
Extracting Kolmogorov Complexity with

Applications to Dimension Zero-One Laws

Lance Fortnow∗ John M. Hitchcock† A. Pavan‡ N. V. Vinodchandran§

Fengming Wang¶

September 24, 2005

Abstract

We apply recent results on extracting randomness from independent sources to “extract”
Kolmogorov complexity. For any α, ε > 0, given a string x with K(x) > α|x|, we show how
to use a constant number of advice bits to efficiently compute another string y, |y| = Ω(|x|),
with K(y) > (1 − ε)|y|. This result holds for both classical and space-bounded Kolmogorov
complexity.

We use the extraction procedure for space-bounded complexity to establish zero-one laws for
polynomial-space strong dimension. Our results include:

(i) If Dimpspace(E) > 0, then Dimpspace(E/O(1)) = 1.

(ii) Dim(E/O(1) | ESPACE) is either 0 or 1.

(iii) Dim(E/poly | ESPACE) is either 0 or 1.

In other words, from a dimension standpoint and with respect to a small amount of advice,
the exponential-time class E is either minimally complex (dimension 0) or maximally complex
(dimension 1) within ESPACE.

Classification: Computational and Structural Complexity.

1 Introduction

Kolmogorov complexity quantifies the amount of randomness in an individual string. If a string x
has Kolmogorov complexity m, then x is often said to contain m bits of randomness. Given x, is it
possible to compute a string of length m that is Kolmogorov-random? In general this is impossible
but we do make progress in this direction if we allow a tiny amount of extra information. We

∗Department of Computer Science, University of Chicago. fortnow@cs.uchicago.edu.
†Department of Computer Science, University of Wyoming. jhitchco@cs.uwyo.edu. This research was supported

in part by NSF grant 0515313.
‡Department of Computer Science, Iowa State University. pavan@cs.iastate.edu. This research was supported

in part by NSF grant 0430807.
§Department of Computer Science and Engineering, University of Nebraska-Lincoln. vinod@cse.unl.edu. This

research was supported in part by NSF grant 0430991.
¶Department of Computer Science, Iowa State University. wfengm@cs.iastate.edu. This research was supported

in part by NSF grant 0430807.

1

Electronic Colloquium on Computational Complexity, Report No. 105 (2005)

ISSN 1433-8092

give a polynomial-time computable procedure which takes x with an additional constant amount of
advice and outputs a nearly Kolmogorov-random string whose length is linear in m. Formally, for
any α, ε > 0, given a string x with K(x) > α|x|, we show how to use a constant number of advice
bits to compute another string y, |y| = Ω(|x|), in polynomial-time that satisfies K(y) > (1 − ε)|y|.
The number of advice bits depends only on α and ε, but the content of the advice depends on x.

Our proofs use a recent construction of extractors using multiple independent sources. Tradi-
tional extractor results [13, 22, 19, 12, 21, 15, 16, 20, 9, 18, 17, 4] show how to take a distribution
with high min-entropy and some truly random bits to create a close to uniform distribution. Re-
cently, Barak, Impagliazzo, and Wigderson [2] showed how to eliminate the need for a truly random
source when several independent random sources are available. We make use of these extractors for
our main result on extracting Kolmogorov complexity. Barak et. al. [3] and Raz [14] have further
extensions.

To make the connection consider the uniform distribution on the set of strings x whose Kol-
mogorov complexity is at most m. This distribution has min-entropy about m and x acts like a ran-
dom member of this set. We can define a set of strings x1, . . . , xk to be independent if K(x1 . . . xk) ≈
K(x1) + · · · + K(xk). By symmetry of information this implies K(xi|x1, . . . , xi−1, xi+1, . . . , xk) ≈
K(xi). Combining these ideas we are able to apply the extractor constructions for multiple inde-
pendent sources to Kolmogorov complexity.

To extract the randomness from a string x, we break x into a number of substrings x1, . . . , xl,
and view each substring xi as coming from an independent random source. Of course, these
substrings may not be independently random in the Kolmogorov sense. We find it a useful concept
to quantify the dependency within x as

∑l
i=1 K(xi)−K(x). Another technical problem is that the

randomness in x may not be nicely distributed among these substrings; for this we need to use a
small (constant) number of nonuniform advice bits.

