
Extractors for a Constant Number of Polynomial Min-Entropy
Independent Sources

Anup Rao
University of Texas at Austin

arao@cs.utexas.edu

September 26, 2005

Abstract

We consider the problem of bit extraction from independent sources. We construct an extractor
that can extract from a constant number of independent sources of length n, each of which have min-
entropy nγ for an arbitrarily small constant γ > 0. Our constructions are different from recent extractor
constructions [BIW04, BKS+05, Raz05, Bou05] for this problem in the sense that they do not rely on
any results from additive number theory. They are obtained by composing previous constructions of
strong seeded extractors in simple ways.

1

Electronic Colloquium on Computational Complexity, Report No. 106 (2005)

ISSN 1433-8092

1 Introduction

The use of randomness is widespread in computer science. Many of the best performing algorithms and
protocols in many different areas of computer science are randomized. To guarantee their performance
these algorithms usually rely on a perfect source of uncorrelated uniformly random bits, yet such a source
may not be easy to obtain. We might instead have access to an imperfect random source where the bits are
correlated and not uniformly random.

This motivates the study of objects called extractors. Loosely speaking, an extractor is an explicit
efficiently computable function Ext : {0, 1}n → {0, 1}m that takes as input bits from an imperfect random
source and produces bits that are close to uniformly random (the distance of the output distribution from the
uniform distribution is called the error of the extractor). If we had access to such a function, we could use it
to extract truly random bits from an imperfect random source. We would then use the extracted bits in our
application. Thus we could achieve performance guarantees even with imperfect sources of randomness.
Building on work by Zuckerman [Zuc90, Zuc96], extractors were first considered and studied by Nisan and
Zuckerman in [NZ93] with exactly this goal in mind. A long sequence of works further developed extractor
constructions and applications. Extractors are now known to have applications in a wide range of problems
and are interesting objects in their own right. For surveys of the applications and constructions we refer the
interested reader to [Nis96, NT99, Sha02].

1.1 Modeling the source

To formalize the problem of randomness extraction, we must decide on a model for the types of imperfect
sources that the extractors can handle. If we intend to extract m random bits, information theoretic con-
siderations show that the imperfect source must contain at least m bits of entropy. The goal is to construct
extractors which output the most number of random bits for a source with given entropy, have small error
and work for very general models. The most general model that has been considered to date is what we will
call a weak source [Zuc96]. The only constraint on a weak source that supplies n total bits is that the proba-
bility of getting any particular string from the source is at most 2−k, where k is called the min-entropy of the
source. Such a source is called an (n, k)-source. Unfortunately it can be shown that there is no deterministic
extractor that can extract from general weak sources.

One way to get around this problem is to restrict the source so that it consists of a sample from a weak
source and an additional much shorter independent seed of truly uniformly random bits. An extractor for
such sources is called a seeded extractor. For any n, k ∈ N we now know how to construct extractors
that can extract a constant fraction of k bits which are almost uniformly random using a very short (only
a constant multiple of log n) length seed from any (n, k)-source [LRVW03]. This is sufficient to simulate
any algorithm that relies on truly uniformly random bits for its efficiency with the aid of a weak source in
polynomial time. The assumption that we have access to a truly uniformly random seed is restrictive. These
extractors are not appropriate for many applications where randomness is needed for more than improving
efficiency. For instance, many cryptographic applications need to pick a key uniformly at random. Such an
operation cannot be simulated using a seeded extractor and a weak source without access to an independent
uniformly random seed.

Several other models for sources have been considered [vN51, Blu84, Vaz85, CFG+85, CG88, CW89,
TV00, MU02, KZ03, GRS04, GR05]. In this paper, we assume we have access to a few independent sources,
each of which have high enough min-entropy. The probabilistic method shows that extractors for this model
exist even when given access to (n, polylog(n))-sources. The challenge, then, is to construct an efficiently
computable function that is a good extractor for such sources.

1

1.2 History and Previous Results

The problem of building extractors for independent weak sources is closely related to the Bipartite Ramsey
Graph Problem. In the Bipartite Ramsey Graph Problem, the goal is to find an explicit 2-coloring of the
complete bipartite graph with N vertices in each bipartition so that there is no large monochromatic clique.
Every extractor for 2 independent sources immediately gives a solution to the Bipartite Ramsey Graph
Problem.

