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Abstract

Complexity theory is built fundamentally on the notion of efficient reduction among com-
putational problems. Classical reductions involve gadgets that map solution fragments of one
problem to solution fragments of another in one-to-one, or possibly one-to-many, fashion. In
this paper we propose a new kind of reduction that allows for gadgets with many-to-many cor-
respondences, in which the individual correspondences among the solution fragments can no
longer be identified. Their objective may be viewed as that of generating interference patterns
among these solution fragments so as to conserve their sum.

We show that such holographic reductions provide a method of translating a combinatorial
problem to a family of finite systems of polynomial equations with integer coefficients such that
the number of solutions of the combinatorial problem can be counted in polynomial time if
some system in the family has a solution over the complex numbers. We derive polynomial time
algorithms in this way for a number of problems for which only exponential time algorithms
were known before.

General questions about complexity classes can also be formulated. If the method is ap-
plied to a #P-complete problem then a family of polynomial systems is obtained such that the
solvability of any one member would imply P#F = NC2.

1 Introduction

Efficient reduction is perhaps the most fundamental notion on which the theory of computational
complexity is built. The purpose of this paper is to introduce a new notion of efficient reduction,
called a holographic reduction. In a classical reduction an instance of the one problem is mapped
to an instance of another by replacing its parts by certain gadgets. Solution fragments of the first
problem will correspond in the gadgets to solution fragments of the second problem. For example,
when mapping a Boolean satisfiability problem to a graph theory problem, each way of satisfying
a part of the formula will correspond to a way of realizing a solution to the graph theory problem
in the gadget. In classical reductions the correspondence between the solution fragments of the
two problems is essentially one-to-one, or possibly many-to-one or one-to-many. In a holographic
reduction the sum of the solution fragments of one problem maps to the sum of the solution
fragments of the other problem for any one gadget, and does so in such a way that the sum of all
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the whole solutions of the one will map to the sum of all the whole solutions of the other. The
gadgets therefore map solution fragments many-to-many. The main innovation this allows is that
it permits reductions in which correspondences between the solution fragments of the two problems
need no longer be identifiable at all. Their effect can be viewed as that of producing interference
patterns among the solution fragments, and they are called holographic gadgets for that reason.

A holographic reduction from a problem A to a problem B is of particular interest when for
problem B the sum of the solutions is efficiently computable, since then a polynomial time algorithm
for summing the solutions of A is implied. We call algorithms so derived holographic algorithms.
In this paper we give holographic alogrithms for a number of problems for which no polynomial
time algorithms were known before. We obtain these algorithms by reduction to the algorithm for
finding perfect matchings in planar graphs due to Fisher, Kasteleyn and Temperley, [Fisher, 1961;
Kasteleyn, 1961; Temperley and Fisher, 1961].

We consider holographic reductions and algorithms to be novel notions in algorithmic theory
that do not appear to have been explored before even in disguise, and that potentially open up new
approaches to the central questions of complexity theory.

The most intriguing question, clearly, is whether polynomial time holographic algorithms exist
for NP- or #P-complete problems. For such a result a holographic reduction would have to be
exhibited from, say, a #P-complete problem such as planar matchings, to a known polynomial
time computable problem, such as planar perfect matchings. We shall show that we can formulate
the question of whether such a reduction exists by constructing an infinite family of polynomial
systems over the integers such that a complexity class collapsing holographic reduction exists if at
least one member of the family has a solution over the complex numbers. Each member of the
family corresponds to a fized set of gadgets for a fixed set of combinatorial constraints, and has
a solution if and only if such gadgets exist. In this sense the search for fast algorithms can be
semi-mechanized if computer algebra systems are invoked for solving the systems. If suffices to find
a fixed set of such gadgets. We note that the search process itself is NP-hard in the size of the
tested system, and the size of the family members themselves is exponentially growing in the family
parameters. On the other hand one can expect that any fast algorithms so discovered would rely
on algebraic relationships, possibly exotic, which have not been explored before even implicitly.

What is the role of holographic reductions in complexity theory if it is the case that there exist
no polynomial algorithms to be discovered for NP- or #P-complete problems. In that eventuality
we suggest that any proof of P #2 NP may need to explain, and not only to imply, the unsolvability of
our polynomial systems. Furthermore explanations of such unsolvabilities may then stand equally
in the way of any proofs of P# P#7 P # BPP, P # QBP, P # NC2 and P = PSPACE. Since
the solvability of a polynomial system for an explicit combinatorial constraint is a very natural
mathematical problem, our approach offers a restricted model of computation for attempting such
negative proofs, and one that we suggest may be difficult to evade.

Holographic algorithms are inspired by the quantum computational model [Deutsch, 1985; Bern-
stein and Vazirani, 1997]. However, they are executable on classical computers and do not need
quantum computers. They can be understood best, perhaps, in terms of cancellations in classical
computation. Strassen’s algorithm for matrix multiplication [Strassen, 1969] offers an early striking
example of the power of computations that compute extraneous terms only to cancel them later. It
is known that cancellations can provide exponential speedups in computations, and in the several
cases that have been analyzed, linear algebra algorithms for computing the determinant play a
major role [Valiant, 1980; Jerrum and Snir, 1982; Tardos, 1987]. Further the actual cancellations
that are performed by certain of these determinant algorithms can be made explicit [Valiant, 1992;
Mahajan and Vinay, 1999]. Holographic algorithms offer a new source of cancellation that is not



provided by linear algebra alone. Most importantly the cancellations required for the problem at
hand can be custom designed for the problem at hand into the holographic gadgets.

The substance of the holographic method as pursued here involves devising an appropriate
basis for the reduction, and then designing matchgates to realize the gadgets. Matchgates have
been used previously [Valiant 2000a] but only in the context of classical rather than holographic
reductions. We note that the sum of solutions in matchgate constructions corresponds to the
Pfaffian, which is polynomial time computable. The examples in this paper all refer to planar
structures, because in that case we can use the elegant FKT route to the Pfaffian that makes the
design of the gadgets easier. In principle, the FKT technique can be applied to nonplanar structures
by having matchgates to simulate cross-overs. We note also that the holographic technique may be
used, in principle, to reduce problems to any problem in which a quantity is known to be polynomial
time computable. For example, in [Valiant 2005a] it is used in reductions to the general Pfaffian.

2 List of Problems

We first note that the range of natural graph-theoretic problems for which the number of solutions
has been known to be countable in polynomial time for arbitrary inputs is very small (Jerrum
[2003]; Lovasz and Plummer [1986]; Welsh [1993]; Valiant [1979a,b]). The prime examples have
been spanning trees in arbitrary graphs and perfect matchings in planar graphs. For planar graphs
there are positive results known for two further important cases, both intimately related to the
Ising problem in physics and reducible to the perfect matchings problem via classical reductions.
The first is #PL-CUT—given a planar graph G and a number k£ the problem is to compute the
number of two-colorings of the nodes of G such that exactly k edges have ends of opposite color
[Kasteleyn 1967, Lovasz 1986). The maximum k for which this number is nonzero is the well-known
PL-MAXCUT problem [Orlova and Dorfman, 1972 and Hadlock, 1975]. The second such example
for which polynomial solutions are known in the planar case is #PL-PARITYSUBGRAPHS—given
a planar G and an odd or even parity constraint at each node, the problem is to count the number
of subsets of edges of G that satisfy all these constraints. A special case is Eulerian subgraphs
where all the constraints are even.

We now list some problems for which we can provide polynomial time solutions where none
apparently were known. They are motivated by their apparent proximity to known NP-, ®P- and
#P-complete problems. They all have a counting, or #P, aspect, but for some we specify a decision
or parity problem as appropriate.

First we consider a matching problem. Jerrum [1987] showed that counting the number of (not
necessarily perfect) matchings in a planar graph is #P-complete, and Vadhan [2001] subsequently
proved that this was true even for planar bipartite graphs of degree six. For degree two the problem
can be solved easily and one might have conjectured that all other nontrivial cases are #P-complete.
However, we have a polynomial time algorithm for the following:

#X-MATCHINGS

Input: A planar weighted bipartite graph G = (V, E, W) where V has bipartition V1, V2 and the
nodes in V1 have degree 2.

Output: The sum of the masses of all matchings of all sizes where the mass of a matching is the
product of (i) the weights of all the edges present in the matching, as well as of the quantity, (ii)
“—(wy + ...+ wyg)” for all the V2 nodes that are not saturated, where ws,...,wy are the weights
of the edges incident to that (unsaturated) node.



One instance of this is where every V2 node has degree 4 and every edge has weight one. Then
computing #X-MATCHINGS gives the number of matchings, but each weighted by (—4)* where
k is the number of unsaturated V2 nodes. Computing this mod 5, for example, gives the number
of matchings mod 5. Another instance is where every V2 node has degree three and every edge
weight 1. Then #X-MATCHINGS is the sum of the matchings, each weighted by (-3)* where & is
the number of V2 nodes not saturated by that matching.

Now we consider a coloring problem. A functional orientation of an undirected multigraph G is
an assignment of directions to a set of edges so that there is exactly one edge directed away from
each node of G. (Note that if two nodes are connected by two edges then these can both have
(opposite) directions. Also any single edge may be assigned two opposite directions. The edges of
G that are not assigned a direction remain undirected.)

PL-FO-2-COLOR

Input: A planar multigraph graph G = (V, E) of maximum degree 3.

Output: 1 iff there is some coloring of the nodes with two colors and a functional orientation of
G such that every edge that joins two nodes of the same color is directed in at least one direction
by the functional orientation.

Comment: The problem of (2,1)-coloring with defects is that of 2-coloring a graph so that no
node is adjacent to more than one other node of the same color. This is NP-complete for planar
graphs of degree 5 [Cowen, Goddard and Jesurum, 1997]. It can be deduced that PL-FO-2-COLOR
is NP-complete for degree 10 by means of the following reduction. For an instance of (2,1)-coloring
one replaces each edge by a pair of edges between the same pair of nodes. Then if these nodes are
given the same color the rules of PL-FO-2-COLOR ensure that the two edges are both oriented
and in opposite directions. But then no other neighbor of either of the nodes can have the same
color because the corresponding statement for those would imply that there are two edges directed
away from that common node.

Our next two problems can be viewed as planar formula problems in the sense of Lichtenstein
[1982]: A planar formula is a planar graph where a node can represent a clause or a variable, and
an edge links a node representing a variable with a node representing a clause in which it occurs.

@PL-EVEN-LIN-2

Input: A planar formula where each clause is a linear equation over GF' [2] with an even number of
occurrences of variables, a subset of the clauses that are considered compulsory to satisfy, a setting
to a subset of the variables on the outer face to constants, and an integer k.