This result about extracting Kolmogorov-randomness also holds for polynomial-space bounded
Kolmogorov complexity. We apply this to obtain some zero-one laws for the dimensions of com-
plexity classes. Polynomial-space dimension [11] and strong dimension [1] have been developed
to study the quantitative structure of classes that lie in E and ESPACE. These dimensions
are resource-bounded versions of Hausdorff dimension and packing dimension, respectively, the
two most important fractal dimensions. Polynomial-space dimension and strong dimension refine
PSPACE-measure [10] and have been shown to be duals of each other in many ways [1]. Addition-
ally, polynomial-space strong dimension is closely related to PSPACE-category [7]. In this paper
we focus on polynomial-space strong dimension which quantifies PSPACE and ESPACE in the
following way:

• Dimpspace(PSPACE) = 0.

• Dimpspace(ESPACE) = 1.

We would like to know the dimension of a complexity class C, contained in ESPACE. The
dimension must always exist and be a real number between zero and one inclusive. Can a reasonable
complexity class have a fractional dimension? In particular consider the class E. Deciding the
polynomial-space dimension of E would imply a major complexity separation but perhaps we can
show that E must have dimension either zero or one, a “zero-one” law for dimension.

We can show such a “zero-one” law if we add a small amount of nonuniform advice. An
equivalence between space-bounded Kolmogorov complexity rates and strong pspace-dimension
allows us to use our Kolmogorov-randomness extraction procedure to show the following results.

2

(i) If Dimpspace(E) > 0, then Dimpspace(E/O(1)) = 1.

(ii) Dim(E/O(1) | ESPACE) is either 0 or 1.

(iii) Dim(E/poly | ESPACE) is either 0 or 1.

2 Preliminaries

2.1 Kolmogorov Complexity

Let M be a universal Turing machine. Let f : N → N. For any x ∈ {0, 1}∗, define

KM (x) = min{|π| | U(π) prints x}

and
KSf

M(x) = min{|π| | U(π) prints x using at most f(|x|) space}.

There is a universal machine U such that for every machine M , there is some constant c such that
for all x, KU (x) ≤ KM (x) and KSf

U(x) ≤ KScf+c
M (x) + c [8]. We fix such a machine U and drop

the subscript, writing K(x) and KSf (x), which are called the (plain) Kolmogorov complexity of x
and f -bounded (plain) Kolmogorov complexity of x. While we use plain complexity in this paper,
our results also hold for prefix-free complexity.

The following definition quantifies the fraction of space-bounded randomness in a string.

Definition. Given a string x and a polynomial g the g-rate of x, rateg(x), is KSg(x)/|x|,

2.2 Polynomial-Space Dimension

We now review the definitions of polynomial-space dimension [11] and strong dimension [1]. For
more background we refer to these papers and the recent survey paper [6].

Let s > 0. An s-gale is a function d : {0, 1}∗ → [0,∞) satisfying 2sd(w) = d(w0) + d(w1) for
all w ∈ {0, 1}∗.

For a language A, we write A�n for the first n bits of A’s characteristic sequence (according to
the standard enumeration of {0, 1}∗). An s-gale d succeeds on a language A if lim sup

n→∞
d(A�n) = ∞

and d succeeds strongly on A if lim inf
n→∞

d(A � n) = ∞. The success set of d is S∞[d] = {A |

d succeeds on S}. The strong success set of d is S∞
str[d] = {A | d succeeds strongly on S}.

Definition. Let X be a class of languages.

1. The pspace-dimension of X is

dimpspace(X) = inf

{

s

∣

∣

∣

∣

there is a polynomial-space computable
s-gale d such that X ⊆ S∞[d]

}

.

2. The strong pspace-dimension of X is

Dimpspace(X) = inf

{

s

∣

∣

∣

∣

there is a polynomial-space computable
s-gale d such that X ⊆ S∞

str[d]

}

.

3

For every X, 0 ≤ dimpspace(X) ≤ Dimpspace(X) ≤ 1. An important fact is that ESPACE has
pspace-dimension 1, which suggests the following definitions.

Definition. Let X be a class of languages.

1. The dimension of X within ESPACE is dim(X | ESPACE) = dimpspace(X ∩ ESPACE).

2. The strong dimension of X within ESPACE is Dim(X | ESPACE) = Dimpspace(X∩ESPACE).

In this paper we will use an equivalent definition of the above dimensions in terms of space-
bounded Kolmogorov complexity.

Definition. Given a language L and a polynomial g the g-rate of L is

rateg(L) = lim inf
n→∞

rateg(L�n).

strong g-rate of L is
Rateg(L) = lim sup

n→∞
rateg(L�n).

