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Abstract

In this paper we show a reduction from the Unique Games problem to the problem of approximating
MAX-CUT to within a factor of agw + ¢, for all € > 0; here agw =~ .878567 denotes the approxima-
tion ratio achieved by the Goemans-Williamson algorithm [25]. This implies that if the Unique Games
Conjecture of Khot [36] holds then the Goemans-Williamson approximation algorithm is optimal. Our
result indicates that the geometric nature of the Goemans-Williamson algorithm might be intrinsic to the
MAX-CUT problem.

Our reduction relies on a theorem we call Majority Is Stablest. This was introduced as a conjecture
in the original version of this paper, and was subsequently confirmed in [42]. A stronger version of
this conjecture called Plurality Is Stablest is still open, although [42] contains a proof of an asymptotic
version of it.

Our techniques extend to several other two-variable constraint satisfaction problems. In particular,
subject to the Unique Games Conjecture, we show tight or nearly tight hardness results for MAX-2SAT,
MAX-¢-CUT, and MAX-2LIN(g).

For MAX-2SAT we show approximation hardness up to a factor of roughly .943. This nearly matches
the .940 approximation algorithm of Lewin, Livnat, and Zwick [40]. Furthermore, we show that our
.943... factor is actually tight for a slightly restricted version of MAX-2SAT. For MAX-¢-CUT we show
a hardness factor which asymptotically (for large ¢) matches the approximation factor achieved by Frieze
and Jerrum [24], namely 1 — 1/q + 2(Inq) /q¢>.

For MAX-2LIN(g) we show hardness of distinguishing between instances which are (1—e)-satisfiable
and those which are not even, roughly, (¢ —¢/?)-satisfiable. These parameters almost match those achieved
by the recent algorithm of Charikar, Makarychev, and Makarychev [10]. The hardness result holds even
for instances in which all equations are of the form z; — z; = c. At a more qualitative level, this result
also implies that 1 — € vs. € hardness for MAX-2LIN(q) is equivalent to the Unique Games Conjecture.
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1 Introduction

The main result in this paper is a bound on the approximability of the MAX-CUT problem which matches
the approximation ratio achieved by the well-known Goemans-Williamson algorithm [25]. The proof of this
hardness result relies on the Unique Games Conjecture of Khot [36]. We also rely critically on a theorem
we call Majority Is Stablest, which was introduced as a conjecture in the original version of this paper. For
the convenience of the reader we will now briefly describe these two tools; formal statements appear in
Sections 3 and 4.

Unique Games Conjecture (roughly):  Given a bipartite graph G, a large constant size set of labels [M],
and a permutation of [M] written on each edge, consider the problem of trying to find a labeling of the
vertices of G from [M] so that each edge permutation is ‘satisfied.” The conjecture is that if M is a large
enough constant then it is NP-hard to distinguish instances which are 99% satisfiable from instances which
are 1% satisfiable.

Majority Is Stablest Theorem (roughly): Let f be a boolean function which is equally often 0 or 1.
Suppose the string z is picked uniformly at random and the string y is formed by flipping each bit of =
independently with probability n; we call Pr[f(z) = f(y)] the noise stability of f. The theorem states
that among all f in which each coordinate has o(1) ‘influence,” the Majority function has the highest noise
stability, up to an additive o(1).

We add in passing that the name Majority Is Stablest is a bit of a misnomer in that almost all bal-
anced boolean threshold functions are equally noise stable (see Theorem 5). We also note that the Majority
Is Stablest theorem has interesting applications outside of this work — to the economic theory of social
choice [33] for example — and may well prove useful for other PCP-based inapproximability results. In
Section 6.3 we mention interesting generalizations of the Majority Is Stablest theorem for g-ary functions,
q > 2, which are relevant for hardness of approximation and are not resolved in full.

Despite the fact that our hardness result for MAX-CUT relies on the unproven Unique Games Conjec-
ture, we feel it is interesting for several reasons. First, in our opinion it is remarkable that the Unique Games
Conjecture should yield a tight hardness of approximation ratio for MAX-CUT, and that indeed the best
factor should be the peculiar number aqy. It is intriguing that the precise quantity o, should arise from a
noise stability property of the Majority function, and certainly there was previously little evidence to suggest
that the Goemans-Williamson algorithm might be optimal.

Another reason we believe our result is interesting is related to this last point. Since the Goemans-
Williamson algorithm was published a decade ago there has been no algorithmic progress on approximating
MAX-CUT. Since Hastad’s classic inapproximability paper [31] from two years later there has been no
progress on the hardness of approximating MAX-CUT, except for the creation of a better reduction gad-
get [51]. As one of the most natural and simple problems to have resisted matching approximability bounds,
we feel MAX-CUT deserves further investigation and analysis. In particular, we think that regardless of
the truth of the Unique Games Conjecture, this paper gives interesting insight into the geometric nature
of MAX-CUT. Indeed, insights we have gleaned from studying the MAX-CUT problem in this light have
motivated us to give new positive approximation algorithms for variants of other 2-variable CSPs such as
MAX-2SAT; see Section 9.

Finally, instead of viewing our result as relying on the unproven Unique Games Conjecture, we can
view it as being an investigation into the truth of UGC. Indeed our hardness results for both MAX-CUT
and for two-variable linear equations modulo ¢ provide explicit parameters for which the Unique Games
Conijecture, if true, must hold. (Note that both problems are Unique Games themselves.) Thus our work
gives a target for algorithmic attacks on the Unique Games Conjecture, which if passed will refute it.



Indeed, works subsequent to the original version of this paper have provided approximation algorithms
for the Unique Games problem [50, 28, 10] improving on Khot’s original algorithm [36]. In particular,
in [10] Charikar, Makarychev, and Makarychev gave a semidefinite programming-based approximation
algorithm for Unique Games whose approximation factor nearly matches our hardness bound for MAX-
2LIN(q). The current situation is therefore that any improvement in the approximation factors for either
MAX-CUT or for the more general MAX-2LIN(q) will refute the Unique Games Conjecture.

1.1 Overview of the paper

In Section 2 we describe the MAX-CUT problem and discuss its history. We then state the Unique Games
Conjecture in Section 3 and discuss very recent algorithm results for the problem. The Majority Is Stablest
problem is discussed in Section 4, along with its generalization to g-ary domains, ¢ > 2. We discuss the
geometric aspects of MAX-CUT and their connection with Majority Is Stablest result and the Goemans-
Williamson approximation algorithm in Section 5. Our main results are stated in Section 6. Section 7 is
devoted to some technical definitions, preliminaries, and Fourier analytic formulas. In Section 8 we prove
our main theorem on the hardness of approximating MAX-CUT, based on the Unique Games Conjecture.
In Section 9 we investigate the approximability of other binary 2-CSPs, such as MAX-2SAT. Finally, Sec-
tion 11 is devoted to extending our techniques to the g-ary domain; we prove some results about noise
stability in this domain and then prove our Unique Games-hardness results for MAX-¢-CUT and MAX-
2LIN(g) and MAX-¢-CUT.

2 About MAX-CUT

The MAX-CUT problem is a classic and simple combinatorial optimization problem: Given a graph G, find
the size of the largest cut in G. By a cut we mean a partition of the vertices of G into two sets; the size of the
cut is the number of edges with one vertex on either side of the partition. One can also consider a weighted
version of the problem in which each edge is assigned a nonnegative weight and the goal is to cut as much
weight as possible.

MAX-CUT is NP-complete (indeed, it is one of Karp’s original NP-complete problems [35]) and so
it is of interest to try to find polynomial time approximation algorithms. For maximization problems such
as MAX-CUT we say an algorithm gives an «-approximation if it always returns an answer which is at
least « times the optimal value; we also often relax this definition to allow randomized algorithms which
in expectation give a-approximations. Crescenzi, Silvestri, and Trevisan [11] have shown that the weighted
and unweighted versions of MAX-CUT have equal optimal approximation factors (up to an additive o(1))
and so we pass freely between the two problems in this paper.

The trivial randomized algorithm for MAX-CUT — put each vertex on either side of the partition in-
dependently with equal probability — is a 1/2-approximation, and this algorithm is easy to derandom-
ize; Sahni and Gonzalez [45] gave the first 1/2-approximation algorithm in 1976. Following this some
(1/2 + o(1))-approximation algorithms were given, but no real progress was made until the breakthrough
1994 paper of Goemans and Williamson [25]. This remarkable work used semidefinite programming to
achieve an agy-approximation algorithm, where the constant gy = .878567 is the trigonometric quantity

. 0/m
dow = (b2 (1 —cosf)/2

The optimal choice of @ is the solution of 6§ = tan(6/2), namely 6* ~ 2.33 ~ 134°, and agy = —=4=.
The geometric nature of Goemans and Williamson’s algorithm might be considered surprising, but as we
shall see, this geometry seems to be an inherent part of the MAX-CUT problem.



On the hardness of approximation side, MAX-CUT was proved MAX-SNP hard [44] and Bellare, Gol-
dreich, and Sudan [2] explicitly showed that it was NP-hard to approximate MAX-CUT to any factor higher
than 83/84. The hardness factor was improved to 16/17 ~ .941176 by Hastad [31] via a reduction from
MAX-3LIN using a gadget of Trevisan, Sorkin, Sudan, and Williamson [51]. This stands as the current best
hardness result.

Despite much effort and many improvements in the approximation guarantees of other semidefinite pro-
gramming based algorithms, no one has been able to improve on the algorithm of Goemans and Williamson.
Although the true approximation ratio of Goemans-Williamson was proved to be not more than «a.q,, [34, 18]
and the integrality gap of their semidefinite relaxation was also proved to be ag, [18], there appears on the
face of it to be plenty of possibilities for improvement. Adding triangle constraints and other valid con-
straints to the semidefinite program has been suggested, alternate rounding schemes have been proposed,
and local modification heuristics that work for special graphs have been proven (see, e.g., [25, 17, 16, 34,
52, 15, 18]). And of course, perhaps a completely different algorithm altogether can perform better. Sev-
eral papers have either explicitly ([16]) or implicitly ([18]) given the problem of improving on o, as an
important research goal.

However, in this paper we show that approximating MAX-CUT to within any factor larger than oy, will
in fact overturn the Unique Games Conjecture.

3 About the Unigue Games Conjecture

MAX-CUT belongs to the class of constraint satisfaction problems on 2 variables (2-CSPs). In a k-CSP we
are given a set of variables and a set of constraints, where each constraint depends on exactly k variables.
The goal is to find an assignment to the variables so as to maximize the number of constraints satisfied. In
the case of MAX-CUT, the vertices serve as variables and the edges as constraints. Every constraint says
that two certain variables should receive different boolean values.

Proving inapproximability results for a k-CSP is equivalent to constructing a k-query PCP with a specific
acceptance predicate. Usually the so-called Label Cover problem is a starting point for any PCP construc-
tion. Label Cover is a 2-CSP where the variables range over a large (non-boolean) domain. Usually, inap-
proximability results for boolean CSPs are obtained by encoding assignments to Label Cover variables via
a binary code and then running PCP tests on the (supposed) encodings. This approach has been immensely
successful in proving inapproximability results for k-CSPs with & > 3 (see for example [31, 46, 29]). How-
ever the approach gets stuck in the case of 2-CSPs. We seem to have no techniques for constructing boolean
2-query PCPs and the bottleneck seems to be the lack of an appropriate PCP ‘outer verifier.’

Khot suggested the Unique Games Conjecture in [36] as a possible direction for proving inapproxima-
bility results for some important 2-CSPs, such as Min-2SAT-Deletion, Vertex Cover, Graph-Min-Bisection
and MAX-CUT. This conjecture asserts the hardness of the ‘Unique Label Cover’ problem:

Definition 1. The Unique Label Cover problem, L(V, W, E, [M], {7}, w)cE) is defined as follows:
Given is a bipartite graph with left side vertices V, right side vertices 1, and a set of edges E. The goal
is to assign one ‘label’ to every vertex of the graph, where [M] is the set of allowed labels. The labeling is
supposed to satisfy certain constraints given by bijective maps o, ,, : [M] — [M]. There is one such map
for every edge (v, w) € E. A labeling ‘satisfies” an edge (v, w) if

ov.w(label(w)) = label(v).

The optimum OPT of the unique label cover problem is defined to be the maximum fraction of edges satisfied
by any labeling.



The Unique Label Cover problem is a special case of the Label Cover problem. It can also be stated
in terms of 2-Prover-1-Round Games, but the Label Cover formulation is easier to work with. The Unique
Games Conjecture asserts that this problem is hard:

Unique Games Conjecture: For any n, v > 0, there exists a constant M/ = M (n, ) such that it is NP-hard
to distinguish whether the Unique Label Cover problem with label set of size M has optimum at least 1 —
or at most .

