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Abstract

Non-interactive zero-knowledge (NIZK) systems are fundamental cryptographic primitives used
in many constructions, including CCA2-secure cryptosystems, digital signatures, and various crypto-
graphic protocols. What makes them especially attractive, is that they work equally well in a concur-
rent setting, which is notoriously hard for interactive zero-knowledge protocols. However, while for
interactive zero-knowledge we know how to construct statistical zero-knowledge argument systems for
all NP languages, for non-interactive zero-knowledge, this problem remained open since the inception
of NIZK in the late 1980’s. Here we resolve two problems regarding NIZK:

• we construct the first perfect NIZK argument system for any NP language.

• we construct the first UC-secure NIZK protocols for any NP language in the presence of a dy-
namic/adaptive adversary.

While it was already known how to construct efficient prover computational NIZK proofs for any
NP language, the known techniques yield large common reference strings and large NIZK proofs.
As an additional implication of our techniques, we considerably reduce both the size of the common
reference string and the size of the proofs.

Keywords: Non-interactive zero-knowledge, universal composability, non-malleability.

1 Introduction

In this paper, we resolve a central open problem concerning Non-Interactive Zero-Knowledge (NIZK)
protocols: how to construct statistical NIZK arguments for any NP language. While for interactive zero
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knowledge (ZK), it has long been known how to construct statistical zero-knowledge argument systems
for all NP languages [BCC88], for NIZK this question has remained open for nearly two decades.

IN CONTEXT WITH PREVIOUS WORK – STATISTICAL ZERO KNOWLEDGE: Blum, Feldman, and Micali
[BFM88] introduced the notion of NIZK in the common random string model and showed how to con-
struct computational NIZK proof systems for proving a single statement about any NP language. The first
computational NIZK proof system for multiple theorems was constructed by Blum, De Santis, Micali,
and Persiano [BDMP91]. Both [BFM88] and [BDMP91] based their NIZK systems on certain number-
theoretic assumptions (specifically, the hardness of deciding quadratic residues modulo a composite num-
ber). Feige, Lapidot, and Shamir [FLS90] showed how to construct computational NIZK proofs based on
any trapdoor permutation.

The above work, and the plethora of research on NIZK that followed, mainly considered NIZK where
the zero-knowledge property was only true computationally; that is, a computationally bounded party can-
not extract any information beyond the correctness of the theorem being proven. In the case of interactive
zero knowledge, it has long been known that all NP statements can in fact be proven using statistical
(in fact, perfect) zero knowledge arguments [BC86, BCC88]; that is, even a computationally unbounded
party would not learn anything beyond the correctness of the theorem being proven, though we must
assume that the prover, only during the execution of the protocol, is computationally bounded to ensure
soundness1.

Achieving statistical NIZK has been an elusive goal. The original work of [BFM88] showed how
an computationally unbounded prover can prove to a polynomially bounded verifier that a number is
a quadratic-residue, where the zero-knowledge property is perfect. Statistical ZK (including statistical
NIZK2 ) for any non-trivial language for both proofs and arguments were shown to imply the existence
of a one-way function by Ostrovsky [Ost91]. Statistical NIZK proof systems were further explored by
De Santis, Di Crescenzo, Persiano, and Yung [DDPY98] and Goldreich, Sahai, and Vadhan [GSV99],
who gave complete problems for the complexity class associated with statistical NIZK proofs. How-
ever, these works came far short of working for all NP languages, and in fact NP-complete languages
cannot have (even interactive) statistical zero-knowledge proof systems unless the polynomial hierarchy
collapses [For87, AH87]3. Unless our computational complexity beliefs are wrong, this leaves open only
the possibility of argument systems.

Do there exist statistical NIZK arguments for all NP languages? Despite nearly two decades of re-
search on NIZK, the answer to this question was not known. In this paper, we answer this question in the
affirmative, based on a number-theoretic complexity assumption introduced in [BGN05].

OUR RESULTS. Our main results, which we describe in more detail below, are:

- Perfect NIZK arguments for any NP language.

- UC-secure perfect NIZK arguments for any NP language, secure against adaptive/dynamic adver-
saries.

As a building block we start by constructing a simple and efficient computational NIZK proof of
knowledge for circuit satisfiability, based on the subgroup decision problem introduced in [BGN05]. To

1Such systems where the soundness holds computationally have come to be known as argument systems, as opposed to
proof systems where the soundness condition must hold unconditionally.

2We note that the result of [Ost91] is for honest-verifier SZK, and does not require the simulator to produce Verifier’s
random tape, and therefore it includes NIZK, even for the common reference string which is not uniform. See also [PS05] for
an alternative proof.

3see also [GOP98] appendix regarding subtleties of this proof, and [SV03] for an alternative proof.
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the best of our knowledge, our techniques are completely different from all previous constructions of
NIZK proofs. In this NIZK proof system, the size of the common reference string is O(k), where k is the
security parameter; thus it is independent of the size of the NP statements. The NIZK proofs have size
O(k|C|), where |C| is the size of the circuit. We point out that this is a significant result in its own right;
the most efficient NIZK proof systems for an NP-complete problem with efficient provers previously
known [KP98] required a reference string of size at least O(k3) and the NIZK proofs of size at least
O(|C|k2). For comparison with the most efficient previous work, please see Table 1.

Reference CRS size Proof Size Assumption
Kilian-Petrank O(|C|k2) O(|C|k2) Trapdoor Permutations
Kilian-Petrank O(k3) O(|C|k3) Trapdoor Permutations

This paper O(k) O(|C|k) Specific Number-Theoretic [BGN05]

Table 1: Comparison of CRS size and NIZK Proof Size for Efficient-Prover NIZK Proof systems for
NP-complete language

The NIZK proofs we construct are built using encryptions of the bits in the circuit. However, by a slight
modification to only the reference string, we effectively transform the cryptosystem into a perfectly hiding
commitment scheme. With this transformation, we obtain a perfect NIZK argument for NP statements.
The result comes in two flavors:

- Perfect NIZK arguments for circuit satisfiability with “ordinary” soundness.

- Perfect NIZK arguments for circuit satisfiability with adaptive soundness, but for circuits of limited
size.

By “ordinary” soundness we mean: for any NP statement, it is infeasible to make a valid NIZK argument
for that statement given a random common reference string. However, in real life we can of course imagine
an adversary that first sees the common reference string, and then chooses the false statement on which
he will attempt to cheat. This is normally handled by an adaptive definition of soundness (e.g. [FLS90]).
We make two observations regarding adaptive soundness:

First, we note that we can obtain full adaptive soundness if we restrict the size of statements to be
proven. Let νSD(k) be the advantage of an adversary trying to decide the subgroup decision problem
of [BGN05]. We can construct NIZK arguments with adaptive soundness by limiting the adversary to
picking circuits of size `(k) such that `(k)`(k)νSD(k) is negligible4

Second, we observe that our construction of perfect NIZK arguments (with only “ordinary” soundness)
already achieves a weaker, but sufficient, form of adaptive soundness. It turns out, informally speaking,
that if an adversary succeeds in producing an NIZK argument for a false statement, it cannot “know”
that it has done so. In other words, if the adversary can efficiently recognize when it has succeeded in
specifying a false statement, then it cannot produce a valid proof of that statement.

We are able to formalize the second observation and illustrate its utility by constructing perfect NIZK
arguments that satisfy Canetti’s UC definition of security. Canetti introduced the universal composability
(UC) framework [Can01] as a general method to argue security of protocols in an arbitrary environment.
It is a strong security definition; in particular it implies non-malleability and security when arbitrary
protocols are executed concurrently. The notion of non-malleability was introduced by Dolev, Dwork and

4For instance, if `(k) = k
ε, then we assume that νSD(k) = 2−εk

ε log k
ν(k), where ν is negligible.
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Naor [DDN00] in the interactive setting for Zero-Knowedlge and Commitment protocols. In the non-
interactive setting, the first non-malleable commitment protocol was given by Di Crescenzo, Ishai and
Ostrovsky [DIO98]. Sahai introduced the first non-malleable NIZK proof system, for a single theorem
[Sah99]. De Santis, Di Crescenzo, Ostrovsky, Persiano and Sahai showed how to construct non-malleable
NIZK proofs for polynomially-many theorems. As mentioned above, the UC framework guarantees a
strong form of non-malleability, and in [CLOS02], it was observed that [DDO+01] achieves UC-security,
but only for the setting with static advrsaries.

