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Abstract

Ben-Sasson and Sudan in [4] asked if the following test is robust for the tensor product of
a code with another code– pick a row (or column) at random and check if the received word
restricted to the picked row (or column) belongs to the corresponding code. Valiant showed
that for general linear codes, the test is not robust [12]. However the question remained open
for the tensor product of a code with itself. We resolve this question in the negative. We also
show a similar result for non-linear codes.

1 Introduction

Locally testable codes (or LTCs in short) are error correcting codes which have the following
property– given oracle access to a received word, there is an efficient tester which makes very few
oracle queries and ascertains whether the received word is a codeword or is far from being one.
Recently, there has been heightened activity in study of these objects [7, 3, 9, 4, 5, 6]. LTCs are an
important field of study both for their own sake and their connections with probabilistic checkable
proofs (PCPs) [2, 1].

A code is said to be robustly testable if it is a LTC and its tester has an additional desirable
property called robustness. Informally, a test is robust if for every received word which is far from
being a codeword, the tester not only rejects the codeword with high probability but also with
high probability the tester’s local view of the received word is far from any accepting view. Robust
LTCs have been useful in the construction of PCPs [3, 5] and in the construction of tolerant LTCs
[8].

Given two codes C1 and C2 of block length n1 and n2 respectively, their tensor product (denoted
by C1 ⊗ C2) consists of n2 × n1 matrices with the property that every row is a codeword in C1

and every column is a codeword in C2. Ben-Sasson and Sudan [4] using ideas from Raz and Safra
[11], show that the code obtained by two or more applications of the tensor product to a code is
robustly testable.

A natural test for C1 ⊗ C2 is to uniformly at random pick a row (or column) and check if the
received word restricted to that row (or column) is a codeword in C1 (or C2). This test is indeed
robust in a couple of special cases– for example, when both C1 and C2 are Reed-Solomon codes
(this is the bivariate-polynomial testing of Polishchuk and Spielman [10]) and when both C1 and
C2 are themselves tensor product of a code [4].
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However, the question whether the natural tester described in the above paragraph is a robust
tester for C1 ⊗ C2 was left open by Ben-Sasson and Sudan [4]. Recently, Valiant answered this
question in negative by showing that there are linear codes C1 and C2 such that C1 ⊗ C2 is not
robustly testable [12]. Basically, Valiant constructs linear codes C1, C2 and a matrix v such that
every row (and column) of v is “close” to some codeword in C1 (and C2) while v is “far” from every
codeword in C1 ⊗ C2 (where close and far are in the sense of hamming distance).

However, Valiant’s construction does not work when C1 and C2 are the same code. In this
note, we show a reduction from Valiant’s construction to exhibit a code C such that C 2 (we will
use this shorthand for C ⊗C for the rest of this paper) is not robustly testable. We also construct
a non-linear code C such that C2 is not robustly testable. An interesting feature of the latter
construction is that the received word v has the property that every row is a codeword in C and
all but one column in a codeword in C– the “errant” column differs from a codeword in C in just
one position. On the other hand v is from from every codeword in C 2.

2 Preliminaries

A code C over an alphabet Σ is a mapping from k symbols to n symbols. The distance of C (denoted
by the parameter d) is the minimum hamming distance between any two codewords (where the
hamming distance between two vectors u, v ∈ Σn, denoted by ∆(u, v), is the number of places
they differ). The parameter n is called the block length of the code. Given any vector v ∈ Σn, its
(relative) distance from C is given by δC(v) = minw∈C ∆(w, v)/n. A vector v ∈ Σn is said to be
ε-close to C if δC(v) ≤ ε, otherwise it is ε-far from C.

A local tester with query complexity q is a probabilistic machine that given an oracle access to
a string v ∈ Σn, makes q queries to the oracle v and accepts or rejects the string. A code C is said
to be (ε, q)-locally testable if there exists a tester T with query complexity q such that for every
codeword v, T accepts v with probability 1 and rejects every ε-far word v with probability at least
2/3.

