possibility that it will abort the computation and output
ext-failure.28 In this section we argue that this event only happens with negligible probability.

Lemma 5.2 (VSim is complete). The probability that VSim outputs ext-failure is at most 1/T0.6.

28We note that the simulator does not abort in the case that a session ends because of the adversary’s “fault” (i.e.,
the adversary fails to successfully complete some sub-protocol). In this case, the simulator simply outputs the partial
transcript of the session.
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Proof. The intuition behind this lemma is as follows: the only way that VSim outputs ext-failure
is if it fails to extract r1 or r2 from a universal argument given to it by the adversary in some
honest-prover session. Now, the only reason why the proof of knowledge of the universal argument
doesn’t immediately imply that this won’t happen is that for the purposes of extraction VSim

uses the witness-based strategy of the WBC compiler. However, because the success of the proof
is a polynomial-time (and so in particular a T4-time) observable event, the stand-alone prover
constructed using witness-based continuation will have essentially the same success probability as
the prover obtained from the actual VSim simulation, and hence this witness-based prover can be
used just as well to extract r1 or r2. We now proceed with the formal proof.
Suppose, for the sake of contradiction, that VSim outputs ext-failure with probability at

least 1/T0.6. Now, as mentioned above, the only places where VSim may abort is in the extraction
of the verifier’s challenges r1 and r2 by one of the VHPi’s.
Let us order all the UAKCom’s done in the honest prover sessions by the timing of the last

message in that sub-protocol. Under our assumption, there exists i ∈ [m] and s ∈ {1, 2} such
that with probability at least 1/(T0 · T0.6) ≥ 1/(T0.6)

2 the extraction of rs in the i
th session is the

first extraction that fails in the simulation (i.e., the universal argument ends successfully when
simulating it for the first time, but extraction from it fails). This implies that there exists a prefix
π of the simulation up until the time the universal argument of the Slot s in the ith session starts,
such that if we continue the simulation from the prefix π then with probability at least 1/(T0.6)

2

the following will hold simultaneously:

1. The virtual simulator will not output ext-failure before the last message of this proof is
sent.

2. The universal argument will finish successfully.

3. The virtual simulator will output ext-failure because of extraction failure in this universal
argument.

(π contains both the transcript up to that point and the internal state of all parties up to that
point.)
Indeed, let HA denote the transcript of the simulation starting from π until the point that

universal argument ends. Now let HB denote this transcript where in all the cases the WBC
compiler is used by the simulated honest provers, we use a commitment to the witness of the
statement proven, instead of to a junk string. Note that both HA and HB are generated using
¿ T4 time and hence HA and HB are T4-indistinguishable.
Now, we let HC denote the transcript where whenever some virtual honest prover sends as

part of the WBC compiler Com4(w)Com4(m), it uses the first option (proving that w is a witness
) rather than the second option (proving that m is valid) in the WI system.29 Clearly HB and HC

are T4-indistinguishable by the WI property.
We now defineHD to be the hybrid where all commitments of type Com4(m) sent by the virtual

honest provers are commitments to “junk”. Since we no longer use the coins used in generating
these commitments, HD is T4-indistinguishable from HC.

30

29Note that m is always valid in the simulation, since if the simulator can’t come up with a valid m it simply
outputs ext-failure and does not go through with the WBC compiler.

30Actually later commitments may depend on the coins used by the earlier commitments. Thus, to move from HC

to HD we change these commitments to junk one by one, starting from the last commitment sent.
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Now, by T4 indistinguishability, we claim that with probability at least 1/(T0.6)
2 − 1/T4 ≥

1/2(T0.6)
2 the following will hold simultaneously in HD:

• The virtual simulator will not output ext-failure before the last message of this proof is
sent.

• The universal argument will finish successfully.

However, the only difference between HD and the transcript of a simulation where all virtual
honest provers use a witness-based continuation is that in a witness-based continuation we never
output ext-failure. Therefore, also in the latter case the universal argument will finish success-
fully with probability at least 1/2(T0.6)

2. Now consider the prover algorithm P∗ for the universal
argument of this session that the virtual simulator obtains by combining all the witness based
continuations from π and the residual honest verifier continued from π. This means that P∗ will
convince the verifier to accept with probability at least 1/2(T0.6)

2 ≥ 1/(T0.6)
3 and hence starting

from π, the knowledge extractor will obtain a witness from this prover with probability at least
1− (T0.6)

3, and hence will output ext-failure with probability less than 1/2(T0.6)
2, contradicting

Property 3 of the prefix π as stated above.

5.3 T5-Indistinguishability of VSim

In this section, we will argue that the simulations produced by Sim and VSim are (T5, 1/T0.5)-
indistinguishable31. Note that it will be important to have indistinguishability against adversaries
that are much stronger than T4, because we will need to argue that even an adversary that can break
the commitment cwit = Com4(w), where w is the witness, cannot distinguish between simulations.
We will use this fact later to argue that simulation-soundness for VSim implies simulation-soundness
for Sim.
The indistinguishability argument will be through a series of hybrids. These hybrids will employ

rewinding strategies; this means we will take care to ensure problems of efficiency in concurrent
simulation do not arise.32 Our overall strategy is to use zero-knowledge simulation only as an
intermediary between straight-line simulation hybrids, so that the rewinding deals with only a
single protocol execution. In this way, our hybrid simulators will never need to deal with the
interaction between rewinding the adversary in one session and the rewinding of the adversary in
another session. We call this the technique of intermediate rewinding hybrids.

Lemma 5.3 (T5-indistinguishability of VSim and Sim). The outputs of Sim and VSim are (T5, 1/T0.5)-
indistinguishable.

