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Abstract

We give a deterministic algorithm for testing satisfiability of formulas in conjunctive normal
form with no restriction on clause length. Its upper bound on the worst-case running time
matches the best known upper bound for randomized satisfiability-testing algorithms [5]. In
comparison with the randomized algorithm in [5], our deterministic algorithm is simpler and
more intuitive.

1 Introduction

The problem of satisfiability of a propositional formula in conjunctive normal form (SAT) can be
easily solved in 2n polynomial-time steps, where n is the number of variables in the input formula.
Since the early 1980s, this upper bound has been successively improved for k-SAT (the restricted
case of SAT where clauses have at most k variables). The best bound to date for deterministic k-
SAT algorithms is (2−2/(k+1))n up to a polynomial factor [2]. For randomized k-SAT algorithms,
the currently best known bound is due to [8]; a close bound is given in [11]. These general bounds
are improved for k = 3 in [1, 7].

The list of successive improvements for SAT (with no restriction on clause length) is shorter:
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Here n and m are respectively the number of variables and the number of clauses. For simplicity,
we give the bounds above omitting polynomial factors; such a factor is typically linear in the length
of the input formula (yet there are several exceptions).
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In this paper we give a deterministic algorithm for SAT with no restriction on clause length.
Its upper bound on the worst-case running time is

2
n
(

1− 1
ln(m/n)+O(ln ln m)

)

up to a polynomial factor. This bound matches the best known upper bound for randomized SAT
algorithms [5]. In comparison with the randomized algorithm in [5], our deterministic algorithm is
simpler and more intuitive.

Clause shortening approach. Our algorithm employs the clause shortening technique first
used by Schuler [12] in his randomized algorithm. This technique is based on the following idea:

For any “long” clause (longer than some k), either we can shorten this clause by choosing
any k literals in the clause and dropping the other literals, or we can substitute false

for these k literals in the entire formula.

Schuler’s algorithm shortens every clause to its first k literals and applies the k-SAT algorithm [9]
to the resulting k-CNF formula. If no satisfying assignment is found, Schuler’s algorithm simplifies
the initial formula by choosing a long clause at random and substituting false for its first k literals.
This procedure is recursively applied to the simplified formula until no clause contains more than
k literals. The upper bound in [12] is obtained when taking k = log(2m).

The derandomization [4] of Schuler’s algorithm uses the same idea. Let F be an input formula
consisting of clauses C1, . . . , Cm. Assume that the first m′ clauses are longer than k and the other
clauses have length ≤ k. For each Ci where i ≤ m′, let Di be the clause that is made up from the
first k literals of Ci. Then F is equivalent to the disjunction of the following m′ + 1 formulas:

F1 = F [D1 = false]
...
Fm′ = F [Dm′ = false]

Fm′+1 = D1 ∧ . . . ∧ Dm′ ∧ T

where T is Cm′+1 ∧ . . . ∧ Cm, i.e., T is the “tail” consisting of “short” clauses. The derandomized
algorithm first tests satisfiability of Fm′+1 using a k-SAT subroutine. If no satisfying assignment
is found, the algorithm is recursively applied to each of F1, . . . , Fm′ .

Clause shortening combined with pruning. There is some inefficiency in the derandomized
version of Schuler’s algorithm. Namely, when testing Fi, we may have to test its subformula
corresponding to Dj = false. On the other hand, when testing Fj , we may come to the same
subformula. To eliminate this inefficiency, we prune the tree of recursively tested formulas as
follows: for each formula Fi, we replace all clauses C1, . . . , Ci−1 by their counterparts D1, . . . , Di−1.
In other words, we use the fact that F is equivalent to the disjunction of the following formulas:

F1 = (C1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T ) [D1 = false]
F2 = (D1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T ) [D2 = false]
F3 = (D1 ∧ D2 ∧ C3 ∧ . . . ∧ Cm′−1 ∧ Cm′ ∧ T ) [D3 = false]
...
Fm′ = (D1 ∧ D2 ∧ D3 ∧ . . . ∧ Dm′−1 ∧ Cm′ ∧ T ) [Dm′ = false]
Fm′+1 = (D1 ∧ D2 ∧ D3 ∧ . . . ∧ Dm′−1 ∧ Dm′ ∧ T )

2



Similarly to the derandomization above, our algorithm first tests Fm′+1 and then, if no satisfying
assignment is found, it tests each of F1, . . . , Fm′ . We give details of our algorithm in Sect. 3 and
prove its worst-case upper bound in Sect. 4.