The problem of extracting from several independent sources was first considered by Santha and Vazirani
[SV86]. Their extractors can extract from O(log n) independent (n, δn)-sources, but they placed additional
restrictions on the sources that we will not discuss here. Chor and Goldreich [CG88] demonstrated extractors
for 2 independent (n, (1/2 + α)n)-sources, for all constant α ∈ (0, 1/2].

In recent work, Barak, Impagliazzo and Wigderson [BIW04] showed how to extract from a constant
number of independent (n, δn)-sources, where δ (the min-entropy rate of the source) is allowed to be any
arbitrarily small constant. The number of sources used depends on δ. Subsequently Barak et. al. [BKS+05]
showed how to extract a constant number of bits with constant error from 3 (n, δn)-sources, where δ is an
arbitrarily small constant. In this work they also present 2-source dispersers (a disperser is an object similar
to but somewhat weaker than an extractor) that output a constant number of bits with constant error and
work for min-entropy rate δ where δ is an arbitrarily small constant.

Raz [Raz05] gave an extractor for 2 independent sources where one source needs to have min-entropy
rate greater than and bounded away from 1/2 and the other source may have polylogarithmically small min-
entropy. In this case his extractor can extract a linear fraction of the min-entropy with exponentially small
error. He also gave an extractor for 3 independent sources where one source must have constant min-entropy
rate and the other two need polylogarithmic min-entropy. In this case his extractor can extract a constant
number of bits with constant error.

Bourgain [Bou05] gave another extractor construction for 2 independent sources. His extractor can
extract from 2 (n, (1/2−α0)n)-sources, where α0 is some small universal constant. This is the first extractor
to break the 1/2 min-entropy rate barrier for 2 sources. His extractor outputs a linear fraction of the min-
entropy, with exponentially small error.

All four of these recent constructions were made possible by new breakthroughs on the sum-product
estimate in additive number theory [BKT04, Kon03]. A common feature of [Raz05, BKS+05] is that they
reduce the general problem of extracting from independent sources to the problem of extracting from in-
dependent sources that come from a much more restricted class, called somewhere-random sources. They
then build extractors for these sources. A key step in our constructions is building much better extractors for
somewhere-random sources.

1.3 Overview of New Results and Techniques

1.3.1 New Results

• We construct a polynomial time computable extractor which extracts k − o(k) random bits from 2
independent blockwise sources (blockwise sources were first defined by Chor and Goldreich [CG88]).
Each source is required to have at most O(log n

log k) blocks of length n, where each block has min-entropy

k(n) > log4 n conditioned on the previous blocks. The error for the extractor is 1/nΩ(1).

• As a special case of the previous construction, we obtain a polynomial time computable extractor
which extracts k random bits from O(log n

log k) independent (n, k)-sources with error 1/nc for any

k(n) > log4 n and any constant c > 1. An interesting setting of parameters is when k = nγ for

2

some 0 < γ < 1. In this case we get an extractor for a constant number of sources which extracts all
the min-entropy with polynomially small error.

• We construct a polynomial time computable 2-source disperser which outputs a linear number of bits
with exponentially small error when the min-entropy rate of the source is an arbitrarily small constant.

• We construct a polynomial time computable extractor for 3 sources which extracts a linear number of
bits with exponentially small error when one source has min-entropy rate that is an arbitrarily small
constant and the other two may have min-entropy that is polylogarithmically small.

Our results are the first to extract from a constant number of sources which have polynomially small
min-entropy. In fact we are not even aware of previous constructions of explicit dispersers (or equivalently
explicit Ramsey Graphs) of this type for such low min-entropy. The first three of the results above have the
additional feature that they do not rely on the sum-product estimate. We compose existing constructions of
strong seeded extractors in simple ways to get our extractors/dispersers. For the case of constant min-entropy
rate sources, our results are obtained by modifying the constructions of [BKS+05, Raz05].