Output: The parity of the number of solutions that satisfy exactly k of the equations, including
all of the compulsory ones, and the boundary conditions.

Comment: This generalizes @PL-CUT, which is the same problem restricted to equations with
just two variables and no compulsory equations and can be solved by classical reduction to FKT.
The nonplanar version with two variables is NP-and @P-complete via known parsimonious reduc-
tions, and strong hardness of approximation results are also known [Hastad, 2001]. For odd length
equations the corresponding planar problem is @&P-complete since the corresponding nonplanar
problem can be reduced to it using the construction of crossovers from Jerrum [1987]. This con-



struction requires the equations in the crossovers to be compulsory, and without such compulsory
equations the completeness of the problem is apparently unresolved.

# PL-3-NAE-SAT

Input: A planar formula F' consisting of NOT-ALL-EQUAL gates of size 3.

Output: The number satisfying assignments of F'.

Comment: For connectives other than NOT-ALL-EQUAL (e.g., OR, EXACTLY-ONE) for which
the unrestricted decision problem is NP-complete, the corresponding planar decision and counting
problems are, in general, NP- and #P-complete, respectively [Hunt, Marathe, Radhakrishnan and
Stearns, 1998]. The existence problem for monotone PL-3-NAE-SAT is reducible to the Four
Color Theorem and, therefore, always has a solution [Barbanchon, 2004]. Note, however, that the
counting problem for the 4-colorings of planar graphs is #P-complete [Vertigan ans Welsh, 1992]

PL-NODE-BIPARTITION

Input: A planar graph G = (V, E) of maximum degree 3.

Output: The cardinality of a smallest subset V' C V such that the deletion of V' and its incident
edges results in a bipartite graph.

Comment: This problem is known to be NP-complete for maximum degree 6 [Krishnamoorthy
and Deo, 1977]. See Lewis and Yannakakis [1980] for a general approach to such “node deletion”
problems. We note that numerous other planar NP-complete problems, such as Hamiltonian cy-
cles and minimum vertex covers are NP-complete already for degree 3 (e.g., Garey, Johnson and
Stockmeyer [1976], and Garey and Johnson [1977]).

We now consider “ice” problems that have been widely investigated by statistical physicists.
An orientation of an undirected graph G is an assignment of a direction to each of its edges. An
“ice problem” involves counting the number of orientations such that certain local constraints are
satisfied. Pauling [1935] originally proposed such a model for planar square lattices, where the
constraint was that an orientation had to have two incoming and two outgoing edges at every node.
The question of determining how the number of such orientations grows for various such planar
repeating structures has been analyzed [Lieb, 1967a-d, Baxter, 1982, see also Welsh, 1993].

#PL-3-NAE-ICE

Input: A planar graph G = (V, E) of maximum degree 3.
Output: The number of orientations such that no node has all the edges directed towards it or
away from it.

We next turn to a covering problem. For a graph G = (V, E) a cycle is a sequence of edges
through distinct nodes that starts and ends at the same node. A chain is a sequence of edges
through distinct nodes that starts and ends at distinct nodes. A cycle-chain cover in G is a set of
cycles and chains that saturates every node of G. For real numbers z,y the (z,y)cycle-chain sum
of G is the sum over all cycle-chain covers C of x%y/ where i is the number of cycles in C and j is
the number of chains. For example, the (2, k) cycle-chain sum for £k = 0 or k¥ = 4 is complete for
@P for general graphs since the parity of the number of Hamiltonian cycles is reducible to it. In



the planar case it is known that counting the number of Hamiltonian cycles for planar cubic graphs
is #P-complete [Liskiewicz, Ogihara, and Toda, 2003]. Their proof can be adapted to show that if
nodes both of degree 2 and 3 are allowed then planar Hamiltonian cycles is @P-complete [Valiant,
05b]

#PL-3-(1,1)-CYCLECHAIN

Input: A planar regular graph G = (V. E) of maximum degree 3.
Output: The (1, 1) cycle-chain sum.

As we shall further elaborate in Section 9, the proofs given there of the last four of these results
imply that they can be derived also by classical reduction to #PL-CUT. However, some of these
have degree four variants for which such classical reductions are not apparent.

3 Evaluating Planar Matching Polynomials

We shall first describe the basic graph-theoretic notions that we shall use. A (weighted undirected)
graph G is a triple (V, E, W) where V is the set of n nodes, labeled {1,--- ,n}, E is the set of edges
where an edge is a pair (7, j) of distinct nodes i, j € V, and W is an assignment of a weight W (%, j)
from a field F' to each edge (4,7). An edge e is incident to or saturates a node j if j is one of the
pair of nodes of e. A matching in G is a set E' C E of edges such that if e; and e are distinct
edges in E' then e; and ey saturate disjoint pairs of nodes. A matching E’ saturates the union of
the node pairs saturated by the member edges of E'. The set of nodes saturated by E’ we call
satu(E'). A matching is perfect if it saturates all of V.

With a graph G we associate the perfect matching polynomial PerfMatch(G) over n(n — 1)/2
variables {z; ;|1 <1i < j < n} as follows:

PerfMatch(G) = > [[ =

E' (i,j)€E’

where the summation is over all perfect matchings E' of G. We shall also discuss the more general
matching sum polynomial for graphs G = (V, E, W, A) where A further specifies a labeling of each
node ¢ by a weight A\; € F. It is defined as:

MatchSum(G):Z H Ai H Zi,j

E' i¢gsatu(E') 14,jEE’

where summation is over all, not necessarily perfect, matchings in G. Clearly in the case that every
Ai = 0, PerfMatch(G) = MatchSum(G). We shall call nodes with \; # 0 omittable since matchings
that omit them can contribute to the MatchSum.

For all polynomials we shall assume, where not otherwise specified, that the coefficients are
taken from an arbitrary field F.

A remarkable fact, expressed by the following theorem, is that for planar graphs PerfMatch(G)
can be expressed as a determinant of an easily computed matrix [Fisher, 1961; Kasteleyn, 1961,
1967; Temperley and Fisher, 1961; Jerrum, 2003]. It follows that PerfMatch(G) can be computed
using standard linear algebra algorithms for the determinant.



Theorem 3.1. There is a polynomial time computable function f that given a planar embedding
of a planar graph G = (V, E,W) defines f:E — {—1,1} such that for the antisymmetric matriz M
defined so that for all ¢ < j

(i) if (i,7) & E then M; ;= M;; =0, and

(i) if (1,7) € E then My ; = f(i, /)W (i,5) and Mj; = —f (i, j)W (i, j),
it is the case that PerfMatch(G) = Pfaffian(M) = /Det(M).

In our applications we shall form graphs from fixed sets of standard components called match-
gates that simulate particular combinatorial constraints, such as equality. The weights to be used
in such matchgates will be elements of F' obtained potentially by computationally solving systems
of polynomial equations. It is therefore useful to observe that in this general setting the Det(M)
and hence also PerfMatch(G) can be solved in polynomial time if the field is that of the complex
numbers C. The proof is given in Section 12.

Theorem 3.2. Let Y be any finite subset of C. Suppose that each element of Y can be computed to
n decimal places, i.e., absolute error less than 2~", in time polynomial in n. Let {My | n > 1} be a
family of matrices where, for each n, My, is nxn, has every entry from Y , and has an integer valued
determinant. Further, suppose that there is a polynomial time algorithm that given input {1",4,5}
will identify the element from Y that is the (i,7)" entry of M,. Then there is a polynomial time
deterministic algorithm that, given 1™ will compute the determinant of M,.

Computing MatchSum for planar graphs is known to be #P-complete [Jerrum, 1987]. Since
matchings with omittable nodes are more expressive than those without, we might endeavor to use
them wherever we can still maintain polynomial time computability. The following generalization
of the above two results, which is also proved in Section 12, enables us to use omittable nodes on
the outer face of a planar graph.

Theorem 3.3. Let Y be any finite subset of C. Suppose that each element of Y can be computed to
n decimal places i.e. absolute error less than 27", in time polynomial in n. Let {Gy | n > 1} be a
family of planar embeddings of planar graphs on n nodes with all omittable nodes on the outer face,
with polynomial time identifiable weights from Y, and having an integer value of MatchSum(Gy,).
Then MatchSum/(Gy,) can be computed in polynomial time, and, in fact, in NC2.

We note that while we emphasize the case of the field ' = C, the whole development applies
equally, and without the need for these numerical considerations, if F' is a finite field. In that
case the consequences are for #;P, the counting class corresponding to #P, but modulo & [Valiant,
1979a).

We also note that for planar structures there exist algorithms that can perform elimination
on n x n matrices in O(n'®) rather than O(n3) steps [Lipton, Rose, and Tarjan, 1979]. These
algorithms work for all matrices in some structures such as finite fields. For the complex number
setting of the above Theorems 3.2 and 3.3, the bounds proved are still polynomial, but with higher
exponents.



4 Matchgrids and Planar Matchgates

Our overall strategy is the following. We transform an instance I of a counting problem, such
as #X-MATCHINGS, to an instance 2 of what we call a matchgrid, such that the weighted sum
of the perfect matchings of  will equal the number of solutions of I. The structure of I is
reflected in the structure of 2, with the individual components of I, nodes and edges in the case
of #X-MATCHINGS, each replaced by gadgets that we call matchgates. The weight of the perfect
matchings in each matchgate will equal the number of solution fragments of the #X-MATCHING
problem.

We now introduce the basic concepts of the theory. We note that while our starting point is
the notion of a matchgate, exactly as in [Valiant 2002a], that earlier work employed classical rather
than holographic reductions. This paper can be read independently of that earlier one. However,
we have attempted to keep our notation consistent with it, and reference it occasionally.

A planar matchgate I' is a triple (G, X,Y) where G is a planar embedding of a planar graph
(V, E,W) where X C V is a set of input nodes, Y C V is a set of output nodes, and where X, Y are
disjoint. Further, as one proceeds anticlockwise around the outer face starting from one point one
encounters first the input nodes labeled 1,2,--- ,| X | and then the output nodes | Y |,---,2,1,
in that order. The arity of the matchgate is |X| + |Y|. For Z C X UY we define the standard
signature of I' with respect to Z to be PerfMatch(G — Z), where G — Z is the graph obtained by
removing from G the node set Z and all edges that are incident to Z. Further we define the standard
signature of T' to be the 21X! x 2/¥ matrix u(T') whose elements are the standard signatures of I"
with respect to Z for the 2 X12/¥| choices of Z. The labeling of the matrix is as follows: Suppose
that X and Y have the labeling described, i.e., the nodes are labeled 1,2,...,|X| and |Y|,...,2,1
in anti-clockwise order. Then each choice of Z corresponds to a subset from each of these labeled
sets. If each node present in Z is regarded as a 1, and each node absent as a 0, then we have
two binary strings of length | X|, |Y|, respectively, where the nodes labelled 1 correspond to the
leftmost binary bit. Suppose that ¢, 7 are the numbers represented by these strings in binary. Then
the entry corresponding to Z will be the one in row ¢ and column j in the signature matrix u(T").