The Unique Games Conjectures asserts the existence of a powerful outer verifier that makes only 2
queries (albeit over a large alphabet) and has a very specific acceptance predicate: for every answer to the
first query, there is exactly one answer to the second query for which the verifier would accept, and vice
versa. Once we have such a powerful outer verifier, we can possibly construct a suitable inner verifier and
prove the desired inapproximability results. Typically, though, the inner verifier will need to rely on rather
deep theorems about the Fourier spectrum of boolean functions, e.g. the theorem of Bourgain [7] or of
Friedgut [21].

The Unique Games Conjecture was used in [36] to show that Min-2SAT-Deletion is NP-hard to ap-
proximate within any constant factor. The inner verifier is based on a test proposed by Hastad [30] and on
Bourgain’s theorem. It is also implicit in this paper that the Unique Games Conjecture with an additional
‘expansion-like’ condition on the underlying bipartite graph of the Label Cover problem would imply that
Graph-Min-Bisection is NP-hard to approximate within any constant factor. Khot and Regev [37] showed
that the conjecture implies that Vertex Cover is NP-hard to approximate within any factor less than 2. The in-
ner verifier in their paper is based on Friedgut’s theorem and is inspired by the work of Dinur and Safra [14]
that showed 1.36 hardness for Vertex Cover. In the present paper we continue this line of research, showing
an inner verifier that together with the Unique Games Conjecture yields a tight hardness result for MAX-
CUT. Our inner verifier relies critically on the Majority Is Stablest theorem.

Algorithmic results for Unique Label Cover. It is natural to ask how the function M (5, ~) in the Unique
Games Conjecture can behave. Lower bounds on M are obtained by giving algorithms for Unique Label
Cover. Several very recent results have provided such algorithms. Most relevant for this paper is the algo-
rithm of [10], which has the following behavior for Unique Label instances with label set of size ¢: For any
constant > 0, on instances with optimum 1 — 7 it satisfies roughly a (1 /q)”/ (2-31) fraction of edges, up to
lower order powers of ¢. Also, for n = 1/ log g, it seems to satisfy an £2(1) fraction of edges (at the present
time the final version of [10] has not yet appeared).

4 About theMajority Is Stablest problem

To state the Majority Is Stablest problem, we need some definitions. For convenience we regard the boolean
values as —1 and 1 rather than 0 and 1. Thus a boolean function isamap f: {—1,1}" — {—1,1}. We will
often generalize to the case of functions f: {—1,1}" — R. In all of what follows we consider the set of
strings {—1, 1}" to be a probability space under the uniform distribution.

First we recall the well-known notion of ‘influence’, introduced to computer science in [3] and studied
even earlier in economics.

Definition 2. Let f: {—1,1}™ — R. Then the influence of z; on f is defined by

Inf;(f) = E [Varg, [f]] -

(xl,...,xi,17xi+1,...,xn)



(Note that for f: {—1,1}" — {—1,1},

Infi(f) = Pr  [f(x) # f(z1,...,—%i...20)].)

ze{-1,1}"

Instead of picking x at random, flipping one bit, and seeing if this changes the value of f, we can instead
flip a constant fraction (in expectation) of the bits. This leads to the study of ‘noise sensitivity,” pioneered in
computer science by [32, 31, 4].

Definition 3. Let f: {—1,1}" — Rand let —1 < p < 1. The noise stability of f at p is defined as follows:
Let = be a uniformly random string in {—1,1}™ and let y be a ‘p-correlated’ copy; i.e., pick each bit y;
independently so that E[z;y;] = p. Then the noise stability is defined to be

Sp(f) = Eaylf(2)f (y)]-
(Note that for f: {—1,1}" — {—1,1} we have S,(f) = 2Pr,,[f(z) = f(y)] — 1.)

We may now state the Majority Is Stablest theorem. This result was presented as a strongly-believed con-
jecture in the original version of this paper. It has recently been proved in [42]. Informally, the theorem says
that among all balanced boolean functions with small influences, the Majority function has the highest noise
stability. Note that the assumption of small influences is necessary since the ‘dictator’ function f(x) = x;
provably has the highest noise stability among all balanced boolean functions, for every p. Note that when n
tends to infinity, the noise stability at p of the n-bit Majority function approaches (1 —% arccos p) (this fact
was stated in a paper of Gulibaud from the 1960’s [27] and is ultimately derived from the Central Limit theo-
rem plus a result from an 1890’s paper of Sheppard [47]). Thus we have the formal statement of the theorem:

Majority Is Stablest theorem: Fix p € [0, 1). Then for any e > 0 there is a small enough § = d(e, p) > 0
such that if f : {—1,1}" — [—1, 1] is any function satisfying E[f] = 0 and Inf;(f) < dforalli=1...n,
then

Sp(f) <1— 2arccos p +e.

In the remainder of this section, we shall describe why the Majority Is Stablest theorem is relevant for
MAX-CUT inner verifiers.

As described in the previous section, inapproximability results for many problems are obtained by con-
structing a tailor-made PCP; usually, the PCP is obtained by composing an “outer verifier’ (almost always
a Label Cover problem) with an “inner verifier’. As mentioned the outer verifier for our reduction is the
Unique Label Cover problem. As for the inner verifier, it is always application-specific and its acceptance
predicate is tailor-made for the problem at hand, in our case MAX-CUT.

A codeword test is an essential submodule of an inner verifier. It is a probabilistic procedure for checking
whether a given string is a codeword of an error-correcting code, most commonly the ‘Long Code’ (see [2]).

Definition 4. The Long Code over domain [n] is a binary code in which the message space is in fact the set
of truth tables of boolean functions f : {—1,1}" — {—1,1}. The codeword encoding the ‘message’ i € [n]
is given by the ith dictator function; i.e., the function f(z1,x2,...,z,) = ;.

A codeword test for the Long Code can often be extended to a full-fledged inner verifier. So in the
following, we will focus only on a Long Code test. The choice of the test is determined by the problem at
hand, in our case MAX-CUT. The test must read two bits from a Long Code and accept if and only if the
values read are distinct. Note that a legal Long Code word, i.e. a dictator, is the truth table of a boolean



function in which one coordinate has influence 1. Let us say that a function f is far from being a Long
Code if all the coordinates have o(1) influences (note that this is not a standard notion of being far from a
codeword, but rather a notion tailored for our proof technique).

We expect the following from a codeword test: a correct Long Code word passes the test with probability
c (called the ‘completeness’ parameter of the test) whereas any function far from being a Long Code passes
the test with probability at most s (called the ‘soundness’ parameter). Once we construct a full-fledged inner
verifier, the ratio s/c will be the inapproximability factor for MAX-CUT.

The Long Code test. As mentioned before, our Long Code test will need to take a boolean function
f:{-1,1}" — {—1,1}, pick two inputs = and y, and check that f(x) # f(y). In fact our test will be
precisely a ‘noise stability’ test for some fixed noise rate p; i.e., = will be chosen uniformly at random and
y will be formed by flipping each bit of = independently with probability % — %p. Here p will be a value
between —1 and 0, and therefore y is a highly noisy version of x, or alternatively, a moderately noisy version
of —x. Thus (at least for legal Long Code words) we expect f(z) to be quite anticorrelated with f(y); i.e.,
it should pass the test with relatively high probability. Recalling Definition 3, we see that the probability a
given function f passes our test is precisely 3 — 1S,(f).

A legal Long Code word, i.e. a dictator function, has noise stability precisely p and thus the completeness
of the Long Code testisc = %— % p. The crucial aspect of our test is the analysis of the soundness parameter.

This is where the Majority Is Stablest theorem comes in. Suppose f: {—1,1}" — {—1,1} is any
function that is far from being a Long Code word. By a simple trick (see Proposition 7.4) we can show that
the Majority Is Stablest theorem (which is stated only for p > 0) implies that for p < 0 the noise stability of
fatpisatleast 1 — % arccos p (a negative number). Hence it follows that functions that are far from being
a Long Code pass the test with probability at most s = 2 — (1 — 2 arccos p) = (arccos p) /.

Choosing p < 0 as we please, this leads to an inapproximability ratio of

s . (arccosp)/m ) 0/m
- = min ———— = min ————— =q«
¢ -lp<0 L-1p 0<6<r (1 — cos@)/2 e

precisely the Goemans-Williamson constant.

4.1 History of the Majority I's Stablest problem

There has been a long line of work in the analysis of boolean functions studying the noise sensitivity
of functions and the associated Fourier-theoretic quantities (some examples, roughly in chronological or-
der: [32, 8, 48, 22, 49, 9, 21, 4, 6, 7, 23, 33, 41, 43, 13]). Building on the intuition gathered from this past
work, we were motivated to make the Majority Is Stablest conjecture in the originial version of the paper.
We discuss these relevant previous results below.

The Majority and weighted majority (or balanced threshold) functions have always played an important
role in the study of noise sensitivity of boolean functions. This family of functions is, in a sense, the set of all
“uniformly noise-stable” functions. In [4], it is shown that a family of monotone functions is asymptotically
noise sensitive if and only if it is asymptotically orthogonal to the family of balanced threshold functions;
by asymptotically noise sensitive functions it is meant those that have S ,(f) = o(1) for any constant p.

Stated in terms of Fourier coefficients (see Section 7.2), the Majority Is Stablest theorem says that among
all ‘non-junta-like’ functions, the one which has most Fourier mass on the lower levels is the Majority
function. This is because S,(f) is a just a weighted sum of the squared Fourier coefficients of f, where
coefficients at level & have weight 4. Some strong evidence in favor of the Majority Is Stablest theorem
was given by Bourgain [7], who showed that non-junta functions f have their Fourier tails Z|S‘>k f(S)2

7



lower-bounded by k—1/2-°(1) " As Bourgain noted, the Majority function has precisely this tail decay and
thus his theorem is ‘basically’ optimal. In other words, Majority has the ‘least’ Fourier weight on higher
levels and therefore the “‘most’ Fourier weight on lower levels.

The expression S_; /3(f) played a central role in a Fourier-theoretic approach to the Condorcet Paradox
and Arrow’s Theorem given by Kalai [33]. This expression determines the probability of an “irrational out-
come” in a certain voting scheme. Much of [33] is devoted to the study of S_; /5(f) and in particular, it is
conjectured there (Conjecture 5.1) that for ‘transitive’ functions, which have the property that all influences
are the same, the sum ngk f(S)2 is maximized by the Majority function for all k. Although this conjec-
ture turns out to be false, the corollaries of the conjecture in [33] are implied by the fact that Majority is the
stablest transitive function, and this is a consequence of the Majority Is Stablest theorem.

Finally, in [43] it was shown that Majority is essentially the maximizer for another noise stability prob-
lem, namely maximizing the kth norm of 7, f, where T}, is the Bonami-Beckner operator (see Section 7)
among balanced functions f for large k£ and n = co.

For some interesting special cases of the Majority Is Stablest theorem we can give short and simple
proofs. These are shown in Section 10.

4.2 Generalizationsto the g-ary domain

Our methods can also be used to obtain hardness results for constraint satisfaction problems over variables
ranging over larger domains [g]. In the g-ary regime we need a multi-valued analogue of the Majority Is
Stablest theorem. Before we can formulate the appropriate analogue, we need to specify what we mean by
‘g-ary functions’ and also to define the notions of noise stability and influences for them.

The obvious generalization of a boolean function to the g-ary regime would be a function of the form
f : [g]™ — [q]. However, as we did for boolean functions, we will consider a continuous relaxation of the
range. Specifically, define

Ag=A{(z1,...,2q) €[0,1]7: > z; = 1},
which can be thought of as the space of probability distributions over [g]. We will consider functions

f g™ — Ag; this generalizes functions f : [¢]™ — [q] if we identify the elements a € [¢] in f’s range
with the points (0,...,0,1,0,...,0) € Ay

Definition 5. Let _qul < p < 1landletzand y be [¢|"-valued random variables. We say that = and y are
a p-correlated pair if = is uniformly distributed on [¢]™, and y is formed from 2 by choosing each y; so that
Prly; = a] = 4z,—ayp + % for each a, independently for each i. Note that for 0 < p < 1, it is equivalent
to say that each coordinate y; is independently chosen to be x; with probability p and is a uniformly random
element of [g] otherwise.