Theorem 2.1. (Hitchcock [5]) Let poly denote all polynomials. For every class X of languages,

dimpspace(X) = inf
f∈poly

sup
L∈X

rateg(L).

and
Dimpspace(X) = inf

f∈poly
sup
L∈X

Rateg(L).

3 Extracting Kolmogorov Complexity

Barak, Impagliazzo, and Wigderson [2] recently gave an explicit multi-source extractor.

Theorem 3.1. ([2]) For every constants 0 < σ < 1, and c > 1 there exists l = poly(1/σ, c) and a
computable function E such that if H1, · · ·Hl are independent distributions over Σn, each with min
entropy at least σn, then E(H1, · · · ,Hl) is 2−cn-close to Un, where Un is the uniform distribution
over Σn. Moreover, E runs in time nr.

We show the the above extractor can be used to produce nearly Kolmogorov-random strings from
strings with high enough complexity. The following notion of dependency is useful for quantifying
the performance of the extractor.

Definition. Let x = x1x2 · · · xk, where each xi is an n-bit string. Given a function f , the depen-
dency within x, dep(x), is defined as

∑k
i=1 K(xi) − K(x).

Theorem 3.2. For every 0 < σ < 1, there exist a constant l > 1, and a polynomial-time computable
function E such that if x1, x2, · · · xl are n-bit strings with K(xi) ≥ σn, 1 ≤ i ≤ l, then

K(E(x1, · · · , xl)) ≥ n − 10l log n − dep(x).

4

Proof. Let 0 < σ′ < σ. By Theorem 3.1, there is a constant l and a polynomial-time computable
multi-source extractor E such that if H1, · · · ,Hl are independent sources each with min-entropy
at least σ′n, then E(H1, · · · ,Hl) is 2−5n close to Un.

We show that this extractor also extracts Kolmogorov complexity. We prove by contradiction.
Suppose the conclusion is false, i.e,

K(E(x1, · · · xl)) < n − 10l log n − dep(x).

Let K(xi) = mi, 1 ≤ i ≤ l. Define the following sets:

Ii = {y | y ∈ Σn,K(y) ≤ mi},

Z = {z ∈ Σn | K(z) < n − 10l log n − dep(x)},

Small = {〈y1, · · · , yl〉 | yi ∈ Ii, and E(y1, · · · yl) ∈ Z}.

By our assumption 〈x1, · · · xl〉 belongs to Small. We use this to arrive a contradiction regarding
the Kolmogorov complexity of x = x1x2 · · · xl. We first calculate an upper bound on the size of
Small.

Observe that the set {xy |x ∈ Σσ′n, y = 0n−σ′n} is a subset of each of Ii. Thus the cardinality
of each of Ii is at least 2σ′n. Let Hi be the uniform distribution on Ii. Thus the min-entropy of Hi

is at least σ′n.
Since Hi’s have min-entropy at least σ′n, E(H1, · · · ,Hl) is 2−5n-close to Un. Then

∣

∣

∣
P [E(H1, . . . ,Hl) ∈ Z] − P [Un ∈ Z]

∣

∣

∣
≤ 2−5n. (1)

Note that the cardinality of Ii is at most 2mi+1, as there are at most 2mi+1 strings with Kolmogorov
complexity at most mi. Thus Hi places a weight of at least 2−mi−1 on each string from Ii. Thus
H1 × · · · × Hl places a weight of at least 2−(m1+···+ml+l) on each element of Small. Therefore,

P [E(H1, . . . ,Hl) ∈ Z] = P [(H1, . . . ,Hl) ∈ Small] ≥ |Small| · 2−(m1+···+ml+l),

and since |Z| ≤ 2n−10l log n−dep(x), from (1) we obtain

|Small| < 2m1+1 × · · · × 2ml+1 ×

(

2n−10l log n−dep(x)

2n
+ 2−5n

)

Without loss of generality we can take dep(x) < n, otherwise the theorem is trivially true. Thus
2−5n < 2−10l log n−dep(x). Using this and the fact that l is a constant independent of n, we obtain

|Small| < 2m1+···+ml−dep(x)−8l log n,

when n is large enough. Since K(x) = K(x1) + · · · + K(xl) − dep(x),

|Small| < 2K(x)−8l log n.