Proof. Recall that in our setting, the adversary is only involved in a single session in which the
adversary plays the role of Prover, and the simulator plays the role of Verifier. All other history
and state information is given as nonuniform advice to the adversary.
We will maintain the invariant that all our hybrids will run in time polynomial in T4.5, which is

sufficient time to break Bhard and extract the witness from the single session in which the adversary

31Again, the proof in this section can easily be translated to the language of the UC framework.
32Actually, we will use non-black-box simulation instead of rewinding-based simulation, because we use the protocol

of [Bar01]. However, once the code of the adversary is given to the simulator, non-black-simulation is only easier
than rewinding, and thus the intuitions we have on when rewinding work still hold.
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plays the role of the prover. Therefore, for sake of arguing indistinguishability, if these hybrids are
used as subroutines within a poly(T5) procedure, this would yield another poly(T5) procedure.
We note that because we need indistinguishability against strong adversaries, what we’ll prove

is the (T5, 1/T0.5) indistinguishability of the inner transcripts, which makes sense, since the outer
prover strategy of VSim and Sim is identical (namely, the relaying strategy).
The inputs to all hybrids will be the same as the inputs to VSim. Let HA = Sim.
Let m < T0 be the maximum number of sessions in which the adversary plays the role of Verifier

and the simulator plays the role of Prover.

5.3.1 Moving to simulation of VHV.

Using long r1 and r2. The only difference between the simulations of the honest verifier in VSim

and Sim is that in VSim, the simulated honest verifier uses the UAKCom protocol to commit to
random strings of super-polynomial length.
So we define a hybridHB/1 that is identical toHA except that the simulator uses the (rewinding/non-

BB) ZK simulator for the ZK Universal Argument of Knowledge for r1. The (T5, 1/T5)-indistinguishability
of HA from HB follows from the ZK property as follows: We construct a T5-time verifier V

′ to
play the role of a verifier in the stand-alone ZK Universal Argument of Knowledge. This verifier
V ′ internally runs the HA simulation of all parties except for the prover’s role in the ZK Universal
Argument of Knowledge (recall that the simulated verifier plays the prover in this argument). It
is crucial to note that this simulation does not need to record the internal state of the simulated
verifier during this argument to carry out the rest of the simulation. Therefore V ′ is independent of
the internal state of the prover in the universal argument, and so a valid stand-alone verifier. Hence,

if there were a T
O(1)
5 -time distinguisher for HB and HA, it would yield a T

O(1)
5 -time distinguisher

for the ZK property of the universal argument with the same distinguishing probability.
Similarly, we may define a hybrid HC that is identical to HB except that the simulator uses the

ZK simulator for the ZK Universal Argument of Knowledge for r2. Note that the ZK simulation for
r2 is disjoint from the simulation for r1. The (T5, 1/T5)-indistinguishability of HC and HB follows
from an identical argument to the above.
Then we define hybrid HD that is identical to HC except that the simulator commits using

Com5 to the hash under h of random strings r1 and r2 of length `
1
j0
and `2j0 respectively, where these

lengths are defined according to the rules of VSim. Note that the lengths of these strings are still
polynomial in T0.1, and therefore the overall running time of the hybrid simulator is still polynomial
in T5. Therefore the indistinguishability of Com5 implies the (T5, 1/T5)-indistinguishability of HD

and HC.
We define hybrid HE that is identical to HD except that the simulator uses the honest prover

strategy to prove knowledge of r1 and r2 in the UAKCom protocol. Again the (T5, 1/T5)-indistinguishability
of HE and HD follows from the ZK property of the Universal Argument, by the argument given
above for the indistinguishability of HA and HB. We note that hybrid HE is now a straight-line
simulation.
This technique of intermediate rewinding hybrids is one that we will use repeatedly. In the

sequel, we will not explicitly go through all these hybrids, but go immediately to the end result.
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5.3.2 Moving to simulation of VHP

Committing to valid signatures. We define hybrid HF to be identical to HE, except that all
sessions set csig to be a commitment using Com4 to σi, which is a signature using signing key SK
to the theorem xi being proved in the i’th session. By the security of the commitment scheme
Com5, it follows that hybrid HF is (T5, 1/T5)-indistinguishable from HE. Note also that HF is a
straight-line simulation.

Breaking Beasy when needed. Recall that VSim, for certain sessions, breaks Beasy. We define
hybrid HG to be identical to HF except that in certain sessions, Beasy is broken, according to the
same criteria used by VSim. Again using the technique of intermediate rewinding hybrids above,
we obtain that hybrid HG is (T5, 1/T5)-indistinguishable from HF. The crucial observation that is
needed to make this work is that no other party has access to the internal state a virtual prover
VHPi uses during the execution of the zero-knowledge argument of Beasy.

Satisfying ‘UA’ when needed. We define hybrid HH to be identical to HG except that it
follows the strategy given in the description of VSim to decide for which sessions to commit to a
valid universal argument for the statement ‘UA’. Lemma 5.1 shows that with probability at least
1−(1/T0.6), and in time poly(T1.5), the hybrid simulator can produce a valid universal argument for
the ‘UA’ condition (otherwise it outputs ext-failure in which caseHH halts). This procedure uses
rewinding, but it will be very important to us later that the rewinded sessions are simulated using
witness-based continuation. Note that since every message of the committed Universal Argument
is committed using Com5, we obtain the (T5, 1/T0.5)-indistinguishability of hybrids HH and HG.