Definition 6. Let f : [¢]" — A, and let —q%l < p < 1. The noise stability of f at p is defined to be

So(£) = E[(f(z), )],
where - and y are a p-correlated pair. Equivalently, we may define the noise stability of functions g : [¢]" —
R via

Sp(g) = fy[g(w)g(y)]

and then denoting by f* the ith coordinate projection of f, we have S,(f) = > | S,(f?).
We remark that when f’s range is simply [¢| (as embedded in A,), the quantity S,(f) is simply the

probability that f(z) = f(y) when x and y are a p-correlated pair.
The definition of influences is very similar to that in the boolean case:



Definition 7. Let f : [¢]" — A,. For 1 < i < n, the influence of the ith coordinate on f is defined to be

Inf;(f) = E [Varg, [f (21, .., 2n)])-

Tlsee0sTi—1yTi415-3Tn

We say that f : [¢]" — A, is ‘balanced’ if E[f] = 1/q for each i. The most obvious generalization
of the Majority function to the g-ary domain is the Plurality function, which on input = € [¢]™ outputs the
most common value for x; (tie-breaking is unimportant). It is natural to ask whether a “Plurality Is Stablest”
theorem holds. This question is still open, and we present it as a conjecture. For this purpose, define

PlurStab(q, p) = lim S,(Plurality,, ,).

The limit in the formula above indeed exists, and there appears to be no closed formula for it; however we
provide an exact description of it in Theorem 8 in Section 6.

Plurality Is Stablest Conjecture. Fix ¢ > 2 and _qu1 < p < 1. Then for any € > 0 there is a small
enough § = d(e, p,q) such that if f : [¢]™ — [q] is any balanced g¢-ary function with Inf;(f) < ¢ for all
1=1...n,then

Sp(f) < PlurStab(q, p) + €

Note that in the case ¢ = 2, Sheppard’s formula gives PlurStab(2,p) = 1 — %arccos p, which is the
noise stability of Majority; there is also a closed formula for ¢ = 3 ([26, 12]). For large values of ¢ we give
asymptotics which hold up to a 1 + o,(1) factor in Section 6. For the reader’s convenience, we remark here
that

PlurStab(q, p) = © ((1/q)(1_p)/(1+p)) .

Although we don’t have Plurality Is Stablest, a result of [42] generalizing Majority Is Stablest serves
us almost equally well. This result bounds the stability of a function in terms of the behavior of correlated
Gaussians. To state it, we need one more definition:

Definition 8. Let € [0,1] and p € [0, 1]. Let X and Y denote normal random variables with mean 0 and
covariance matrix (}) 7). We define

Ap(p) =Pr[X >tand Y > ],
where ¢ is chosen so that Pr[X > t] = p.

MOO theorem: Fix ¢ > 2 and p € [0,1). Then for any € > 0 there is a small enough § = é(e, p,q) > 0
such that if f : [¢]™ — [0, 1] is any function satisfying E[f] = pand Inf;(f) < foralli = 1...n, then

So(F) < Ap(p) +e.
As a result we have that the noise stability of any balanced f : [¢]" — A, is essentially at most

qA,(1/q). We give the asymptotics of this quantity in Section 6 and they are extremely close to those of
PlurStab,(q); in particular, they are the same up to a constant multiplicative factor.



5 Onthegeometry of MAX-CUT

We shall now try to explain (non-rigorously) the connection between the Majority Is Stablest theorem and the
geometric picture that arises from the Goemans-Williamson algorithm. But before going further, let us first
note that the approximation ratio achieved by Goemans-Williamson arises as the solution of a trigonometric
minimization problem, which in turn originates from a geometric setting. To obtain a matching inapprox-
imability constant, it seems essential to introduce some similar geometric structure. Such a structure is
present in the construction of our Long Code test, although it is only implicit in the actual proofs.

For the purposes of the following explanation, let us consider the n-dimensional discrete cube {—1,1}"
as a subset of the n-dimensional Euclidean unit sphere (we normalize the Euclidean norm accordingly). The
Majority Is Stablest theorem essentially states that the discrete cube is a good approximation of the sphere
in a certain sense.

The Goemans-Williamson algorithm. We start with a brief description of how the approximation ratio
aew arises in the Goemans-Williamson algorithm. To find a large cut in a given graph G = (V, E) with n
vertices, the Goemans-Williamson algorithm embeds the graph in the unit sphere of R™, identifying each
vertex v € V with a unit vector x,, on the sphere. The embedding is selected such that the sum

> 5

(u,v)eE

<Xu> Xv>a (1)

N =

involving the inner products of vectors associated with the endpoints of edges of G, is maximized. The
maximum sum bounds from above the size of the maximum cut, since the size of every cut can be realized
by associating all the vertices from one side of the cut with an arbitrary point x on the sphere, and associating
all other vertices with —x.

Once the embedding is set, a cut in G is obtained by choosing a random hyperplane through the origin
and partitioning the vertices according to the side of the hyperplane on which their associated vectors fall.
For an edge (u, v) in G, the probability that « and v lie on opposite sides of the random cut is proportional
to the angle between x,, and x,,. More precisely, letting p = (x,, x,,) denote the inner product between the
vectors associated with « and v, the probability that the edge (u, v) is cut is (arccos p) /.

The approximation ratio a, Of the Goemans-Williamson algorithm is obtained by noting that

cow = min TCSAIT o rsser )

—1<p<1 53 — 3P
is the smallest ratio possible between the probability of an edge being cut and its contribution to (1). Hence
the expected size of the cut obtained by the Goemans-Williamson algorithm is at least an agy-fraction of (1),

and therefore it is also at least an agy-fraction of the maximum cut in G.

Cutting the sphere. In [18], Feige and Schechtman considered the graph G, whose vertices are all the
vectors on the unit sphere and in which two vertices are connected by an edge in G, iff their inner prod-
uct is roughly p (we do not get into the precise details). It is shown in [18] that in this graph the largest
cut is obtained by any hyperplane through the origin. (To state this rigorously one should define appro-
priate measures etc., but let us remain at a simplistic level for this discussion.) Such a hyperplane cuts an
(arccos p) /m-fraction of the edges in the graph.

Restricting to the cube. We would like to consider an edge-weighted graph H , which is, in a non-rigorous
sense, the graph induced by G, on the discrete hypercube. For two vectors x,y on the discrete cube, we
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define the weight of the edge (x,y) to be
Pr[X =xand Y =y],

where X and Y are p-correlated random elements of the discrete cube. The graph H , resembles G, in the
sense that almost all the edge-weight in H, is concentrated on edges (x,y) for which (x,y) ~ p; we call
such edges typical edges. Let us examine how good H, is as an ‘approximation’ of the graph G/,.

Note that the structure of H,, is very reminiscent of our Long Code test, mentioned above. To make the
similarity even clearer, note that a cut C' in H, immediately defines a boolean function f- over the discrete
cube. It is easy to observe that the size of C' (namely the sum of weights of the edges that are cut) is exactly
the noise stability of f — i.e., the acceptance probability of the Long Code test with parameter p when

applied to fc.

The size of the cut.  So how large can the size of C be? If C is determined by a random hyperplane, then a
typical edge is cut with probability about (arccos p) /7. The expected size of such a cut is therefore roughly
the same as the weight of the maximal cut in G, (when the total weight of the edges in G, is normalized to
1).

There are, however, cuts in H, whose weight is larger than (arccos p) /7. For example, one can partition
the vertices in H, according to their first coordinate, taking one side of the cut C' to be the set of vectors
in the discrete cube whose first coordinate is 1 and the other side of C' to be the set of vectors whose first
coordinate is —1; note that this is the cut defined by the hyperplane which is perpendicular to the first
coordinate. When interpreted as a function, C' corresponds to the function fo(x) = x1; i.e., it is a correct
Long Code word. One can easily observe that the size of C' is % — %p — i.e., it is exactly the completeness
of the Long Code test with parameter p.

The Majority Is Stablest theorem comes in.  The size of one-coordinate cuts in H , is larger than the best
cuts achievable in G,. The Majority Is Stablest theorem implies, however, that essentially those are the only
special cases, and that all other cuts in H , are no larger than the maximum cut in G,. That is, it implies that
unless f- depends significantly on one of the coordinates, then the size of C is at most (arccos p) /7 + €.
Stated formally, Proposition 7.4 in Section 7.3 says the following.

Proposition For any p € (—1,0] and any e > 0 there is a small enough § = d(e, p) > 0 such that if C'is a
cut in H, such that Inf;(fc) < 0 for every i, then the size of C' is at most (arccos p) /7 + €

6 Our results

In this section we formally state our main results.

6.1 Hardnessfor MAX-CUT and 2-bit CSPs
Our main result regarding MAX-CUT is the following:

Theorem 1. Assume the Unique Games Conjecture. Then for every constant —1 < p < 0and e > 0, it is

NP-hard to distinguish instances of MAX-CUT that are at least (3 — 1 p)-satisfiable from instances that are

at most ((arccos p)/m + €)-satisfiable. In particular, choosing p = p*, where

»* — argmin (arccos {0) /T
—1<p<0 53 — 3P

~ —.6809,

implies that it is NP-hard to approximate MAX-CUT to within any factor greater than the Goemans-
Williamson constant aigy =~ .878567.
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Recall that the main result of Goemans and Williamosn [25] is an algorithm which, given instances of
MAX-CUT with fractional optimum at least % — %p (where p < p*), outputs a solution with value at least
(arccos p)/m — € (where e > 0 can be an arbitrarily small constant). Thus our Unique Games-hardness
theorem precisely matches the algorithmic guarantee of Goemans and Williamson for all —1 < p < p*. For
p very close to —1, by considering the Taylor expansion of arccos p, we have the following corollary:

Corollary 2. Assume the Unique Games Conjecture. Then for all sufficiently small » > 0, it is NP-hard
to distinguish instances of MAX-CUT that are at least (1 — n)-satisfiable from instances that are at most

(1 — (2/m),/n)-satisfiable.

We prove Theorem 1 in Section 8.

In Section 9 we apply our techniques for other 2-bit CSPs besides MAX-CUT. In particular we prove:

Theorem 3. Assume the Unique Games Conjecture. Then it is NP-hard to approximate MAX-2SAT to within
any factor greater than 3, where

e min 2HCIDE

~ .943.
T<f<r 3 —cosl

The proof of Theorem 3 actually implies that MAX-2SAT is hard to approximate to within any factor
greater than 3, even if restricted to instances where each variable appears equally often positively and
negatively (see Section 9 for more details). We show that for this restricted problem, called Balanced-
MAX-2SAT, the approximation bound 3 is tight; i.e., it can be approximated to within any factor smaller
than G:

Theorem 4. Balanced-MAX-2SAT is polynomial-time approximable to within any factor smaller than 5.

6.2 Special casesof the Majority Is Stablest theorem
Some special cases of the Majority Is Stablest theorem are of independent interest.

First, it should be noted that the Majority function is not a ‘unique’ optimizer, in the sense that every
weighted threshold that does not depend largely on any one coordinate is equally noise-stable:

Theorem 5. Let f : {—1,1}" — {—1, 1} be any balanced threshold function, namely of the form f(x) =
sgn(airy + -+ - apzy)t. Let § = max; {Inf;(f)}. Then for all p € [—1,1],

Sp(f) =1— 2 arccosp+ O(5(1 — Ip))~3/2).

It is also of interest to consider the case where p tends to zero. It is easy to see that in this case the
Majority Is Stablest theorem implies that the weight of a Boolean function on the first level of its Fourier
transform is essentially bounded by 2/7. We give an easy and direct proof of this fact:

Theorem 6. Suppose f : {—1,1}" — [—1, 1] satisfies Inf;(f) < ¢ for all 5. Then

> f8)<2+0s,

|S]=1

where C' = 2(1 — /2/7).

twithout loss of generality we assume the linear form is never 0.
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We also can give a direct proof of an improved version of Theorem 6 which depends on the mean of
[ as the mean becomes small enough, this result approaches a result of Talagrand [49] (which states that
for every function f : {~1,1}" — {~1,1} with Pr[f = 1] = p < 1/2 it holds that 35 g _, f(5)* <
O(p® log(1/p))):
Theorem 7. Let ¢ be the Gaussian density function and ¢ be the Gaussian distribution function. Let
U(z) = ¢(~(z)) : [0,1] — [0,1/+/27] denote the so-called ‘Gaussian isoperimetric function’

Suppose f : {—1,1}" — [—1, 1] satisfies Inf;(f) < ¢ for all 4. Letting u = % + SE[f], we have

S F(S)? <4(U) + o7,

|S]=1

where the error term e is given by

e = max{1, /|2~ (1)[} - O(V0).

This theorem is sharp up to the error term, as can be observed by considering restrictions of Majority
functions — i.e., symmetric threshold functions. Note that for « small, U(z) ~ z/21In(1/z); this is why
our result is comparable with Talagrand’s.