We first observe that Small is a computably enumerable set. Letz = z1 · · · zl, where |zi| = n.
The following program accepts z if it belongs to Small: For each program Pi of length at most mi

check whether Pi outputs zi, by running Pi’s in a dovetail fashion. If it is discovered that for each

5

of zi, K(zi) ≤ mi, then compute y = E(z1, · · · , zl). Now verify that K(y) is at most n − dep(x) −
10l log n. This again can be done by running programs of length at most n − dep(x) − 10l log n in
a dovetail manner. If it is discovered that K(y) is at most n − dep(x) − 10l log n, then accept z.

Since Small is computably enumerable, there is a program P that enumerates all elements of
Small. Since by our assumption x belongs to Small, x appears in this enumeration. Let i be the
position of x in this enumeration. Since |Small| is at most 2K(x)−8l log n, i can be described using
K(x) − 8l log n bits.

Thus there is a program Q that outputs x. This program takes i, dep(x), n, m1, · · · ,ml, and l,
as auxiliary inputs. Since the mi’s and dep(x) are bounded by n,

K(x) ≤ K(x) − 8l log n + 2 log n + l log n + O(1)

≤ K(x) − 5l log n + O(1),

which is a contradiction.

If x1, · · · xl are independent strings with K(xi) ≥ σn, then E(x1, · · · , xl) is a Kolmogorov
random string of length n.

Corollary 3.3. For every constant 0 < σ < 1, there exists a constant l, and a polynomial-time
computable function E such that if x1, · · · xl are n-bit strings such K(xi) ≥ σn, and K(x) =
∑

K(xi) − O(log n), then E(x) is Kolmogorov random, i.e.,

E(x1, · · · , xl) > n − O(log n).

We next show that above theorem can be generalized to the space-bounded case. Later we
will use the space-bounded version to obtain dimension zero-one laws. We need a space-bounded
version of dependency.

Definition. Let x = x1x2 · · · xk, where each xi is an n-bit string, let f and g be two space bounds.
The (f, g)-bounded dependency within x, depf

g (x), is defined as
∑k

i=1 KSg(xi) − KSf (x).

Theorem 3.4. For every polynomial g there exists a polynomial f such that, for every 0 < σ < 1,
there exist a constant l > 1, and a polynomial-time computable function E such that if x1, x2, · · · xl

are n-bit strings with KSf (xi) ≥ σn, 1 ≤ i ≤ l, then

KSg(E(x1, · · · , xl)) ≥ n − 10l log n − depf
g (x).

Proof. For the most part proof is similar to the proof of Theorem 3.2. Here we point the places
where the proofs differ. Pick parameters σ ′ and l as before. This defines an extractor E. Let nr

be a bound on the running time of E. Pick a polynomial f = ω(g + nr).
Suppose the conclusion is false, i.e,

KSg(E(x1, · · · xl)) < n − 10l log n − depf
g (x).

Let KSg(xi) = mi, 1 ≤ i ≤ l. Define the following sets:

Ii = {y | y ∈ Σn,KSg(y) ≤ mi},

Small = {〈y1, · · · , yl〉 | yi ∈ Ii, and KSg(E(y1, · · · yl)) < n − 10l log n − depf
g (x)}.

6

Arguing exactly as before, we obtain

|Small| < 2m1+···+ml−dep
f
g (x)−8l log n.

Since depf
g (x) = KSg(x1) + · · · + KSg(xl) − KSf (x),

|Small| < 2KSf (x)−8l log n.

Given a string z = z1 · · · zl, we can check whether z ∈ Small within f(n) space as follows:
Run every program Pi of length at most mi within g(n) space. If it is discovered that for each zi,

KSg(zi) ≤ mi, then compute y = E(z1, · · · , zl). Check if KSg(y) is at most n−10l log n−depf
g(x).

Since E runs in nr time, and f = ω(g + nr), this program takes f(n) space.
Now arguing as in Theorem 3.2, we obtain a contradiction regarding KS f (x).

This theorem says that given x ∈ Σln, if each piece xi has high enough complexity and the
dependency with x is small then, then we can output a string y whose Kolmogorov rate is higher
than the Kolmogorov rate of x, i.e, y is relatively more random than x. What if we only knew that
x has high enough complexity but knew nothing about the complexity of individual pieces or the
dependency within x? Our next theorem state that in this case also there is a procedure a string
whose rate is higher than the rate of x. However, this procedure needs constant bits of advice.