2 Definitions and Notation

We deal with Boolean formulas in conjunctive normal form (CNF). By a variable we mean a Boolean
variable that takes truth values true or false. A literal is a variable x or its negation ¬x. A clause C
is a set of literals such that C contains no complementary literals. A formula F is a set of clauses;
n and m denote, respectively, the number of variables and the number of clauses in F . If each
clause in F contains at most k literals, we say that F is a k-CNF formula.

An assignment to variables x1, . . . , xn is a mapping from {x1, . . . , xn} to {true, false}. This
mapping is extended to literals: each literal ¬xi is mapped to the complement of the truth value
assigned to xi. We say that a clause C is satisfied by an assignment A if A assigns true to at least
one literal in C. The formula F is satisfied by A if every clause in F is satisfied by A. In this
case, A is called a satisfying assignment for F . We consider substitutions of truth values for some
variables in a formula. If D is a set of literals, we write F [D = false] to denote the formula obtained
from F as follows: any clause that contains the negation of a literal in D is removed from F , the
literals occurring in D are deleted from the other clauses.

Here is a summary of the notation used in the paper.

• F denotes a CNF formula; n denotes the number of variables in F ; m denotes the number of
clauses in F .

• If C is a clause then |C| denotes its length (the number of literals).

• We write log x to denote log2 x.

• H(x) denotes the binary entropy function: H(x) = −x log x − (1 − x) log(1 − x).

3 Algorithm

We describe an algorithm parameterized by a function k(n,m). This function determines the
length to which input clauses are to be shortened. The algorithm computes the value of k(n,m)
for particular n and m, then it runs a recursive procedure that implements the clause shortening
approach combined with pruning. This recursive Procedure S described below uses a k-SAT
algorithm of [2] as a subroutine.

Lemma 1 ([2]). There exists a deterministic algorithm that tests satisfiability of an input formula
F in time at most

m · q(n) ·
(

2 − 2

k + 1

)n

where q(n) is a polynomial in n, and k is the maximum length of clauses in F .
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Procedure S

Input: a CNF formula F and a positive integer k.

1. Assume F consists of clauses C1, . . . , Cm. Change each clause Ci to a clause Di as follows: If
|Ci| > k then choose any k literals in Ci and drop the other literals; otherwise leave Ci as is,
i.e., Di = Ci. Let F ′ denote the resulting formula.

2. Test satisfiability of F ′ using the algorithm defined in Lemma 1.

3. If F ′ is satisfiable, output “satisfiable” and halt. Otherwise, for each i, do the following:

(a) Convert F to Fi as follows:

i. Replace Cj by Dj for all j < i;

ii. Assign false to all literals in Di.

(b) Recursively invoke Procedure S on (Fi, k).

4. Return “unsatisfiable”.

Algorithm Ak(n,m)

Parameter: a positive integer function k(n,m)

Input: a CNF formula F with m clauses over n variables (n ≤ m)

1. Compute k = k(n,m).

2. Invoke Procedure S on (F, k).

4 Upper Bound

First we give an upper bound for Algorithm Ak(n,m). Then we find a particular function k(n,m)
that approximately minimizes this upper bound.

Theorem 1. Let k(n,m) be an integer function such that:

3 ≤ k(m,n) ≤ log m. (1)

Then Algorithm Ak(n,m) runs in time

O(
√

m) · n
k · q(n) · 2n(1− log e

k+1 )+O(m·2−k), (2)

where q(n) is the polynomial appearing in Lemma 1.