6.3 Larger domains. ¢g-ary functions

In this section we state our results for g-ary functions and for g-ary constraint satisfaction problems. We
will be concerned with two such 2-CSPs. The first is MAX-¢-CUT, the problem of partitioning a graph
into ¢ parts so as to maximize the number of edges between parts. The second is is MAX-2LIN(g): Given
an integer ¢ > 2, the MAX-2LIN(q) problem is to maximize the number of satisfied equations in a given
system of linear equations modulo ¢, where exactly two variables appear in each equation. See Section 11.1
for formal definitions.

Stability estimates. Our hardness results are based in part on the following analysis of the noise stability
of g-ary functions, as discussed in Section 4. We first obtain an exact analytic expression for the noise
stability of the plurality function.

Theorem 8. Fix ¢ and _qul < p<1.Then

lim S,(Plurality,,) = ¢I(q, p),

n—oo
where I(q, p) is defined as follows: Let (U1, V1) ..., (Uy, Vy) be aset of ¢ i.i.d. normal vectors with mean 0
and covariance matrix (; ’1’) ; then

I(g,p) = Pr{ly = max Us, Vi = max V.
Further, the quantity I(q, p) is precisely equal the key quantity called I(p) (with ¢ = k) in Frieze and
Jerrum’s paper on MAX-¢g-CUT [24] (see also [12]).

As a corollary of Theorem 8, and a result of de Klerk et al. [12] (see also [24]) which gives the asymptotics
of I(q, p), we obtain the following:

Corollary 9. For every fixed 0 < p < 1, we have

oy DL/ (1 + p))?

(1-p)/(1+p)
! ) B (4mln(q — 1)) Wa 3)

PlurStab(q, p) ~ (q——l

where the ~ indicates that the ratio of the two sides is 1 as ¢ — oo, and I is the gamma function.
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Since we do not have the Plurality Is Stablest conjecture we cannot actually use Corollary 9 in our
hardness results. Instead we use the MOO theorem which is stated in terms of the function A ,(x); therefore
we need bounds on its asymptotics. Slightly improving the estimate from Lemma 11.1 of [12], we have:

Proposition 6.1. Denote by ¢ the Gaussian density function ¢(z) = \/%e—ﬁ/?, and let N(z) = [ ¢

denote the Gaussian tail probability function. For any 0 < p < 1/2, let ¢t > 0 be the number such that
N(t) = p. Thenforall0 < p <1,

Ap(p) < (1 +p) - @ 'N<t\/%)- (4)

Note that in the case p = 1/2, A,(1/2) = (1 — 2 arccos p), and the case ;1 > 1/2 can be easily
reduced to the case u < 1/2. Also, it is relatively easy to see that the right hand side of (4) becomes a lower
bound on A, (1) if the (1 + p) factor is removed.

In fact, we are mainly interested in the case where  — 0 (t — o). In this case, it turns out that (4)
holds as an equality up to a 1 + o,,(1) factor (even if p is a function of 1. This yields the following:

Corollary 10. Let 4 — 0 and let ¢ = ¢(u) be defined as in Proposition 6.1. Then the following holds:

1. Forany p=p(p), 0 < p <1,

—0 —
Ap(p) "~ (1+p)-u~N(t\/}+—Z>
(where by ‘~” we mean that the ratio between the two sides tends to one).

2. If 0 < p < 1isfixed, then

—0 _ 1+ p)3/2
Ap(u) "=° 200 4z In(1 /) p/wﬁ-

3. Foranyfixed 0 < n < 1,
ghry(1/q) < (1/q)"C7.

4. Forany A = A(q) € (0,1), let p = 1 — (2. Then

Ao(1/q) <1 /2/7 VA + 0rm0(1) + 04 (L).
Part 2 of Corollary 10 is due de Klerk et al. [12]. It implies that gA,(1/¢) and PlurStab,(q) have

the same asymptotics as ¢ tends to infinity, up to a small multiplicative constant. The other statements of
Corollary 10 are proven in Section 11.3.

Hardness Results. We now move to stating our hardness results for g-ary domains. For MAX-¢-CUT we
show that assuming the Unique Games Conjecture, it is impossible to essentially improve on the approxi-
mation ratios for MAX-¢g-CUT achieved by Frieze and Jerrum [24] by more than an additive e.

Theorem 11. Assume the Unique Games Conjecture. Then for every ¢ > 0 it is NP-hard to distinguish
(1 — e)-satisfiable instances of MAX-¢-CUT from instances that are at most (1 — 1/¢q + (2Inq)/q® +
O(Inln q)/¢?)-satisfiable.

Our hardness result for MAX-2LIN(g) is formulated in terms of A, (x), discussed above.
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Theorem 12. Assume the Unique Games Conjecture. Then for every ¢ > 2, p € [0,1] and € > 0, given an
instance of MAX-2LIN(g), it is NP-hard to distinguish between the case where it is at least (p+ %(1 —p)—e€)-

satisfiable and the case where it is at most (qu(%) + ¢)-satisfiable. Furthermore, this holds even for
instances in which all equations are of the form z; — xz; = c.

Using the asymptotics of A,(x) given above in Corollary 10, we have:

Corollary 13. Assume the Unique Games Conjecture. Then for every fixed n > 0 there exists ¢o = qo(n)
such that for every fixed ¢ > gq the following holds. Given an instance of MAX-2LIN(g), it is NP-hard to
distinguish between the case where the instance is at least (1 — n)-satisfiable and the case where it is at
most (1/¢)"/ =" -satisfiable.

Corollary 14. Assume the Unique Games Conjecture, and let A = A(¢) € (0, 1). Given an instance of MAX-
2LIN(g), it is NP-hard to distinguish between the case where the instance is at least (1 — ﬁ)-satisfiable
and the case where it is at most s-satisfiable, where

s=1—/2/1 VA +0x-0(1) 4 04-o0(1).

Note that MAX-2LIN(q) is itself essentially an instance of Unique Label Cover, except for the fact that
the variable/equation structure need not be bipartite. But in fact, it is easy to observe that the “non-bipartite”
version of the Unique Games Conjecture is equivalent to the usual Unique Games Conjecture [38] (up to
a factor of 2 in the soundness). Hence Theorem 12 and its corollaries may be viewed as concerning the
allowable parameter tradeoffs in the Unique Games Conjecture. In particular, Corollary 13 implies:

Corollary 15. The Unique Games Conjecture holds if and only if it holds as follows: For every n > 0 and
label set size g (sufficiently large as a function of ), it is NP-hard to distinguish whether the Unique Label
Cover problem with label set size ¢ has optimum at least 1 — n or at most (1/¢)"/(2=7).

(The factor of 2 lost in soundness from passing to a bipartite version can be absorbed since the soundness
obtained in the proof of Corollary 13 is actually stronger by a factor of (log ¢)*(1).)

Recently, a result of Charikar, Makarychev, and Makarychev [10] showed that the parameters in Corol-
lary 15 are almost optimal. They give an algorithm for Unique Label Cover with label set size ¢ that, given
an instance with optimum (1 — ), outputs an assignment which satisfies at least a (1/¢)"/ (2=37 -fraction of
the constraints.

7 Defi nitions and technical preliminaries

In this section we give some definitions and make some technical observations concerning the Majority Is
Stablest theorem, reducing it to a form which is useful for our MAX-CUT reduction.

7.1 MAX-CUT and MAX-2SAT

For the majority of this paper we will be concerned with the MAX-CUT problem; we will also later consider
the MAX-2SAT problem. We give the formal definitions of these problems below.

Definition 9 (MAX-CUT). Given an undirected graph G = (V, E), the MAX-CUT problem is that of
finding a partition C = (V1, V2) which maximizes the size of the set (V; x V2) N E. Given a weight-function
w: E — RT, the weighted MAX-CUT problem is that of maximizing

Z w(e).

ee(VixVo)NE
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Definition 10 (MAX-2SAT). An instance of the MAX-2SAT problem is a set of boolean variables and a set
of disjunctions over two literals each, where a literal is either a variable or its negation. The problem is
to assign the variables so that the number of satisfied literals is maximized. Given a nonnegative weight
function over the set of disjunctions, the weighted MAX-2SAT problem is that of maximizing the sum of
weights of satisfied disjunctions.

As we noted earlier, [11] implies that the achievable approximation ratios for the weighted versions of
the above two problems are the same, up to an additive o(1), as the approximation ratios of the respective
non-weighted versions. Hence in this paper we do not make a distinction between the weighted and the
non-weighted versions.

7.2 Analytic notions

In this paper we treat the bit TRUE as —1 and the bit FALSE as 1; we consider functions f: {—1,1}" — R
and say a function is boolean-valued if its range is {—1, 1}. The domain {—1,1}" is viewed as a probability
space under the uniform measure and the set of all functions f: {—1,1}" — R as an inner product space
under (f, g) = E[fg]. The associated norm in this space is given by || f|2 = VE[f?].

Fourier expansion. For S C [n], let x5 denote the parity function on S, xs(x) = [[;cq®i. Itis well
known that the set of all such functions forms an orthonormal basis for our inner product space and thus
every function f : {—1,1}" — R can be expressed as

F=Y f(S)xs.

SC[n]

Here the real quantities f’(S) = (f,xgs) are called the Fourier coefficients of f and the above is called
the Fourier expansion of f. Plancherel’s identity states that (f,g) = > g £(8)§(S) and in particular,
1113 = Sg £(S)? Thus if £ is boolean-valued then 3" f(S)? = 1, and if f : {—1,1}" — [~1,1] then
Y5 f(S)2 < 1. We speak of f’s squared Fourier coefficients as weights, and we speak of the sets S being
stratified into levels according to |S|. So for example, by the weight of f at level 1 we mean Z|S\:1 f(5)2.

The Bonami-Beckner operator. Forany p € [—1, 1] we define the Bonami-Beckner operator 7, a linear
operator on the space of functions {—1,1}" — R, by T,(f)(z) = E[f(y)]; where each coordinate y; of
y is independently chosen to be x; with probability % + %p and —xz; with probability % — %p. It is easy
to check that 7,(f) = > ¢ p‘5|f’(S)Xg. It is also easy to verify the following relation between T, and the
noise stability (see Definition 3).

Proposition 7.1. Let f: {—1,1}" — Rand p € [-1,1]. Then

Sp(f) = (£, Tof) = D o' f(9)*.

SC[n]

The following identity is a well-known one, giving a Fourier analytic formula for the influences of a coordi-
nate on a function (see Definition 2).

Proposition 7.2. Let f: {—1,1}" — R. Then for every i € [n],

Inf;(f) = Zf(S)Z ()

EY
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Once we have the Fourier analytic formula for the influence, we can consider the contribution to the
influence of characters of bounded size.

Definition 11. Let f: {—1,1}" — R, and leti € [n]. The k-degree influence of coordinate 7 on f is defined
by
i (f) = D f(9)*

NEY)
|SI<k

7.3 Different formsof the Majority Is Stablest theorem
Recall the Majority Is Stablest theorem:

Majority Is Stablest theorem: Fix p € [0, 1). Then for any e > 0 there is a small enough § = d(e, p) > 0
such that if f: {—1,1}" — [—1, 1] is any function satisfying

E[f] =0, and

Inf;(f) <dforalli=1...n,

then
Sp(f) <1— 2 arccos p +e.

In the MAX-CUT reduction we need a slightly altered version of the Majority Is Stablest theorem. First,
we can replace influences by low-degree influences:

Proposition 7.3. The Majority Is Stablest theorem remains true if the assumption that Inf;(f) < ¢ for all ¢
is replaced by the assumption that Inf;k/(f) < ¢, where ¢’ and &’ are universal functions of ¢ and p.

Proof. Fix p < 1 and e > 0. Choose -y such that p*(1— (1—+)2¥) < ¢/4 for all k. Let § be chosen such that
if Inf;(g) < & forall i then S,(g) < 1— 2 arccos p+¢/4. Choose §' = §/2 and k' such that (1—~)?*" < ¢'.

Let f be a function satisfying Inf?k,(f) < ¢"and let g = T1_., f. Note that

Infi(g) < > fS+@-9* D f(S)P<d+8=0

S:HES,|S|<k’ S:HES,|S|<k’

for all .
It now follows that S,(g) < 1 — 2 arccos p + ¢/4 and therefore

Sp(f) = Su(9) + (011 — (1= )9 F(S)? < 1~ 2 arccos p + 3¢ /4.
S

Second, we need to treat the case of negative p:

Proposition 7.4. The Majority Is Stablest theorem is true ‘in reverse’ for p € (—1,0]. Thatis, S,(f) >
1- % arccos p — €, and furthermore, the assumption E[f] = 0 becomes unnecessary.