Theorem 3.5. For every polynomial g and real number α ∈ (0, 1), there exist a polynomial f , a
positive integer l, a constant 0 < γ < 1, and a procedure R such that for any string x ∈ Σln with
ratef (x) ≥ α,

rateg(R(x)) ≥ α + γ.

The procedure R requites C1 bits of advice, where C1 depends only on α and is independent of x
and |x|. Moreover R runs in polynomial time and |R(x)| = |x|/l.

Proof. Pick σ such that 0 < σ < α. By Theorem 3.4, there is a constant l > 1 and a polynomial-
time computable function E that extracts Kolmogorov complexity. Let x = x1x2 · · · xl where
|xi| = n, 1 ≤ i ≤ l, and ratef (x) ≥ α. Let 1 > β ′ > β > α. Let γ ′ ≤ 1−β′

l
, 0 < σ < α, and δ < α−σ

l
.

Pick f such that f = ω(g + nr), where nr is the running time of E. We consider three cases.

Case 1. There exists j, 1 ≤ j ≤ l such that KSf (xj) < σn.

Case 2. Case 1 does not hold and depf
g (x) ≥ γ′ln.

Case 3. Cases 1 does not hold and depf
g (x) < γ′ln.

We have two claims about Cases 1 and 2:

Claim 3.5.1. Assume Case 1 holds. There exists i, 1 ≤ i ≤ l, such that rateg(xi) ≥ ratef (x) + δ.

Proof. Suppose not. Then for every i 6= j, 1 ≤ i ≤ l, KSg(xi) ≤ (α + δ)n. We can describe x by
describing j, which takes log l bits, xj which takes σn bits, and all the xi’s, i 6= j. Thus the total
complexity of x would be at most

(α + δ)(l − 1)n + σn + log l

Since δ < α−σ
l

this quantity is less than αln. Since the f -rate of x is at least α, this is a contradic-
tion. � Claim 3.5.1.

7

Claim 3.5.2. Assume Case 2 holds. There exists i, 1 ≤ i ≤ l, rateg(xi) ≥ ratef (x) + γ′.

Proof. By definition,

KSf (x) =

l
∑

i=1

KSg(xi) − depf
g (x)

Since depf
g (x) ≥ γ′ln and KSf (x) ≥ αln,

l
∑

i=1

KSg(xi) ≥ (α + γ′)ln.

Thus there exists i such that rateg(x) ≥ ratef (x) + γ′. � Claim 3.5.2.

We can now describe the constant number of advice bits. The advice contains the following
information: which of the three cases described above holds, and

• If Case 1 holds, then from Claim 3.5.1 the index i such that rateg(xi) ≥ ratef (x) + δ.

• If Case 2 holds, then from Claim 3.5.2 the index i such that rateg(xi) ≥ ratef (x) + γ′.

We now describe procedure R. When R takes an input x, it first examines the advice. If Case
1 or Case 2 holds, then R simply outputs xi. Otherwise, Case 3 holds, and R outputs E(x).

Clearly if Case 1 holds, then

rateg(R(x)) ≥ ratef (x) + δ,

and if Case 2 holds, then
rateg(R(x)) ≥ ratef (x) + γ′.

If Case 3 holds, we have R(x) = E(x) and by Theorem 3.4, KSg(R(x)) ≥ n− 10 log n−γ ′ln. Since

γ′ ≤ 1−β′

l
, in this case

rateg(R(x)) ≥ β ′ − 10 log n
n

.

For large enough n, this value is bigger than β.
Finally, letting γ = min{δ, γ ′, β − α}, we have

rateg(R(x)) ≥ ratef (x) + γ

in all cases. Since E runs in polynomial time, R also runs in polynomial time.

The following theorem follows from the above theorem.

Theorem 3.6. For every polynomial g, there exist a polynomial f such that given 0 < α < β < 1
and a string x with ratef (x) ≥ α, there exist constants C1, C2 and a procedure R such that
rateg(R(x)) ≥ β. Moreover P takes C1 bits of advice and |R(x)| = |x|/C2.

We will apply Theorem 3.5 iteratively. Each iteration of the Theorem increases the rate by γ.
We will stop when we touch the desired rate β. Since in each iteration we increase the rate by a
constant, this process terminates in constant number of iterations. However, this argument has a
small caveat—it is possible that in each iteration the value of γ decreases and so we may never
touch the desired rate β. Observe that the value of γ depends on parameters σ, l, β, and β ′. By
choosing these parameters carefully, we can ensure that in each iteration the rate is incremented
by a sufficient amount, and in constant rounds it touches β. We omit the details.