We define NIZK arguments in the UC framework and construct a NIZK argument (without any re-
strictions on the size of the NP statements that we prove) that satisfies the UC security definition. From
the theory behind the UC framework, this means that we can plug in our NIZK argument in arbitrary
settings and maintain security (including soundness!). At the same time, we can prove that our UC NIZK
argument enjoys a perfect zero-knowledge property.

We stress that our result holds even in the setting of dynamic/adaptive adversaries without erasures:
where the adversary can corrupt parties adaptively, and upon corruption of a party, it learns the entire
history of the internal state of this party. Prior to our result, no NIZK protocol was known to be UC-
secure against dynamic/adaptive adversaries.

1.1 Notation

We model adversarial behavior as non-uniform interactive probabilistic polynomial time algorithms. Un-
less otherwise specified all other algorithms are uniform probabilistic polynomial time algorithms. A
function ν : N → [0; 1] is negligible if for all ∀c > 0∃K∀k > K : ν(k) < 1

kc . For two functions
f1, f2 : N→ [0; 1] we write f1(k) ≈ f2(k) if |f1(k)− f2(k)| is negligible. We write output← A(input)
for the process of selecting randomness r and setting output = A(input; r).

2 Non-interactive Zero-Knowledge

Let R be an efficiently computable binary relation. For pairs (x, w) ∈ R we call x the statement and w
the witness. Let L be the language consisting of statements in R.

A proof system for a relation R consists of a key generation algorithm K, a prover P and a verifier V .
The key generation algorithm produces a common reference string σ. The prover takes as input (σ, x, w)
and checks whether (x, w) ∈ R. In that case, it produces a proof or argument π, otherwise it outputs
failure. The verifier takes as input (σ, x, π) and outputs 1 if the proof is acceptable and 0 if rejecting
the proof. We call (K, P, V ) an argument or a proof system for R if it has the completeness and soundness
properties described below.

COMPLETENESS. For all adversaries A we have

Pr
[

σ ← K(1k); (x, w)← A(σ); π ← P (σ, x, w) : V (σ, x, π) = 1 if (x, w) ∈ R
]

≈ 1.

SOUNDNESS. For all adversaries A we have

Pr
[

σ ← K(1k); (x, π)← A(σ) : V (σ, x, π) = 0 if x /∈ L
]

≈ 1.

We call (K, P, V ) an argument for R if soundness holds for polynomial time adversaries and a proof
system for R if soundness also holds for computationally unbounded adversaries.
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KNOWLEDGE EXTRACTION. We call (K, P, V ) an argument of knowledge or a proof of knowledge for
R if there exists a knowledge extractor E = (E1, E2) with the properties described below.

For all adversaries A we have

Pr
[

σ ← K(1k) : A(σ) = 1
]

≈ Pr
[

(σ, τ)← E1(1
k) : A(σ) = 1

]

For all adversaries A we have

Pr
[

(σ, τ)← E1(1
k); (x, π)← A(σ); w← E2(σ, τ, x, π) : V (σ, x, π) = 0 or (x, w) ∈ R

]

≈ 1.

ZERO-KNOWLEDGE. We call (K, P, V ) a NIZK argument or NIZK proof for R if there exists a simulator
S = (S1, S2) with the following zero-knowledge property. For all adversariesA we have

Pr
[

σ ← K(1k) : AP (σ,·,·)(σ) = 1
]

≈ Pr
[

(σ, τ)← S1(1
k) : AS′(σ,τ,·,·)(σ) = 1

]

,

where S ′(σ, τ, x, w) = S2(σ, τ, x) for (x, w) ∈ R and outputs failure if (x, w) /∈ R.

HONEST PROVER STATE RECONSTRUCTION. In modeling adaptive security without erasures, the prover
may be corrupted at some time. To handle such cases, we want to extend the zero-knowledge property
such that not only can we simulate an honest party making a proof, we also want to be able to simulate how
it constructed the proof. In other words, once the party is corrupted the adversary will learn the witness
and the randomness used, we want to create convincing randomness so that it looks like the simulated
proof was constructed by an honest prover using this randomness.

We say a NIZK argument or proof for R has honest prover state reconstruction if there exists a simu-
lator S = (S1, S2, S3) so for allA we have

Pr
[

σ ← K(1k) : APR(σ,·,·)(σ) = 1
]

≈ Pr
[

(σ, τ)← S1(1
k) : ASR(σ,τ,·,·)(σ) = 1

]

,

where PR(σ, x, w) runs r ← {0, 1}`P (k); π ← P (σ, x, w; r) and returns π, r, and where SR runs
ρ ← {0, 1}`S(k); π ← S2(σ, τ, x; ρ); r ← S3(σ, τ, x, w, ρ) and returns π, r, both of the oracles outputting
failure if (x, w) /∈ R.

PERFECT COMPLETENESS, SOUNDNESS, KNOWLEDGE EXTRACTION AND ZERO-KNOWLEDGE. We
speak of perfect completeness, perfect soundness, perfect knowledge extraction, perfect zero-knowledge
and perfect honest prover state reconstruction if for sufficiently large security parameters we have equali-
ties in the respective definitions.

Remark. In the paper, we will construct protocols with perfect completeness, perfect soundness, perfect
zero-knowledge, etc. In doing so we assume the ability to pick elements from certain sets, e.g., r ← Z∗

n.
If we consider the more strict setting, where the parties only have access to a source of unbiased coin-flips,
we can still pick such elements from these sets in expected polynomial time. Alternatively, we can simply
truncate the algorithms, in which case we do not get perfect completeness, perfect soundness, etc., but do
get statistical completeness, statistical soundness, etc.

3 The Boneh-Goh-Nissim Cryptosystem

Boneh, Goh and Nissim [BGN05] suggest a cryptosystem with interesting homomorphic properties. The
BGN-cryptosystem is the main building block in the paper.
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BILINEAR GROUPS. We use two cyclic groups G, G1 of order n, where n = pq and p, q are primes. We
make use of a bilinear map e : G × G → G1. I.e., for all u, v ∈ G and a, b ∈ Z we have e(ua, vb) =
e(u, v)ab. We require that e(g, g) is a generator of G1 if g is a generator of G. We also require that group
operations, group membership, sampling of a random generator for G and the bilinear map be efficiently
computable.

[BGN05] suggest the following example. Pick large primes p, q and let n = pq. Find the smallest `
so P = `n − 1 is prime and equal to 2 modulo 3. Consider the points on the elliptic curve y2 = x3 + 1
over FP . This curve has P + 1 = `n points, so it has a subgroup G of order n. We let G1 be the order n
subgroup of F

∗
P 2 and e : G×G→ G1 be the modified Weil-pairing.

THE SUBGROUP DECISION PROBLEM. Let G be an algorithm that takes a security parameter as input and
outputs (p, q, G, G1, e) such that p, q are primes, n = pq and G, G1 are descriptions of groups of order n
and e : G×G→ G1 is a bilinear map.

Let Gq be the subgroup of G of order q. The subgroup decision problem is to distinguish elements of
G from elements of Gq. Let Ggen be the generators of G and letA be an adversary. Define

SD-AdvA(1k) = Pr
[

(p, q, G, G1, e)← G(1
k); n = pq; g, h← Ggen : A(n, G, G1, e, g, h) = 1

]

−Pr
[

(p, q, G, G1, e)← G(1
k); n = pq; g ← Ggen, h← Gq \ {1} :

A(n, G, G1, e, g, h) = 1
]

.

Definition 1 The subgroup decision assumption holds for generator G if there exists a negligible function
νSD : N→ [0; 1] so for any adversary A we have SD-AdvA(1k) < νSD(k) for sufficiently large k.

We remark that we have changed the wording of the subgroup decision problem slightly in comparison
with [BGN05], but the definitions are equivalent.

THE BGN-CRYPTOSYSTEM. We generate a public key by running (p, q, G, G1, e) ← G(1k), setting
n = pq, selecting g as a random generator of G and h as a random generator of Gq. The public key is
(n, G, G1, e, g, h) while the decryption key is p, q.

To encrypt a message m of length O(log k) using randomness r ← Z∗
n we compute the ciphertext

c = gmhr. To decrypt we compute cq = gmqhmq = (gq)m and exhaustively search for m.
By the subgroup decision assumption, we could indistinguishably select h to be a random generator of

G as well. In this case, we do not have a cryptosystem but rather a perfectly hiding commitment scheme.