Proof. Let f : {—1,1}" — [-1,1] satisfy Inf;(f) < ¢ for all i. Let g be the odd part of f, g(x) = (f(z) —
f(=2))/2 =325/ 0da [ (S)zs. Then E[g] = 0, Inf;(g) < Inf;(f) forall ¢, and S,(f) = S,(g9) = —S—,(9),
which exceeds —(1 — % arccos p + €) by the Majority Is Stablest theorem applied to g. O
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Combining the above two propositions we get the result that will be used in our reduction from Unique
Label Cover to 2-bit CSPs:

Proposition 7.5. Fix p € (—1,0]. Then for any € > 0 there is a small enough § = (¢, p) > 0 and a large
enough k = k(e, p) such that if f : {—1,1}" — [—1, 1] is any function satisfying

Inf=*(f) < édforalli=1...n,

then
Sp(f) >1— 2 arccos p —e.

8 Reduction from Unique Label Cover to MAX-CUT

In this section we prove Theorem 1.

8.1 ThePCP

We construct a PCP that reads two bits from the proof and accepts if and only if the two bits are unequal.
The completeness and soundness are ¢ and s respectively. This implies that MAX-CUT is NP-hard to ap-
proximate within any factor greater than s/c. The reduction from the PCP to MAX-CUT is straightforward
and can be considered standard: Let the bits in the proof be vertices of a graph and the tests of the verifier be
the edges of the graph. The {—1, 1} assignment to bits in the proof corresponds to a partition of the graph
into two parts and the tests for which the verifier accepts correspond to the edges cut by this partition.

The completeness and soundness properties of the PCP rely on the Unique Games Conjecture and the
Majority Is Stablest theorem. The Unique Label Cover instance given by the Unique Games Conjecture
serves as the PCP outer verifier. The soundness of the Long Code-based inner verifier is implied by the
Majority Is Stablest theorem.

Before we explain the PCP test, we need some notation. For z € {—1,1}* and a bijection o : [M] —
[M], let z o o denote the string (z,(1), Zo(2), - - - » To(ar))- FOr z, € {—1,1}M, let 2 denote the M -bit
string that is the coordinatewise product of x and .

The PCP verifier is given the Unique Label Cover instance L(V, W, E, [M],{0p.w }(vw)cr) diven by
the Unique Games Conjecture. Using a result from [37] we may assume the bipartite graph is regular on the
V' side, so that choosing a uniformly random vertex v € V" and a random neighbor w of v yields a uniformly
random edge (u, w). We assume that the Unique Label Cover instance is either (1 — n)-satisfiable or at most
~-satisfiable, where we will choose the values of » and  to be sufficiently small later. The verifier expects
as a proof the Long Code of the label of every vertex w € W. The verifier is parameterized by p € (—1,0).

The PCP verifier for MAX-CUT with parameter —1 < p < 0

e Pick a vertex v € V at random and two of its neighbors w,w’ € W at random. Let o = 0, and
o' = o, be the respective bijections for edges (v, w) and (v, w’).

e Let f, and f,- be the supposed Long Codes of the labels of w and w’ respectively.
e Pick z € {—1,1}* at random.

e Pick pu € {—1,1}* by choosing each coordinate independently to be 1 with probability 1 + 2p < 3

and —1 with probability 1 — 1p > 1.

e Accept iff
fuw(xoa)# fu((xoa)n).
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8.2 Completeness

It is easy to see that the completeness of the verifier is at least (1 — 2n)(3 — 3p). Assume that the Label
Cover instance has a labeling that satisfies a 1 — n, fraction of edges. Take this labeling and encode the labels
via Long Codes. We will show that the verifier accepts with probability at least (1 — 277)(% — %p).

With probability at least 1 — 27, both the edges (v, w) and (v, w’) are satisfied by the labeling. Let the
labels of v, w,w’ be i, j, j* € [M] respectively such that o(j) = i = ¢’(j’). The functions f,,, f. are the
Long Codes of 4, 5’ respectively. Hence

fu(@oo) =y =i, fu (oo ) =m0 npy = zipy

Thus the two bits are unequal (and the test accepts) iff 1;; = —1 which happens with probability % — %p.

8.3 Soundness

We prove soundness in the contrapositive direction, as is usual in PCP proofs: Assume that some supposed
Long Codes f,, cause the PCP verifier to accept with probability at least (arccos p)/m + €. We use Fourier
methods to “list-decode” the Long Codes and extract a labeling for the Unique Label Cover instance that
satisfies some + = ~/(¢, p) fraction of its edges. Since this constant does not depend on the Label Cover
label set size M, we can take M large enough in the Unique Games Conjecture to get soundness v < ~/, as
required.

We first analyze the probability of acceptance for the PCP verifier by arithmetizing it as follows:

Prlacc= E E - %fw(ﬂc 0 0) fur((zp) 0 0’/)}
v,w,w’, T,
=53 F [ E (fu(z00)fur((zp) o ”'”}
V2,0 [ w,w’
= % — % . E [E[fw(g; 00)] - E[fu((zp) o a’)]] (using independence of w and w')
V,T,0 [ w w’
=53 B @ (o) (where we define (2) = E [fu(= o 0u.0))
1 1
= 579" :E}[Sp(gv)]-

Now if Prlacc] > (arccos p)/m + €, then for at least an ¢/2 fraction of v € V/,
Sp(gu) <1 — Zarccos p —e.

We say that such a vertex v is “good”. For every good v, we apply the Majority Is Stablest theorem in
the guise of Proposition 7.5 to conclude that g,, has at least one coordinate, say j, with k-degree influence
at least . We shall give the label j to ». In this way, all good v € V are labeled. For a good v, since
Inf>"(g,) > 6, we have

B PENCIEE Plg[fw(cr‘l(S))]2 <> E[fw(o‘l(S))Z] =E Infifl(j)(fw) )
CEY S3j S3j
|S|<k |S|<k |S|<k
For every w € W, define the set of candidate labels for w to be

Cand[w] = {i € [M]: Inf=F(f,) > 6/2}.
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Since ), Inf?k(fw) < k, we conclude that |Cand[w]| < 2k/J. Inequality (6) implies that for every good v,
at least a 9/2 fraction of neighbors w of v have Infff1 (j)(f) > §/2, and therefore o1 (j) € Cand[w]. Now
we label each vertex w € W by choosing a random element of Cand[w] (or any label if this set is empty). It
follows that among the set of edges adjacent to good vertices v, at least a (6/2)(d/2k)-fraction are satisfied
in expectation. Thus it follows that there is labeling for all vertices which satisfies a/ = (¢/2)(6/2)(6/2k)

fraction of all edges. This completes the proof of soundness.

8.4 Completion of the proof of Theorem 1

We have just shown how to reduce Unique Label Cover instances to MAX-CUT instances with completeness
(3 — 3p)(1 — 2n) and soundness (arccos p)/m + €, where 7 and € can be made arbitrarily small. The main
statement of Theorem 1 follows by slightly modifying p to move the completeness correction (1 — 27) into

the soundness correction e. This result implies a hardness of approximation factor of

arccos T
: (p)/ e

1
27 2P

for any constant —1 < p < 0 and € > 0; choosing p = p* as stated in the theorem yields the desired
hardness factor agy + €.

9 Other 2-bit CSPs

The same method used to prove hardness of approximation for MAX-CUT can be used to give improved
hardness of approximation for another important 2-bit CSP, namely MAX-2SAT. Recall that the input to a
MAX-2SAT problem is a collection of clauses, i.e. disjunctions, of at most 2 variables; the goal is to find an
assignment that satisfies as many clauses as possible.

The natural inner verifier test for MAX-2SAT is this: With probability 1/2 test f(x o o) V g((z o
o’)u); with probability 1/2 test —f(x o o) V —g((z o o’)p). It is easy to check that this leads to an
acceptance probability of 2 — 1S, (k). The dictator passes this test with probability 3 — 1 p; the Majority Is
Stablest theorem implies that no function with small low-degree influences can pass this test with probability
exceeding 3 — (1 — 2 arccos p) + €. This leads to a hardness of approximation ration of

W

- %(1 — %arccos p)
p

~ .943943. @

= min
ﬁ —1<p<0

[EN[N)
N

This is our Theorem 3.

Note that 5 is smaller than the best unconditional hardness factor known for MAX-2SAT, 21/22 ~
.954545, due to Hastad [31] (using the gadget of Bellare, Goldreich, and Sudan [2]); as well, the best
algorithm known for MAX-2SAT, due to Lewin, Livnat, and Zwick [40], achieves an approximation ratio
of .9401 which is close to and smaller than .

Our methodology does not seem to improve the hardness factors for other 2-bit CSPs beyond aqy.
Consider the MAX-2ConjSAT problem, in which the input is a collection of conjunctions of (at most) 2
variables and the goal is to satisfy as many conjunctions as possible. The natural inner verifier test is this:
With probability 1/2 test f(z o o) A g((z o o’)u); with probability 1/2 test —f(x 0 o) A —g((z o o) ).
This leads to an acceptance probability of i — iSp(h). By the Majority Is Stablest theorem, we get the
same hardness of approximation for MAX-2ConjSAT as we do for MAX-CUT, agy, Since (% — %(1 —
2 arccos p)) /(5 — p) = ((arccos p) /) /(3 — 3p). In some sense this may not be surprising since the best
algorithm known for this problem ([40] again) already achieves an approximation ratio of .8740, which is
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nearly agy. In fact, the same paper achieves .8740 even for the most general problem, MAX-2CSP in which
arbitrary 2-bit constraints are allowed.

Motivated by these results we are led to conjecture that MAX-2SAT is polynomial-time approximable
to within any factor less than 8 and that MAX-2CSP, MAX-DICUT, MAX-2ConjSAT, MAX-2LIN, etc. are
all polynomial-time approximable to within any factor less than agy. We will now show that these bounds
are achievable for a slight weakening of the problems.

Definition 12. Given a 2-bit CSP, by its balanced version we mean the problem with the restriction that
every input instance {C,...,C),} has the following property: for each i = 1...n, the expected number
of constraints satisfied when x; is set to 1 and the other variables are set uniformly at random is equal to
the expected number of constraints satisfied when x; is set to —1 and the other variables are set uniformly
at random.

As an example, Balanced-MAX-2SAT is the MAX-2SAT problem with the additional constraint that
each variable appears positively and negatively in equally many clauses (in the weighted case, with equal
total weight).

We contend that the balanced versions of 2-bit CSPs ought to be equally hard as their general versions;
the intuition is that if more constraints are expected to be satisfied if z; is set to, say, 1 rather than —1, it
is a “free hint” that the z; should be set to TRUE. Note that the reductions we suggest from Unique Label
Cover to MAX-2SAT, MAX-2ConjSAT, etc. produce balanced instances, and thus we get the same hardness
of approximation bounds, G and a., for the balanced problems (conditional on the two conjectures).

We can prove unconditionally that Balanced-MAX-2SAT is polynomial-time approximable to within
any factor less than 3, and that MAX-2CSP, MAX-DICUT, MAX-2ConjSAT, MAX-2LIN, etc. are all
polynomial-time approximable to within any factor less than a,. By way of illustration, we prove Theo-
rem 4:

Proof. The algorithm is essentially the same as that used by Goemans-Williamson. The input is a collection
of clauses C' of the form (y Vv z), where y = o;x; and z = oz, for some variables x; and x; and signs
o; and o;. Arithmetizing each clause with —1v -1 =1, -1v1=1,1V -1 =1,1V 1 = 0, we get

3 1y 1y Lly. 2 Thus we have the objective function

OBJ= > §-iv-

C=(yvz)

=
I\
|
NG
<
I

The condition that the instance is balanced is precisely equivalent to the condition that the linear terms
cancel out. (This holds true by definition for all balanced 2-bit CSP problems.) Thus in fact

OBJ= Y  3-

C=(yvz)

Y- 2.

N

Hence the optimum value of the Balanced-MAX-2SAT instance is
OPT =max OBJ  subjectto z; € {—1,1} for all .