Using other success conditions in WIP. We are almost ready to compare our hybrid with
VSim. Now the only difference between hybridHH and VSim is thatHH still always breaks Bhard and
uses the ‘BFOP’ condition to complete the final Witness-Indistinguishable Proof (WIP), whereas
VSim sometimes does not break Bhard and it uses multiple conditions in the WIP. Note however that
these same conditions are true in hybrid HH, though it just does not use them.
So, we first consider a hybrid HI that is identical to HH, except that in the final WIP, for every

session, hybrid HI uses the same conditions for success that VSim would. Therefore, by the WI
property of the WIP, we have that hybrid HI is (T5, 1/T5)-indistinguishable from HH.

Eliminating unnecessary breakings of Bhard Finally, we construct our final hybridHJ = VSim,
in which Bhard is not broken in certain sessions, according to the rules of VSim. The (T5, 1/T5)-
indistinguishability of HJ and HI follows using the same arguments (the technique of intermediate
rewinding hybrids) used to show the indistinguishability of hybridsHG andHF. Here, when arguing
indistinguishability based on ZK, in order to build a stand-alone verifier V ′, we must observe that
even though certain Bhard sessions that need to be modified in this hybrid may overlap with Slot
2, which may need to be “rewound” in order to generate valid Committed Universal Arguments
for use in other sessions, this rewinding is done using witness-based continuation, and therefore is
independent of the stand-alone prover’s internal state. Note that V ′ can incorporate knowledge of
r1 and r2 and the randomness used to produce Universal Arguments of Knowledge of these strings,

because all this information is only T
O(1)
0.1 in length, and our V ′ is a T4-size circuit.

Thus, we obtain the result that the outputs of Sim and VSim are (T5, 1/T0.5)-indistinguishable.
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5.4 Simulation-Soundness of VSim

In this section we prove that VSim satisfies the simulation-soundness property. Namely, we prove
the following lemma:

Lemma 5.4 (Simulation-soundness of VSim). The probability that in the transcript output by VSim

all the following three conditions hold simultaneously:

1. The verifier of the honest-verifier session accepts the proof.

2. The statement x′ proven in the honest-verifier session is distinct from all statements proven
in the other sessions.

3. None of the T4-secure commitment in the interaction contains a witness to the fact that x
′ ∈ L.

is less than 1/T0.5.

We note that Lemma 5.4 also implies that Protocol X satisfies the standard (non-simulation)
soundness property. This is because standard soundness follows from applying the simulation
soundness property to an adversary that ignores everything that happens outside of the honest
verifier session.
We prove Lemma 5.4 by proving the following sequence of propositions:

Proposition 5.5 ([BFOP] false in HV session). The probability that in the transcript output by
VSim both following conditions hold is at most 1/T3:

• The simulated verifier VHV accepts the proof given by the adversary in the honest verifier
session.

and

• The condition [BFOP] of the honest verifier holds (i.e., if we let y be the first message and
Com(r) be the second message of the sub-protocol Bhard of the honest verifier session, then
y = OWF(r))

and

• The witness-based continuation of Bhard in the honest verifier session does not contain a com-
mitment to a witness.

Proof. Suppose otherwise. Fix a “typical” partial transcript π of the history up to the point the
simulated honest verifier VHV sends the first message of Bhard (i.e., y = OWF3(r)) to the prover,
such that with at least 1/T3 probability if we continue the simulation from π then all three events
mentioned above will occur. We let s = s(π) be all the internal states of all simulated parties until
that point. Note that |π|, |s| ≤ poly(T0). Now, since during the entire execution of this instance of
Bhard, (i.e., the “unsafe” period) the simulator VSim always uses¿ T2.6 computational steps, we get
that there exists a T2.6-size adversary that with probability ≥ 1/T3 finishes this Bhard successfully
with its second message containing Com(r′) with OWF(r′) = y and without the commitment in the
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WBC part containing a witness. This means that conditioning on the event (that happens with
at least 1/T3 probability) that the second message contains such a successful commitment, and
we still have 1/T3 probability that the proof will finish successfully without containing a witness.
This means that with probability at least 1/T3 if we continue the execution up to the point where
Com4(m),Com4 are sent it will be the case that m is a valid message and there is still 1/T3
probability that the WIPOK of the WBC continuation will finish successfully. In such a case we
can extract m in poly(T3) time, and repeating this entire procedure poly(T3) time we can obtain
enough messages m to extract r′ thus inverting OWF3 with poly(T3) time and contradicting its
security.

Proposition 5.6 ([SIG] false in HV session: part 1). The probability that in the transcript output
by VSim, it holds that:

1. V K = V K ′

2. The statement x′ proven in the honest verifier session is distinct from all statements proven
in honest provers session.

3. The condition [SIG] holds in the honest verifier session (in particular, the commitment c′sig
contains a valid signature for x′).

is at most 1/T6.

Proof. The entire simulation(even considering breaking of BFOP) takes less than T5 steps, and since
breaking c′wit takes ¿ T6 steps, if the proposition was false we’d get a ¿ T6-size forging algorithm
for the signature scheme with ≥ 1/T6 success probability.

Proposition 5.7 ([SIG] false in HV session: part 2). The probability that in the transcript output
by VSim, it holds that:

1. V K 6= V K ′

2. The condition [SIG] holds in the honest verifier session (in particular, Beasy is broke.).

3. The witness-based continuation of Beasy in the honest verifier session does not contain a com-
mitment to a witness.

is at most 1/T2.

Proof. If V K 6= V K ′ then we never break an “unsafe” Beasy or Bhard, and never use more than
T0.9-time during the unsafe period. This means that in the same way as in Proposition 5.5, Beasy

cannot be broken in this case.