4 Non-interactive Zero-Knowledge Proof

4.1 NIZK Proof that c Encrypts 0 or 1

We will construct a NIZK proof of knowledge for circuit satisfiability in Section 4.2. As a building block
in this NIZK proof, we will encrypt the truth-values of the wires in the circuit. We need to convince
the verifier that these ciphertexts have been correctly formed. We therefore start by constructing a NIZK
proof that a BGN-ciphertext has either 0 or 1 as plaintext.

We observe that if a ciphertext c contains 0 or 1, then either c ∈ Gq or cg−1 ∈ Gq, so e(c, cg−1) has
order q. Write c = gy, then e(c, cg−1) = e(g, g)y(y−1). If e(c, cg−1) has order q, then y(y− 1) = 0 mod p,
so y = 0 mod p or y = 1 mod p. Our strategy is to show that e(c, cg−1) has order q.
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If we know m, w so c = gmhw then m = 0 implies e(c, cg−1) = e(hw, g−1hw) = e(h, (g−1hw)w)
and if m = 1 we have e(c, cg−1) = e(ghw, hw) = e(h, (ghw)w). So in both cases we get e(c, cg−1) =
e(h, (g2m−1hw)w). Revealing the two components will immediately convince the verifier that e(c, cg−1)
has order q, however may not be zero-knowledge.

Instead, we make a NIZK proof for e(c, cg−1) having order q as follows. We choose a random exponent
r and compute e(c, cg−1) = e(hr, (g2m−1hw)wr−1

). We reveal these two components, and must convince
the verifier that the first element π1 = hr has order q. For this purpose, we show him the element gr.
Since e(π1, g) = e(hr, g) = e(h, gr) the verifier can now tell that π1 has order q.

To argue zero-knowledge we change the public key. Instead of having h of order q, we use h of order
n and select g so we know the discrete logarithm. Now all ciphertexts are perfectly hiding commitments
so we can create all of them as encryptions of 0. We can simulate the revelation of gr because we know
the discrete logarithm.

Common reference string:

1. (p, q, G, G1, e)← G(1
k)

2. n = pq

3. g random generator of G

4. h random generator of Gq

5. Return σ = (n, G, G1, e, g, h).

Statement: The statement is an element c ∈ G. The claim is that there exists a pair (m, w) ∈ Z2 so
m ∈ {0, 1} and c = gmhw.

Proof: Input (σ, c, (m, w)).

1. Check c ∈ G, m ∈ {0, 1} and c = gmhw. Return failure if check fails.

2. r ← Z∗
n

3. π1 = hr, π2 = (g2m−1hw)wr−1

, π3 = gr

4. Return π = (π1, π2, π3)

Verification: Input (σ, c, π = (π1, π2, π3)).

1. Check c ∈ G and π ∈ G
3

2. Check e(c, cg−1) = e(π1, π2) and e(π1, g) = e(h, π3)

3. Return 1 if both checks pass, else return 0

Figure 1: NIZK proof of plaintext being zero or one.

Theorem 2 The protocol in Figure 1 is a NIZK proof that c ∈ G has plaintext m ∈ {0, 1} with honest
prover state reconstruction.

Proof. PERFECT COMPLETENESS. Let x be the secret discrete logarithm so h = gx. We

know that c = gmhw, where m ∈ {0, 1}. This gives us e(c, cg−1) = e(gm+xw, gm−1+xw) =
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e(g, g)m(m−1)+xw(2m−1+xw) = e(g, g)rx(2m−1+xw)wr−1

= e(hr, (g2m−1hw)wr−1

) = e(π1, π2). Furthermore,
e(π1, g) = e(hr, g) = e(h, gr) = e(h, π3).

PERFECT SOUNDNESS. Let again x be the secret discrete logarithm so h = gx. Consider c, π so
e(c, cg−1) = e(π1, π2) and e(π1, g) = e(h, π3). There exist 0 ≤ m < p and w ∈ Z so c = gmhw.

We have e(πq
1, g) = e(π1, g)q = e(h, π3)

q = e(hq, π3) = e(1, π3) = 1. Therefore, π1 must have order
1 or q. This means there exists some r so π1 = hr.

As before we have e(c, cg−1) = e(g, g)m(m−1)+xw((2m−1)+xw). At the same time we have e(c, cg−1) =
e(π1, π2) = e(hr, π2) and therefore e(c, cg−1)q = e(hrq, π2) = e(1, π2) = 1. So m(m − 1) + xw((2m−
1) + xw) = 0 mod n, and p|x tells us m(m− 1) = 0 mod p. Since 0 ≤ m < p this implies m ∈ {0, 1}.
So there does indeed exist m ∈ {0, 1} and w so c = gmhw.

COMPUTATIONAL ZERO-KNOWLEDGE AND HONEST PROVER STATE RECONSTRUCTION. First, we de-
scribe the simulator S = (S1, S2, S3). S1 runs the algorithm for generating the common reference string
with the following modification. It selects h to be a random generator for G and sets g = hγ , where
γ ← Z∗

n. During the generation of the common reference string the simulator also learns p, q. S1 outputs
(σ, τ) = ((n, G, G1, g, h), (p, q, γ)).

S2 on input (σ, τ, c) simulates a proof as follows. Either c, cg−1, or both are generators for G. The
simulator picks r ← Z∗

n. If c is a generator it sets π1 = cr, π2 = (cg−1)r−1

and π3 = πγ
1 . If c is not a

generator for the group, then the simulator sets π1 = (cg−1)r, π2 = cr−1

, π3 = πγ
1 .

S3 is given the witness (m, w) so c = gmhw and m ∈ {0, 1} and wishes to reconstruct how the
prover could have come up with the proof π. Since it knows γ it can write c = hγm+w. Consider first
the case where c is a generator for G, then we have gcd(n, γm + w) = 1. So we can write the proof
as π1 = hr(γm+w), π2 = (g2m−1hw)w(r(γm+w))−1

, π3 = gr(γm+w). We return r(γm + w) mod n as the
prover’s simulated randomness that would cause it to produce π. In case c is not a generator, we know that
cg−1 is a generator and we write the proof as π1 = hr(γ(m−1)+w), π2 = (g2m−1hw)w(r(γ(m−1)+w))−1

, π3 =
gr(γ(m−1)+w) and return r(γ(m− 1) + w) mod n as the prover’s simulated randomness.

To argue computational zero-knowledge we consider a hybrid experiment, where we use S1 to generate
the common reference string σ, but implement the simulation oracle using the real prover P . We first show
that for all adversaries A we have

|Pr
[

σ ← K(1k) : APR(σ,·,·)(σ) = 1
]

− Pr
[

(σ, τ)← S1(1
k) : APR(σ,·,·)(σ) = 1

]

| < νSD(k),

where PR(σ, (σ, c), (m, w)) runs r ← Z∗
n; π ← P (σ, (σ, c), (m, w); r) and returns π, r, and outputs

failure if m /∈ {0, 1} or c 6= gmhw.
The only difference between the two experiments is the choice of h. In one case, h is a random

generator of G in the other case it is a generator of Gq. We do not use the knowledge of p, q or the
discrete logarithm of g with respect to h in either experiment. Consider now a subgroup decision problem
challenge (n, G, G1, e, g, h). The challenges correspond exactly to common reference strings produced
by respectively K and S1. The advantage of A is therefore bounded by νSD(k).

Next, we go from the hybrid experiment to the simulation. For all A we have

Pr
[

(σ, τ)← S1(1
k) : APR(σ,·,·)(σ) = 1

]

= Pr
[

(σ, τ)← S1(1
k) : ASR(σ,τ,·,·)(σ) = 1

]

,

where SR runs ρ ← Z∗
n; π ← S2(σ, τ, (σ, c); ρ); r ← S3(σ, τ, (σ, c), (m, w), ρ) and returns π, r, or

failure if m /∈ {0, 1} or c 6= gmhw.
A simulated proof π = (π1, π2, π3) uniquely defines the randomness r ∈ Z∗n so π1 = hr, and it is

indeed this randomness S3 outputs. We therefore just need to argue that simulated proofs have the same
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distribution as real proofs in the hybrid experiment. In case c is a generator for G, S2 selects r ← Z
∗
n

at random and set π1 = cr, which gives us a random generator of G. In a real prover’s proof π1 is also
a random generator of G when h has order n. Since π1 uniquely defines π2 and π3, we see that the two
distributions are identical. If c is not a generator for G, then cg−1 and since a simulated π1 = (cg−1)r for
r ← Z∗

n is a random generator of G, we can use a similar argument to show that also in this case we get a
perfect simulation.