Following Goemans-Williamson we directly relax this to a semidefinite program by replacing z; with a
high-dimensional vector v;, subject to v; - v; = 1, and solving; in polynomial time we can find a solution
{v; } which achieves SDP — ¢, where SDP denotes the optimal value of the semidefinite program. We now
round by picking r to be a random Gaussian vector and setting z; = sgn(r - v;). Recalling from [25] that
this gives E[z; - 2;] = 1 — 2 arccos(v; - v;), we have for any clause (y V z) = (oy2; V 0jz;),

E[} — 1(0ix;) - (0525)] = § — 3(1 = Zarccos(oiv; - 0v5)) 2 B(F — g(owi - 75v5)),
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where we have used the definition of 3 and the fact that it is unchanged if we let p range over [—1,1]. It
follows that E[OBJ] > gSDP > SOPT and the proof is complete. O

10 Special casesof the Majority |'s Stablest theorem

In this section we describe special cases of the Majority Is Stablest theorem which are of particular interest,
and have elementary proofs.
10.1 Weighted majorities

In this subsection we prove Theorem 5, which makes the point that the majority function is not unique as a
noise stability maximizer, in the sense that all weighted majority functions with small influences have the
same noise stability, i.e., 1 — Z arccos p. The proof requires a multidimensional version of the Central Limit

™

Theorem with error bounds. We have the following version from [5, Corollary 16.3]:
Theorem 16. Let X, ..., X,, be independent random variables taking values in R¥ satisfying:
e EX;]=0,j=1...m;
o n! Z;‘:l Cov(X;) =V, where Cov denotes the variance-covariance matrix;
e )\ is the smallest eigenvalue of V, A is the largest eigenvalue of V;
¢ p3=n"' Y0 E[X;P) < o.

Let Q,, denote the distribution of n='/2(X; + --- + X,,), let &gy~ denote the distribution of the k-
dimensional Gaussian with mean 0 and variance-covariance matrix V, and let n = CA—3/2p3n~1/2, where
C is a certain universal constant.

Then for any Borel set A,

1Qu(A) — Doy (A)] < 5+ B(A),

where B(A) is the following measure of the boundary of A: B(A) = 2supcgs Do v ((0A)" + y), where
n = A'?pand (DA)" denotes the set of points within distance 7’ of the topological boundary of A.

Theorem 5 follows from the following two propositions.

Proposition 10.1. Let f : {—1,1}" — {—1,1} be any balanced threshold function, f(z) = sgn(a;z; +
-+~ apzn)?, where Y a? = 1. Let § = max{|a;|}. Then for all p € [-1,1],

Sp(f) =1— 2 arccosp+ O(5(1 — Ip))~3/2).

Proposition 10.2. Let f : {—1,1}"™ — {—1,1} be any balanced threshold function, f(z) = sgn(aix; +
-+ an®y,), where 3" a? = 1. Let § = max{|a;|}. Then max; {Inf;(f)} > Q(9).

We prove the two propositions below.

2Without loss of generality we assume the linear form is never 0.
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Proof of Proposition 10.1. Since f is antisymmetric, we only need to prove the result for p € [0, 1]. Let x
and y be p-correlated uniformly random strings, let X; = a;z;, Y; = a;y;, and X; = (X;,Y;) € R% Let
Q,, denote the distribution of X +- - +X,, = n~Y2(/n Xy +---+/n X,). Since S,(f) = 2Pr[f(z) =
f(y)]— 1, we are interested in computing 2Q,,(A++ UA__) — 1, where A, ; denotes the positive quadrant
of R? and A__ denotes the opposite quadrant.

We shall apply Theorem 16. We have E[X ;] = 0 for all j. We have Cov(y/n X;) = na? [ ; /1) } , and

1
|v/n X is v/2n |a;| with probability 1, p3 = n=! S E[|y/n X,[%] = 2320123 |a;|3 < 23/2p1/25. Thus
n=0(1)8(1—p)=3andy = (1+ p)/?n=O(n).
It is well known (see, e.g., [1, 26.3.19]) that ®¢ v (A++) = oy (A-_) = 1/2 — (1/27) arccos(p)
and it is easy to check that B(A1+ U A__) = O(#). Thus by Theorem 16 we get Q,(A++ UA__) =
1 — (arccos p)/m £ O(n) and the theorem follows. O

thus V = n=1 Y Cov(v/nX;) = [ ; p ] The eigenvalues of V.are A =1 —pand A = 1 + p. Since

Proof of Proposition 10.2. We may assume without loss of generality that 6 = a1 > a2 > --- > a,, > 0.
Letting X; denote the random variable a;x;, we will prove that Inf; (f) > ©(d) by proving that

Pr Xy 1 + X, < 6] > Q). @)

Let C be the constant hidden in the O(-) in the final part of the Berry-Esseen theorem, Theorem 18. In
proving (8) we may also assume without loss of generality that

1 —100C%6% > 1/4; (9)

i.e., 0 is not too large. We may also assume C' is an integer.
Let m = 100C? + 2. We will split into two cases, depending on the magnitude of a,,. In either case,
we shall apply the Berry-Esseen theorem to the sequence X,,, ..., X,. We have

n

Z E[XG1)Y2 = (32 a))? > (1= (m = 2)0%)'2 > (1 - 1000%6)/2 > 172,

j=m
where we have used (9). We also have p3 = Y7 E[|X;[*] <377 anE[X7] = a,0?, s0 the error term
in the conclusion of the theorem, O(p3/03), is at most Ca,, /o < 2Cay,.

Case 1: a,, < 1005 In this case, by the Berry-Esseen theorem we have that
Pr[X,, + -+ X, € [0,8]] > ®([0,6]) — 2Cay, > 56(8) —6/5 > .04,

where we have used the fact that ¢(5) > .24 for § < 1. On the other hand, since as,...,a,,_1 are all at
most 4, it is easy to fix particular signs y € {—1,1} such that > """ L a;y; € [-0,0]. These signs occur with

probability 2-™+2 which is at least 219°C* Thus with probability at least .04 - 27100C*§ — () both
events occur, and | X + - - - + X,| < 0 as desired.

Case 2: a,, > 1005 In this case, we apply the Berry-Esseen theorem to the interval [—10Cd, 10C¢] and
merely use the fact that a.,,, < §. We conclude that

Pr[X,, + - + X, € [~10C5,10C6]] > &([-10C5,10C6]) — 2C5

> 2003 - (10C3) — 206 > 2005 - —=(1 - (10C6)? /2) — 2C5 > 4C5,
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where we have used (9) in the last step to infer 1 — (10C§)%/2 > 5/8. Given X, + -+ X, =te¢€
[—10C4, 10C¢), it is easy to choose particular signs o, . . . ,ym 1 such that ¢ + >0 Ya;y; € [=0,0]. This
uses the fact that each a; is at least 1005 and hence /" La; > 10002 1(}05 > 10C¢; it also uses the fact
that each a; is at most §. Once again, these signs occur for xs, ..., x,,,—1 With probability at least 2~ 100C2,

Thus | X, + - - - + X,,| < & happens with probability at least 4C2100C*§ = Q(4), as desired. O

10.2 Boundsfor the weight on thefirst level

Applying the Majority Is Stablest theorem for extremely small p, it follows that functions with small influ-
ences have no more weight at level 1 than Majority has, viz., % (up to o(1)). This fact, stated in Theorem 6,
has a very elementary proof which also provides a better bound on the additive term corresponding to the
maximal influence:

Proof of Theorem 6. Let ¢ denote the linear part of f, £(z) = .7, f({i})z;. We have that |f({i})] <
Inf;(f) < 6 forall i. Now 3°,g_, f(S)? = ||¢]|3 and

ez = (£,
£ ls €111
1€1]1-

Since all of ¢’s coefficients are small, smaller than §, we expect ¢ to behave like a Gaussian with mean
zero and standard deviation ||¢||2; such a Gaussian has L'-norm equal to \/2/7||¢||2. Several error bounds
on the Central Limit Theorem exist to this effect; the sharpest is a result of Konig, Schitt, and Tomczak-
Jaegermann [39] which implies that ||¢||1 < \/2/7||¢|l2 + (C/2)é. Thus

1213 < v/2/7[ell2 + (C/2)8,
hence ||¢||l2 < \/1/2m + /1/27 + C§/2 and therefore ||¢||3 < 2/7 + C§. O

<
<

In the following we improve the bound on the weight of the first level for not necessarily balanced
functions with low influences. This result should be compared to the following theorem of Talagrand [49]:

Theorem 17. (Talagrand) Suppose f : {—1,1}" — {—1, 1} satisfies Pr[f = 1] = p < 1/2. Then

> £(8)? < O(p*log(1/p).

|S|=1

We will need the following Berry-Esseen theorem, which gives error bounds for the Central Limit The-
orem [19]:

Theorem 18. (Berry-Esseen) Let X1,..., X, be a sequence of independent random variables satisfying
E[X;] = 0forall j, (37 E[X?])/? = 0,and Y] E[|X;[%] = ps. Let Q = 07 (X1 + -+ + X,,), let
F denote the cumulative distribution function of @, F(x) = Pr[Q < z], and let ® denote the cumulative
distribution function of a standard normal random variable. Then

sup(l + |2[*)|F(z) — ®(2)] < O(ps/a®).

In particular, if A is any interval in R, | Pr[Q € A] — Pr[N(0,1) € A]| < O(p3/c?).

We now prove Theorem 7.
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Proof of Theorem 7. It will be more convenient to work with the [0, 1] valued-function g = 3 + 1 f and

prove that Z|5\:1§(5)2 < (U(u) + max{1, \/]QJ—l(u)\}O(\/E))Z. Note that 1 = E[g]. We will assume
without loss of generality that ;> 1/2 (otherwise look at 3 — 3 f).

Let 7 denote (Z‘S|:1§/(S)2)1/2. As in the proof of Theorem 6, we let ¢ be the linear part of g and
we know that all of ¢’s coefficients are at most /2. The function L = ¢/7 =) "¢ g(S)xs/7 is a sum of
independent random variables Xg = §(S)xs/7. Clearly E[Xg] = 0 for all S. Moreover, Y ¢ E[X?2] = 1
and > o E[X3] < maxg |Xg| < 0/(27).

Now 72 = (g, ¢) and therefore 7 = (g, L). We will show below that

r = (g, L) < U() + max{L, |8~ () }O(5/7). (10)

Multiplying by 7 implies that

<T _ @)2 < U?(p)/4 + max{1,|® 1 (1)|}O(5).

which in turn implies that
7 < U(p) + max{1, /[ (u)[}O(V0)

Finally, we will conclude that

7 < (U() + max{1, VB T@HOWE))

We now prove (10). Let ¢ be a number such that Pr[L > ¢] = u. Since g is a [0, 1] valued-function it
follows that (g, L) < E[115L].

Letting F' denote the cumulative distribution function of L, the Berry-Esseen theorem implies that
sup, (1 + |z[3)|F(x) — ®(z)| < O(5/7). In particular, [Pr[L > ¢] — Pr[N(0,1) > t]| < O(5/(7(1 + t3))
and hence

= (=) <0 <ﬁ> (11)
Note that the function U satisfies
U'(@) = /(@7 @) - (07 @)) = =07 ()00 () Sy = 0 7'@)

Therefore U (x) = —1/¢(®~(z)) = —1/U(z). It follows that U is concave.
We now estimate U (u) — ¢(t). Since U’ is a monotone function, it follows that

U(p) = o) = [U@(=1)) = U(p)| < |2(=t) — plmax{|U"((=1))], [U" ()|} (12)
< max{[t], e () }O(3/(r(1 + %)) < max{1,[®7 (1)[}O(6/7).
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Further,
(g.L) < B[] = tPr{L > 1] + /too Pr(L > o] do
— (Pl > 1]+ /too Pr[N(0,1) > 2] dz + /tOO(F(a:) — &(z)) dz
= =t + o)+ [ (Fla) - Bla))do

< o)+ [t [ — (=) + /too |F(2) — ®(x)| dx

It]
L+ t3
1)
= ot)+0 <m> (by (12))

U(p) + max{1,|®"(1)[}O(5/7).

< o)+

O(5/7) + O(8/7) /too 1/(1+ |z[*)dx  ((11) and Berry-Esseen)

IN

which proves (10) as needed. O

11 Constraint satisfaction problemsover [¢]

So far in this paper we have mostly focused on 2-CSPs in which the variables are binary — i.e., take values
in the alphabet {—1,1}. The exception is the Unique Label Cover problem, which can be thought of as a
2-CSP where the set of values a variable can take is very large. In this section we develop our techniques
for 2-CSPs over such large alphabets; specifically, the alphabet [¢q] = {1,2,...,q} for ¢ > 2. We will
be concerned in particular with the MAX-2LIN(g) and MAX-¢-CUT (i.e. Approximate Graph g¢-Coloring)
problems, and we will mostly be interested in the asymptotics when ¢ — oc.

11.1 T-MAX-2LIN(¢) and MAX-¢-CUT
The MAX-¢-CUT problem is a natural generalization of MAX-CUT; its formal definition is as follows:

Definition 13 (MAX-¢-CUT). Given a weighted graph G = (V, W) where W : V x V — R, the MAX-
q-CUT problem is that of finding a partition of V" into ¢ sets V5,...,V; in such a way as to maximize the
weight of edges between the different parts, >, .. Zuevi,wevj W (v, w).