Proof. Let t(F ) be the running time of Procedure S on (F, k). It is not difficult to see that t(F )
can be estimated as follows:

t(F ) ≤ t0(F
′) +

m
∑

i=1

t(Fi) (3)
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where F ′ and Fi are as described in Procedure S, and t0(F
′) is the running time of the k-SAT

algorithm from Lemma 1 on F ′. Let T (n,m,m′) denote the maximum of the running time of
Procedure S on (G, k) where G is a formula with ≤ n variables and ≤ m clauses such that at most
m′ of its clauses contain > k literals. For the k-SAT algorithm, we define T0(n,m) as the maximum
running time on a different set of formulas, namely let T0(n,m) be the maximum running time of
the algorithm from Lemma 1 on the set of formulas F ′ such that each F ′ has ≤ m clauses over ≤ n
variables and the maximum length of clauses is not greater than k.

Then for any n and m, inequality (3) implies the following recurrence relation:

T (n,m,m′) ≤ T0(n,m) +
m−1
∑

i=0

T (n − k,m,m′ − i). (4)

If we iteratively substitute T (n−L,m,m′− i) into this recurrence, we turn its right-hand side into
the sum of terms of the form T0(n − lk,m) for l ≤ n/k.

Our proof strategy is as follows. We consider the recursion tree of our algorithm and estimate
the total amount Tl of work done at its l-th level (i.e., the sum of terms T0(n−lk,m)). We then find
l∗ that maximizes this estimation. The total running time is then at most n/k times the estimation
for the level l∗.

To estimate Tl, we note that the number of nodes at the l-th level

m
∑

i1=1

i1
∑

i2=1

. . .

il−1
∑

il=1

1

is the number of ways to choose l possibly equal elements out of m, i.e.,
(m+l−1

l

)

(see, e.g., [13,
Sect. 1.2]). Then

Tl ≤ m · q(n) ·
(

2 − 2
k+1

)n−lk
·
(m+l−1

l

)

. (5)

Let El denote the right-hand side of the estimation (5). It is straightforward to see that E l+1 ≤ El

if and only if
m+l
l+1 ·

(

2 − 2
k+1

)−k
≤ 1,

which is equivalent to
m+l
l+1 · 2−k ·

(

1 + 1
k

)k
≤ 1.

Therefore, the maximum of El over l is attained at the following integer l∗:

l∗ = mα−2k

2k−α
+ δ,

where α = (1 + 1/k)k and −1 < δ < 1.
The next step is to give lower and upper bounds on l∗. We prove that

m · 2−k ≤ l∗ ≤ 5.12 · m · 2−k (6)

To prove the lower bound, we use k ≤ log m and α ≥ (1+1/3)3 ≈ 2.37 (which follows from k ≥ 3):

l∗ = mα−2k

2k−α
+ δ

≥ m · 2−k ·
(

α−2k/m
1−α/2k

)

− 1

≥ m · 2−k ·
(

α−1
1

)

− 1

≥ m · 2−k.
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The upper bound is proved using condition (1) and α < e. Indeed,

l∗ = mα−2k

2k−α
+ δ

≤ m · 2−k ·
(

α−2k/m
1−α/2k

)

+ 1

≤ m · 2−k ·
(

e
1−e/8

)

+ 1

≤ m · 2−k ·
(

e
1−e/8 + 1

)

≤ 5.12 · m · 2−k.

Now we estimate the total amount of work done at level the l∗:

El∗ = m · q(n) · 2n−kl∗ ·
(

1 − 1
k+1

)n−kl∗

·
(m+l∗−1

l∗
)

. (7)

The last factor in the right-hand side of (7) can be estimated using Stirling’s approximation as in
[6, exercise 9.42]:

(m+l∗−1
l∗

)

= O
(

1√
m+l∗

)

· 2H
(

l∗
m+l∗−1

)

(m+l∗−1)

= O
(

1√
m

)

· e−l∗ ln l∗
m+l∗−1

−(m−1) ln m−1
m+l∗−1 .

Using l∗ − 1 < m and ln(1 + x) < x, we have

(m+l∗−1
l∗

)

= O
(

1√
m

)

· el∗ ln m
l∗ +l∗ ln

(

1+ l∗−1
m

)

+(m−1) ln
(

1+ l∗
m−1

)

= O
(

1√
m

)

· el∗(ln m
l∗ +2).