1.3.2 Techniques

Many extractor constructions in the past have been based on the paradigm of iterative condensing [RSW00,
TSUZ01, CRVW02, LRVW03, BIW04, Zuc05]. The idea is to start with some distribution that has low min-
entropy and apply a function (called a condenser) whose output has a better min-entropy rate. Repeating
this process, we eventually obtain a distribution which has very high min-entropy rate. Then we can apply
some other extractor construction which works for such a high min-entropy rate to obtain random bits. The
construction in this paper can also be viewed as an example of this paradigm, with a slight twist. Instead
of improving the min-entropy rate of the distributions we are working with, we impose a certain structure
on the distributions and find some measure of the quality of this structure. Then we iteratively improve the
quality of the distribution until it is so good that extracting randomness becomes easy.

We make progress by considering a more restricted model for a source, which we call an elementary
somewhere random source, ES-source for short. ES-sources are slightly more restricted than somewhere-
random sources, first considered by Ta-Shma [TS96]. A source is a (t× r) ES-source if it can be broken up
into a collection of t blocks, each of length r, such that at least one block contains uniformly random bits. A
somewhere-random source is merely a convex combination of ES-sources. In fact all of our constructions for
ES-sources work even for somewhere-random sources, but it is less cumbersome and no loss of generality
to make the arguments for ES-sources.

It is easy to use a strong seeded extractor to convert any general weak source into an ES-source. Given
a sample from the weak source, we simply evaluate the extractor on the sample with all possible seeds,
getting one block of the output for each fixed seed. For any fixed weak source, the strong extractor property
guarantees that most seeds will give a distribution that is statistically close to uniform. As long as the seed
length required by the extractor is O(log n), we get a polynomial time algorithm to convert any weak source
to a distribution that is statistically close to an ES-source with poly(n) blocks.

It turns out that it is easy to extract from independent ES-sources when each source has very few blocks
relative to the length of each of the blocks. In the extreme case, when an ES-source has just one block, it is
a uniformly random string. The measure of quality that we will be concerned with is the ratio of the length
of each block in the source to the number of blocks.

We proceed by exploiting the structure of ES-sources to build condensers for such sources in the fol-
lowing sense: starting from a collection of independent ES-sources, we turn the distribution into one that
is essentially the distribution of independent ES-sources with fewer blocks. The condensers are also built

3

using previous constructions of strong seeded extractors. To condense a particular ES-source, we will use
the other ES-sources to generate a short list of candidate seeds. Then we apply a strong extractor to the
ES-source being condensed with all the candidate seeds. This condensing process introduces dependencies
between the output ES-sources. Still, we will argue that the output distribution is statistically close to a
convex combination of independent ES-sources which are suitable for further condensing. Iterating this
condensing process, we eventually reduce the number of blocks to just 1, at which point we can just output
the blocks to get bits which are statistically close to uniformly distributed.

2 Preliminaries

2.1 Notation

Throughout this paper, we will use capital letters to denote distributions and sets. When it isn’t ambiguous
we will sometimes use the same capital letter to denote a distribution and its support. We will usually use
the same small letter to denote an instantiation of the capital letter, for e.g. for a set X , we would use x to
denote an element in X . If R is a random variable, we will write r ∈ R when we really mean r ∈ supp(R).

Given a distribution X over {0, 1}n and a set S ⊆ [n], we will use XS to denote the restriction of X
onto the indices in S.

We use the convention that N = 2n, M = 2m and K = 2k.
All logarithms are meant to be base 2.
We will use Um to denote the uniformly random distribution on {0, 1}m .
We will use the symbol ◦ to denote concatenation.
We will construct and compose several explicit extractors and condensers in this paper. We will usually

use long names to make clear what kinds of sources the functions are meant to manipulate. When a function
f can be applied to a very restricted family of sources (the restrictions may not be apparent from the naming),
we will usually name it f to indicate that its use is restricted.

2.2 Min-Entropy and Special Sources

We will be concerned with the treatment of various kinds of distributions that are nice in that they contain a
lot of usable randomness. Here we discuss some ways to measure this niceness:

Definition 2.1. The min-entropy of a random variable R is defined to be:

H∞(R) = − log(max
x∈R

(R(x))

Definition 2.2. The min-entropy rate of a distribution R on {0, 1}n is H∞(R)/n.

Definition 2.3. An (n, k)-source denotes some random variable X over {0, 1}n with H∞(X) ≥ k.