We note that in [Valiant, 2002a] matchgates were defined in a general, not necessarily planar,
setting. In that more general case, when we compose matchgates into matchcircuits we need to
keep track of sign influences explicitly, since we cannot rely on the Fisher-Kasteleyn-Temperley
method. For that reason we use there the more complex notion of character, while the simpler
notion of signature suffices in this paper since we restrict ourselves to planar graphs.

The treatment in [Valiant, 2002a] is more general also in the second respect that omitted nodes
are allowed in matchgates and character is defined in terms of MatchSum rather than PerfMatch.
We accommodate this generalization in two limited ways in the current paper. We use them in
a thought experiment in the proof of Theorem 4.1. We also use them explicitly in circuits, as in
Theorem 9.6, as allowed by Theorem 3.3 and Corollary 4.2, noting that the omittable nodes have
to be on the outer face of the final circuit.

A basis of size k is a set of distinct nonzero vectors each of length 2¥ with entries from a field
F. Often we will have just two basis vectors that represent 0 and 1, respectively, and in that case
we shall call them n and p. In this paper all bases will be of size kK = 1, so that n = (ng,n1) and
p = (po,p1). The basis b0 = [n, p] = [(1,0), (0,1)] we call the standard basis. In general, the vectors
in a basis do not need to be independent

In this section we shall use as an illustrative example the basis bl = [n,p] = [(—1,1), (1,0)].
The gates we describe will be used in Section 8 to implement our first holographic algorithm,
one for the #X-MATCHINGS problem. We believe that this basis, though apparently somewhat
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Figure 1: A generator matchgate for basis b1 with output nodes {1, 2} and one edge of weight —1.
It generates n@n+n@p+p R n.

specialized, is an instructive example. In later sections we shall describe bases, such as b2, which
appear to be more broadly applicable.

In general if we have two vectors ¢, r, of length [, m, respectively, then we shall denote the
tensor product s = q ® r to be the vector s of length Im in which s;,4; = gjr; for 0 <7 <[ and
0 < j < m. Thus, for example, for the basis bl, n ® p = (—1,0,1,0). Clearly ® is associative.

We say that a matchgate is a generator if it has zero input nodes and nonzero output nodes, and
a recognizer if it has zero output nodes and nonzero input nodes. One can define equally naturally
a transducer gate that has both nonzero inputs and nonzero outputs, but we do not use these for
our examples. From the definition of signature it follows that for generators and recognizers the
signature is a vector.

Here we shall introduce generators and recognizers by example. A more formal treatment can
be found at the beginning of Section 5. Intuitively, a generator can be viewed as emitting n and
p particles along its outputs in all possible combinations, each combination with a certain value.
A recognizer will absorb combinations of these particles entering via its inputs, again attaching a
certain value to each combination. The overall goal is that the sum over all patterns of particles
that can be generated of the product of the values of all the generators and recognizers be equal
to the value of the function being computed.

We first consider generators. Suppose that a generator has graph G and m output nodes. Then,
by definition, its standard signature will be a 2™-vector. Recall that element j in this vector is the
value of PerfMatch(G’) where G’ is G but with those output nodes removed that correspond to the
index j in the manner described in the definition of standard signature. Consider the generator
matchgate I' shown in Figure 1.

It has V = {1,2}, E = {(1,2)}, W(1,2) = —1, and the input node set X = (), and output
node set Y = {1,2}. Then the standard signature u(I') of I is the vector (—1,0,0, 1) since if both
output nodes are removed then PerfMatch(G’') = 1, if neither is removed then PerfMatch(G') = —1,
and if exactly one is removed then there is no perfect matching and PerfMatch(G') = 0. Now for
the basis b1l defined above it is easy to see that n®n = (1,—1,—-1,1), n®p = (—1,0,1,0) and
p®n = (—1,1,0,0). The sum of these is (—1,0,0,1), which happens to equal the above stated
standard signature of the matchgate. (Note that here we used the convention that PerfMatch of
a graph with no nodes is 1. This can be avoided by using as the generator a chain of four nodes,
rather than two, and again having the end nodes as output nodes.) Hence we conclude that for
this gate and basis b1 the following holds.

Proposition 4.1. There exists a generator matchgate I' with u(I') =n®mn+n®p—+ pQn, where
(n,p) is the basis bl. W

In other words this gate generates the linear sum of the three bit combinations 00, 01, and 10
when interpreted in the basis b1 representation. The signature of this generator with respect to the
basis b1, (a notion further elaborated in Section 5, as relation 5.1) will then be (1, 1, 1, 0) since
these are the coefficients of the contributions for the four bit patterns 00, 01, 10, 11, respectively.



Figure 2: A recognizer matchgate for basis bl with input nodes v, vo,...,vs, and edge weights
w1, W2,y...,Ws5.

For = € {n,p}? we shall denote by valG (I, z) the signature element corresponding to z. Thus, for
the current example, valG(I',n ® p) = 1 and valG(I',p ® p) = 0. (We note that since a basis b can
be an arbitrary set the signature of a generator with respect to b may not be unique. When we
discuss a signature any valid signature will do.)

We shall now go on to discuss recognizers. Let us suppose that these have m inputs. The
purpose of such recognizers is to have PerfMatch take on appropriate values as the inputs range
over the 2™ possible tensor product values z = 71 ®. ..®x,, where each z; ranges independently over
{n,p}. Note that z can be viewed as a 2™ vector in the standard basis. The value of PerfMatch for
the recognizer matchgate I' “evaluated at input” x will by denoted by valR(I’,z). More precisely,
if vector u is the standard signature of I', and z is the 2"-vector representing x in the standard
basis, then valR(T',z) is the inner product u z. Consider the family of recognizers Iy, shown in
Figure 2. They are defined by the star graph Gy = (Vi, Ex, W), where Vi, = {vg,v1,...,v5},
Ey = {(vo,v;)|1 <14 <k}, the input nodes are {v;|1 <7 < k}, and the weight of edge (vo,v;) is w;.

Proposition 4.2. For all kK > 0 and for all wy,...,wr € F there exists a k-input recognizer
matchgate I' such that on input * = 1 ® ... ® 7 € {n,p}* over basis bl valR(I',z) equals:

(i) (w1 +...+wg) if z1=... =z =mn,

(ii) w; if ; = p, and xzj = n for every j # i,

(iii) O for the remaining 2% — k — 1 values of x1,...,x.

Proof. We shall prove that the gate of Figure 2, where the weight of edge (vg,v;) is set to w;,
is such a recognizer. To see this note that the only subsets Z of the input nodes {v;|1 < i < k}
that can be removed that allow the PerfMatch of the remaining graph to be nonzero are those that
contain exactly £ — 1 elements, and for these PerfMatch = w; if v; is the node omitted from Z.
Hence if two or more of the inputs are p = (1,0) then PerfMatch is zero. If exactly one input is p,
and this is applied at node v;, and all the others are n, then the only nonzero contribution comes
from the node v; being omitted from Z, and this gives a contribution of pon’f_lwi = w;. If all the
inputs are n then there is a nonzero contribution nonkflwi = —uw; for each possible v;, and then
the total value of PerfMatch is —(w; + ...+ wg). W

We note that the basic properties of a basis are unchanged if the first and second components
of all of its elements are interchanged together, or if they are multiplied by arbitrary constants x
and y, respectively. The former transformation can be realized by appending to every input or
output node an edge of weight 1. The latter can be realized by appending to such nodes chains
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of length two weighted by = and y, respectively. Hence any basis [(—z,y), (z,0)] or [(z,—y), (0,y)]
with nonzero x and vy is essentially equivalent to bl.

Proposition 4.3 If there is a generator (recognizer) with certain valG(valR) values for size one
basis {(a1,b1) -+ ,(ar,by)} then there is a generator (recognizer) with the same valG(valR) values

for any basis {(xar,yb1),--- , (war,ybr)} or {(xb1,ya1),- - (zbr,yar)} for any x,y € F.

We define a matchgrid over a basis b to be a weighted undirected planar graph G that consists of
the disjoint union of a set of g generator matchgates B1,..., By, r recognizer matchgates A1,..., A,
and f connecting edges C1,...,Cy where each C; edge has weight one and joins an output node in
a generator matchgate with an input node of a recognizer matchgate, such that every input and
output node in every constituent matchgate has exactly one such incident connecting edge.

Consider such a matchgrid Q@ = (4, B,C) and assume, for simplicity, that the basis is of size
two. We denote by X = b/ = (n,p)/ the set of 2/ possible combinations of the basis elements 7,
p that can be transmitted simultaneously along the f connecting edges in the matchgrid. We can
break X into X; ® ... ® X, where X; = (n,p)*) and k(j) is the arity of generator Bj and refers
to the connecting edges that are incident to that generator. Also if x € X then we can mirror
this decomposition as £ = z1 ® ... ® x4 where z; is the particular set of basis elements that is
transmitted from the outputs of B;. We can also break the same X into X ® - ® X, where
X; = (n,p)") and I(j) is the arity of the recognizer A; and refers to the connecting edges incident
to that recognizer. If z € X then this decomposition can be mirrored as £ = 71 ® - - - ® T, where
Z; is the set of basis elements transmitted into the inputs of A;.

Now for each z € X each recognizer A; will evaluate a value valR(A4;,z) = valR(4;,z;) and
each generator B; will generate the value valG(Bj, z) = valG(Bj, z;). The product of these values
for all the generators and all the recognizers is the value of the matchgrid at x. The value of the
matchgrid will be the sum of these products for the various . This quantity we call the Holant:

Holant(Q2) = Z H valG(Bj, z;) H valR(4;,x)

zebf [1<i<g 1<i<r

There are two views of a matchgrid, one as a directed weighted graph G and the other as a
composition Q = (A, B,C) of matchgates and connecting edges. For the former we have already
defined various matching polynomials such as PerfMatch and it is these that we shall evaluate in
polynomial time. For the latter it is the Holant that expresses the basic intention of the matchgrid,
that of performing a weighted sum of potentially exponentially many solutions, indexed by the set
X, that obey the local constraints expressed in the matchgates.