8

4 Zero-One Laws

In this section we establish zero-one laws for the dimensions of certain classes within ESPACE.
Our most basic result is the following, which says that if E has positive dimension, then the class
E/O(1) has maximal dimension.

Theorem 4.1. If Dimpspace(E) > 0, then Dimpspace(E/O(1)) = 1.

We first show the following lemma from which the theorem follows easily.

Lemma 4.2. Let g be any polynomial and α, θ be rational numbers with 0 < α < θ < 1. Then there
is a polynomial f such that if there exists L ∈ E with Ratef (L) ≥ α, then there exists L′ ∈ E/O(1)
with Rateg(L′) ≥ θ.

Proof of Lemma 4.2. Let β be a real number bigger than θ and smaller than 1. Pick positive
integers C and K such that (C − 1)/K < 3α/4, and (C−1)β

C
> θ. Let n1 = 1, ni+1 = Cni.

We now define strings y1, y2, · · · such that each yi is a substring of the characteristic sequence
of L, and |yi| = (C − 1)ni/K. While defining these strings we will ensure that for infinitely many
i, ratef (yi) ≥ α/4.

We now define yi. We consider three cases.
Case 1. ratef (L|ni) ≥ α/4. Divide L|ni in to K/(C − 1) segments such that the length of each
segment is (C − 1)ni/K. It is easy to see that at least for one segment the f -rate is at least α/4.
Define yi to be a segment with ratef (yi) ≥ α/4.
Case 2. Case 1 does not hold and for every j, ni < j < ni+1, ratef (L|j) < α. In this case we punt

and define yi = 0
(C−1)ni

K .
Case 3. Case 1 does not hold and there exists j, ni < j < ni+1 such that ratef (L|j) > α. Divide
L|[ni, ni+1] into K segments. Since ni+1 = Cni, length of each segment is (C − 1)ni/K. Then it is
easy to show that some segment has f -rate at least α/4. We define yi to be this segment.

Since for infinitely many j, ratef (L|j) ≥ α, for infinitely many i either Case 1 or Case 3 holds.
Thus for infinitely many i, ratef (yi) ≥ α/4.

By Theorem 3.6, there is a procedure R such that given a string x with ratef (x) ≥ α/4,
rateg(R(x)) ≥ β.

Let wi = R(yi). Since for infinitely many i, ratef (yi) ≥ α/4, for infinitely many i, rateg(wi) ≥ β.
Also recall that |wi| = |yi|/C2 for an absolute constant C2.

Claim 4.2.1. |wi+1| ≥ (C − 1)
∑i

j=1 |wj |.

Proof. We have

i
∑

j=1

|wj| ≤
C − 1

KC2

i
∑

j=1

nj =
C − 1

KC2

(Ci − 1)n1

C − 1
,

with the equality holding because nj+1 = Cnj. Also,

|wi+1| =
(C − 1)ni+1

KC2
≥

(C − 1)C in1

KC2

Thus
|wi+1|

∑i
j=1 |wj |

> (C − 1).

9

� Claim 4.2.1.

Claim 4.2.2. For infinitely many i, rateg(w1 · · ·wi) ≥ θ.

Proof. For infinitely many i, rateg(wi) ≥ β, which means KSg(wi) ≥ β|wi| and therefore

KSg(w1 · · ·wi) ≥ β|wi| − O(1).

By Claim 4.2.1, |wi| ≥ (C − 1)(|w1| + · · · + |wi−1|). Thus for infinitely many i, rateg(w1 · · ·wi) ≥
(C−1)β

C
− o(1) ≥ θ. � Claim 4.2.2.

We define w1w2 · · · to be the characteristic sequence of L′. Then by Claim 4.2.2, Rateg(L′) ≥ θ.
Finally, we argue that if L is in E, then L′ is in E/O(1). Observe that wi depends on yi,

thus each bit of wi can be computed by knowing yi. Recall that yi is either a subsegment of the
characteristic sequence of L or 0ni . We will know yi if we know which of the three cases mentioned
above hold. This can be given as advice. Also observe that yi is a subsequence of L|ni+1. Also
recall that wi can be computed from yi in polynomial time (polynomial in |yi|) using constant
bits of advice. Also observe that |wi| = |yi|/C1 for some absolute constant C1. Thus wi can be
computed in polynomial time (polynomial in |wi|) given L|ni+1. Since L is in E, this places L′ in
E/O(1).