Definition 2.4. A distribution X1 ◦ X2 ◦ · · · ◦ Xu is called a (k1, k2, . . . , ku)-blockwise source if for all
i = 1, . . . , u, we have that for all x1 ∈ X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 = x1, . . . , X

i−1 = xi−1) ≥ ki,
i.e., each block has high min-entropy even conditioned on the previous blocks.

Proposition 2.5. Let X1, . . . , Xu be independent sources with H∞(Xi) = ki for i = 1, . . . , u.Then X1 ◦
· · · ◦ Xu is a (k1, k2, . . . , ku)-blockwise source.

In some situations we will be interested in the min-entropy of a random variable when it is conditioned
on typical instantiations. We will need the following proposition:

4

Proposition 2.6. Let X be a random variable with H∞(X) = k. Let A be any event in the same probability
space. Then

H∞(X|A) < k′ ⇒ Pr[A] < 2k′−k

Definition 2.7. A (t×r) elementary somewhere-random source (ES-source for short) denotes some random
variable X over t blocks of {0, 1}r s.t. X is distributed uniformly randomly over one of the blocks. Every
other block may depend on the random block in arbitrary ways.

ES-sources are a special case of somewhere-random sources, introduced by Ta-Shma [TS96].

Definition 2.8. A (t × r) somewhere-random source denotes some random variable X over t blocks of
{0, 1}r s.t. X is a convex combination of elementary somewhere-random sources.

For ease of discussion, throughout this paper we will consider ES-sources, even though all our construc-
tions for extracting from ES-sources succeed even when the sources are somewhere-random sources.

Definition 2.9. We will say that a (t× r) source (i.e., a distribution over t blocks of {0, 1}r) X has elemen-
tary somewhere-min-entropy k, if X has min-entropy k in one of its blocks. We will say that a source has
somewhere min-entropy k if it is a convex combination of sources which have elementary somewhere-min-
entropy k.

2.3 Statistical Distance

Sometimes the distributions we get are not exactly the distributions we want, but they may be close enough.
The measure of closeness we will use is this one:

Definition 2.10. Let D and F be two distributions on a set S. Their statistical distance is

‖ D − F ‖= max
T⊆S

(|D(T) − F (T)|) =
1

2

∑

s∈S

|D(s) − F (s)|

If ‖D − F‖ ≤ ε we shall say that D is ε-close to F .

Proposition 2.11. Let D and F be any two distributions over a set S s.t. ‖D − F‖ ≤ ε. Let g be any
function on S. Then ‖g(D) − g(F)‖ ≤ ε.

In a few of our proofs we will need to change a distribution that we are working with to a statistically
close distribution while maintaining its independence from various other distributions.

Proposition 2.12. If X1, . . . , X l are independent random variables with ‖ X i − Y i ‖< ε, then X1 ◦ X2 ◦
· · · ◦ X l is lε-close to Y 1 ◦ Y 2 ◦ · · · ◦ Y l where the random variables Y i are independent of each other.

2.4 Convex Combinations

Definition 2.13. Let P be a property of sources. Let X be some random variable over some universe. We
will say that X is a convex combination of sources with property P if there exists some random variable I
over an arbitrary universe s.t. for all i ∈ supp(I), X|I = i has property P .

A key observation that is essential to our constructions is that random variables that are convex combi-
nations of sources with some good property are usually good themselves. This is captured in the following
easy propositions:

5

Proposition 2.14. Let X,Y be random variables s.t. X is a convex combination of sources which are ε
close to Y . Then X is ε close to Y .

Proposition 2.15. Let X, I be random variables s.t. X is a convex combination of random variables
{Xi}i∈I . Let f be some function s.t. for all i ∈ I , f(Xi) is a convex combination of sources that have
some property P . Then f(X) is a convex combination of sources that have property P .

2.5 Extractors and Dispersers

Definition 2.16. A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a strong (n, k, ε) seeded extractor if for
any (n, k) source X and for Y chosen uniformly at random from {0, 1}t , we have

‖ Y ◦ Ext(X,Y) − Y ◦ Um ‖< ε

where Um is independent of Y .