The central relationship that is necessary for a holographic algorithm is that the potentially
exponential summation that the Holant defines be computable in polynomial time. The following
is a paradigmatic expression of this. The reader should note that for the standard basic valG =
valR, and the Theorem follows immediately. More surprising, and at the heart of our holographic
technique, is the fact is that the result holds for all bases:

Theorem 4.1. For any matchgrid Q) over any basis b if Q has weighted graph G then

Holant($2) = PerfMatch(G).

11



Proof. The result is a consequence of linearity. The following is a mechanistic way of presenting
the argument.

Suppose for the sake of this proof that we allow a certain subset of the nodes of a matchgate to be
“omittable with weight 1” in the sense that its signature will be defined by not just perfect matchings
but also by all other matchings that saturate all the nonomittable nodes but any omittable node
may or may not be saturated. In other words we are using the polynomial MatchSum with A; =1
for the omittable nodes, and A; = 0 for the unomittable nodes. Once we allow omittable nodes we
have matchgates for any single basis elements such as p and n: Figure 3 shows a matchgate with
omittable node 1 and output node 3. The standard signature is clearly (wg,w;) since if node 3 is
not in Z then the only allowed matching is the edge (2,3) with weight wy and if node 3 is in Z then
the only allowed matching is edge (1,2) with weight w;. Hence we get a matchgate with standard
signature p = (pg, p1) by fixing wy = pp and w1 = pi1, and one standard with signature n = (ng,n1)
by fixing wg = ng and wy = n1.

Wy Wo
@ ® @
1 2 3

Figure 3: A generator matchgate having node 1 as an omittable node and node 3 as the output
node. It has standard signature (wg, w1)

Suppose we pick a fized element z € X from among the |[b|/ that are potentially generated, and
regard it as the tensor product z1 ® ... ® x4 where x; corresponds to the basis elements that are
involved in generator B;, and equivalently as a tensor product 71 ®---® Z, where z; corresponds to
the basis elements that are involved in recognizer A;. Then we can construct a matchgrid G(z) that
replaces each generator B; having k outputs by k generators of the single basis elements specified
by x; for those k outputs. Further, for each such B; the parameters in one of these single basis
element generators will be set so as to multiply its value by valG(B;, z;) so that these generators for
B; generate z; with that multiplier valG(B;, z;). Then it follows from the definitions of generators,
recognizers, and the way they are assembled according to the definition of matchgrids that:

MatchSum(G(z)) = H valG(B;, z;) H valR(A;, )

1<i<g 1<i<r

The reason for this equality is that a fixed vector z € X is being generated with weight ITvalG(B;, z),
where the multiplication is over all the generators B;. The inner product of this  with the standard
signature u of each of the recognizers gives the contribution to MatchSum of the recognizers. But
the inner product uz equals valR(T', z) for each recognizer, by definition.

Now partition X into equivalence classes of | X;| elements each so that all members of each equiv-
alence class have identical X,..., X, components. For each of these equivalence classes, say the
one defined by zy € X»,...,z4 € X, define the matchgrid G(zo, ...,z ) as follows: Set z to have
components zy,...,z, and any z; € X; and let G(z2,...,z4) be G(z) but with the single element
generators for z; replaced by the generator By, which generates the sum of all members of X, each
with the appropriate weight. Then clearly, summing over all the values of x1, gives

MatchSum(G(z2, ... ,z4)) = Z valG(Bi, 1) H valG(B;, z;) H valR(4;, 1)

T1EX) 2<i<g 1<i<r
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where z in the last term denotes 71 ® 72 ® - - - ® x,.

We iterate this process for By, ..., By, in turn. For example, for By we partition Xy ® X3 ®
.-+ ® X, into equivalence classes of |X3| elements each so that each class has identical z3,- - , z,
components. For each of these equivalence classes, say that defined by z3 € X3,--- ,z4 € X,
we define matchgrid G(zs,--- ,z4) to be G(z2,--- ,x4) for some zo, but with the single element
generators for zs replaced by the generator By. This will sum all the members of 2 with the
appropriate weights. It then follows that

MatchSum(G(z3,- -+ ,z4)) = Z Z valG(B1,z1)valG(Bg, z2) H valG(B;, ;) H valR(4;, x)

z1€X1 22€X2 3<i<g 1<i<r

After the last stage we have replaced all the generators of single basis elements and have just
one matchgrid left, which is G() = Q. It follows then from the definition of the Holant that
MatchSum(G) equals Holant(G). Note that at that point all the single element generators with
omittable nodes have been replaced by the original generators with no omittable nodes, and hence
the result also holds for PerfMatch(G) as claimed. B

We use the Holant Theorem to express the intention of holographic reductions. A counting
problem #F has a simple holographic reduction to planar PerfMatch if there is a transformation
that (i) produces all edge weights from a fixed set Y in which each element can be computed to
absolute error less than 2" in time polynomial in n, (ii) produces a weighted graph with the Holant
and therefore also PerfMatch equal to #F, and (iii) is computable in NC2.

Corollary 4.1 If #F has a simple holographic reduction to planar PerfMatch then #F € NC2.

Proof. The instance of #F is first transformed to an instance of planar PerfMatch. By Theorem
3.1 the required solution is given by the square root of the determinant of a matrix that satisfies
the conditions of Theorem 3.2. It then follows from Corollary 3.2.1 given in Section 12 that this
determinant and the required solution can be computed in NC2. B

All the reductions we exhibit in this paper are simple holographic reductions, in which every
element of Y is either rational, or an algebraic number with an explicitly given polynomial equation.
Hence, a solution can be found accurate to 2" in time polynomial in n, as required (e.g. Pan,
1997).

A direct application of the above result that uses the matchgates already described for the
nonstandard basis b1 is Theorem 8.1. The reader may choose to look at that Section 8 next before
proceeding to other sections.

The previous theorem also supports the following generalization.

Corollary 4.2. For any matchgrid Q0 with omittable nodes and having weighted graph G, if in the
definition of signature of a matchgate PerfMatch is replaced by MatchSum, and this is inherited in
the definitions of valG and valR, then:

Holant(©2) = MatchSum(G).

Note, however, that the only case we know in which this can be exploited for polynomial time
algorithms is when all the omittable nodes are on the outer face and we can invoke Theorem 3.3,
as we do in Theorem 9.6.
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5 Signatures of Planar Matchgates

In this section we shall give a more systematic treatment of generators and recognizers.

Consider a graph G with three external nodes numbered 1, 2, 3. For each choice of 4, j, k € {0,1}
let u;; equal the PerfMatch polynomial of G when nodes 1, 2, 3 are deleted, respectively, according
to whether i, j, k equal 1 or not. Thus u111 denotes PerfMatch(G') where G' is G with all three exter-
nal nodes removed. Note that for a generator or recognizer the definition of the standard signature
u given in Section 4 implies that u equals the 8-vector (UOOO; Upo1, U010, U011, U100, U101, uno,unl).

For a given basis b we denote by {bj;x|i,j,k € {0,1}} the eight possible external 8-vectors
1 ® 9 @ x3 where x1, o, T3 range over {n,p}, respectively. Thus bgig = n ® p ® n will denote
the basis vector n at inputs 1 and 3, and the basis vector p at input 2. The (r, s, t)-element of the
8-vector b, ;i will be denoted by (bjjx)rst and will represent in z1 ® 2 ® 3 the product of the r-th
component of z1, the s-th component of 2, and the ¢-th component of z3, for r,s,t € {0,1}. Thus
(bo10)119 Will equal nyping, for example.

For the special case of the standard basis n = (1,0),p = (0,1) clearly the (r,s,t)-element of
vector b;j; will equal 0 unless r =4, s = j, and ¢ = k, in which case it will equal 1.

Let us first consider generators. Suppose that G has standard signature 4, and for all {4, j,k} €

{0,1}?
Uijk = Z @rst(Drst)iji (5.1)

for some vector of numbers g where summation is over all {r,s,t} € {0,1}%. Then we say that G
generates signature q with respect to basis b. Note that if G has no omittable nodes then it is either
even or odd and hence either the even or the odd four elements of {0,1}® have zero values for Uik

Let us now consider recognizers. Suppose that G has standard signature @, and that when the
8-vector b;jx, for some {i,7,k} € {0,1}" is input to G then G evaluates to §;j5. Then

Gijk = Z Urst(Dijk)rst (5.2)

must hold, where summation is over {r,s,t} € {0,1}®. We then say that G recognizes signature §
over basis b. Again, if G has no omittable nodes then it is either even or odd and hence either the
even or the odd four elements of {0,1}3 have zero values for ;.

Proposition 5.1. A gate G with standard signature equal to u will generate and recognize u with
respect to the standard basis.

Proof. This is immediate from the definition of generators and recognizers, and the fact observed
above that for the standard basis (b;jx)rst = 0ir0;s0x; Where § is the Dirac delta function. B

For any basis b and matchgate, whether a generator or recognizer, one can define the signature
of the matchgate with respect to the basis to be the vector ¢ that it generates according to relation
(5.1), or the vector ¢ that it recognizes according to relation (5.2) above. Thus if the matchgate
has arity m then its signature with respect to b is a vector of length 2. We will denote it, for
the m = 3 case, typically by (o0, qoo1,---,4q111). The standard signature defined in Section 3 is
just the signature with respect to the standard basis. When we discuss a basis we need to be
clear about which basis is involved. However, signatures that differ from each other by a nonzero
constant factor can be treated as equivalent since their contribution to the PerfMatch or MatchSum
polynomials of any overall matchgrid differ by just that constant multiple.
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If the arity m gate is symmetric in its inputs and outputs then we can define its symmetric
signature with respect to basis b to be the vector [Sp,Si,...,S,] where S; is equal to all the
elements of the ordinary signature that are indexed by {0,1}™ patterns with ¢ occurrences of 1.
For example, the gate in Figure 1 is symmetric. With respect to basis b1 it has ordinary signature
(qoo, go1,q10,911) = (1,1,1,0) and symmetric signature [So, S1,S2] = [1,1,0]. The gate in Figure
2 has symmetric instances, such as those where all the weights w; = 1 and m = 3, say, in which
case the symmetric signature is [—3,1,0,0] with respect to the same basis. We shall use round
parentheses for signatures, and square parentheses for the abbreviated symmetric version.

6 Realizable Signatures for the Standard Basis

With respect to the standard basis we can characterize the standard signatures that are realizable
with planar matchgates of arity up to four. We first note that in any such signature either the
odd or the even components must be zero depending on the parity of the number of nodes in
the matchgate. Propositions 6.1 and 6.2 therefore show that for arity 2 and 3 all signatures are
realizable up to this basic constraint.