Proposition 5.8 ([UA] false in HV session). The probability that in the transcript output by VSim

the condition [UA] holds in the honest verifier session (i.e., the decommitted universal argument
transcript is an accepting proof for [KOLM] is at most 1/T5.
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Proof. First note that for the particular r′1 and r′2 chosen by the VSim verifier, with very high
probability (i.e., at least 1 − 2−k+2) their Kolmogorov complexity is more than `′1 − k and `′2 − k
respectively. Now, suppose otherwise that the statement [UA] holds with probability at least 1/T5.
Let π be a partial transcript of all simulation up to the point the universal argument starts, and
let sp = sp(π) be the internal state of the simulated honest provers (and not the verifier) up to this
point. We claim that if the probability that [UA] holds in a continuation of π is at least 1/T5 then
we have a time T5.5 algorithm that with advice π,sp outputs a witness to the statement [KOLM].
We do that by simply considering a T5.5-time standalone prover for the universal argument that
with advice π,sp combines all the simulated honest provers and the adversary into one, and breaks
the level 5 commitments we use to commit to the universal argument. The reason this adversary
does not need to use the honest verifier’s internal state is that the universal argument is a public-
coin protocol and hence the honest verifier does not need any internal state to continue it. We then
use the knowledge extractor of the universal argument to extract a witness from this standalone
prover algorithm.
The witness for [KOLM] contains in particular two strings r̃1 and r̃2 such that for s = 1, 2, r̃s

is consistent with the commitment c′rs and for every j ∈ [`VK], either the Kolmogorov complexity of
r̃1 is at most `

1
j −k or the Kolmogorov complexity of r̃2−k is at most `

2
j −k. For j = j0 (the index

chosen by the verifier VSim) we have that because the commitment c′rs is perfectly binding, there
is an s ∈ {1, 2} such that the Kolmogorov complexity of r̃s is at most `

′
s − k but h(r̃s) = h(r′s),

where r′s is the string the verifier chose.
However, with probability ≥ 1 − 2−k the Kolmogorov complexity of r′s, which was chosen at

random in {0, 1}`
′
s is larger than `′s−k. Hence we get that r

′
s 6= r̃s but h(r

′
s) = h(r̃s). Combining this

and considering that the simulated honest verifier chooses the hash at random from the collection

Hash6, we obtain a T
O(1)
5 algorithm for obtaining collisions for h, contradicting its T6-security.

Proposition 5.9 (WIP is sound). The probability that in the honest verifier’s session the verifier
accepts the WIP of Steps P,V7.2.x but the statement proven is false is at most 2−k.

Proof. TheWIP is statistically sound against computationally unbounded adversary. The simulator
VSim does not rewind the honest verifier at this point, nor does it use the verifier’s internal state
at this point. (In fact, because WIP is public-coins, the verifier doesn’t really have an internal state
at this point.)

It is not hard to verify that Propositions 5.5, 5.6, 5.7, 5.8 and 5.9 together imply Lemma 5.4.

6 Construction of a Concurrently Secure Multi-Party Protocol

In this section, we describe how our protocol and the analysis thereof can be used to build a
protocol for secure multi-party computation, with quasi-polynomial simulation. We build upon
the work of [CLOS02]. In [CLOS02], it is shown how to UC-realize any polynomial-time functionality
(based on standard hardness assumptions) in the UC framework of [Can01], but using a trusted
setup assumption. However, this assumption is only used to UC-realize the FZK functionality. The
remainder of the construction does not rely on the trusted setup assumption, and instead builds
on the FZK-hybrid model. The FZK-hybrid model is a model in which all parties have access to
polynomially many ideal zero-knowledge functionalities. Equivalently, one can describe this model
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as one where all parties have access to a single instance of the ideal functionality F̂ZK for an NP-
complete language like SAT; F̂ZK is a multi-session multiple-use version of the ideal zero knowledge
functionality. Below, when we refer to the F̂ZK-hybrid model, we refer to the model with common
access by all parties to a single instance of the F̂ZK functionality.

33 The session ID we call sid is
sufficient to identify different calls to the functionality.) The F̂ZK functionality is shown in Figure 2
below.

Functionality F̂ZK

Functionality F̂ZK proceeds as follows, interacting with parties P1, ..., Pn and an adversary S:

• Upon receiving (ZK, sid, Pi, Pj , y, w) from Pi: If w is a satisfying assignment for the SAT
formula y then send the message (ZK, sid, Pi, Pj , y) to Pj and S (unless such a message was
already sent before). Otherwise, ignore the message.

Figure 2: The multiple-use multi-session version of FZK

We first note that the constructions of [CLOS02] can be applied to adversaries and environments
that are stronger than polynomial-time simply by growing the security parameter and assuming
that the hardness assumptions hold against stronger adversaries. In particular, we will instantiate

these protocols to work against T
O(1)
4 adversaries. So, we use the following version of the theorem

proven by [CLOS02]:

Theorem 6.1. [CLOS02] Assume that (enhanced) trapdoor permutations secure against T
O(1)
5 -sized

circuits exist. Then, for any well-formed multi-party ideal functionality F , there exists a non-trivial

protocol that UC-realizes F in the F̂ZK-hybrid model in the presence of malicious, static T
O(1)
4 -time

adversaries and environments (with polynomial simulation overhead).

Our aim is to show that Protocol X UC-realizes the F̂ZK functionality with T4.5 simulation
overhead. Combined with Theorem 6.1, this will yield the result we desire. Note that we do
not need to invoke the UC theorem on the F̂ZK functionality, because only one instance of this
functionality is needed.
We note that alternatively, we could show this result in the Angel-based model of [PS04], and

thereby obtain a UC theorem for our protocol. But we choose to give a direct analysis that we
obtain F̂ZK in order for our analysis to remain as self-contained as possible.
Thus we will show:

Theorem 6.2. Assume that collision-resistant hash function families secure against subexponential
circuits exist. Then Protocol X (using as the statement x to be proven the tuple “(ZK,sid, Pi, Pj , y)”
taken from the input to the F̂ZK functionality) UC-realizes the F̂ZK functionality against T0-time
static adversaries and environments, with T4.5-time ideal adversaries.