The MAX-2LIN(q) problem is defined as follows:

Definition 14 (MAX-2LIN(g)). Given a system of m linear equations mod ¢ each having at most 2 vari-
ables, along with nonnegative weights wy, . . . , w,, for these equations, the MAX-2LIN(q) problem is to find
an assignment to the variables maximizing the total weight of satisfied equations.

Observe that the MAX-2-CUT problem can be viewed as a special case of the MAX-2LIN(2) problem,
by associating the vertices with variables and the edges with equations x,, — =, = 1. However for larger g,
MAX-¢-CUT is more naturally viewed as a special case of the problem of finding assignments for 2-variable
linear inequations mod g¢.

The best approximation algorithm for MAX-¢-CUT was obtained by Frieze and Jerrum in [24]; this
paper gives a (1 — 1/q + 2(In ¢)/q*)-approximation. The best NP-hardness result known is due to Kann,

26



Khanna, Lagergren, and Panconesi [] who proved that (1 — 1/(34q))-approximating is hard. As for the ap-
proximability of MAX-2LIN(q), the best algorithm known was given very recently by Charikar, Makarychev,
and Makarychev in [], as discussed in Subsection 6.3 (their algorithm is actually for the more general prob-
lem of not-necessarily-bipartite Unique Label Cover with label size ¢). When the optimal fraction of satis-
fiable constraints is 1 — n, their semidefinite programming algorithm produces a solution satisfying about
a fraction (1/q)"/ (=37 The best known NP-hardness results come from a recent work of Feige and Re-
ichman [20]. They show that it is NP-hard to approximate MAX-2LIN(q) to within a factor of 1/¢° for
some universal constant 3 > 0; however this hardness is located at a gap of e vs. ¢/¢”. In particular, given
an instance with optimum fraction 1 — n, Feige and Reichman can only show that it is NP-hard to find a
solution with value 1 — Cn for some relatively small constant C' > 1. Thus with current knowledge, given a
(1 — n)-satisfiable instance, we don’t know whether one can satisfy almost all the constraints in polynomial
time, or whether it is impossible to go beyond a very small fraction of them.

A special case of the MAX-2LIN(q) problem which seems somewhat easier algorithmically ([],[]) occurs
when all the equations in the instance are of the form z; — z; = ¢;;.

Definition 15 (I'-MAX-2LIN(q)). I'-MAX-2LIN(q) is the special case of MAX-2LIN(g) in which each equa-
tion is of the form z; — z; = ¢;;.

Our hardness results will hold even for '-MAX-2LIN(g). The I notation is essentially from Hastad [31];
we use it because our results actually hold equally well for the problem of satisfying equations of the form
x;x; = c;; over any fixed abelian group I of order g, not just Z,.

J

11.2 Analytic notions

We would like to generalize our notions of noise stability, influences, and Fourier expansions to g-ary func-
tions, f : [q]™ — [q]. Some of the definitions below were already given in Subsection 4.2, but we repeat
them here for clarity and convenience.

The way we treat the finite set [¢] in the domain and in the range of g-ary functions will be different.
In the domain, [g] and [¢]™ will be treated simply as finite probability spaces under the uniform measure,
with no extra structure. In the range, we would like to embed [¢] into a larger space. Recall that for boolean
function we identified the range with the two points —1, 1 € R and then considered relaxed functions taking
values in their convex hull. In the g-ary case we identify the elements of [¢] with the standard basis vectors
in RZ. A relaxed g-ary function will thus map [¢]™ into the simplex which is the convex hull of these vectors.

Definition 16. Let A, denote the (¢ — 1)-dimensional simplex naturally embedded in RY; i.e., the convex
hull of the ¢ standard basis vectors. We call functions f : [¢]" — A, relaxed g-ary functions.

We will also define the notion of a balanced function:

Definition 17. A function f : [¢]™ — [q] is called balanced if it obtains each value i € [q¢] in its range
equally often. A relaxed function f : [¢q]" — A, is called balanced if E[f(x)] = (1/q,...,1/q).

Since a relaxed g-ary function f maps [¢]™ into R?, it can be viewed as a vector f = (fi,..., f;) of
real-valued functions over [g]". We define the noise stability both for real-valued and A,-valued functions.

Definition 18. Let —q_#l < p < 1landletx and y be [¢]"-valued random variables. We say that = and y are
a p-correlated pair if = is uniformly distributed on [¢]™, and y is formed from 2 by choosing each y; so that
Prly; = a] = qz,—ayp + % for each a, independently for each i. Note that for 0 < p < 1, it is equivalent
to say that each coordinate y; is independently chosen to be x; with probability p and is a uniformly random
element of [g] otherwise.
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Definition 19. Let f : [¢]" — A, and let —q_% < p < 1. The noise stability of f at p is defined to be

Sp(f) = E[(f(z), fW))];

x7y

where = and y are a p-correlated pair. Equivalently, we may define the noise stability of functions g : [¢]™ —
R via

Sp(9) = fy[g(aﬁ)g(y)]

and then denoting by f* the ith coordinate projection of f, we have S,(f) = Y-, S,(f*).

We remark that when f’s range is simply [¢| (as embedded in A,), the quantity S,(f) is simply the
probability that f(z) = f(y) when x and y are a p-correlated pair. For example, the noise stability at p of a
dictator function f : [¢]" — [q] is equal to p + %(1 —p).

The definition of influences is very similar to that in the boolean case:

Definition 20. Let f : [¢]" — A,. For 1 < ¢ < n, the influence of the ith coordinate on f is defined to be

Inf;(f) = E [Varg, [f'(z1,...,2)]].

1 Ti—1,Ti415--Tn

The space X of all functions f : [¢]" — R? (we use either d = ¢ or d = 1) is an inner product space
with inner product

(f:9) = Ex[(f(2), g(2))]

and associated norm denoted || - ||. Given z € [g]", write zg for {z; : ¢ € S}. Itis well known that X can
be written as an orthogonal sum of spaces X = & g, X5, where X denotes the space of all functions
f : [¢]™ — R% such that

e f(x) depends only on zg for all z, and
e fis orthogonal to all functions in the spaces X g for S C S.

Thus we can write any f : [¢]” — R? as

fl@)="Y" fs(x), (13)
]

SCln

where fs(x) is the projection of f onto the space X g. Parseval’s identity holds for this expansion:

713 =D II£sl3-

SC[n]

For —ﬁ < p < 1 we can define the Bonami-Beckner on X in the obvious way, 7,(f)(z) = E,[f(y)],
where y is p-correlated to . We have that if f : [¢|” — A, then T, f also has range A,, and that if f
is balanced then so too is 7), f. We also have that S,(f) = (f,T,f). The formula for noise stability from
Proposition 7.1 holds in this setting:

Sp(f) = A¥MIfs3; (14)

SC[n]

this follows from the following easy proposition, familiar from the boolean case:
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Proposition 11.1.
T,(f) =Y p¥fs

SC[n]

Proof. It is easy to see that for each x, (7, f)(x) is a polynomial in p. Therefore it suffices to prove the
claim for 0 < p < 1. Clearly, T, is linear and therefore it suffices to show that if f € Xg then T, f = pl*If.
From the definition of the space X it follows that for every subset S’ C .S and for every vector of values
of size |.S’| it holds that E[f(y) | ys = 2] = 0. Now for 0 < p <1,

Tof(x) = > pl¥l1 = p)P IS E[f(y) | ys = 25] = p1¥ f (),
S'cs
as needed. O

In a similar fashion, it is easy to verify that a formula similar to (5) holds in the ¢-ary case:
Inf;(f) =) IIfsl3.
EEY

Finally, we define low-degree influences as in Definition 11:

Proposition 11.2. Let f : [¢]” — R? and k& > 1. Then we define

mfsF () = > Ifsl3-

531
IS|<k

11.3 Stability estimates

In this subsection we analyze the plurality function and give estimates on A ,(1), proving Theorem 8, Propo-
sition 6.1, and Corollary 10. We also prove some other estimates on A () for very small p parameters that
are required for our MAX-¢-CUT reduction. We begin with the proof of Theorem 8.

Proof of Theorem 8. Suppose we choose = € [¢]™ at random and let y be a p-correlated copy of x. For
each i € [¢], let u; denote the number of coordinates in x taking the value i, and let v; denote the number
of coordinates of y taking the value i. We wish the to apply the Central Limit Theorem (specifically,
Theorem 16) to calculate the stability of plurality, which is given by

Pr|u; > max u; and v >maxv‘]: Pr[n— ol; > max u; and n — ) .o, v; > max v;|.
q 1_1§i< 7 1_1§i§q2 q zzzgz_zging 22221_< %

<q 2<i<q
Let us define the following vectors in RZ~!: let ey, ..., e, denote the ¢ — 1 unit vectors, let r denote the
vector (1/q,...,1/q), let r1 denote the O vector, and let r; = e; — r for i = 2...¢. Consider random
variables (X;,Y;) taking values in R2¢~2 where
P 1—p
Pr[(Xi, Yi) = (ra, )] = 55{a:b} tg (15)

Note that (ug, ..., uq, v2,...,vq) = nr+ y (X, Y;) where (X;,Y;) are the i.i.d. random variables
given in (15) and that the vectors (X, Y;) have mean 0. Writing A for the (¢ — 1) x (¢ — 1) matrix given by
A;j = bu—jn/a— 1/q¢?, the covariance matrix V' of (X;,Y;) is given by

(1 p (A pA
v (L Dea= (4 )
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Thus the eigenvalues of V are 1/q,1/¢?, p/q and p/q>. Finally, the third norm of (X;,Y;) is at most 4. We
may thus apply Theorem 16 to obtain:

lim Pr[ul > max u; and  v; > max vl} —Pr{ >IN > max N; and —>°7 M, > max M]
n—o0 1<i<q 1<i<q 2<i<q

where (N;, M;)?_, is a normal vector with covariance matrix V. Letting Ny = —> 7 , N; and M; =
— > , M; we see that (Ny,..., Ny, Mi,...,M,) is a zero mean normal vector with covarlance matrix

</1) {’) ® B, where B is the ¢ x ¢ matrix given by B; j = d;—jy/q — 1/¢?. Finally, let (U1, V1), ..., (Uy, Vy)

be a collection of i.i.d. mean zero normal vectors in R?, where (U;, V;) has the covariance matrix (:) ’f). It
is then easy to see that (N, ..., Ny, My, ..., M,) has the same covariance matrix as the normal vector

1< 1< 1<
J—L - ZUJ,...,U(]——ZUJ»,VI——Zvj,...,Uq——ZVj .
q 153 155 155
Since both vectors are normal, they have the same distribution. Hence the stability of Plurality is given by
qPr[Ml = max M; and N = maxN]} = ¢Pr [Ul = max U; and V; = maXVj],
1<j<q J 1<j<q J

and this completes the proof of Theorem 8. O
Let us now move to discussing estimates of A (1), proving Proposition 6.1.

Proof of Proposition 6.1. The proof of Lemma 11.1 in [12] gives

1
A = ex //ex g(u,v)) dudv, 16

where (u— o) + 21— pjuv
U+ v +2(1 —
glu,v) =
R T
Since the range of integration is u, v > 0 we have g(u,v) > h(u,v), where
u+v (u—v)?

Muv) =, Y g = e

We can therefore replace g by & in the integral and get

/Oo/exp (1, ) dudv<//exp h(u, v)) du dv (17)

_\/_1+p V1—p*-t- exp( —P i)-N(t\/%» (18)

14+p 2

where the integral computation follows straightforwardly after the change of variables r = u+v, s = u—w.
Combining (16) and (17) completes the proof. O

Proposition 6.1 leads to the asymptotic estimates stated in Corollary 10:
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Proof of Corollary 10. Part 1 follows simply from the well-known fact that N (¢) ~ ¢(t)/t ast — oco. Asa
side note, it is simple to see from its definition that 1 - N (¢,/(1 — p)/(1 + p)) is a lower bound on A, ().
Part 2 of the Corollary is Lemma 11.1 of de Klerk et al. [12]. Parts 3 and 4 follow straightforwardly from
Part 1; the bound written in Part 3 actually neglects an additional negative power of In ¢ for simplicity. O

Finally, our hardness result for MAX-¢-CUT requires the following more careful analysis of A ,(x) in
the case that p is very small:

Proposition 11.3. Let > 0 be small and let 0 < p < m Then

Ap() < o (4 p- 20In(1/p1) - (1+ O(SGL) 4 nliely))

Proof. Recall that A,(u) = Pr[X > t, X’ > ¢], where X is a standard Gaussian, X’ = pX + /1 — p? Y
with Y an independent standard Gaussian, and ¢t = N ~!(u). (We use the functions ¢ and IV from Proposi-
tion 6.1.) The probability that X > ¢ is u, SO we need to show that

Pr(X' >t | X > 1] < ptp-2pn(1/p) - (1+ O(GmGL 4 Bhl/ely), (19)

Let us first estimate
PriX'>t| X =t(1+a),

for1/In(1/pn) < a <In(1/p). We have
PriX'>t| X =t(1+a)] = Pr[pX+V1—-p2Y >t|X =t(1+a)
PrlY > (t — pt(1 + «))/v/1 — p?]