Proposition 6.1. For all F and all x,y € F there exist matchgates with arity 2 and standard
signatures (uoo, wo1, u10,u11) = (2,0,0,y) and (0,z,y,0).

Proof. The matchgates of Figure 4, with external nodes {1, 2}, suffice. B

le ® ® @2 le ® @2

Figure 4: Two arity two gates with input/output gates {1, 2}.

Proposition 6.2. For all F and all x,y,z, t € F there exist matchgates with arity 3 and standard
signatures ('U'OOOa U001, U010, U011, U100, U101, U110, ulll) = (ta 07 Oa 2, 07 Y, z, O) and (Oa z,Y, 07 2, Oa 0’ t) .

Proof. For the odd bit case (0,z,y,0,2,0,0,t) consider Figure 5. Clearly if ¢ # 0 the left-hand
figure has standard signature (0,z,y,0,2,0,0,¢) and solves the problem. If ¢ = 0 we use the
right-hand diagram.

For the even bit case (t,0,0,z,0,y,z,0) the signature of the left part of Figure 6 is (az + by +
cz,0,0,2,0,y,z,0) and therefore solves the problem for all values of z,y, z,t by appropriate choice
of a,b,c, unless x =y = z = 0 and t # 0. In that exceptional case we use the right-hand diagram.
[ |

In general we shall refer to the elements of a signature being even or odd according to whether
their index has an even or odd number of 1’s. Thus, for example, u1p19 and ugggy are even while
U100 and UuUg111 are odd.

Proposition 6.3. Suppose the elements of the standard signature are represented by wijr; for
i,7,k,l € {0,1}. For any F it is possible to realize by matchgates with arity 4 any standard signature
such that

15



7t t yit

2 N 3 2 3

Figure 5: Arity three gates for nonzero odd components.
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Figure 6: Arity three gates for nonzero even components.
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(1) woooou1111 — U0011%1100 + U0101%1010 — Uo110%1001 = 0, w1111 # 0, and all the odd elements are
zero, or

(ii) w1000%0111 — %1011%0100 + U1101%0010 — U1110%0001 = 0, U111 # 0, and all the even elements are
ZEero.

Proof. We consider (i) first. The algebraic relationship is the first matchgate identity from [Valiant,
2002a) and we follow the construction from there shown in Figure 7. First, ignoring the central
square we have a nonplanar matchgate. It is easy to see that this matchgate does have the desired
values for the seven components w1111, %0110, %1001, %0011, 41100, Y0101, and uig1p of the signature.
Now if we could somehow simulate the crossing edges (1,3) and (2,4) by a planar graph so as to
create a change in sign the value of the eighth component wugggg for this matchgate would be the
following;:
tup110%1001 + tUo011%1100 — tU0101%1010-

If we substitute t = 1/uj1111 then we would have the claimed relationship (i). Now to make the
graph planar and to simulate the —1 factor, we replace the crossing edges by the planar graph
shown in Figure 8. In Figure 8 if we substitute = 1, b =4, ¢ = d = —1/2, and e = /i, where
i> = —1, then nonzero contributions from PerfMatch occur for just the four combinations of each
of (1, 3) and (2, 4) being present or not in Figure 7. Each combination comes with a factor of +1,
except the one that has both crossing edges present in Figure 7, which contributes a factor of —1 as
required. This concludes the construction for the field of complex numbers. (It can also be verified
that the same graph with appropriate + 1 weights will have factors -1, 2, 2 and 4, which can be
normalized to -1, 1, 1 and 1 respectively by appending appropriate graphs at the external nodes.
Hence the construction applies for all fields F'. Note that the signature of any planar matchgate
has to satisfy algebraic identities similar to those of the character [Valiant 2002b].)

In order to obtain part (ii) we simply append an extra edge weighted 1 at input 1, and call the
other endpoint of the new edge the new input node 1. This transformation leaves the elements of
the signature unchanged, except that they are renamed by the process of flipping the first bit of
the index in each term e.g., uggog becomes uiggp. M

We note that the constraints w1111 # 0 and ug111 # 0 can be eliminated in the following sense.
If any of the sixteen components is nonzero then, by the method of the last paragraph one can flip
bits so that the nonzero entry is moved to the 1111 or 0111 position, and the relation (i) or (ii)
holds for the corresponding renaming of the elements.

Proposition 6.4. For all F and any arity m and any Sy € F there is a matchgate with standard
symmetric signature [So,...,Sy] where S1 =...= S, =0.

Proof. The gate consists of 2m nodes v1, ..., Umn, U1,. .., Uy and m edges (v;, u;) where u, ..., up,
are the output nodes. All the edges have weight one, except for one which has weight Sy. B

7 Realizable Signatures for Arity Two Matchgates

Relations (5.1) and (5.2) in Section 5 relate the signatures realizable by an arbitrary basis to those
realizable by the standard basis. In Section 6 we characterized the signatures that are realizable by
the standard basis for gates of arity up to four. In this section we shall spell out some consequences
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Figure 7: An arity four matchgate, where ¢t = 1/u1111
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Figure 8: An arity four planar matchgate that is used to simulate the crossover in Figure 7. The
substitutiona =1,b=14,c=d=-1/2, e = Vi suffices where i = —1.
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for signatures with respect to arbitrary bases, that are realizable by gates of arity 2. These gates
will be invoked in several places in the various algorithms described in later sections.

For ease of notation we shall consider the basis to be b = [(a, b), (¢, d)] so that bgy = (a,b)®(a, b),
bo1 = (a,b) ® (c,d), b1y = (¢,d) ® (a,b), and by; = (c,d) ® (c, d).

Relation (5.1) then describes the following requirements on a generator to have signature
(00, 901, 910, g11) With respect to b:

ugo = a*qoo + acqor + acgio + g1,

uo1 = abqoo + adqo1 + begig + cdqi,

u19 = abqoo + begor + adgig + cdgi1, and

u11 = b2qoo + bdgo1 + bdgio + d*qu1.

By Proposition 6.1 any standard signature is possible as long as either ugy = u;; = 0 or

up1 = uio = 0. Hence there exist generators with signature (qoo, go1,410,¢11) With respect to basis
b if either

a®qoo + acgor + acqig + c2g11 = 0 and b2qo + bdgor + bdgio + d?q11 =0,
or

abggo + adqgg1 + begio + cdgii = 0 and abggg + begor + adgig + cdgi1 = 0.

Proposition 7.1. For the basis b2 = [(1,1),(1,—1)] for any z,y € F there is a generator for
(z,9,9,2) = [z,y,2].

Proof. The second of the two cases above gives goo—qo1 +¢10—g11 = 0 and goo+ o1 —q10—¢q11 = 0.
Clearly these will be satisfied if go9 = ¢11 and ¢p1 = q10 B

Proposition 7.2.  For the basis b2 = [(1,1),(1,—1)] for any z,y € F there is a generator for
(.’E, Yy, —.’E)

Proof. The first of the two cases above gives qgo + go1 + q10 + g11 = 0 and goo — go1 — g10 + ¢11 = 0.
Clearly these will be satisfied if gog + ¢11 = 0, and gg1 + q10 = 0. B

Moving on to recognizers, we note that the requirements for a recognizer to have signature
(goo, go1,q10,911) are given by relation (5.2):

qoo = a®ugo + abuor + abuig + bPu11,
qo1 = acugy + adug, + beuig + bduq1,
q10 = acugg + bcugr + aduig + bduy1, and
qi1 = Cugy + cdugr + cduig + d>ury.

By Proposition 6.1 any standard signature is possible as long as either ugy = u1; = 0 or
up1 = u1p = 0. Hence there exist recognizers with signature (qoo, go1, 910, ¢911) With respect to basis
b of the two forms:

(abu01 + abuig, adugy + bcuig, beugr + aduqg, cdugr + Cdul()),
and

(a%ugo + b%u11, acugo + bdui1, acugg + bdui1, c2ugp + d?uqr). B
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Proposition 7.3. If b2 = [(1,1),(1,—1)] is a basis for field F then for any x,y € F there is a
recognizer for (z,vy,y,x) = [z,y, x].

Proof. The second case above gives signature (ugg + w11, %00 — %11, %00 — Y11, U0 + U11)-

Proposition 7.4. If [(a,b), (c,d)] is a basis then there is a recognizer for (0,ad — bc,bc — ad,0).

Proof. Follows from the first case above if ug; = 1 and u;9=—1. B

Proposition 7.5. If [(a,b), (c,d)] is a basis then there is a recognizer for (a? + b%,ac + bd, ac +
bd, c? + d?).

Proof. Follows from the second case with ugyp = 1 and u1; =1. B

Proposition 7.6. If [(a,b), (c,d)] is a basis then there is a recognizer for (a? — b% ac — bd, ac —
bd,  — d?).

Proof. Follows from the second case with ugp =1 and uq; = —1. B

8 The Basis bl = [(1,—1),(1,0)]

We shall now apply our method to the problem of matchings - not necessarily perfect - in planar
graphs. This is also known as the monomer-dimer problem. Considerable efforts had been expended
in attempts to reduce it to the planar perfect matching problem. The lack of success achieved was
explained by the work of Jerrum [1987] who showed that this counting problem was #P-complete.
Subsequently Vadhan [2001] showed that it remained #P-complete even when the planar graph
was bipartite, and its degree was restricted to 6. If the degree is restricted to 2 then the graph
consists of a set of cycles and the problem is easily solvable. Any class that allows higher degrees
is a natural candidate for #P-compleness. However, we can show that the following such problem
is computable in polynomial time.

Theorem 8.1. There is a polynomial time algorithm for #X-MATCHINGS.

Proof. Consider a given planar weighted graph H = (V, E, W) where V has bipartition V1, V2,
where every node v € V1 has degree 2 and every node v € V2 has some arbitrary degree deg(v).
We construct a matchgrid Qg over bl by replacing each V1 node with the generator matchgate of
Proposition 4.1, replacing each V2 node with the recognizer matchgate of Proposition 4.2, and, for
each edge (u,v) in H by having a connecting edge joining an output of the generator for u to an
input of the recognizer for v so as to preserve planarity. The edge in the recognizer that is adjacent
to this connecting edge will have the same weight w; as the edge (u,v) has in H.
Now the Holant was defined as

Holant(Qp) = Y | [] valG(Bj,z)| | [ valR(A4s,xz)
zeX |1<j<g 1<i<r

where j ranges over all the generators, ¢ over all the recognizers, and x over all possible tensor
products of the basis elements. But each generator has arity two and generates n®n, n®p, pQmn,
and p ® p with weights 1, 1, 1, and 0, respectively. Hence the nonzero contributions to the Holant
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will come from edge sets of H such that at most one edge from the set is adjacent to each V1 node.
But the matchgates at the V2 nodes are defined so that valR(A4;,z) is

(i) 0 if there is more than 1 edge incident,
(ii) w; if there is exactly one, and its weight is w;, and
(iii)) —(wy + ...+ wg) if there are no incident edges.