Combining Theorems 6.1 and 6.2, we obtain:

33Note that, because we have only a single instance of the F̂ZK functionality, we have done away with the ssid
session ID’s that were present in the F̂ZK functionality defined in [CLOS02], which were needed there for technical
reasons.
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Theorem 6.3. Assume that there exist collision-resistant hash function families secure against
subexponential (2k

ε
-sized for fixed ε > 0) circuits exist. And that there exists klog

c k-strong (en-
hanced) trapdoor permutations (where c = c(ε) is some constant). Let T0(k) = klog k (and hence

Ti(k) = 2
logf(i) k for some function f(·)). Then, for any well-formed multi-party ideal functionality

F , there exists a non-trivial protocol that UC-realizes F in the presence of malicious, static T0-time

adversaries and environments, with T
O(1)
4.5 -time ideal adversaries.

We now proceed to the proof of Theorem 6.2.

Proof. Let A be a malicious static34 adversary running in time T0. We construct an ideal process
adversary S with access to F̂ZK, which simulates a real execution of Protocol Xwith A such that
no T0-time environment Z can distinguish the ideal process with S and F̂ZK from a real execution
of Protocol Xwith A.
Recall that S interacts with the ideal functionality F̂ZK and with the environment Z. The

ideal adversary S starts by invoking a copy of A and running a simulated interaction of A with
the environment Z and parties running the protocol. (We refer to the interaction of S in the
ideal process as external interaction. The interaction of S with the simulated A is called internal
interaction.)
In the next section, we give a description of the simulator S.

6.1 Description of S

Informally, the simulator S proceeds by following the strategy for Sim described above – that is,
breaking Bhard when simulating proofs; and breaking the Com4 commitments to the witness in order
to extract witnesses from adversarially given proofs. We describe this more formally below:

Initialization The simulator S initially runs the signature scheme key generation algorithm to
obtain a pair (V K, SK). Note that the simulator S will actually never make use of the signing key
SK. This is introduced here only for technical reasons. S uses the same set of corrupted parties
as A.

Simulating communication with Z. Every input value that S receives from Z is written on
the input tape of A (as if coming from A’s environment). Likewise, every output value written by
A on its own output tape is copied to S’s output tape (to be read by the environment Z).

Simulating “ZK” activations where the prover is not corrupted. In the ideal process,
when an honest prover Pi receives an input (ZK, sid, Pi, Pj , y, w) from the environment Z, then
Pi writes this message on its outgoing communication tape for F̂ZK. Recall that by convention,
the (ZK, sid, Pi, Pj , y) part of this message (i.e. everything but the witness) is public and can be
read by S. Now, upon seeing that Pi writes a “ZK” message for F̂ZK, the simulator S initiates a
simulation (described below) of a real party Pi interacting with another real (possibly corrupt) party
Pj executing Protocol X , with the statement x = “(ZK, sid, Pi, Pj , y)”. We note that if Pj is not
corrupted, S simulates the messages of Pj acting exactly as an honest verifier following Protocol X .
If Pj is corrupted, then its messages come from A. Note that S will only allow delivery of Pi’s

34Note that this proof is given for static adversaries, but we later sketch how to extend this analysis to adaptive
adversaries.
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message in the ideal process to F̂ZK, and the delivery of F̂ZK’s message to Pj , if the simulation ends
with Pj accepting the simulated proof.
The simulator follows the honest prover protocol when simulating Pi, except in the inner pro-

tocol, it deviates from the honest prover as follows: (1) It computes and sends cVK = Com4(V K)
instead of using 0`VK . (2) It acts as the honest prover until it reaches the Bhard subprotocol. When
Pi receives the challenge y = OWF3(r), the simulator (running in T3.5-time) inverts OWF (which
we assume to be a permutation) to recover r. Then Pi sends Com5(r) to Pj , and provides a proof of
knowledge of r according to the honest prover strategy in the ZK argument of knowledge for Bhard.
(3) The simulator then reverts to an honest simulation of Pi, until it reaches the commitment to
the witness. At this point, Pi sends Com4(0

`wit) instead of the commitment to the witness (which
S does not have). (4) Finally, in the final WI Proof, the simulated Pi uses the ‘BFOP’ condition
to complete the proof.

Simulating “ZK” activations when the prover is corrupted. When A, controlling cor-
rupted party Pi, delivers a ZK message x=“(ZK, sid, Pi, Pj , y)” to an uncorrupted party Pj in
the internal (simulated) interaction, then S works as follows. S simulates the verifier by exactly
following the honest verifier strategy. If the protocol ends successfully, then S examines all places
in the protocol transcript where the prover used Com4 to commit to a string. Because S runs in
time T4.1, it can break each of these commitments. It checks to see if any of these strings is a valid
witness for the statement y (i.e. a satisfying assignment to y). If any one (chosen arbitrarily) of
these strings w is a valid witness, then S forces party Pi to send “(ZK, sid, Pi, Pj , y, w)” to F̂ZK,
and delivers F̂ZK’s response to Pj . If none of these strings is a valid witness, and yet the adversary
succeeds in convincing the honest verifier, then S halts and outputs ss-failure.
We note that the above simulation is a straight-line simulation that does not require rewinding

any party’s state. Therefore, if multiple sessions are interleaved, the simulation proceeds exactly
as described above, independently for each session.
We next proceed to the indistinguishability proof.