This completes the proof of Lemma 4.2.

We now return to the proof of Theorem 4.1.

Proof of Theorem 4.1. We will show that for every polynomial g, and real number 0 < θ < 1, there
is a language L′ in E/O(1) with Rateg(L) ≥ θ. By Theorem 2.1, this will show that the strong
pspace-dimension of E/O(1) is 1.

The assumption states that the strong pspace-dimension of E is greater than 0. If the strong
pspace-dimension of E is actually one, then we are done. If not, let α be a positive rational number
that is less than Dimpspace(E). By Theorem 2.1, for every polynomial f , there exists a language
L ∈ E with Ratef (L) ≥ α.

By Lemma 4.2, from such a language L we obtain a language L′ in E/O(1) with Rateg(L′) ≥ θ.
Thus the strong pspace-dimension of E/O(1) is 1.

Observe that in the above construction, if the original language L is in E/O(1), then also L ′ is
in E/O(1), and similarly membership in E/poly is preserved. Additionally, if L ∈ ESPACE, it can
be shown that L′ ∈ ESPACE. With these observations, we obtain the following zero-one laws.

Theorem 4.3. Each of the following is either 0 or 1.

1. Dimpspace(E/O(1)).

2. Dimpspace(E/poly).

3. Dim(E/O(1) | ESPACE).

4. Dim(E/poly | ESPACE).

10

We remark that in Theorems 4.1 and 4.3, if we replace E by EXP, the theorems still hold. The
proofs also go through for other classes such as BPEXP, NEXP ∩ coNEXP, or NEXP/poly.

Theorems 4.1 and 4.3 concern strong dimension. For dimension, the situation is more compli-
cated. Using similar techniques, we can prove that if dimpspace(E) > 0, then dimpspace(E/O(1)) ≥
1/2. Analogously, we can obtain zero-half laws for the pspace-dimension of E/poly, etc. We omit
the details.

References

[1] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension
in algorithmic information and computational complexity. SIAM Journal on Computing. To
appear.

[2] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness using few independent
sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 384–393. IEEE Computer Society, 2004.

[3] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:
new constructions of condensers, ramsey graphs, dispersers, and extractors. In Proceedings of
the 37th ACM Symposium on Theory of Computing, pages 1–10, 2005.

[4] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. In Proceedings of the 26th Annual IEEE Conference on Founda-
tions of Computer Science, pages 429–442, 1985.

[5] J. M. Hitchcock. Effective Fractal Dimension: Foundations and Applications. PhD thesis,
Iowa State University, 2003.

[6] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity classes.
SIGACT News, 36(3):24–38, September 2005.

[7] J. M. Hitchcock and A. Pavan. Resource-bounded strong dimension versus resource-bounded
category. Information Processing Letters, 95(3):377–381, 2005.

[8] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications.
Springer-Verlag, Berlin, 1997. Second Edition.

[9] C-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to a constant
factor. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
602–611, 2003.

[10] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System
Sciences, 44(2):220–258, 1992.

[11] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236–1259,
2003.

[12] N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructions. Journal
of Computer and System Sciences, 42(2):149–167, 1999.

11

[13] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System
Sciences, 52(1):43–52, 1996.

[14] R. Raz. Extractors with weak random seeds. In Proceedings of the 37th ACM Symposium on
Theory of Computing, pages 11–20, 2005.

[15] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing.
In Proceedings of the 41st Annual COnference on Foundations of Computer science, 2000.

[16] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new
constant-degree expanders and extractors. In Proceedings of the 41st Annual IEEE Conference
on Foundations of Computer Science, 2000.

[17] M. Santha and U. Vazirani. Generating quasi-random sequences from slightly random sources.
In Proceedings of the 25th Annual IEEE Conference on Foundations of Computer Science,
pages 434–440, 1984.

[18] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random
generator. In Proceedings of the 42nd Annual Conference on Foundations of Computer Science,
2001.

[19] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. SIAM Journal
on Computing, 28(4):1433–1459, 1999.

[20] A. Ta-Shma, D. Zuckerman, and M. Safra. Extractors from reed-muller codes. In Proceedings
of the 42nd Annual Conference on Foundations of Computer Science, 2001.

[21] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(1):860–879,
2001.

[22] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algorithms,
11:345–367, 1997.

12

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