Hence the value of the Holant is the sum over all matchings E’ of H of the mass of E' defined
as follows. The mass of E' is the product of the weights of all the edges that are present in it and
also of the value of —(w; + ... + wg) for every V2 node that is not saturated by the matching.
Hence, by virtue of Theorem 4.1 and Corollary 4.1, this mass can be computed in polynomial time,
and, in fact, in NC2. H

9 The Basis b2 =[(1,1),(1,-1)]

In this section we study the basis b2 = [(1,1), (1, —1)], which has a remarkable range of capabilities.
We shall assume that field F' does not have characteristic two, since then b2 would have just one
distinct element. We first note that by Propositions 7.1 and 7.3, the arity 2 symmetric signature
[z,y,x] can be realized for any z,y, both as a generator and as a recognizer. Thus equality has
weight = and inequality has weight y. The case z = 0 gives inequality gates and the case y = 0
equality gates. The arity one signature [z, z] is also realizable, by 2-node matchgates, but the arity
one constants [1, 0] and [0, 1] are not — they would require omittable nodes.

If we have a generator over this basis and join to its outputs equality recognizers then we get
a recognizer gate with the same signature as the original generator. Similarly we can convert
arbitrary recognizers to generators with the same signature by appending generator equality gates.
Hence for this basis b2 the signatures that can be realized by generators are exactly the same as
those that can be realized by recognizers.

For arity three we shall now enumerate the eight possible combinations of basis elements for
the inputs, namely b2¢qq, ..., b2111, rewrite each as an 8-vector of coefficients with respect to the
standard basis, and group them according to some semantics:
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THREE POSITIVES
1,-e(1,-1)e@1,-1): (1 -1 -1 1 -1 1 1 -1)

ZERO POSITIVES

(1,1) ® (1,1) ® (1,1): @ 1 1 1 1 1 1 1)
ONE POSITIVE

(1,-1) ® (1,1) ® (1,1): 1 1 1 1 -1 -1 -1 -1)
(1,1) ® (1,-1) ® 1, 1): 1 1 -1 -1 1 1 -1 -1)
(1,1) ® (1,1) ® (1, —1): 1 -1 1 -1 1 -1 1 -1)

TWO POSITIVE

(1,-1) ® (1,1) ® (1,—1): @ -1 1 -1 -1 1 -1 1)
(1,1) ® (1,-1) ® (1,—1): @ -1 -1 1 1 -1 -1 1)
(1,-1)® (1,-1) ® (1,1): @ 1 -1 -1 -1 -1 1 1)
SUMS:

0 OR 3 POSITIVES: @2 0 0 2 0 2 2 0
1 OR 2 POSITIVES: 6 0 0 2 0 2 2 0

By taking linear combinations of the rows as specified by relation (5.1) we can determine which
combinations are realizable standard signatures. By Proposition 6.2 it is sufficient in the arity three
case for a standard signature that either all the odd elements, or all the even elements, be zero.

It is clear that if we add the THREE POSITIVES and the ZERO POSITIVES vectors we get
an all-even signature (2, 0, 0, 2, 0, 2, 2, 0). It follows that the symmetric signature [1, 0, 0, 1] is
realizable for the basis b2. Similarly adding the remaining six vectors also gives an all-even vector
and hence the symmetric signature [0, 1, 1, 0] is also realizable. Further, if we add z times the
first two vectors to y times the last six we still get an all-even vector. Hence for all z,y € F, the
symmetric signature [z,y,y, z] is realizable.

Theorem 9.1. There is a polynomial time algorithm for #PL-3-NAE-ICE.

Proof. We represent each degree three node of the given graph G by a recognizer matchgate with
symmetric signature [0, 1, 1, 0] over b2, i.e., the NOT-ALL-EQUAL or NAE gate. For degree two
gates we have a recognizer for [0, 1, 0] from Proposition 7.3. For each edge we will have a generator
matchgate with symmetric signature [0, 1, 0] from Proposition 7.1. We will have connecting edges
between the outputs of the generators and inputs of the recognizers as specified by G. If p on
a connecting edge of a recognizer gate represents the orientation towards that gate, and an n an
orientation away from it then clearly each edge of G will be given a consistent orientation by virtue
of the binary inequality generator gate [0, 1, 0], which ensures that its two outputs carry opposite
basis elements. Further the recognizer gates will ensure that either one or two of the edges are
directed towards it. It follows that the holant of the given matchgrid will equal the desired value
of #PL-3-NAE-ICE. &

Theorem 9.2. There is a polynomial time algorithm for #PL-3-(1,1)-CYCLECHAIN.

Proof. Suppose we are given graph G as input to the (1,1) cycle-chain problem. We shall represent
each node by a recognizer for [0,1,1,0]. We represent each edge of G by a generator for [1,0, 1].
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Now if a p generated by a generator signifies that the corresponding edge of G is in the cycle-chain
cover then clearly the edges of G will have a consistent such association by virtue of the [1, 0, 1]
generators. But the recognizers will ensure that either one or two edges of GG incident to any one
vertex are labeled p. It follows that there is a one-to-one correspondence between labellings of the
edges of G by {n,p} such that the edges labeled by p form a cycle-chain cover, and contributions
of 1 to the Holant of the constructed matchgrid. The result follows. B

Theorem 9.3. There is a polynomial time algorithm for PL-NODE- BIPARTITION.

Proof. Suppose we are given graph G as input to the PL-NODE-BIPARTITION problem. We
shall represent each node by a recognizer for [z, y,y, z] or [z,y, z], depending on whether the degree
is three or two, where z, y are variables to be given various values. (Any node of degree one can
be simply deleted.) Each edge we represent by a generator for [0,1,0]. Then as in the proof of
Theorem 9.1 we can interpret nonzero contributions to the Holant as orientations of G. Nodes
that have all edges directed towards them (sinks) or all edges directed away from them (sources)
will give a contribution of x to the Holant, and those that are neither sources or sinks will have
a contribution of y. Now if we fix y = 1 then the Holant will be a polynomial SS(z) where the
coefficient of z* will be the number of orientations of the edges of G that have exactly i nodes as
either sources or sinks.

Now it is easy to verify that the largest 4 for which the coefficient of z* in SS(z) is nonzero is
the maximum number of nodes that a bipartite graph can have that is obtained by deleting nodes
and incident edges from G. In one direction, if there is an orientation with ¢ sources and sinks then
the graph induced by the nodes that are sources and sinks in G must be bipartite. In the reverse
direction, if we have a bipartite subgraph in G where the nodes have bipartition V1’ and V2’ then
we can define an orientation of G where all the nodes V1’ are sources and all the nodes V2 sinks,
and the orientation of any edge not incident to V1’ or V2’ can be arbitrary.

Now by giving x any fixed value we can compute the Holant for that value and hence obtain
the value of SS(z). By doing this for |V| + 1 distinct values of z and performing polynomial
interpolation on the |V| + 1 values obtained we can compute all the coefficients of SS(z). The
largest 4 such that the coefficient of z' in $S(z) is nonzero will give the minimum number |V| — i
of nodes whose removal leads to a bipartite graph. B

The following folds in the results for gates with 1, 2 and 3 inputs described above, with some
result for gates with 4 inputs detailed below, and the equality gate for any number of inputs.

Theorem 9.4. For matchgrids where each matchgate is one of [z, z], [z,y, 2], [z,v,y,z], [1,0,0,0,1],
[1,0,—1,0,1], [0,1,0,—1,0], [0,1,4+/2,1,0] , in the case 22* = yw+y? [w,z,y, T, w], and [1,0,...0,1]
for any arity, the Holant can be computed in polynomial time. Here different matchgates may have
different values of x,y,w € F.

Proof. For arities one, two and three we have already established that [z, z], [z, y, z] and [z, y,y, z]
are realizable.

For arity four we shall enumerate the sixteen possible combinations of basis elements for the
inputs, namely b2y, ..., b21111, rewrite each as a 16-vector of coefficients with respect to the
standard basis, and group them according to some semantics, as we did for arity 3. By taking linear
combinations of the rows as specified by relation (5.1) we can again determine which combinations
are realizable standard signatures. By Proposition 6.3 it is sufficient in the arity four case for a
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standard signature that all the odd elements, or all the even elements, be zero, provided in addition
that the polynomial relation stated there holds among the eight remaining elements.

ZERO POSITIVES

(1,1)®(1,1)®(1,1)®(1,1): 1 1 1 1 11 1 1 11 1 1 11 1 1)
FOUR POSITIVES

(1,-1)®(1,-1)®(1,-1)®(1,-1): (1 -1 -1 1 11 -1 11 -1 1T -1 -1 1)
CROSSINGS

(1,-1)®(1,1)&(1,-1)®(1,1): (1 1 -1 -1 11 -1 -1 a1 11 a1 1 1)
(1,1)®(1,-1)®(1,1)®(1,-1): 1 -1 1 -1 401 a1 1 1 -1 1 -1 01 -1 1)

THE OTHER FOUR
TWO POSITIVES CASES

(1,1)®(1,1)®(1,-1)®(1,-1): 1 -1 -1 1 1 -1 -1 1 1 1 -1 1 1 -1 -1 1)
(1,-1)®(1,-1)®(1,1)®(1,1): 1t 1 1 1 I I T 11 1 1)
(1,1)®(1,-1)®(1,-1)®(1, 1): 1 1 -1 -1 a1 11 1 1 -1 -1 -1 1 1)
(1,-1)®(1,1)®(1,1)®(1,-1): 1 -1 1 -1 1 -1 1 -1 S T 01 1 1)
ONE POSITIVE

(1,1)®(1,1)®(1,-1)®(1,1): (1 1 -1 -1 T 1 -1 -1 11 -1 1T 1 -1 1)
(1,-1)®(1,1)®(1,1)®(1,1): 1t 1 1 1 11 1 1 S T T R | -1 -1 -1
(11)®(1,1)@(1,1)@(1,-1): (1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1)
(1,1)®(1,-1)®(1,1)®(1,1): 1t 1 1 1 S R T | 11 1 1 -1 -1 -1
THREE POSITIVES