�

4.2 NIZK Proof of Knowledge for Circuit Satisfiability

Suppose we have a circuit C and want to prove that there exists w so C(w) = 1. Since any circuit can be
linearly reduced to a circuit built only from NAND-gates, we will without loss of generality focus on this
simpler case.

To prove satisfiability of C we encrypt the bit value of each wire, when the circuit is evaluated on the
input bits in w. Using the NIZK proof in Figure 1 it is straightforward to prove that all ciphertexts contain
a plaintext in {0, 1}. We form the output ciphertext with randomness 0 so it is straightforward for the
verifier to check that the output of the circuit is 1.

The only thing left is to prove that all the encrypted output wires do indeed evaluate the NAND-gates
correctly. We make the following observation, leaving the proof to the reader.

Lemma 3 Let b0, b1, b2 ∈ {0, 1}.

b0 + b1 + 2b2 − 2 ∈ {0, 1} if and only if b2 = b0 NAND b1.

Given ciphertexts c0, c1, c2 containing plaintexts b0, b1, b2 we can use the homomorphic properties to
form the ciphertext c0c1c

2
2g

−2. A NIZK proof that c0c1c
2
2g

−2 contains a plaintext in {0, 1} implies
b2 = b0 NAND b1, as required. We make such a NIZK proof for each NAND-gate in the circuit.

Theorem 4 The protocol in Figure 2 is a NIZK proof of knowledge of circuit satisfiability with honest
prover state reconstruction.

Proof. PERFECT COMPLETENESS. Knowing a satisfying assignment w for C, we can compute truth-

values for all wires that are consistent with the NAND-gates and make the circuit have 1 as output. Perfect
completeness follows from the perfect completeness of the NIZK proofs of plaintexts being either 0 or 1.

PERFECT SOUNDNESS. Since we prove for each wire that the encrypted plaintext is either 0 or 1, we have
made a perfectly binding commitment to a bit for each wire. By Lemma 3, the NIZK proofs for the gates
imply that all encrypted wire-bits respect the NAND-gates. Finally, we know that the output ciphertext is
g, so the output bit is 1.

PERFECT KNOWLEDGE EXTRACTION. The extractor sets up the common reference string by running the
key generator for the NIZK proof. In the process it learns p, q. This allows it to decrypt the ciphertexts
containing the input-bits. Since the NIZK proof has perfect soundness, these input bits must correspond
to a witness w so C(w) = 1.

COMPUTATIONAL ZERO-KNOWLEDGE AND HONEST PROVER STATE RECONSTRUCTION. Let S1 be the
simulator of the NIZK proof for a ciphertext having 0 or 1 as plaintext. We use the same algorithm to
create the common reference string for simulation of circuit satisfiability NIZK proofs. In other words,
both g, h are random generators of G and the simulator knows γ ∈ Z

∗
n so g = hγ .
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Common reference string:

1. (p, q, G, G1, e)← G(1
k)

2. n = pq

3. g random generator of G

4. h random generator of Gq

5. Return σ = (n, G, G1, e, g, h).

Statement: The statement is a circuit C built from NAND-gates. The claim is that there exist input
bits w so C(w) = 1.

Proof: The prover has a witness w consisting of input bits so C(w) = 1.

1. Extend w to contain the bits of all wires in the circuit.

2. Encrypt each bit wi as ci = gwihri , with ri ← Z∗
n.

3. For all ci make a NIZK proof of existence of wi, ri so wi = {0, 1} and ci = gwihri .

4. For the output of the circuit we let the ciphertext be coutput = g, i.e., an easily verifiable
encryption of 1.

5. For all NAND-gates, we do the following. We have input ciphertexts c0, c1 and output
ciphertexts c2. We wish to prove the existence of w0, w1, w2 ∈ {0, 1} and r0, r1, r2 so
w2 = w0 NAND w1 and cj = gwjhrj . To do so we make a NIZK proof that there exist
m, r with m ∈ {0, 1} so c0c1c

2
2g

−2 = gmhr.

6. Return π consisting of all the ciphertexts and NIZK proofs.

Verification: The verifier given a circuit C and a proof π.

1. Check that all wires have a corresponding ciphertext and that the output wire’s ciphertext
is g.

2. Check that all ciphertexts have a NIZK proof of the plaintext being 0 or 1.

3. Check that all NAND-gates have a valid NIZK proof of compliance.

4. Return 1 if all checks pass, else return 0.

Figure 2: NIZK proof for circuit satisfiability.

S2 starts by choosing the ciphertexts for the wires: The output wire gets the ciphertext g. For all other
wires, it selects a ciphertext ci = hri with ri ← Z∗

n. Later, when S3 learns a witness w, it can compute the
corresponding messages mi ∈ {0, 1} for all these ciphertexts, and open them as ci = gmihri−miγ

−1

.
For all these ciphertexts S2 simulates a NIZK proof that they contain 0 or 1 as the plaintext. Also

for all NAND-gates with input wires i0, i1 and output wire i2 it simulates a NIZK proof that ci0ci1c
2
i2
g−2

contains a plaintext that is 0 or 1. Later, upon learning the witness w, S3 knows the plaintexts wij ∈ {0, 1}
and randomizers rij − wijγ

−1 that constitute a satisfactory encryption of the wires of a satisfied circuit.
For each NIZK proof of a plaintext being 0 or 1, S3 can run the honest prover state reconstructor to get
convincing randomness that would make the prover produce this proof.
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To prove that this is a good simulation, we first consider a hybrid experiment where we use the simu-
lator to create the common reference string, but use the real prover to create the NIZK proofs. As in the
proof of Theorem 2, we can argue that for all adversariesA we have

|Pr
[

σ ← K(1k) : APR(σ,·,·)(σ) = 1
]

− Pr
[

(σ, τ)← S1(1
k) : APR(σ,·,·)(σ) = 1

]

| < νSD(k),

where PR(σ, C, w) runs π ← P (σ, C, w; r) and returns π, r.
Next, we modify the way we create proofs. Instead of running the real prover, we create the encryp-

tions of the wires ci as the real prover, but simulate the NIZK proofs of 0 or 1 being the plaintext and
simulate the NIZK proofs for the NAND-gates as well. ¿From the proof of Theorem 2 we get that this
modification does not increase A’s probability of outputting 1. We have

Pr
[

(σ, τ)← S1(1
k) : APR(σ,·,·)(σ) = 1

]

= Pr
[

(σ, τ)← S1(1
k) : APSR(σ,τ,·,·)(σ) = 1

]

,

where PSR(σ, τ, C, w) creates ciphertexts ci correctly but simulates NIZK proofs for 0- or 1-plaintexts
and the randomness involved, and outputs failure if C(w) 6= 1.

Finally, we go to the full simulation. For allA we have

Pr
[

(σ, τ)← S1(1
k) : APSR(σ,τ,·,·)(σ) = 1

]

= Pr
[

(σ, τ)← S1(1
k) : ASR(σ,τ,·,·)(σ) = 1

]

,

where SR runs π ← S2(σ, τ, C; ρ); r ← S3(σ, τ, C, w, ρ) and returns π, r, and outputs failure if
C(w) 6= 1. The only difference here is in the way we create the ciphertexts, but since they are perfectly
hiding, we cannot distinguish the two experiments.

�

5 Non-interactive Statistical Zero-Knowledge Argument

In this section, we construct a NIZK argument of circuit satisfiability with perfect zero-knowledge. The
main idea is a simple modification of the NIZK proof for circuit satisfiability in Figure 2. Instead of
choosing h of order q, we let h be a random generator of G. This way gmhr is no longer an encryption
of m, but a perfectly hiding commitment to m. It corresponds to using S1 restricted to the first half of its
outputs as key generator. Completeness is obvious and the proof of Theorem 4 reveals that the argument
is perfect zero-knowledge.