Definition 2.17. A function IExt : ({0, 1}n)u → {0, 1}m is an (n, k, ε) extractor for u independent sources
if for any independent (n, k) sources X1, . . . , Xu we have

‖ IExt(X1, . . . , Xu) − Um ‖< ε

Definition 2.18. A function IExt : {0, 1}n × {0, 1}n → {0, 1}m is an (n, k, ε) 2-source extractor if for any
independent (n, k) sources X,Y we have

‖ IExt(X,Y) − Um ‖< ε

We will say that IExt is a strong 2-source extractor if

‖ Y ◦ IExt(X,Y) − Y ◦ Um ‖< ε

where Um is independent of Y .

Definition 2.19. A function IDisp : {0, 1}n × {0, 1}n → {0, 1}m is an (n, k, ε) 2-source disperser if for all
sets A,B ⊆ {0, 1}n , with |A|, |B| ≥ 2k, |IDisp(A,B)| ≥ (1 − ε)2m.

In our constructions we will need the notion of a strong disperser.

Definition 2.20. A function IDisp : {0, 1}n × {0, 1}n → {0, 1}m is a strong (n, k, ε, µ) 2-source disperser
if for all independent (n, k) sources A,B ⊆ {0, 1}n, Pra←RA[|IDisp(a,B)| ≥ (1 − ε)2m] ≥ µ.

If we omit the parameter µ in the above definition, then it is assumed to be some positive quantity.
Specifically:

Definition 2.21. We will say that a function IDisp : {0, 1}n × {0, 1}n → {0, 1}m is a strong (n, k, ε)
2-source disperser if for all sets A,B ⊆ {0, 1}n, with |A|, |B| ≥ 2k, there exists a ∈ A s.t. |IDisp(a,B)| ≥
(1 − ε)2m.

Many of our constructions use previous extractor constructions as black boxes. The parameters of our
final constructions depend on the parameters of the strong seeded extractors used. Here we list the previous
constructions that we will need to achieve the parameters claimed.

6

2.6 Seeded Extractors

Theorem 2.22. [LRVW03] For any constant α ∈ (0, 1), every n ∈ N and k ≤ n and every ε ∈ (0, 1) where
ε > exp(−

√
k), there is an explicit (n, k, ε) seeded extractor Ext : {0, 1}n×{0, 1}O(log n+log(n/k) log(1/ε)) →

{0, 1}(1−α)k .

Theorem 2.23. [RRV99] For every n, k,m ∈ N and ε > 0, such that m ≤ k ≤ n, there is an explicit

(n, k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O
(

log2(n/ε)
log(k/m)

)

.

We shall be interested in the following two instantiations of this theorem, obtained by setting the param-
eters appropriately:

Corollary 2.24. [RRV99] For every n ∈ N, constants r > 0, γ < 1, there is an explicit (n, nγ , n−r)-strong

seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}nγ′

with d = O(log(n)).

Corollary 2.25. [RRV99] For every n, k ∈ N , there is an explicit (n, k, ε)-strong seeded extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}Ω(k) with d = O(log2(n/ε)).

The first instantiation will be used when we need an extractor that has a good seed length. The second
will be used when we need an extractor that has good output length.

Composing Corollary 2.25 with a construction from [WZ99], we get the following.

Corollary 2.26. For every n, k ∈ N, ε > 0, there is an explicit (n, k, ε)-strong extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}k−O(log3(n/ε)) with d = O(log3(n/ε)).

2.7 Few Source Extractors

Recently Jean Bourgain constructed a strong 2-source extractor for min-entropy rate slightly less than half.

Theorem 2.27. [Bou05] There exists a polynomial time computable function Bou : {0, 1}n × {0, 1}n →
{0, 1}m and a universal constant α0 s.t. if X,Y are independent (n, (1/2 − α0)n) sources,

‖ Y ◦ Bou(X,Y) − Y ◦ Um ‖≤ 2−Ω(n)

where m = Ω(n) and Um is independent of Y .

3 Extracting from Independent Sources by Condensing ES-Sources

Our main result is a new deterministic extractor that can extract from a constant number of independent
sources which have min-entropy that is polynomially small in their length. Actually the construction can
handle a slightly more general class of sources. We can extract from just 2 independent sources, where
each source is a blockwise source with a constant number of blocks. To simplify the presentation, we will
first present the construction assuming that we have access to truly independent sources. In the next section
we will show how to prove that the construction succeeds even when given just two independent blockwise
sources.

Our algorithms will repeatedly condense ES-sources. Starting with a number of independent ES-sources,
we will iteratively reduce the number of blocks in each of the sources, until the number of blocks is so small
that the problem becomes easy.