(1,1)®(1,-1)®(1,-1)®(1,-1): 1 -1 -1 1 101 1 -1 1 1 -1 1 011 A1)
(1,-1)®(1,-1)®(1,1)®(1,-1): (1 -1 1 -1 1 a1 1 1 a1 1T -1 1 1)
(1,-1)®(1,-1)®(1,-1)®(1,1): 1 1 -1 -1 -1 11 1111 11 -1 1)
(1,-1)®(1,1)®(1,-1)®(1,-1): (1 -1 -1 1 1T -1 -1 1 11 -1 a1 1 -1
SUMS:

0 OR. 4 POSITIVES 2 0 o0 2 0 2 2 0 0 2 2 2 0 0 2
TWO POSITIVES 6 0 0 -2 0 -2 -2 0 0 -2 -2 0 -2 0 0 6
ONE POSITIVE 4 2 2 o0 2 0 0 -2 2 0 0 -2 0 -2 -2 -4)
THREE POSITIVES 4 -2 2 o0 2 0 0 2 2 0 0 2 0 2 2 -4

Each 4-output matchgate will have standard signature (ugggo, - --,%1111). Each gate will be ei-
ther even or odd and will have at most eight of the elements of their signature nonzero. For conve-
nience we shall here represent the signature of an even gate by the 8-vector (upooo, %0011, %0101, %0110,
10015 %1010, U1100, u1111) and the signature of an odd gate by the 8-vector (’u,o()m, 00105 %0100, U0111 5
U1000; U1011, U1101,U1110)-

(i) Signature[1,0,0,0,1]: Adding the signatures for the two cases (0-positives) + (4-positives)
gives for the even case the 8-vector (2,2,2,2,2,2,2,2) which is feasible by Proposition 6.3(i).

(ii) Signature [1,0,—1,0,1]: Forming the linear combination for the eight cases z(2-positives) +
(0 or 4 positives) gives for the even case the 8-vector (6z+2,2—22,2—22,2—22,2—22,2—
22,2—22,62+2). By Proposition 6.3(i) this is realizable if (62+42) % (62+2) = (2—22)(2—22),
or 3622 + 24z +4 =422 — 8244, or 322> +322 =0, or z = —1.

(iii) Signature [0,1,0,—1,0]: Forming the linear combination for the eight cases (1-positive) -
(3 positives) gives for the odd case the 8-vector (4,4,4, —4, 4, —4,—4,—4). By Proposition
6.3(ii) this is realizable since —16 + 16 + 16 — 16 = 0.

(iv) Signature [0, 1,++/2,1,0]: Forming the linear combination for the fourteen cases (1-positive)
+ (3 positives) 4+ y(2 positives) gives for the even case the 8-vector (8+6y, —2y, —2y, —2y,
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—2y, —2y, —8+6y). Therefore it is sufficient that (8+6y)(—8+6y) = 442, or —64+36y? = 442,

ory=+v2ory=—2.

(v) Signature [w,z,y,z,w]: Forming the linear combination for the sixteen cases w(0-positives)
+ w(4-positives) + x(1-positive) 4+ x(3 positives) + y(2 positives) gives for the even
case the 8-vector (2w+6y+8x, 2w —2y, 2w—2y, 2w —2y, 2w—2y, 2w—2y, 2w —2y, 2w+6y+8x),
for which any y, z, and w with 222 = yw + y? will suffice.

Note that relation (v) generalizes relations (i), (ii) and (iv).
Finally we note that equality gates of any arity m can be obtained by chaining together m — 2
ternary equality gates [1,0,0, 1] using the equality recognizers of Propositon 7.3 .

Theorem 9.5. There is a polynomial time algorithm for#PL-3-NAE-SAT.

Proof. The construction follows that for Theorem 9.1 except that for NAE nodes we have recogniz-
ers with symmetric signatures [0, 1, 1, 0], and for variable nodes we have recognizers for [1,0,...,0, 1]
gates of the same arity as the number of clauses in which the variable appears. Further, if a variable
occurrence is negated we have a [0, 1, 0] generator along the edge that joins the variable recognizer
and the NAE recognizer, and if the variable occurrence is not negated then we have [1,0,1]. B

Theorem 9.6. There is a polynomial time algorithm for @ PL-EVEN-LIN2.

Proof. The construction follows that for Theorem 9.1 with some exceptions. First we note that
any equation of even length more than four can be reduced to a set of equations all of length four
by the introduction of new variables. For example z; + ... + 26 = 1 becomes the two equations
21+ 2 +23+y=0and y+ z4 + 25 + 26 = 1. Now each equation of length four is simulated by a
[1,0,—1,0,1], or a [0,1,0,—1,0] gate depending on whether the constant term of the equation being
simulated is 0 or 1. For length 2 we use [1,0, 1] and [0, 1, 0], respectively. The boundary conditions
that fix the values of variables can be realized by using 2-node matchgates with one omittable node
as shown in Figure 3 of Theorem 4.1. We then invoke Corollary 4.2 and Theorem 3.3.

For each original noncompulsory equation we pick an arbitrary variable occurrence in it and
simulate it “possibly being faulty” by having as the corresponding link between its variable and
equation recognizers a generator for [1,z, 1] if the variable occurs positively, and [z, 1, z] if it occurs
negated. For all other occurrences of variables the corresponding link is a generator for [1,0,1] or
[0,1,0] as appropriate. The Holant will then be a polynomial in z. The coefficient of z* will arise
from “solutions” of the equations where exactly 7 variable occurrences, all in distinct noncompulsory
equations, have their bits inverted. In other words they arise from solutions that satisfy all but
exactly 7 of the noncompulsory equations. Since each solution contributes +1 to the Holant the
result follows. H

In conclusion we note that the generating function of the Ising problem, or #PL-CUT, is nothing
other than the Holant when edges are replaced by [1, y, 1] gates and nodes by [1,0,--- ,0,1] gates
over b2. Hence this offers yet another treatment of the Ising problem for planar structures. In the
reverse direction this implies that algorithms based on just these gates can be derived also from
#PL-CUT through classical reductions, essentially following our proofs here. The reader can verify
that Theorems 9.1, 9.2, 9.3 and 9.5 are all in this category since [1, y, ¥, 1] can be simulated by
three [1, y, 1] gates. However, if the problems solved in these Theorems are generalized to allow
the degree four gates permitted by Theorem 9.4 then polynomial time algorithms follow for some,
perhaps less natural, problems for which no classical reduction to #PL-CUT is apparent.
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10 The Basis b3 = [(1, 1), (1, -1), (1, 0)]

We now consider the problem PL-FO-2-COLOR and shall employ this basis b3.

Theorem 10.1. There is a polynomial time algorithm for PL-FO-2-COLOR.

Proof. Given a graph G we assume that all its nodes have degree two or three. At nodes of degree
three we place matchgates that generate:

(LO)®(1,1)®(1,1) + (1,1) ® (1,0) ® (1,1) + (1,1) ® (1,1) ® (1,0)+
(LO) ® (15 _1) &® (11 _1) + (15 _1) ® (150) ® (1, _1) + (1, _1) ® (1a _1) ® (1,0),

and at nodes of degree two those that generate

(1,0)®(1,1) + (1,1) ® (1,0)+
(1,0)® (1,-1)+ (1,—-1) ® (1,0) .

We note that all the nonzero terms are even and hence by Proposition 6.2 there are matchgates
to generate them. In place of the edges of G we place recognizers that on input (a, b), (¢, d) at their
respective inputs have value ac — bd. The recognizer of Proposition 7.6 suffices.

We say that a node of G represents 0 if it generates (1,1) in some direction, and a 1 if it
generates (1,—1) in some direction. In either case it directs its arrow along the edge on which it
sends (1,0) and away from itself.

Clearly the recognizer between two nodes that both represent 0 or both 1 will have value zero
unless at least one of the nodes sends an arrow, i.e., (1,0), to the recognizer, in which case its value
will be 1. A recognizer between two nodes that represent 0 and 1 respectively will have value 2 if
there are no arrows towards the recognizer, and 1 otherwise.

The Holant of this matchgrid will be nonzero if and only if PL-FO-2-COLOR has a solution.
Each solution will be counted 2* times where k is the number of edges in G that have no arrows
and whose endpoints represent opposite values. ll

11 General Complexity-Theoretic Questions

We regard the most important among the currently widely held conjectures of complexity theory
to be: (1) P # NP, (2) P # P#7, (3) P # BPP, (4) P # QBP, (5) P ¢ PolyLogSPACE, (6) P # NC,
(7) P # PSPACE. We observe that a positive solution to the question P#¥ =?NC would resolve
all the above seven questions (the first six would be contradicted). (N.B. Regarding question (3)
P = BPP is also widely conjectured.)

Now consider polynomial systems of the form

S(z) = {Ei(z), Bz (2), -, Em(2)},

where z stands for a set of variables {z1,--- ,z,} and E;(x) stands for a polynomial equation with
coefficients from the integers. We shall say that such a system is solvable if it is satisfied by a set
of complex numbers. In order that we may invoke Theorem 3.2, which is needed to ensure that the
linear algebra computations be polynomial time, we need that such a system be efficiently solvable.
We say that a system is efficiently solvable if for that one fized system there exists an algorithm
that for some polynomial p(n) and any n > 1 computes some solution to the system to n decimal
places of accuracy within p(n) Boolean operations. This is a weak requirement in that the size
of the polynomial system can be regarded as a fixed constant. The requirement is only that the
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cost of computing the solutions to higher and higher accuracy is polynomial time bounded in the
number of digits of the accuracy for that one fixed system. (It need not be polynomial time in the
size of the system.)

In fact it can be seen that solvable systems are always also efficiently solvable in our sense:
Systems with finite numbers of solutions are efficiently solvable since they can be reduced by
elimination to univariate polynomial solving. Also systems with infinitely many solutions are also
efficiently solvable by means of univariate representations [Biirgisser 2000, Theorem 4.12] Basu et.
al. 2003, Algorithm 11.60]. It is well known that univariate polynomials are efficiently solvable
[e.g. Pan, 1997].

We now observe that holographic methods can be viewed as providing constructions of natural
systems S such that

S(z) is solvable = P#* = NC2. (11.1)

More particularly, for any one formulation F (specifiable by appropriate local constraints) of a
combinatorial problem for which the counting problem #F' is #P-complete, and any basis size k,
and gate size g, we shall construct a polynomial system Sry 4 such that Sgy 4 is solvable if and
only if there is a simple holographic reduction from #F' to planar PerfMatch using basis size k and
gate size g.