6.2 Indistinguishability

We now prove that Z cannot distinguish an interaction of (multiple concurrent calls to) Protocol Xwith
A, from an interaction in the ideal process with F̂ZK and S. In order to show this, we examine
several hybrid experiments. Note that we assume without loss of generality that both A and Z are
deterministic.
Let hybrid HA be the simulated interaction described above. We define the output of this

hybrid to be the transcript of the “internal” simulated interaction with A. Note that this is enough
to compute the output of the environment Z. Note that the running time of HA is less than T4.1,
where the most time-consuming step is the extraction of the witness.

Simulation Soundness: Correctness of extraction. We first make use of the simulation
soundness condition to show that the simulated “witness extraction” succeeds with overwhelming
probability:
Let HB be the “simulated interaction” above, but with the following differences: In this hybrid,

we replace the ideal functionality F̂ZK with one that does not require witnesses to be provided by
corrupted parties in the ideal execution. That is, the if the ideal functionality receives the message
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(ZK, sid, Pi, Pj , y) from party Pi – and Pi is corrupted – then it simply forwards the message to
Pj without verifying anything. Furthermore, in this hybrid, when the party Pi is corrupted and
attempts to prove x =(ZK, sid, Pi, Pj , y) to Pj , then the simulator simply checks if the protocol
succeeds, and if so, it forwards the message to the modified ideal functionality. Note that the
running time of HB is less than T3.5, where the most time-consuming step is the breaking of
Bhard. (That is, because HB does not invoke the witness extracting procedure, its running time is
significantly smaller than the running time of HA).
We now argue that HA and HB are statistically indistinguishable. Without loss of generality,

we may assume that the adversary A and the environment Z are deterministic. Thus, the only
use of randomness arises in the simulation. We also note, for use later, that simulated verifiers use
independent randomness (because they behave according to the honest verifier protocol.). Thus,
we may define HA(r) and HB(r) to be the outputs of the hybrids when randomness r is used in
the simulation. We note that for any r, we have that HA(r) is always a prefix of HB(r), and they
are not equal only if the simulator halts and outputs ss-failure in HA(r). We want to show that
this happens with probability less than 1/T0.5.
We will show that if the probability p that the simulator halts and outputs ss-failure is larger

than 1/T0.5, then this will contradict Lemma 5.4.
Let m ≤ T0 be the maximum number of sessions in which the adversary plays the role of the

prover.
We consider the following experiment E(r): Using randomness r, both HA(r) and HB(r)

are computed. If the outputs are equal, E outputs “none”. Otherwise E outputs the number i
corresponding to this first session in which HA(r) fails and outputs ss-failure (because it fails
to extract a witness).
We define pi to the probability over r that E(r) outputs i. Note that Σipi = p. Therefore there

exists some number j such that pj ≥ p/T0.
We define a new hybrid HA′ (which comes “in between” hybrids HA and HB) as follows: It

is the same as HB, except that in the j’th session where the adversary plays the role of prover,
the simulator acts as S does in HA, namely it breaks the Com4 commitments made during the
j’th session in order to recover a witness for the statement being proven. If such a witness is not
recovered, then the simulation halts with output ss-failure. Note that for all sessions i 6= j
where the adversary plays the role of prover, HA′ does not use the witness extraction procedure,
but just uses the honest verifier strategy. The important property of HA′ is that if we let p′ to be
the probability that HA′ halts and outputs ss-failure, then we have p′ ≥ pj ≥ p/T0. We note
that the running time of HA′ is at most T3.5 for sessions i 6= j and at most T4.5 for simulating the
jth session.
We next define a hybrid HA′′ (used only for this proof) which is identical to HA′ , except that is

uses the VSim simulation strategies as follows: All sessions in which the adversary acts as verifier are
simulated using VHP, but only the j ′th session where the adversary acts as the prover is simulated
using VHV. In this session, the simulation also halts and outputs ss-failure if none of the Com4

commitments are to a valid witness. All other sessions where the adversary acts as the prover are
simulated by using the honest verifier strategy. We observe that all activity in HA′′ outside of the
VSim simulations can be computed in time polynomial in T0. Like HA′ , that the running time of
HA′′ is at most T3.5 for sessions i 6= j and at most T4.5 for simulating the j

th session. Let p′′ be the
probability that HA′′ halts with an output of ss-failure.
Then, by Lemma 5.3 (strong indistinguishability of Sim and VSim), we have that p′ ≤ p′′ +
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1/T 20.5. But by Lemma 5.4 (simulation soundness of VSim) and the naming conventions we use for
statements, we know that p′′ ≤ 1/T0.5.
Therefore, p ≤ 2T0/T

2
0.5 ≤ 1/T0.5, and we have that hybrids HA and HB are 1/T0.5-statistically

indistinguishable.