A local tester T has two inputs: an oracle for the received word v and a random string s.
Depending on s, T generates q query positions i1, · · · , iq, fixes a circuit Cs and then accepts if
Cs(vf (s)) = 1 where vf (s) = 〈vi1 , · · · , viq 〉. The robustness of T on inputs v and s, denoted by
ρT (v, s), is defined to be the minimum, over all strings y such that Cs(y) = 1, of ∆(vf (s), y)/n.
The expected robustness of T on v is the expected value of ρT (v, s) over the random choices of s
and would be denoted by ρT (v). A local tester T is said to be c-robust for C if for every v ∈ C, the
tester accepts with probability 1, and for every v ∈ Σn, δC(v) ≤ c · ρT (v). C is said to be robustly
testable if it has a Ω(1)-robust tester.

Given two codes C1 and C2 with parameters k1, n1, d1 and k2, n2, d2 their tensor product,
denoted by C1⊗C2, consists of n2×n1 matrices such that every row of the matrix is a codeword in
C1 and every column is a codeword in C2. It is well known that C3 = C1 ⊗ C2 has the parameters
n3 = n1n2, k3 = k1k2 and d3 = d1d2. A natural tester TC1⊗C2

for such a code is the following–
flip a coin; if it is heads check if a random row is a codeword in C1; if it is tails, check if a random
column is a codeword in C2.

Asking whether TC1⊗C2
is a robust tester has the following nice interpretation. The q queries

i1, · · · , iq are either rows or columns of the received word v. Let the row or column corresponding to
the random seed s be denoted by vs. Then the robustness of TC1⊗C2

on inputs (v, s), ρTC1⊗C2 (v, s) is
just δC1

(vs) when is corresponds to a row and δC2
(vs) when is corresponds to a column. Therefore
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the expected robustness of TC1⊗C2
on v is the average of the following two quantities: the average

relative distance of the rows of v from C1 and the average relative distance of the columns of v
from C2.

In particular, if TC1⊗C2
is Ω(1)-robust then it implies that for every received word v such that

all rows (and columns) of v are o(1)-close to C1 (and C2), v is o(1)-close to C1 ⊗ C2. Ben-Sasson
and Sudan [4] asked the question if the tester TC1⊗C2

is Ω(1)-robust. Valiant [12] answered the
question in the negative.

Theorem 1 ([12]) There exist linear codes C1 and C2 with parameters n1, k1, d1 = n1/10 and
n2 = n2

1, k2, d2 = n2/10 and a n2 ×n1 received word v such that every row of v is a codeword in C1

and every column of v is o(1)-close to C2 but v is Ω(1)-far from C1 × C2.

Note that in the above construction, n2 6= n1 and in particular C1 and C2 are not the same
code. In Section 3, we show how to construct a linear code C from C1 and C2 such that C has linear
distance and there exist a received word v ′ such that every row (and column) of v ′ is o(1)-close to C
but v′ is Ω(1)-far from C2. In Section 4 we construct a non-linear code C with similar properties.

3 Reduction from the construction of Valiant

In this section, we prove the following result.

Theorem 2 Let C1 6= C2 be linear codes with parameters n1, k1, d1 = Ω(n1) and n2, k2, d2 = Ω(n2)
(with n2 > n1) and let v be a n2 × n1 matrix such that every row (and column) of v is o(1)-close
to C1 (and C2) but v is Ω(1)-far from C1 ⊗ C2. Then there exists a linear code C with parameters
n, k, d = Ω(n) and a received word v′ such that such that every row and column of v ′ is o(1)-close
to C but v′ is Ω(1)-far from C2.

Proof : We will first assume that n1 divides n2 and let m = n2

n1
. For any x ∈ Σk1 and y ∈ Σk2 , let

C(〈x, y〉) = 〈(C1(x))m, C2(y)〉

Thus, k = k1 + k2 and n = mn1 + n2. Also as d1 = Ω(n1) and d2 = Ω(n2), d = Ω(n).
We now construct the n×n matrix v′ from v. The lower left n2×mn1 sub-matrix of v′ contains

the matrix vm where vm is the horizontal concatenation of m copies of v (which is a n2×n1 matrix).
Every other entry in v′ is 0. See figure 1 for an example with m = 2.