We can then define Sp to be the family of polynomial systems {Spy, | ¥ = 1,2,--- ;9 =
1,2,---} and make the final claim:

Some member of Sr is solvable = P#* =NC2. (11.2)

We shall explain the above claims, in the first instance, in the context of gates of arity up to
three and basis size 1, as developed earlier in the paper. In Section 5 we have already stated the
polynomial constraints (5.1) on generators

Uik = qust(brst)ijk (11.3)

and (5.2) on recognizers

‘jijk = Z ﬂrst(bijk)rst (11.4)

where summation is over {r,s,t} € {0,1}3. Note that here ¢ and § describe the formulation of the
combinatorial problem, b is the basis, and u and 4 are the standard signatures. Also, from the
definition of standard signatures in Section 4, the various components of u, % equal PerfMatch(G —
Z), PerfMatch(G — Z), for various choices of Z, assuming for simplicity, that there is just one kind
of generator and one kind of recognizer. Hence the components u;;; of u each equal a polynomial
expression, say Ui’;. (W), over the weights W of the generic gate G of size g and similarly for ;.
Hence the third set of constraints we need is:

(W). (11.5)

(W), dyj5 = U?

_ 779
uiik = U; ijk

ijk

It follows from what we have said that the equations (11.3) - (11.5) are solvable if and only if
there is a holographic reduction from the given formulation of #F' to planar PerfMatch using basis
size 1 and gate size g. We note that in Section 6 we characterized the polynomial equations that

can be realized for arities up to four for gates of any size, not just for fixed values of g. It is an

27



open question whether for each arity larger than four there exists a fixed matchgate size that is
sufficient for all matchgates of that arity.

For example, in Section 4 we found a solution in the case that ¢ = (1,1,1,0) and ¢ =
(-3,1,1,0,1,0,0,0). (N.B. We had an arity 2 gate for the generators, but arbitrary arity for
the recognizers, the § here being the instance for arity three.) That gave us a polynomial time
algorithm for #X-MATCHINGS. Planar matchings are known to be #P-complete [Jerrum, 1987,
1990], even in the planar bipartite case of maximum degree six [Vadhan, 2001]. Hence the solv-
ability of such a #P-complete case would imply P#* = NC2. We note that the nonsolvability of
such systems can be proved mechanically, in principle, using computer algebra systems. With such
a system we have verified, for example, that the basis given for #X-MATCHINGS is essentially
unique among those of size one.

In a similar way, for each of the other problems for which we have exhibited solutions to (11.3)
- (11.5) we can ask whether such solutions exist for some #P-complete variant of them.

Now equations (11.3) - (11.5) as stated are limited to bases that have size 1 and two components,
and gates of arity up to three. To allow for h rather than two components the only change needed
in (11.3) and (11.5) is that {r, s, ¢} should be summed over {1,2,--- , h}. It is easy to see that these
polynomials can be generalized also to allow for arbitrary basis size and arbitrary arity.

By a formulation of a problem we mean a mapping of "the parts” of the problem to generator
and recognizer gates in the manner of the reductions we have given for our various specific problems.
Given a problem such as planar matchings there are many possible formulations and it is not clear
which, if any, are the most useful for searching for positive solutions of P#*. The formulation given
in Section 8 mapped the nodes to one of two kinds of matchgates. Another would be to map a group
of nodes to one kind of matchgate, and the edges to another. Also, as illustrated in some reductions
in Section 9, the original problem may be mapped to a number of matchgrids and the final answer
recovered by polynomial in interpolation. Clearly there are numerous such formulations that one
might try. Thus for any combinatorial problem such as those we have described one can ask whether
some formulation of some variant is both #P-complete and has a solvable equation system.

Our treatment here emphasizes solutions from C only because these seem the easiest to find
mechanically. Clearly, solutions over finite fields would be even better for computational purposes
if these can be found, though the positive consequences would be only for the corresponding fields
in the first instance [Valiant, 1979a].

Also, we have defined signatures as matrices whose rows correspond to input configurations of
matchgates, and columns to output configurations. In this paper the matchgates we used were all
generators or recognizers, corresponding to column and row vectors respectively. The treatment
can be adapted, clearly, to matchgates that have both inputs and outputs.

Throughout this paper we have emphasized planar structures. However, within the same frame-
work we can deal with nonplanar structures as long as in their formulation we also allow for ” cross-
over” nodes (and simulate them effectively with matchgates.)

An entirely orthogonal issue is that in this paper we have used the PerfMatch polynomial at
the matchgate level, and the FKT method for planar graphs as the combining mechanism. An
alternative approach for the whole development is to use the Pfaffian at the matchgate level, and
the Pfaffian combining approach described in [Valiant 2002a, Valiant 2005a] instead. We do not
know how the two approaches compare.

We have considered only matchgrids that use the same basis throughout. We could equally use
a different basis for each connection in the matchgrid.

In conclusion we observe that if any polynomial system generated in the manner described
above for a #P-complete problem is solvable, then it would follow that P#* = NC2 and that the
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seven conjectures enumerated at the beginning of this Section would be resolved. In the apparent
absence of alternative general approaches to these complexity issues, we suggest that as long as the
solvability of even one such polynomial system remains unresolved, it is rational to regard these
complexity questions as being truly open.

12 Numerical Considerations

Proof of Theorem 3.2. We shall use Berkowitz’ algorithm for computing the determinant
[Berkowitz 1984] and exploit the fact that, unlike Gaussian elimination, it uses no division. Inspec-
tion of Berkowitz’ algorithm shows that it uses 31logy, n + O(1) levels of multiplications of pairs of
matrices of sizes at most n X n, where the matrix entries initially are either —1 or members of Y,
and at subsequent steps are the entries, sometimes multiplied by —1, of matrix products previously
obtained.

For z € C let |z| be the modulus of z. Let D = max{1, max{|z|: z € Y}}. Our algorithm will
depend on Y only through the value of D. For all matrices it will execute the same sequence of
arithmetic operations defined by Berkowitz algorithm except that the arithmetic will be performed
in arithmetic with g = g(n,Y) = O(n3)(log, D+log, n) decimal places of accuracy in fixed precision
arithmetic both to the left and to the right of the decimal point. The roundoff error introduced in
each operation is at most 279 in absolute value.

We want F; to be an upper bound on the modulus of any value computed at the i-th level of the
exact algorithm. Clearly Fy = D and F; > (F; 1)?n* suffice if each level is a matrix multiplication
of matrices of size at most n* x n*. Tt follows that if exp(i) = 2¢ then F; = (n*D)*®() suffices.

We now want ¢; to be an upper bound on the maximum absolute error on an output of level 4
that can occur through the accumulation of roundoff errors. We take ¢g = 279 and will maintain
279 <€ <1/2 and F; > 1 by induction. Now the maximum value that can be taken by a product
of true absolute values U and V is

U+e 1)(V+e1)+29 = UV4+U+V)e 1+€2 ,+279
< UVAH21F 1+ 1 +29=UV +¢

say. The maximum error of a subsequent n*-fold sum, as required by a matrix multiplication,
performed as n¥ — 1 pairwise operations is (n*(e; + 279). Combining these gives that

€ < nk(2€i_1ﬂ_1 + 61271' + 2.279) < GnkFi_lei_l < (6nk)iﬂ_1ﬂ_2 ... Foep

where for the second inequality we have used 622_1 < 2F;_1€;—1 (since F;_1 > 1 and ¢;_1 < ¢€), and
also 279 < F;_1¢;_1. Since F; = (n*D)®*P() we deduce that

& < (6n*)i(nF D)=+, (+)

Now if we want to ensure that the integer value of the determinant is computed correctly for
i = 3logen + O(1) and k = 1 then ¢; < 1/2 is needed for these parameters. From inequality
(*) it follows that g = O(n®)(logy D + logy n) + O(logn)? decimal places of accuracy to the right
of the decimal point are enough. Since no term is larger than F; = (n¥D)®P(®) it follows that
O(n?®)(logy D + log,n) decimal places to the left of the decimal point are sufficient, and hence
O(n3)(logy D + log, n) bit arithmetic overall will suffice. W
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Corollary 3.2.1. The algorithm in the above theorem can be implemented in NC2.

Proof. Each of the O(logn) stages of the algorithm can be implemented by Boolean circuits of
polynomial size and O(logn) depth, since it requires multiplications and n-fold additions [Beame,
Cook and Hoover 1986]. B

Corollary 3.2.2. Theorem 8.2 and Corollary 3.2.1 also hold if Y is infinite, M,, contains elements
from some Y, CY, there is a polynomial p(n) such that 2P(") ypper bounds the absolute value of the
elements of Yy, and there is an algorithm that given n and the index of an element in Y, computes
that element to absolute error less than 27" in time polynomial in n.

Proof. The proofs above support this stronger statement. H

Proof of Theorem 3.3. The basic construction in the proof of Theorem 3.1 is that of an orienta-
tion of the edges of any planar embedding of any planar graph G so that every face when traversed
clockwise has an odd number of edges directed in that clockwise direction. The matrix M is then
defined as in the statement of Theorem 3.1 with f(4,j) equal to 1 or —1 depending on whether the
orientation of the edge is directed from ¢ to j or from j to ¢. The property that this orientation
achieves that is required for the result, is that in any cycle of G containing an even number of nodes
in its interior, as is required if there is a perfect matching in the interior, there is an odd number
of edges in the cycle that are oriented clockwise. Now let G'ZG be the relation that G’ is obtained
from an embedding of G by deleting some nodes from the outer face of G, and the edges that are
incident to them. Then the given orientation of G is also an orientation of G’ with the required
property, since any cycle of G’ and its interior is already a cycle and interior for G. Theorem 3.1
states that PerfMatch(G) is the Pfaffian of M. Now for any G'ZG let M’ be M but with the rows
and columns indexed by the deleted nodes of G deleted. Then PerfMatch(G’) = Pfaffian(M’) for
the above stated reason. But what we need to compute for the current Theorem is

MatchSum(G)ZZ H Ai H Li,j

E' i¢gsatu(E’) (i,j)EE’

which is equivalent to
= Z H i PerfMatch(G[V'])
Viooeed!

where G[V'] denotes G with nodes V' and incident edges removed. This last quantity, however, is
the PfaffianSum of G, and can be expressed as a Pfaffian [Valiant 2002a]. Theorem 3.3 then follows
using Theorem 3.2. and Corollary 3.2.1. B

Acknowledgements: I am grateful to Matthew Cook, Oded Goldreich, and Mark Jerrum for
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