PrlY >t — pt(1 + 2a)],

IN A

where we have used that p < 1/In(1/u) < a. Now Pr[Y >t — 8] < Pr[Y > t] + Bo(t — 3) =
u+ Bo(t — 3). We can upper-bound ¢(t — 3) by expanding its definition and using the well-known fact
#(t) < tN(t) + O(1/t%) along with N(t) = p. With our particular 3 = pt(1 + 2a)) we get that

6(t — B) < tu(1+O(1/In(1/p))),
where this also uses o < log(1/p) and p < 1/1n3(1/p). We thus conclude that

PriX' >t | X =t(l+a)] <p+p-2un1/p) - (1+O0(x)), (20)
where we have also used ¢ < /21n(1/x) and o > 1/In(1/p).

Our next task is to estimate Pr[X > ¢(1 + «) | X > ¢]. This is quite straightforward using N (z) ~
¢(x)/z and N(t) = u; the result is that

PrlX > t(1+a) | X >t < (Cu?In(1/p))" (21)

for some universal constant C' < oo (where we used o > 1/1n(1/p)).

Set § = A(lﬁrll?l%’)‘) + 1?&?1%5’)) and K = B}ES;Z)) > 1, where A and B are large universal constants

to be chosen later. They will be chosen so that § < K (this is possible because p < 1/In3(1/u)). Write
y=Pr[(14+0)t <X <(1+K)t|X > t]. We estimate
PriX' >t| X >t < (1—7)Pr[X' >t]|t< X <t(1+9)]
+yPr[X' >t | (1+60)t <X <(1+K)t
+Pr[X > (1 +K)t|X >t.
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Since it’s clear that Pr[X’ >t | X € [a,b]] < Pr[X’ >t | X = b], we can use (20) to bound the sum of
the first two terms by
ptp-2pIn(1/p)(1+ 0()) + - O(Kp - pln(1/p)).

The third term, and also ~, are bounded using (21). This gives an overall bound of

Pr(X' >t | X > t] < ptp-2pln(1/p) (14+0(8))+(Cp® In(1/p))°-O(K p-pIn(1/ ) +(Cp In(1/ )

Itis now relatively easy to check that we can take A and B large enough so that the above quantity is bounded
as in (19), completing the proof. (One can take A so that the third term above is smaller than B - pu In In %,
and then take B large enough so that both K > ¢ and the last term is smaller than p - pIn(1/p) - 0.) O

1

Proposition 11.3 leads to a lower bound on the stability of a ¢-ary function with noise p = — T

Proposition 11.4. For any ¢ > 2 there is a small enough 6 = §(q) > 0, such that any function f : [¢]™
Ag with Inf;(f) < dforall i =1,..., n satisfies

S_1(f)21/q—(2Ing)/¢* = C - (nlng)/¢*,

e
where C' < oo is a universal constant.

Proof. Let f¢: [¢]™ — [0, 1] denote the ith coordinate function of £, and let u; = E[f?]. Then

Y = IR A Y IR A S IR -

|S|=1 |S|=2
> fl3 =25 D0 I - 2 S 53 -
|S|=1 |S|=2

= 2uf - Sqfll(f")-

Choosing 6 to be small enough as function of ¢, we obtain from the MOO theorem that S_1 (f?) <
q—1
A1 (pi) + ¢, where e is, say, 1/¢3. It thus suffices to prove that
q—1

S (22 -A )] 21/ @na)/e? — Ong)/g. (22)

=1

We prove this using Proposition 11.3 and the fact that > u; = 1. We will first carry out the estimates

assuming that all w;’s satlsfy 1 < m

Suppose that z; > (1/q)1/10 for some 4. Proposition 11.3 implies in this case that A (uz) < p? +
O(p!/19) and so the ith summand already contributes at least .5u7 > .5(1/¢)'/® to the sum |n (22), and so
the inequality there holds. We may therefore assume that all ;s are at most (1/q)1/10. With this in hand,
Proposition 11.3 tells us that A 1 () < F'(u;), where

q—1

1 nln
F(p) = pi + -1 207 n(1/pss) - (1 Clhiqq)

and C' < oo is some universal constant. Thus

Eq: [2/% 14i) ] Zj: (2uf — (23)

=1
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It’s not hard to check that 2.2 — F'(p1;) is a convex function of 11; so long as j; is at most a certain universal
constant smaller than 1 (which it is when ¢ is sufficiently large, since all ;4’s are at most (1/q)1/10). Using
>-7_, i = 1 we conclude that the right side of (23) is minimized when all ;s are equal to 1/g, in which
case it equals 1/qg — (2Ingq)/q?> — O(Inln q)/q?; thus (22) is verified.

Finally, we consider the possibility that not all p;’s satisfy q%l < m In this case, some of
the term-by-term inequalities going into (23) may no longer hold. For such inequalities, though, the left-
hand side term is always nonnegative and the right-hand side term is exponentially small in a power of q.
Hence (23) still holds up to an additive term exponentially small in ¢, which is negligible; thus the argument
above is unaffected. O

11.4 Hardnessresultsfor MAX-¢-CUT and I'-MAX-2L1N(q)

This section is devoted to the proofs of Theorems 11 and 12. The proofs are similar to that of Theorem 1 in
Section 8, so we omit some details.

As a preliminary technical step, we need the analogue of Proposition 7.3 for the MOO theorem and for
Proposition 11.4.

Proposition 11.5. Both the MOO theorem and Proposition 11.4 remain true if the assumption that Inf;(f) <
o for all 7 is replaced by the assumption that Inffkl(f) < ¢', where ¢" and %’ are universal functions of ¢
and p.

Proof. (Sketch.) The proof is essentially the same as that of Proposition 7.3; one requires the following
facts:

> InfFH(f) <k,

Yo T f)sllE < (1 =),

|S|>Ek

which indeed hold for g-ary functions f : [¢]™ — [0, 1], as can easily be seen from the facts in Subsection 7.2.
U

We will also need to define the g-ary analogue of the Long Code:
Definition 21 (g-ary Long Code). The g-ary Long Code of an element i € [M] is the g-ary function f :
[ — [g] defined by f(z) = ;.

Hardness of MAX-¢g-CUT. We now begin the reduction from Unique Label Cover to MAX-¢-CUT. As
mentioned, the reduction is similar to the one in Section 8; the main difference is that we use g-ary Long
Codes and we fix p to be —q_%. As in Section 8, we start with a given instance L(V, W, E, [M], {04, }) of
Unique Label Cover, and construct an instance of MAX-¢-CUT, presented here as a PCP verifier:

The PCP verifier for MAX-¢-CUT

e Pick a vertex v € V at random and two of its neighbors w,w’ € W at random. Let o = 0, and
o’ = o, be the respective bijections for edges (v, w) and (v, w’).

e Let f,, and f, be the supposed g-ary Long Codes of the labels of w and w’ respectively.

e Pick (z,y) € [¢]M tobea (—qi—l)-correlated pair; in other words, pick = € [¢]™ uniformly at random
and form y by choosing each y; independently to be a uniformly random element of [¢] \ {z;}.
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e Accept iff
fw(x o U) 7’é fw’(y © OJ)'

Completeness. If the Unique Label Cover instance has a (1 — n)-satisfying assignment, then the PCP
verifier accepts the Long Code encoding of this assignment with probability at least 1 — 2. This is because
whenever the PCP verifier chooses edges (v, w) and (v,«/) that are properly labeled, the verifier accepts
with probability 1. The Unique Games Conjecture allows us to take n to be an arbitrarily small positive
constant.

Soundness. Our goal is to show that if the PCP verifier accepts with probability exceeding 1 — 1/q +
(2Inq)/q® + O(Inln q)/q?, then we can derive an assignment for the Unique Label Cover instance that
satisfies at least some v = ~/(q) fraction of its edges, independent of the label set size M.

As in Section 8, we analyze the soundness by writing the success probability of the PCP in terms of
the noise stability of certain averages of the f,,’s. (We view these supposed Long Codes f,, : [¢]" — [¢]
as having the relaxed range A,.) If the noise stability is large, the MOO theorem implies the existence of
influential coordinates, which in turn are used to derive an assignment for the Unique Label Cover instance.

The probability that the PCP verifier accepts is given by

Prlacc] = U,wE/,x,y [1 = {fulzo0), fur(yod))]
1= B | B [(fuleo0) fulyoo)]
—1- E [ fulz o o). Blfurlyeo 0')]}] (using independence of w and w’)
=1- 1; [(90(2), 90 ()] (where we define g,(z) = E [fu(z 0 0vw)])
=1- é[é_qll(gv)].

We now proceed as in the proof of Theorem 1, using Proposition 11.4 in place of the Majority Is Stablest
theorem. In particular, writing e = (InIn q)/¢?, we have that if Prjacc] > 1 — 1/q + (2Inq)/q*> + (C +
1) - (InIn q)/q? then there is some ¢/2 fraction of “good” v’s with S_%(gv) <1/q—(2lngq)/q*> — (C +
1/2) - (Inlnq)/q%. By Proposition 11.4 such g,’s must have large low-degree influential coordinates, which
we can use as Label Cover labels for their v’s.

The remainder of the soundness proof is just as it is in the proof of Theorem 1 in Section 8. The only
difference arises in the analogue of (6) and is essentially notational; we replace this line with:

< Z l@)sl3= D" IE[(fudorsI3 < D Bll(Fu)ores) 3] =B [Infsh ) (£u)]

S35 S3j
\S|<k 15|<k 15|<k

With this proof of soundness in hand, the proof of Theorem 11 is now complete.

Hardness of MAX-2LIN(g). We move on to our hardness result for I'-MAX-2LIN(q) and the proof of
Theorem 12. The proof is very similar to the one we gave for MAX-¢-CUT; the only new technique is the
use of the old PCP trick of folding.

Definition 22 (Additive folding). Let f : [¢]™ — [g], where the [q] in the domain is viewed as Z,, the
integers mod ¢. We say that £ is folded if for every ¢ € Z, and x € (Z,)™ itholds that f(z+(c,c,...,c)) =

flz)+e
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Our PCP verifier for I'-MAX-2LIN(q) will be able to assume that all the supposed g-ary Long Codes f;,
with which it works are folded. This can be done by only making queries f,,(z) when z; = 0, and simulating
other queries using the assumption that the function is folded. In other words, to query f,(z1,...,z,) the
verifier instead queries f (0,2, — x1, ..., x, —x1) and computes the value f (0, z2 —x1,..., 2, —21) — 21.
Note that Long Code functions (dictators) are folded, and that a folded ¢-ary functions must be balanced.

We now give our verifier for I'-MAX-2LIN(q), parameterized by 0 < p < 1. Given an instance of
Unique Label Cover, it proceeds as follows:

The PCP verifier for I-MAX-2LIN(g) with parameter 0 < p < 1

Pick a vertex v € V' at random and two of its neighbors w,w’ € W at random. Let 0 = o0, and
o’ = o, be the respective bijections for edges (v, w) and (v, w’).

Let f,, and f, be the folded supposed ¢-ary Long Codes of the labels of w and w’ respectively.

Pick (z,%) € [¢]™ to be a p-correlated pair.

ACCEPt iff £, (20 0) = fur(y 0 0'); .8, iff fu(w00) — fur(yoo’) = 0.

This verifier indeed yields a distribution over 2-variable linear equations mod ¢ of the form “z;—x; = ¢”;
note that since the verifier ensures the functions f,, are folded, the acceptance predicates f,,(zoo)— fu(yo
o’) = 0 will really be of the form (f,,(2') — z}) — (fuw (v') — ¥}) = 0.

Analysis of this PCP verifier’s completeness and soundness proceeds very much as it did in the previous
proofs. The completeness is at least (1 — 2n) times the noise stability at p of a g-ary Long Code function;
ie, (1—2n)(p+ %(1 — p)). Soundness is again analyzed by arithmetizing the PCP verifier’s acceptance
probability, which in this case yields

Prlace] = E[S,(9.)]
The functions g, : [¢]* — A, are balanced, being the averages of folded and thus balanced f,,’s. Hence
their ¢ projection functions (g,)’ : [¢]™ — [0, 1] all have mean equal to %. We may thus use the MOO

theorem directly (instead of Proposition 11.4) and bound soundness by qu(%) + €. This completes the
proof of Theorem 12.
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