Indistinguishability of prover simulation. We next move to a sequence of hybrids showing
that the simulation of uncorrupted provers is good. We will first move from HB to a situation
where the witnesses are used in all uncorrupted prover sessions.
We first define hybrid HC as identical to HB, except that the honest provers in simulation

replace the commitment cwit = Com4(0
`wit) with a commitment cwit = Com4(w), where w is the

witness to the statement being proven in that session. Because both hybrids run in time T3.5, a
standard hybrid argument shows that HB and HC are (T4, 1/T4)-indistinguishable.
Let hybrid HD be identical to HC, except that in all sessions with honest provers, the proving

party switches to using the ‘WIT’ condition to complete the final WI proof. A standard hybrid
argument based on the WI property of the WI proof shows that HC and HD are (T5, 1/T5)-
indistinguishable, since both hybrids run in time T3.5.
We next define a series of hybrids that we will analyze using the technique of intermediate

rewinding hybrids, introduced in Section 5.3. The goal of these hybrids is to switch the behavior
of the honest provers in HD to stop breaking Bhard. The problem with this switch is that we first
need to switch to using the (rewinding) ZK simulator for the proof of knowledge within the Bhard

protocol. If we did this for all sessions, we could end up interleaved rewindings that could cause
an unacceptable increase in the running time of the hybrid experiment. Therefore, we only switch
to one ZK simulator at a time, thus maintaining a good enough running time.
Let m < T0 be the maximum number of sessions in which the adversary plays the role of Verifier

and an honest party plays the role of Prover.
We consider a sequence of hybrids, for each i ∈ [1,m], called HE/i, HF/i, and HG/i. The

“order” of these hybrids will be HE/1,HF/1,HG/1,HE/2,HF/2,HG/2,HE/3, . . . ,HG/m. We will
maintain the invariant that HG/i will be a straight-line execution for all i ∈ [1,m].
Hybrid HE/i is identical to the previous hybrid (that is HD in the case of HE/1), except that

in the i’th session where an honest party P plays the prover when interacting in Protocol X , the
party P will switch from giving a proper ZK proof of knowledge for Com4(r

′ = r) inside the Bhard

subprotocol, to giving a (rewinding-based) ZK simulated proof instead. We argue that hybrid HE/i

is (T5, 1/T5)-indistinguishable from the previous hybrid as follows: We construct a T3.5-time verifier
V ′ to play the role of a verifier in the stand-alone ZK proof of knowledge. This verifier V ′ internally
runs the previous hybrid execution for all parties except for the prover role of P in the ZK proof
of knowledge. We observe that as such, V ′ is a valid stand-alone verifier. Hence, if there were a

T
O(1)
4 -time distinguisher forHE/i and the previous hybrid, it would yield a T

O(1)
4 -time distinguisher

for the ZK property of the ZK proof with the same distinguishing probability.
Hybrid HF/i is identical to HE/i, except that in the i’th session, in the Bhard subprotocol, the

experiment stops breaking the verifier’s challenge y = OWF3(r), and the response commitment
Com5(r) will be replaced by Com5(0

`OWF3 ). (Recall that we assume OWF is a permutation.) By the
indistinguishability property of Com4, and the fact that all hybrids run in time less than T3.5 we
have that HF/i is (T5, 1/T5)-indistinguishable from HE/i.
Finally, HG/i is identical to HF/i, except that in the i’th session, the simulation of ZK proof

of knowledge for Com5(0
`OWF3 ) is replaced with an honest ZK proof of knowledge. Again, we have
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that HG/i is (T5, 1/T5)-indistinguishable from HF/i, by the ZK property, using the same argument
as above. Note also that hybrid HG/i is a straight-line execution (i.e. it has no rewinding), as
promised.
We note that hybrid HG/m can be implemented in time only polynomial in T0. The only

difference remaining between the environment’s view of HG/m and the real world interaction is

that in the real world, cVK is Com4(0
`VK). Thus, the (T4, 1/T4)-indistinguishability of HG/m and the

real world interaction follows from a standard hybrid argument based on the indistinguishability of
the commitment scheme, and the fact that both hybrid HG/m and the real world interaction are
implementable in time polynomial in T0.
With this, the theorem is established.

7 Security against Adaptive Adversaries

In this section, we sketch how to obtain security against adaptive adversaries for our zero knowledge
protocol, which immediately implies such security for secure multi-party computation using the
results of [CLOS02]. For adaptive security, we will assume the existence of one-way permutations
secure against subexponential adversaries.
The high-level idea is that the Witness-Based Continuation (WBC) property almost gives us

adaptive security automatically: When a proving party is corrupted, we could explain all previous
messages using the witness in the witness-based continuation. (Note that simulated verifiers act
honestly, so there is no need to “explain” their behavior.) The only problem with this approach
is that the WI proof involved in WBC compiler is not secure against adaptive adversaries: If one
gives a WI proof that either X is true or Y is true, using a witness for X, then there is no generic
way to explain that proof using a witness for Y .
We alleviate this technical problem using ideas introduced in [CLOS02]. Instead of giving a

standard WI proof inside the WBC compiler, we construct a specialized proof system. We first
recall some concepts from [CLOS02]:

Underlying standard commitment. The basic underlying commitment scheme Com5 is the
standard non-interactive commitment scheme based on a one-way permutation f (that is T5-
secure) and a hard-core predicate b of f . That is, in order to commit to a bit σ, one computes
Com5(σ) = 〈f(Uk), b(Uk)⊕ σ〉, where Uk is the uniform distribution over {0, 1}

k. Note that Com5

is computationally secret, and produces pseudorandom commitments: that is, the distributions
Com5(0), Com5(1), and Uk+1 are computationally indistinguishable.