Let w be the codeword in C1 ⊗ C2 closest to v and construct w′ in the same manner as v′ was
constructed from v. We first claim that w′ is the codeword in1 C2 closest to v′. For the sake of
contradiction, assume that there is some other codeword w ′′ in C2 such that ∆(v′, w′′) < ∆(v′, w′).
For any 2n′ × 2n′ matrix u let ulb denote the lower left n′ × n′ sub-matrix of u. Note that by
definition of C, w′′

lb = xm where x ∈ C1 ⊗ C2. Further, as v′ (necessarily) has 0 everywhere other
than v′lb and ∆(v′, w′′) < ∆(v′, w′), it holds that ∆(v, w) > ∆(v, x) which contradicts the definition
of w.

Finally, it is easy to see that

δC2(v′) = ∆(v′, w′)/n2 = ∆(v, w)m/(mn1 + n2)
2 = ∆(v, w)/(4n1n2) = δC1⊗C2

(v)/4

1Note that w
′
∈ C

2 as the all zeros vector is a codeword in both C1 and C2 and v ∈ C1 ⊗ C2.
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Figure 1: The construction of the new received word v ′ from v for the case when n1 = a, n2 = 2a
and m = 2. The shaded boxes represent v and the unshaded regions has all 0s.

and if for every row (and column), the (relative) distance of v restricted to that row (or column)
from C1 (C2) is at most α then for every row and column, the relative distance of v ′ restricted to
that every row and column from C is at most α/2.

This completes the proof for the case when n1 divides n2. For the case when n1 does not divide
n2 a similar construction works if one defines C in the following manner (for any x ∈ Σk1 and
x2 ∈ Σk2)

C(〈x, y〉) = 〈(C1(x))`/n1 , (C2(y))`/n2〉
where ` = lcm(n1, n2). The received word v′ in this case would have its lower left ` × ` matrix as
v(`/n1,`/n2) (where v(m1 ,m2) is the matrix obtained by vertically concatenating m2 copies of vm1)
and it has 0s everywhere else.

Theorem 1 and 2 imply the following result.

Corollary 1 There exist a linear code C with linear distance such that the tester TC2 is not Ω(1)-
robust for C2.

4 Product of non-linear codes are not robustly testable

In this section we present a non-linear code C such that TC2 is not Ω(1)-robust.
We will use Fibonacci numbers in our construction. Let Fm denote the mth Fibonacci number,

with F0 = 0, F1 = 1, and Fj+2 = Fj + Fj+1. We will also use the following identity

F 2
j − Fj+1Fj−1 = −(−1)j (1)

and the fact that Fj+1/Fj ≈ φ = (1 +
√

5)/2.

Theorem 3 There exists a non-linear code C with parameter n, k, d = Ω(n) and a received word
v such that such that every row (and column) of v is o(1)-close to C but v is Ω(1)-far from C 2.
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Proof : Fix an even integer m. Set n = Fm+1. Define a nonlinear code C, over {0, 1} as follows.
The codewords of C are those words of length n whose Hamming weight is in {0, Fm−1, Fm}. Note
that the distance of C, d ≥ Fm−2 ≈ n/φ3.

Construct an n×n matrix v, in such a way that Fm rows have weight Fm and Fm−1 rows have
weight 0. Further, n−1 columns have weight Fm−1 and the remaining column has weight Fm−1−1.
Such a v can be constructed by entering the 1-elements in a round-robin fashion by rows, so that
the columns are filled as evenly as possible. See Section 4.1 for an example of the construction with
m = 8.