Soundness is trickier though. Since gmhr is not statistically binding, we cannot prove soundness as
we did in Theorem 4. Suppose we have circuit C /∈ L generated independently of the common reference
string. We can argue that no adversary can distinguish an h of order n from an h of order q, and therefore
has negligible probability of making an acceptable NIZK argument.

However, if the common reference string is chosen first, then the adversary may choose a circuit C
that depends on the common reference string. For instance, we cannot exclude the possibility that it could
create an acceptable NIZK argument for h having order smaller than n. This is a false statement, since
h has order n. However, if we try to argue soundness by switching the reference string to contain h with
order q, then the statement is suddenly true and it might be possible to create such a NIZK argument.

In order to overcome this problem we tighten the subgroup decision assumption. We show that if all
adversaries have less than `(k)−`(k)ν(k) chance of distinguishing h generating either G or Gq, then all
adversaries have less than ν(k) chance of making an acceptable argument for an unsatisfiable circuit of
size `(k). This limits the size of the circuits for which we can prove soundness.
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Let Sσ be the simulator S1 from the proof of Theorem 4 restricted to its first output. We have the
following theorem

Theorem 5 (Sσ, P, V ) is a NIZK argument for circuit satisfiability for circuits of size at most `(k) if
νSD(k) < `(k)−`(k)ν(k) for some negligible function ν.

Proof. As in the proof of Theorem 4, we can show that the protocol has perfect completeness. Perfect
zero-knowledge and honest prover state reconstruction follows from the proof of Theorem 4. This leaves
us with the question of soundness.

NON-ADAPTIVE COMPUTATIONAL SOUNDNESS. We first demonstrate that the NIZK argument has non-
adaptive soundness, i.e., all adversaries have negligible probability of proving a false statement if they
choose this statement independently of the common reference string.

Consider any circuit C with no satisfying witness and a polynomial time adversaryA that with proba-
bility So-AdvA(1k) breaks the soundness property. In other words,A is given a common reference string
and proceeds to output a valid argument π. We will construct an adversary B that decides the subgroup
decision problem with probability SD-AdvB(1k) =So-AdvA(1k).
B gets a challenge (n, G, G1, e, g, h) and has to decide whether h has order n or not. This corresponds

to a common reference string generated by either K or Sσ. So we can give it toA and output 1 if and only
if A forms a valid argument for C being true.

In case h has order n, the common reference string produced by B is distributed exactly as in a real
argument. The adversary therefore has probability So-AdvA(1k) of generating an acceptable argument.

On the other hand, in case h has order q the common reference string produced by B is distributed as
the reference string in the previously described NIZK proof. Since the NIZK proof has perfect soundness,
the probability of A producing a valid argument is 0.

COMPUTATIONAL SOUNDNESS. Consider now an adversary A with probability So-AdvA(1k) for break-
ing the soundness property. Let C be the unsatisfiable circuit of size at most `(k) that is most likely to
be used by A in a valid NIZK argument. As argued in the previous paragraph, the probability of A se-
lecting this circuit when it sees the reference string and making an acceptable NIZK argument is at most
SD-Adv(1k). There are at most `(k)`(k) circuits of size `(k). Summing over all possible circuits we have
So-AdvA(1k) ≤ `(k)`(k)νSD(k) < ν(k).

�

6 Universally Composable Non-interactive Zero-Knowledge

6.1 Modeling Non-interactive Zero-Knowledge Arguments

The universal composability (UC) framework (see [Can01] for a detailed description) is a strong security
model capturing security of a protocol under concurrent execution of arbitrary protocols. We model all
other things not directly related to the protocol through a polynomial time environment. The environment
can at its own choosing give inputs to the parties running the protocol, and according to the protocol
specification the parties can give outputs to the environment. In addition, there is an adversary A that
attacks the protocol. A can communicate freely with the environment. It can also corrupt parties, in
which case it learns the entire history of that party and gains complete control over the actions of this
party.

To model security we use a simulation paradigm. We specify the functionality F that the protocol
should realize. The functionalityF can be seen as a trusted party that handles the entire protocol execution
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and tells the parties what they would output if they executed the protocol correctly. In the ideal process,
the parties simply pass on inputs from environment to F and whenever receiving a message from F they
output it to the environment. In the ideal process, we have an ideal process adversary S. S does not learn
the content of messages sent from F to the parties, but is in control of when, if ever, a message from F
is delivered to the designated party. S can corrupt parties, at the time of corruption it will learn all inputs
the party has received and all outputs it has sent to the environment. As the real world adversary, S can
freely communicate with the environment.

We now compare these two models and say that it is secure if no environment can distinguish between
the two worlds. This means, the protocol is secure, if for any A running in the real world, there exists an
S running in the ideal process with F so no environment can distinguish between the two worlds.

The standard zero-knowledge functionality FZK as defined in [Can01] goes as follows: On input
(prove,P, V, sid, x, w) from P the functionality FZK checks that (x, w) ∈ R and in that case sends
(proof,P, V, sid, x) to V . It is thus part of the model that the prover will send the proof to a particular
receiver and that this receiver will learn who the prover is. This is a very reasonable model when we talk
about interactive NIZK proofs of knowledge. We remark that with only small modifications in the UC
NIZK argument that we are about to suggest we could securely realize this functionality.

However, when we talk about NIZK arguments we do not always know who is going to receive the
NIZK argument. We simply create a string π, which is the NIZK argument. We may create this string in
advance and later decide to whom to send it. Furthermore, anybody who intercepts the string π can verify
the truth of the statement and can use the string to convince others about the truth of the statement. The
NIZK argument is not deniable; quite on the contrary it is transferable. For this reason, and because the
protocol and the security proof becomes a little simpler, we suggest a different functionality FNIZK to
capture the essence of NIZK arguments.

Parameterized with relation R and running with parties P1, . . . , Pn and adversary S.

Proof: On input (prove,sid, ssid, x, w) from party P ignore if (x, w) /∈ R. Send (prove,x) to S and
wait for answer (proof, π). Upon receiving the answer store (x, π) and send
(proof, sid, ssid, π) to P .

Verification: On input (verify, sid, ssid, x, π) from V check whether (x, π) is stored. If not send
(verify,x, π) to S and wait for an answer (witness,w). Upon receiving of the answer, check
whether (x, w) ∈ R and in that case, store (x, π). If (x, π) has been stored return
(verification,sid, ssid,1) to V , else return (verification,sid, ssid,0).

Figure 3: NIZK functionality FNIZK.

6.2 Tools

We will need a few cryptographic tools to securely realize FNIZK.

PERFECTLY HIDING COMMITMENT SCHEME WITH EXTRACTION. A perfectly hiding commitment
scheme with extraction (first used in [CKOS01] in the setting of perfectly hiding non-malleable com-
mitment) has the following property. We can run a key generation algorithm hk ← Kstat(1k) to get a
hiding key hk, or we can alternatively run a key generation algorithm (hk, xk)← Kextract(1k) in which
case we get both a hiding key hk and an extraction key xk. (Kstat, com) constitute a perfectly hiding
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commitment scheme. On the other hand, (Kextract, com, dec) constitute a public key cryptosystem with
errorless decryption, i.e.,

Pr
[

(hk, xk)← Kextract(1k) : ∀(m, r) : decxk(comhk(m; r)) = m
]

≈ 1.

We demand that no adversaryA can distinguish between the two key generation algorithms. This implies
that the cryptosystem is semantically secure against chosen plaintext attack since the perfectly hiding
commitment does not reveal what the message is.

We have already seen one example of a perfectly hiding commitment scheme with extraction. We can
set up the BGN-cryptosystem with a public key, where h has full order n. In this case the cryptosystem
is a perfectly hiding commitment scheme. We can also set it up with h having order q, in this case the
cryptosystem has errorless decryption. The subgroup decisional assumption implies that no adversary can
distinguish commitment keys from cryptosystem keys.

PSEUDORANDOM CRYPTOSYSTEM. A cryptosystem (Kpseudo, E, D) has pseudorandom ciphertexts of
length `E(k) if for all adversaries A we have

Pr
[

(pk, dk)← Kpseudo(1k) : AEpk(·)(pk) = 1
]

≈ Pr
[

(pk, dk)← Kpseudo(1k) : ARpk(·)(pk) : A(c) = 1
]

,

where Rpk(m) runs c ← {0, 1}`E(k) and returns c. We require that the cryptosystem have errorless
decryption as defined earlier.