The factor
(

1 − 1
k+1

)n−kl∗

in (7) can be estimated using the inequality ln(1 − x) < −x:

(

1 − 1
k+1

)n−kl∗

= e(n−kl∗) ln(1− 1
k+1) ≤ e−

n−kl∗
k+1 < e−

n
k+1

+l∗ .

Hence, we can estimate El∗ as follows:

El∗ ≤ O(
√

m) · q(n) · 2n−kl∗ · e−
n

k+1
+l∗ · el∗(ln m

l∗ +2)

= O(
√

m) · q(n) · 2n · 2−
n log e
k+1 · e−kl∗ ln 2 · el∗ · el∗(ln m

l∗ +2)

= O(
√

m) · q(n) · 2n(1− log e
k+1 ) · eβl∗ ,

where
β = 3 + ln m

l∗ − k ln 2 = 3 + ln m
2k·l∗ .

The lower bound on l∗ in (6) implies β < 3. Therefore, using the upper bound in (6), we have

El∗ ≤ O(
√

m) · q(n) · 2n(1− log e
k+1 ) · e3l∗

≤ O(
√

m) · q(n) · 2n(1− log e
k+1 ) · e3·(5.12·m·2−k)

≤ O(
√

m) · q(n) · 2n(1− log e
k+1 ) · 2O(1)·m·2−k

.
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Remark 1. What value of k minimizes bound (2)? Straightforward differentiation of the exponent

n
(

1 − log e
k+1

)

+ O(m · 2−k)

gives the following equation:

k = log(m/n) + 2 log(k + 1) + O(1).

We can approximate a fix-point solution to this equation taking

k = log(m/n) + d · log log m

where d > 1 is a constant close to 1.

Theorem 2. For any number d > 1, let Ad be an algorithm obtained from Algorithm Ak(m,n) by
taking the following function k(m,n):

k(m,n) =

{

blog(m/n) + d · log log mc if log m < n1/d,
blog mc otherwise.

Then Ad runs in time

O(
√

m) · n
k · q(n) · 2n

(

1− 1
ln(m/n)+d·ln log m

+o( 1
k )

)

(8)

on formulas such that log m < n1/d and runs in time

O(
√

m) · n
k · q(n) · 2n

(

1− 1
ln(2m)

)

(9)

on all other formulas, where q(n) is the polynomial from Lemma 1.

Proof. We prove both bounds by applying Theorem 1. Note that the function k(m,n) defined in
the claim satisfies the inequality k ≤ log m required by Theorem 1. This is obvious for k = blog mc
and follows from log m < n1/d for

k = blog(m/n) + d · log log mc. (10)

To prove bound (8), we first write the upper bound given by Theorem 1 in the following form:

O(
√

m) · n
k · q(n) · 2n(1−γ), where γ = log e

k+1 − O(1)·m
n·2k .

Substituting the value of k from (10) in the second term of γ, we have

γ ≥ log e
k+1 − O(1)

(log m)d

≥ log e
k − log e

k(k+1) −
O(1)

(log m)d

≥ log e
k − o

(

1
k

)

using k ≤ log m and d > 1

≥ 1
ln(m/n)+d·ln log m − o

(

1
k

)

.

Bound (9) is easily obtained from the upper bound given by Theorem 1 by substitution of
blog mc for k.
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Remark 2. Both bounds (8) and (9) hold for all formulas. Bound (8) is asymptotically better for
formulas such that log m < n1/d, while bound (9) is better for all other formulas.

Remark 3. What is the best value of d? On the one hand, the smaller d is, the smaller k we
have, which yields a better asymptotics of bound (8). In addition, the smaller d is, the weaker the
log m ≤ n1/d restriction becomes. On the other hand, the smaller d we take, the slower o(1/k)
tends to zero (or, equivalently, the asymptotic behavior starts with lager values of m).

Remark 4. The randomized algorithm for SAT in [5] runs in time

2
n
(

1− 1
ln(m/n)+O(ln ln m)

)

up to a polynomial factor. It is straightforward to check that for any d > 1, the exponential part
of the bound in Theorem 2 also can be written in this form, i.e., our upper bound for deterministic
algorithms matches the best known upper bound for randomized algorithms.
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