Check that the row and column sums are consistent:

Fm(Fm) + Fm−1(0) = (Fm+1 − 1)(Fm−1) + 1(Fm−1 − 1) = Fm+1Fm−1 − 1

which is consistent with the identity from (1).
With one exception, each row and each column is a codeword in C. The one exceptional column

is at distance 1 from a codeword in C.
Consider a codeword w of C ×C at minimal distance from v. For some α, β, γ, δ, we know that

w has Fm − α rows of weight Fm, and Fm−1 − β rows of weight 0, and α + β rows of weight Fm−1;
and that w has γ columns of weight Fm, and δ columns of weight 0, and Fm+1 − (γ + δ) columns of
weight Fm − 1. Set a = α+γ and b = β+δ. We have α+β ≥ 0, γ ≥ 0, and δ ≥ 0, so that a+b ≥ 0.
Ignoring for now the exceptional column in v, and comparing v and w, the number of lines (rows
and columns) which have changed their hamming weight is then |α|+ |β|+ γ + δ ≥ a+ b. Of these,
|β| + δ ≥ b have changed by ±Fm−1, and |α| + γ ≥ a have changed by ±(Fm − Fm−1) = ±Fm−2.
Each changed matrix element is counted in two changed lines, so accounting for this (and for the
odd column in v), the Hamming distance between v and w is at least (aFm−2 + bFm−1 − 1)/2.

In order to get the row sums and column sums to agree, we must have

(Fm − α)(Fm) +(Fm−1 − β)(0) + (α + β)(Fm−1)
= (γ)(Fm) + (δ)(0) + (Fm+1 − γ − δ)(Fm−1)

(α + γ)(Fm − Fm−1) − (β + δ)(Fm−1) = FmFm − Fm+1Fm−1 = −1

aFm−2 − bFm−1 = −1 (2)

The smallest solution to (2), in nonnegative integers, is a = Fm, b = Fm−1:

FmFm−2 − Fm−1Fm−1 = −1

So the Hamming distance between v and w is at least

(aFm−2 + bFm − 1 − 1)/2 = (FmFm−2 + Fm−1Fm−1 − 1)/2 = FmFm−2

Recalling that n = Fm+1, and that Fj+1/Fj ≈ φ = (1+
√

5)/2, we find that the Hamming distance
between w and v is about n2/φ4.

Remark 1 We note that in the above construction, the received word v has the property that every
row is a codeword in C and all but one column of v is a codeword in C. Further, the “errant”
column differs from a codeword in C in exactly one position. Note that in some sense this is
the best one can hope for while proving such negative results. By comparison, the construction of
Corollary 1 does creates a v such that every row is a codeword in C. However, at least half of the
columns of v differ from every codeword in C in some non-constant number of positions.
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4.1 A worked example

In this subsection, we will give an example of the construction used in the proof of Theorem 3.
m = 8, Fm−1 = F7 = 13, Fm = F8 = 21, Fm+1 = F9 = 34. n = 34.

Valid codewords in C have weights 0, 13, 21. v has 21 rows of weight 21 and 13 rows of weight
0, for a total weight of 21 × 21 + 13 × 0 = 441 + 0 = 441. v has 33 columns of weight 13 and one
of weight 12, agreeing with total weight 33 × 13 + 1 × 12 = 429 + 12 = 441. To bring all rows and
columns into C, we need to change |α| + |β| + γ + δ ≥ a + b lines, with

8a − 13b = −1

The best solution is a = 21, b = 13, giving

8 × 21 − 13 × 13 = 168 − 169 = −1

The Hamming distance between v and w is

(aF6 + bF7 − 1)/2 = (21 × 8 + 13 × 13 − 1)/2 = (168 + 169 − 1)/2 = 168

and this compares to n2 = 342 by the fraction

168/342 = 0.145328 . . . ≈ 1/φ4 = 0.145898 . . .

We could find such w by taking β = γ = 0, α = a = 21, δ = b = 13. Then w will have
21 − α = 21 − 21 = 0 rows of weight 21, and 13 − β = 13 rows of weight 0, and α + β = 21 rows of
weight 13, giving total weight

0 × 21 + 13 × 0 + 21 × 13 = 0 + 0 + 273 = 273.

Among its columns, w has δ = 13 columns of weight 0 and 34 − δ = 21 columns of weight 13, for
total weight

13 × 0 + 0 × 21 + 21 × 13 = 0 + 0 + 273 = 273.

To achieve the minimal change of 8 × 21 = 168 cells whose value changed from 1 to 0, we need to
concentrate those cells in the intersection of the 21 changed rows and 13 changed columns.
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