The BGN-cryptosystem serves as an example of a pseudorandom cryptosystem. It is also known that
trapdoor permutations imply pseudorandom cryptosystems, we can use the Goldreich-Levin hard-core bit
[GL89] of a trapdoor permutation to make a one-time pad.

TAG-BASED SIMULATION-SOUND TRAPDOOR COMMITMENT A tag-based commitment scheme has four
algorithms. The key generation algorithm Kcom produces a commitment key ck as well as a trapdoor key
tk. There is a commitment algorithm that takes as input the commitment key ck, a message m and any
tag tag and outputs a commitment c = commitck(m, tag; r). To open a commitment c we reveal m, tag
and the randomness r. Anybody can now verify whether indeed c = commitck(m, tag; r). As usual, the
commitment scheme must be both hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor algorithms Tcom, Topen that
allow us to create an equivocal commitment and later open this commitment to any value we prefer. We
create an equivocal commitment and an equivocation key as (c, ek) ← Tcomck,tk(tag). Later we can
open it to any message m as r ← Topenck,ek(c, m, tag), such that c = commitck(m, tag; r). We require
that equivocal commitments and openings are indistinguishable from real openings. For all adversariesA
we have

Pr
[

(ck, tk)← Kcom(1k) : AR(·,·)(ck) = 1
]

≈ Pr
[

(ck, tk)← Kcom(1k) : AO(·,·)(ck) = 1
]

,

where R(m, tag) returns a randomly selected randomizer and O(m, tag) computes (c, ek) ←
Tcomck,tk(m, tag); r ← Topenck,ek(c, m, tag) and returns r andA does not submit the same tag twice to
the oracle.

The tag-based simulation soundness property is based on the notion of simulation soundness intro-
duced by Sahai [Sah99] for NIZK proofs. It means that a commitment using tag remains binding even if
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we have made equivocations for commitments using different tags. For all adversariesA we have

Pr
[

(ck, tk)← K(1k); (c, tag, m0, r0, m1, r1)← A
O(·)(ck) :

c = commitck(m0, tag; r0) = commitck(m1, tag; r1) and m0 6= m1 and tag /∈ Q
]

≈ 0,

where O(commit, tag) computes (c, ek) ← Tcomck,tk(tag), returns c and stores (c, tag, ek), and
O(open, c, m, tag) returns r ← Topenck,ek(c, m, tag) if (c, tag, ek) has been stored, and where Q is
the list of tags for which equivocal commitments have been made by O.

Tag-based simulation-sound trapdoor commitment were first implicitly defined in [DIO98], and ex-
plicitly in [CKOS01, MY04]. The notion of simulation soundness for NIZK [Sah99] will be critical to us
here, as well (see below). Aside from [DIO98, Sah99, CKOS01, MY04], other constructions of tag-based
simulation sound commitments or schemes that can easily be transformed into tag-based simulation-sound
commitments have appeared in [DDO+01, CLOS02, GMY03, DG03, Gro04, Gro05].

STRONG ONE-TIME SIGNATURES. We remind the reader that strong one-time signatures allow an ad-
versary to ask an oracle for a signature on one arbitrary message. Then it must be infeasible to forge a
signature on any different message and also infeasible to come up with a different signature on the same
message. One-time signatures can be constructed from one-way functions.

6.3 UC NIZK

The standard technique to prove that a protocol securely realizes a functionality in the UC framework
is to show that the ideal model adversary S can simulate everything that happens on top of the ideal
functionality. In our case, there are two tricky parts. First, S may learn that a statement C has been
proved and has to simulate a UC NIZK argument π without knowing the witness. Furthermore, if this
honest prover is corrupted later then we learn the witness but must now simulate the randomness of the
prover that would lead it to produce π. The second problem is that whenever S sees an acceptable UC
NIZK argument π for a statement C, then an honest verifier V will accept. We must therefore, input a
witness w to FNIZK so it can instruct V to accept.

The main idea in overcoming these hurdles is to commit to the witness w and make a NIZK proof
that indeed we have committed to a witness w so C(w) = 1. We must show that our NIZK proof has a
simulation-soundness property (see above) to ensure that only true statements can be proven. On the other
hand, if the NIZK proof has the honest prover state reconstruction property, then we can simulate NIZK
proofs and the prover’s random coins when forming this NIZK proof. This leaves us with the commitment
scheme. On one hand, when we simulate UC NIZK arguments we want to make equivocal commitments
that can be opened to anything since we do not know the witness yet. On the other hand, when we see a
UC NIZK argument that we did not construct ourselves we want to be able to extract the witness, since
we have to give it to FNIZK.

We will construct such a commitment scheme from the tools specified in the previous section. We use
a tag-based simulation-sound trapdoor commitment scheme to commit to each bit of w. If w has length `
this gives us commitments c1, . . . , c`. For honest provers we can use the trapdoor key tk to create equivocal
commitments that can be opened to any bit we like. This enables us to simulate the commitments of the
honest provers, and when we learn w upon corruption, we can simulate the randomness they could have
used to commit to the witness w.

We still have an extraction problem, it is not clear that we can extract a witness from commitments
created by a malicious adversary. To solve this problem we choose to encrypt the openings of the com-
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mitments. Now we can extract witnesses, but we have reintroduced the problem of equivocation. In a
simulated commitment we may know two different openings of a commitment ci to respectively 0 and
1, however, if we encrypt the opening then we are stuck with one possible opening. This is where the
pseudorandomness property of the cryptosystem comes in handy. We can simply make two encryptions,
one of an opening to 0 and one of an opening to 1. Since the ciphertexts are pseudorandom, we can open
the ciphertext containing the opening we want and claim that the other ciphertext was chosen as a random
string. To recap, the idea so far to commit to a bit b is to make a commitment ci to this bit, and create a
ciphertext ci,b containing an opening of ci to b, while choosing ci,1−b as a random string.

The commitment scheme is equivocable, however, again we must be careful that we can extract a
message from an adversarial commitment. The problem is that since we equivocate commitments for
honest provers it may be the case that the adversary can produce equivocable commitments. This means,
the adversary can produce some simulation sound commitment ci and encryptions ci,0, ci,1 of openings
to respectively 0 and 1. To resolve this issue we will select the tags for the commitments in a way so
the adversary is forced to use a tag that has not been used to make an equivocable commitment. When
an honest prover is making a commitment, we will select keys for a strong one-time signature scheme
(vk, sk) ← Ksign(1k). We will use tag = (vk, C) when making the commitment ci. The verification
key vk will be published together with the commitment, and we will sign the commitment (as well as
something else) using this key. Since the adversary cannot forge signatures, it must use a different tag,
and therefore the commitment is binding and only one of the ciphertexts can contain an opening of ci.
This allows us to establish simulation soundness.

If the adversary corrupts a party that has used vk earlier, then it may indeed sign messages using vk
and can therefore use vk in the tag for commitments. However, since we also include the statement C in
the tag for the commitment using vk, the adversary can only create an equivocable commitment in a UC
NIZK argument for the same statement C. We will observe that in this particular case we do not need to
extract the witness w, because we can get it during the corruption of the prover.

Finally, in order to make the UC NIZK argument perfect zero-knowledge we wrap all the commitments
ci and the ciphertexts ci,b inside a perfectly hiding commitment c. In the simulation, however, we generate
the key for this commitment scheme in a way such that it is instead a cryptosystem and we can extract the
plaintext. We note that this step is only added to make the UC NIZK argument perfect zero-knowledge, it
can be omitted if perfect zero-knowledge is not needed.

The resulting protocol can be seen in Figure 4. We use the notation from Section 6.2.

Theorem 6 The protocol in Figure 6 securely realizes FNIZK in the FCRS-model.

Proof. Let A be any adversary. We will describe an ideal adversary S so no environment can distinguish
whether it is running in the FCRS-hybrid model with parties P1, . . . , Pn and adversary A or in the ideal
process with FNIZK, S and dummy parties P̃1, . . . , P̃n.
S starts by invoking a copy of A. It will run a simulated interaction of A, the parties and the envi-

ronment. In particular, whenever the simulatedA communicates with the environment, S just passes this
information along. And wheneverA corrupts a party Pi, S corrupts the corresponding dummy party P̃i.