In this section we will prove the following theorem:

7

Theorem 3.1 (Main Theorem). For every constant c > 0, there exists a polynomial time computable
function IExt : ({0, 1}n)u → {0, 1}k s.t. for constant γ < 1 if X1, X2, . . . , Xu are independent (n, k)
sources with k > log4 n, u = O(log n

log k) then

‖ IExt(X1, . . . , Xu) − Uk ‖< ε

with ε = 1/nc.

Setting the parameters appropriately gives the following corollary:

Corollary 3.2. For every constant c > 0, there exists a polynomial time computable function IExt :
({0, 1}n)u → {0, 1}k s.t. for constant γ < 1 if X1, X2, . . . , Xu are independent (n, nγ) sources with
u some large enough constant, k polynomial in n, then

‖ IExt(X1, . . . , Xu) − Uk ‖< ε

with ε = 1/nc.

Our first step will be to convert each of the sources to an ES-source. The following proposition, which
we state without proof, shows how to do such a conversion.

Proposition 3.3. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a seeded (n, k, ε) strong extractor. Let X be any
(n, k) source. Let {0, 1}d = {s1, s2, . . . , s2d}. Then Ext(X, s1) ◦ Ext(X, s2) ◦ · · · ◦ Ext(X, s2d) is ε-close
to a (2d,m) ES-source.

Using any good seeded strong extractor with seed length O(log n), we can do the conversion in polyno-
mial time.

Definition 3.4. We will say that a collection of ES-sources X 1, . . . , Xu is aligned if there is some i for
which the i’th block of every ES-source in the collection is uniformly distributed.

If the strong extractor that we used to convert the input general sources to ES-sources has error ε, at
most

√
ε fraction of the blocks in each source are not

√
ε-close to uniform. Thus, if we are given u sources,

as long as u
√

ε < 1, we will have one aligned block in every source which is
√

ε-close to uniform. Using
Proposition 2.12 these sources are u

√
ε-close to being the distribution of independent aligned ES-sources.

Proposition 3.5. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded (n, k, ε) strong extractor. Let
X1, . . . , Xu be independent (n, k) sources, with u

√
ε < 1. Let {0, 1}d = {s1, s2, . . . , s2d}. Let Z i de-

note Ext(X i, s1) ◦ Ext(X i, s2) ◦ · · · ◦ Ext(X i, s2d). Then Z1 ◦ · · · ◦ Zu is u
√

ε-close to the distribution of
u independent aligned (2d,m) ES-sources.

If Ext is a strong seeded extractor with seed length O(log n) and output length m, we can use Proposition 3.5
to reduce the problem of extracting from independent sources to the problem of extracting from aligned inde-
pendent (poly(n)×m) ES-sources. It turns out that it is easy to extract from independent aligned ES-sources
when each ES-source contains very few blocks.

The rest of this section is organized in the following way:

1. We will describe a couple of ways to extract from a few independent aligned (c×n) ES-sources when
c is a constant.

2. We will show how to use the extractors from the previous step to build condensers for independent
aligned ES-sources. We will use the condensers to give a basic extractor that can extract from O(log n)
independent aligned ES-sources which have poly(n) blocks. Using Proposition 3.5, this will give an
extractor for O(log n) general independent sources.

3. We will add a few more tricks to bring down the number of sources required to O(log n/ log k).

8

3.1 Strong Extractors for independent aligned (2 × n) ES-sources

If we were given just 2 independent aligned (2 × n) ES-sources X 1 and X2, it is easy to see that

‖ X1
{1}×[n] ⊕ X2

{2}×[n] − Un ‖= 0

i.e. to get random bits we just have to XOR the first block from the first source with the second block
from the second source.

We will actually need something stronger: a strong extractor for such sources. We can get such a strong
extractor for 3 (2×n) aligned independent ES-sources by composing the XOR function with a strong seeded
extractor. The following theorem is easy to see. We state it without proof.

Theorem 3.6. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be an (n, k, ε) strong seeded extractor. Let BasicESExt :
{0, 1}n ×{0, 1}2d ×{0, 1}2d → {0, 1}m be defined as BasicESExt(x, y1, y2) = Ext(x, y1

{1}×[d]⊕y2
{2}×[d]).