The Feige-Shamir Commitment Scheme. We briefly describe the Feige-Shamir trapdoor com-
mitment scheme [FS89], which is based on the zero-knowledge proof for Hamiltonicity of Blum [Blu87].
First, we fix a graph G (with q nodes) with a Hamiltonian cycle. (We will specify the graph to be
used later.) Then, in order to commit to 0, the committer commits to a random permutation of
G using the underlying commitment scheme Com5 (and decommits by revealing the entire graph
and the permutation). In order to commit to 1, the committer commits to a graph containing a
randomly labeled q-cycle only (and decommits by opening this cycle only). Note that the ability
to decommit to both 0 and 1 implies that the committer knows a Hamiltonian cycle in G. On the
other hand, given a Hamiltonian cycle in G, it is possible to generate commitments that are indis-
tinguishable from legal ones, and yet have the property that one can decommit to both a 0 and a 1.
Note that if the graph G is not hamiltonian, then this commitment scheme is a perfectly-binding
computationally-hiding scheme.
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The modified graph-based commitment ComG. Our graph-based scheme, introduced in
[CLOS02], which we denote ComG, differs from the [FS89] scheme above in the following way:
To commit to a 0, the sender picks a random permutation π of the nodes of G, and commits to

the entries of the adjacency matrix of the permuted graph one by one, using Com5. The sender also
commits (using Com5) to the permutation π. These values are sent to the receiver as c = ComG(0).
To decommit, the sender decommits to π and decommits to every entry of the adjacency matrix.
The receiver verifies that the graph it received is π(G).
To commit to a 1, the sender chooses a randomly labeled q-cycle, and for all the entries in the

adjacency matrix corresponding to edges on the q-cycle, it uses Com5 to commit to 1 values. For
all the other entries, including the commitment to the permutation π, it simply produces random
values from Uk+1 (for which it does not know the decommitment!) These values are sent to the
received as c = ComG(1). To decommit, the sender opens only the entries corresponding to the
randomly chosen q-cycle in the adjacency matrix.
This commitment scheme has the property of being computationally secret, i.e. the distributions

ComG(0) and ComG(1) are computationally indistinguishable for any graph G. Also, given the
opening of any commitment to both a 0 and 1, one can extract a Hamiltonian cycle in G. Finally,
as with the scheme of [FS89], given a Hamiltonian cycle in G, one can generate commitments to 0
and then open those commitments to both 0 and 1.
Furthermore, here if the simulator has knowledge of a Hamiltonion cycle in G, it can also

produce a random tape for the sender explaining c = ComG(0) as a commitment to both 0 and
1. If, upon corruption of the sender, the simulator has to demonstrate that c is a commitment to
0 then all randomness is revealed. To demonstrate that c was generated as a commitment to 1,
the simulator opens the commitments to the edges in the q-cycle and claims that all the unopened
commitments are merely uniformly chosen strings (rather than commitments to the rest of G).
This can be done since commitments produced by the underlying commitment scheme Com5 are
pseudorandom.

Modified Witness-Based Continuation Compiler. Recall that in the WBC Compiler, the
prover uses a weak commitment Com4 to commit to its “inner” response cm = Com4(m). We will
change how the prover commits to the witness cw (see below). It then proves a WI proof that either
the message m from cm is a valid response in the inner protocol, or that the witness w from cw is
a good witness for x.
We will change the protocol as follows: We will still use cm = Com4(m). We then consider the

statement, that the messagem from cm is a valid response in the inner protocol, as an NP statement,
and use a canonical reduction to construct a graph Gm, such that any witness to the truth of this
statement can be mapped to some Hamiltonion cycle in Gm. We then use cw = ComGm

4 (w).
We also canonically construct a graph Gw corresponding to the statement that there is a valid

opening message w for cw that is a valid witness for x. We now use our graph based commitment
scheme ComGm to provide a parallelized Blum proof of the Hamiltonicity of Gw. Namely, the
following is done k times in parallel:

1. The prover uses ComGm to commit to a randomly permuted adjacency matrix for Gw.

2. The verifier responds with a single challenge bit b.

3. If b = 0, the prover provides the permutation and opens all commitments. If b = 1, the prover
opens only the entries corresponding to a Hamiltonian cycle in Gw.
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Note that this is still a statistically sound and (T5, 1/T5)-indistinguishable WI-system proving
that either Com4(w) contains a witness or Com4(m) contains a valid message.
We note that we have changed the honest prover’s strategy to always use the witness-based

outer prover strategy (although instead of sending commitments to “junk” messages it will just
send a random string of the appropriate length). The key observation is that a simulator can use
knowledge of a Hamiltonian cycle in Gm (if m is a well-formed response in the inner protocol) to
provide responses to all queries in this protocol without knowing the witness (and therefore without
knowing a Hamiltonian cycle in Gw) – this would be by always using ComGm(0), and then opening
it to whatever is necessary. But by the explainability property of ComGm , such a simulator could
also explain its actions by providing honest-looking randomness in the protocol above.
We omit the details here, but this suffices to establish security against adaptive adversaries,

without relying on erasures by honest parties.

8 Conclusions and future directions.

We presented a general feasibility result for secure multi-party computation in the general-concurrent
setting, under well-studied assumptions. In some sense, this work brings provable security closer
to practice, since the security properties, which are proven under standard assumptions, are strong
enough to model what happens in realistic networks. However, in terms of efficiency our construc-
tions leaves much room for improvement. Even though polynomial simulation is impossible, there
is also room for improvement on our protocol in terms of the simulation overhead. We hope that
the ideas presented here will prove useful in obtaining more practical protocols, which still can
be proven secure in the general concurrent setting under well-understood assumptions. An exam-
ple for such a problem is obtaining a practical fully concurrent and non-malleable commitment
scheme under such well-known number-theoretic assumptions such as the hardness of factoring or
the discrete logarithm problem.
On a technical level, we introduced a new technique for “condensing” protocols to achieve

stronger security. We believe this technique may have many other applications. In particular,
we believe there is hope for using such techniques to obtain a concurrent zero-knowledge protocol
using a constant number of communication rounds, with polynomial simulation overhead. Such a
protocol is known if we allow super-polynomial simulation, but it would be nice to obtain it using
polynomial simulation, since, unlike the case of general computation, super-polynomial simulation
does not seem necessary in this case.
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