SIMULATING FCRS . S chooses the common reference string in the following way. It selects, (hk, xk)←
Kextract(1k); (ck, tk) ← Kcom(1k); (pk, dk) ← Kpseudo(1k) and (σ, τ) ← S1(1

k). This means S
is capable of extracting plaintext committed under hk, able to create and equivocate simulation sound
trapdoor commitments, decrypt pseudorandom ciphertexts and simulate NIZK proofs and make honest
prover state reconstruction of NIZK proofs.
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CRS generation:

1. hk ← Kstat(1k)

2. (ck, tk)← Kcom(1k)

3. (pk, dk)← Kpseudo(1k)

4. (σ, τ)← S1(1
k)

5. Return Σ = (hk, ck, pk, σ)

Statement: A circuit C and a claim that there exists input wires w so C(w) = 1.

Proof: On input (Σ, C, w).

1. Check C(w) = 1 and return failure if not

2. (vk, sk)← Ksign(1k)

3. For i = 1 to ` select ri at random and let ci = commitck(wi, (vk, C); ri)

4. For i = 1 to ` select Rwi
at random and set ci,wi

= Epk(ri; Rwi
) and choose ci,1−wi

as a
random string.

5. Choose r at random and let c = comhk(c1, c1,0, c1,1, . . . , c`, c`,0, c`,1; r)

6. Create a NIZK proof π for the statement that there exists w such that C(w) = 1 and there
exists randomness so c has been produced as described in steps 3,4 and 5.

7. s← signsk(C, vk, c, π)

8. Return Π = (vk, c, π, s)

Verification: On input (Σ, C, Π)

1. Parse Π = (vk, c, π, s)

2. Verify that s is a signature on (C, vk, c, π) under vk.

3. Verify the proof π

4. Return 1 if all checks work out, else return 0

Figure 4: UC NIZK argument.

Common reference string: On input (start,sid) run Σ← K(1k).

Send (crs,sid, Σ) to all parties and halt.

Figure 5: Protocol for UC NIZK common reference string generation.

Let Σ = (hk, ck, pk, σ). S simulates FCRS sending (crs,sid, Σ) to all parties. WheneverA decides to
deliver such a message to a party Pi, S will simulate Pi receiving this string.

SIMULATING UNCORRUPTED PROVERS. Suppose S receives (proof,sid, ssid, C) from FNIZK . This
means that some dummy party P̃ received input (prove,sid, ssid, C, w), where C(w) = 1. We must
simulate the output a real party P would make, however, we may not know w.
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Proof: Party P waits until receiving (crs,sid, Σ) from FCRS .

On input (prove,sid, ssid, C, w) run Π← P (Σ, C, w). Output (proof,sid, ssid, π).

Verification: Party V waits until receiving (crs,sid, Σ) from FCRS .

On input (verify,sid, ssid, C, Π) run b← V (Σ, C, Π). Output (verification,sid, ssid, b).

Figure 6: Protocol for UC NIZK argument.

We create (vk, sk) ← Ksign(1k). Let tag = (vk, C) and form equivocal commitments (ci, ek) ←
Tcompk,tk(tag). We simulate openings of the ci’s to both 0 and 1. For all i = 1 to ` and b = 0 to
1 compute ρi,b ← Topenck,ek(ci, b, tag). Select ri,b at random and set ci,b = Epk(ρi,b; ri,b). Compute
c = Ehk(c1, c1,0, c1,1, . . . , c`, c`,0, c`,1; r) for a random r. Choose randomness ρ and simulate the NIZK
proof as π ← S2(σ, τ, (C, vk, c); ρ). Finally, create a one-time signature s on C, vk, c, π.

Let Π = (vk, c, π, s) and return (proof,Π) to FNIZK . FNIZK subsequently sends (proof,sid, ssid, Π)
to P̃ and we deliver this message so it gets output to the environment.

SIMULATING UNCORRUPTED VERIFIERS. Suppose S receives (verify,C, Π) from FNIZK. This means
an honest dummy party Ṽ has received (verify,sid, ssid, C, Π) from the environment.
S checks the UC NIZK argument, b ← V (Σ, C, Π). If invalid, it sends (witness,no witness) to

FNIZK and delivers the consequent message (verification,sid, ssid, 0) to Ṽ that outputs this rejection to
the environment.

On the other hand, if the UC NIZK argument is valid we must try to extract a witness w. If C has ever
been proved by an honest prover that was later corrupted, we will know the witness and do not need to
run the following extraction procedure. If the witness is not known already S uses the extraction key xk
to extract a plaintext c1, c1,0, c1,1, . . . , c`, c`,0, c`,1 from c. Since it knows the decryption key dk, it can then
decrypt all ci,b. This gives us plaintexts ρi,b. We check whether ci = Tcomck(b, (vk, C); ρi,b) and in that
case b is a possible candidate for the i-th bit of w.

If successful in all of this, S lets w be these bits. However, if any of the bits are ambiguous, i.e.,
wi could be both 0 and 1, or if any of them are inextractable, then it sets w = no witness. It sends
(witness,w) to FNIZK. It delivers the resulting output message to Ṽ that outputs it to the environment.

We will later argue that the probability of the UC NIZK argument being valid, yet not being able to
supply a good witness to FNIZK is negligible. That means with overwhelming probability we input a
valid witness w to FNIZK when Π is an acceptable UC NIZK argument for satisfiability of C.

SIMULATING CORRUPTION. Suppose a simulated party Pi is corrupted by A. Then we have to simulate
the transcript of Pi. We start by corrupting P̃i thereby learning all UC NIZK arguments it has verified. It
is straightforward to simulate Pi’s internal tapes when running these verification processes.

We also learn all statements C that it has proved together with the corresponding witnesses w. Recall,
the UC NIZK arguments Π have been provided by S. Here is how we can simulate the randomness that
would lead Pi to produce such a UC NIZK argument Π. Since S created ci, ci,0, ci,1 such that ci,0 contains
a 0-opening of ci and ci,1 contains a 1-opening of ci it can produce good looking randomness to claim
that it committed to wi. This also gives us convincing randomness for constructing all these commitments
and for producing the ciphertext c, so we can run the honest prover state reconstruction algorithm S3 to
simulate randomness that would lead the prover to produce π.

HYBRIDS. We wish to argue that no environment can distinguish between the adversary A running with
parties executing the UC NIZK protocol in the FCRS-hybrid model and the ideal adversary S running in
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the FNIZK-hybrid model with dummy parties. In order to do so we define several hybrid experiments and
show that the environment cannot distinguish between any of them.

H0: This is the FCRS-hybrid model running with adversary A and parties P1, . . . , Pn.

H1: We modify H0 by running (hk, xk) ← Kextract(1k) instead of hk ← Kstat(1k) when generating
the common reference string Σ.

H0 and H1 are indistinguishable, because otherwise we could build a distinguisher that could tell
which key generation algorithm created hk.

H2: We modify H1 in the way an uncorrupted prover P creates commitments c1, . . . , c`. Let tag =
(vk, C) as chosen in the proof. Instead of creating ci by selecting ri at random and setting
ci = commitck(wi, tag; ri), we create an equivocal commitment (ci, ek) ← Tcomck,tk(tag) and
subsequently produce randomness ρi,wi

← Topenck,ek(ci, wi, tag). We continue the proof using
ρi,wi

instead of ri.

H1 and H2 are indistinguishable. If they were distinguishable, then we could distinguish real com-
mitments and openings from equivocal commitments and equivocated openings, in violation of the
definition of trapdoor commitments.

H3: In H3, we make another modification to the procedure followed by an honest prover. We are
already creating ci as an equivocal commitment and equivocating it with randomness ρi,wi

that
would open it to contain wi. We run the equivocation procedure once more to also create con-
vincing randomness that would explain ci as a commitment to 1 − wi. This means, we compute
ρi,1−wi

← Topenck,ek(ci, 1 − wi, tag). Instead of selecting ci,1−wi
as a random string, we choose

to encrypt ρi,1−wi
as ci,1−wi

= Epk(ρi,1−wi
; ri,1−wi

) for a randomly chosen ri,1−wi
. We still pretend

that ci,1−wi
is a randomly chosen string when we carry out the NIZK proof π or if the prover is ever

corrupted.

H2 and H3 are indistinguishable because of the pseudorandomness property of the cryptosystem.
Suppose we could distinguish H2 and H3, then we can distinguish between an encryption oracle
and an oracle that supplies randomly chosen strings.

H4: Consider the case where an honest party V receives (verify,sid, ssid, C, Π). Suppose Π is indeed an
acceptable UC NIZK argument and the one-time signature scheme has verification key vk. If vk
was selected by an honest party in making a UC NIZK argument, this party is still uncorrupted, yet
C, Π differ from the UC NIZK argument this honest party produced, then we output failure to
the environment.

To argue that H3 and H4 are indistinguishable we need to show that the probability of failure is
negligible. This follows from the fact that outputting failure corresponds to a forgery of a
strong one-time signature.

H5: Again, we look at the case of an uncorrupted verifier that has an acceptable UC NIZK argument C, Π
to verify. If C, Π were produced by an uncorrupted prover we do not change the protocol, neither
do we modify the protocol if C has been proved by an honest prover that has later been corrupted.
In all other cases, we use the extraction key xk in an attempt to decrypt c to get a plaintext on the
form c1, c1,0, c1,1, . . . , c`, c`,0, c`,1. Then we use the decryption key dk to attempt to decrypt the ci,b’s
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to get ρi,b so ci,b = commitck(b, (vk, C); ρi,b. We output failure if at any point we encounter a
ci = commitpk(0, (vk, C), ρi,0) = commitck(1, (vk, C), ρi,1).

Simulation soundness of the commitment scheme implies that H4 and H5 are indistinguishable.
Consider the tag (vk, C). Outputting failure corresponds to breaking the binding property of
the commitment scheme, unless we have previously equivocated a commitment with tag (vk, C).
In H4, we ruled out the possibility of vk coming from a UC NIZK argument of a party that is still
uncorrupted. This leaves us with the possibility of A corrupting an honest prover P , learning the
secret key sk corresponding to vk and making a UC NIZK argument using this. However, this
means that C stems from the same honest prover that has now been corrupted, and in that case we
do not try to extract ρi,b’s.

H6: We modify the common reference string by selecting σ ← K(1k) instead of (σ, τ)← S1(1
k).

Since we do not use τ for anything at the moment, the zero-knowledge property implies that H5
and H6 are indistinguishable.

H7: As in H5, we try to extract ρi,0, ρi,1’s. We output failure if we cannot decrypt c to get
c1, c1,0, c1,1, . . . , c`, c`,0, c`,1. We also output failure if there is an i so we cannot decrypt ei-
ther ci,0 or ci,1 to give us ρi,b so ci = commitck(b, (vk, C); ρi,b). We ruled out the possibility of both
ρi,0 and ρi,1 being an opening of ci in H5, so if everything is OK so far we have a uniquely defined
w so for all i we have ci = commitck(wi, (vk, C); ρi,wi

). We output failure if C(w) 6= 1.

¿From the soundness property of the NIZK proof and the errorless decryption property of the cryp-
tosystems we know that we do succeed in decrypting c to some c1, c1,0, c1,1, . . . , c`, c`,0, c`,1. The
NIZK proof also tells us that for all i = 1 to ` at least one of the ci,0, ci,1 will have a proper ρi,b so
ci = commitpk(b, (vk, C); ρi,b). By the soundness property of the NIZK proof we have C(w) = 1.
The probability of outputting failure is therefore negligible, and H6 is indistinguishable from
H7.

H8: Instead of making real NIZK proofs for uncorrupted provers we use the honest prover state recon-
struction simulators. In other words, we run (σ, τ)← S1(1

k) when we create the common reference
string. We use π ← S2(σ, τ, ·; ρ) with ρ random to simulate the honest provers NIZK proofs that c
has been correctly generated. Finally, if any such prover is corrupted we use r ← S3(σ, τ, x, π, ·, ρ)
to create convincing randomness that would make the prover output π on the witness for c being
correctly generated.

The honest prover state reconstruction property of the NIZK proof implies that H7 and H8 are
indistinguishable.

SIM: This is the ideal process running with FNIZK and S.

H8 is already very similar to the ideal process. Honest provers in H8 make UC NIZK arguments in
the same way as S without using the knowledge of the witness w for anything. It therefore makes
no difference that S only learns w upon corruption of a party P when it has to simulate the random
tape of said party.

Whenever an honest verifier has to verify a proof C, Π we are also very close to what happens in the
simulation. If C, Π has been produced by an honest prover it returns 1, as will the dummy verifier
in the ideal process. If C is a statement proved by an honest prover, but this prover has later been
corrupted, then in H8 the verifier will return 1 if Π is an acceptable UC NIZK argument. S in
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a similar situation will have corrupted the dummy prover that made the UC NIZK argument, and
therefore it will know the witness. If Π is an acceptable UC NIZK argument, it can therefore give
this witness to FNIZK that will make the dummy verifier output an acceptance to the environment.
Finally, in the remaining case we have argued in H7 that we manage to extract a witness w if Π is
acceptable and this extraction procedure is carried out exactly as it is done by S. Therefore, S can
submit this witness to FNIZK .

In conclusion, H8 is perfectly indistinguishable from the ideal process. Our path from H0 to SIM
shows us that H0 and SIM are indistinguishable.

�

Theorem 7 The UC NIZK argument in Figure 4 is perfect zero-knowledge.

Proof. We start by describing the simulator SUC = (SUC
1 , SUC

2 ). SUC
1 runs hk ← Kstat(1k); (ck, tk)←

Kcom(1k); (pk, sk)← Kpseudo(1k); (σ, τ)← K(1k). Let Σ = (hk, ck, pk, σ). SUC
1 outputs (Σ, τ).

Consider next S2 that is given a circuit C on which to simulate a UC NIZK argument Π for satis-
fiability. It generates keys for the one-time signature scheme (vk, sk) ← Ksign(1k). Then generates
a statistically hiding commitment c ← comhk(0). It simulates a proof π for the statement x that c has
been correctly formed and contains a witness w so C(w) = 1 as π ← S2(Σ, τ, x). Finally, it creates a
one-time signature on everything, s ← signsk(C, vk, c, π). It outputs the simulated UC NIZK argument
Π = (vk, c, π, s).

Perfect zero-knowledge of the NIZK proof implies that for all adversaries A we have

Pr
[

Σ← KUC(1k) : AP (Σ,·,·)(Σ) = 1
]

= Pr
[

(Σ, τ)← KUC(1k) : APS(Σ,τ,·,·)(Σ) = 1
]

,

where PS is an oracle that on input (Σ, τ, C, w) outputs failure if C(w) = 0 and otherwise creates a UC
NIZK argument Π = (vk, c, π, s) by following the provers algorithm for creating vk, c, s but simulating
the NIZK proof π.

Next, we argue that for all adversaries A we have

Pr
[

(Σ, τ)← SUC
1 (1k) : APS(Σ,τ,·,·)(Σ) = 1

]

= Pr
[

(Σ, τ)← KUC(1k) : AS′(Σ,τ,·,·)(Σ) = 1
]

,

where S ′(Σ, τ, C, w) checks that C(w) = 1 and in that case returns Π← S2(Σ, τ, C).
The only difference in the two oracles PS and S ′ is the message inside the commitment c. However,

since the commitment scheme is perfectly hiding, this does not change the distributions.
�

Corollary 8 Bilinear groups as described in Section 3 for which the decisional subgroup assumption
holds imply the existence of a non-interactive perfect zero-knowledge protocol that securely realizes
FNIZK .

Proof. The assumption implies the existence of strong one-time signatures since one-way functions suffice
for constructing those. The existence of one-way functions also suffices for the construction of tag-based
simulation sound trapdoor commitments. The BGN-cryptosystem can be set up both as a cryptosystem
and as a perfectly hiding commitment scheme, and the subgroup decision assumption says that the two
types of keys cannot be distinguished. The BGN-cryptosystem has pseudorandom ciphertexts, since we
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can sample random element from G and cannot distinguish a full order h from a small order h. Finally,
as we saw in Section 4.2 we can construct a NIZK proof with honest prover state reconstruction from
the subgroup decision assumption. According to Theorem 6, plugging all these parts into the UC NIZK
argument construction in 4 gives us a protocol that securely realizes FNIZK .

As already mentioned the BGN-cryptosystem set up with a full order h is perfectly hiding. It follows
from the proof of Theorem 4 that using the NIZK proof with a simulated common reference string σ gives
us a perfect zero-knowledge argument. Theorem 7 then tells us that the UC NIZK argument is perfect
zero-knowledge.

�
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