Then if X,Y 1, Y 2 are independent sources, with X an (n, k) source and Y 1, Y 2 aligned (2×d) ES-sources,

‖ −→
Y ◦ BasicESExt(X,

−→
Y) −−→

Y ◦ Um ‖< ε

where
−→
Y denotes Y 1 ◦ Y 2 and Um is independent of

−→
Y .

Claim 3.7. Let X and Y be as in Theorem 3.6. Then

Pr
~y←R

−→
Y

[‖ BasicESExt(X,~y) − Um ‖≥
√

ε] <
√

ε

To give an example of the kinds of parameters that can be achieved, if we start with 3 independent aligned
(2× n) ES-sources and use the extractor promised by Corollary 2.26, we can get n− o(n) random bits out,
with error that is exponentially small in n. Setting parameters appropriately, we can get the following
corollaries.

Corollary 3.8. Let Ext be the extractor from Corollary 2.26. Setting k = d = r, n = 2r, BasicESExt can
be set up to output m = r − O(log3(r/ε)) random bits with error ε.

Corollary 3.9. Let Ext be the extractor from Corollary 2.26. Setting k = d = r, n = 2r, BasicESExt can
be set up to output m = r − O(log6 r) random bits with error ε < 2− log2 r.

Corollary 3.10. Let Ext be the extractor from Corollary 2.26. Setting k = d = r, n = 2r, BasicESExt can
be set up to output m = r −√

r random bits with error ε < 2−rΩ(1)
.

Another way to get a strong extractor from just two ES-sources of this type is to use Bourgain’s recent
construction Theorem 2.27. This already gives a strong extractor for two ES-sources with min-entropy rate
half. However Bourgain’s extractor extracts only a constant fraction of the randomness. We can remedy this
by composing it with a strong seeded extractor to get almost all the randomness out. We state the following
theorem without proof.

Theorem 3.11. Let Ext : {0, 1}2n × {0, 1}d → {0, 1}m be a (n, k, ε) strong seeded extractor. Let Bou and
α0 be as in Theorem 2.27. Let n, k′ be such that n − 100k′ > k and d be the output length of Bou when
applied to two independent (2k′, k′) sources. Let Basic2ESExt : {0, 1}2n × {0, 1}2n → {0, 1}m be defined
as Basic2ESExt(X,Y) = Ext(X{1,2}×[n],Bou(Y{1,2}×[k′], X{1,2}×[k′])). Then

‖ Y ◦ Basic2ESExt(X,Y) − Y ◦ Um ‖< ε + 2−Ω(k′)

where Um is independent of Y .

9

As with the previous construction, depending on the parameters of the strong seeded extractor used, we
can get various tradeoffs between the error and the output length.

Claim 3.12. Let X and Y be as in Theorem 3.11. Then

Pr
y←RY

[‖ Basic2ESExt(X, y) − Um ‖≥
√

ε + 2−Ω(k′)] <
√

ε + 2−Ω(k′)

3.2 Warm-up: Extracting randomness from O(log n) independent sources

To illustrate some of the ideas behind the main construction of a few source extractor, we will first describe
how to extract from O(log n) independent sources. The final extractor construction will be slightly more
involved but will use the major ideas that we develop here.

In this section, we will prove the following theorem:

Theorem 3.13. There exists a polynomial time computable function IExt′ : ({0, 1}n)u → {0, 1}m s.t. for
constants γ < 1 if X1, X2, . . . , Xu are independent (n, nγ) sources with u = O(log(n), k = Ω(log4 n),
m = Ω(k) then

‖ IExt′(X1, . . . , Xu) − Um ‖< ε

with ε = 1/nΩ(1).

As discussed, we will start by converting the independent (n, k) sources to distributions which are
statistically close to being independent aligned (nd × m) ES-sources using Proposition 3.5. Here m is the
output length of the strong seeded extractor used in the conversion. There is a tradeoff between m and the
error incurred in the conversion. This tradeoff in general depends on the relationship between n and k. To
give a feel for the parameters, if k = nγ for some γ ∈ (0, 1), we can do the conversion with m = k − o(k)
and error that is polynomially small.

Our construction will be obtained by iteratively condensing the original distribution. We will start with
O(log n) independent aligned (n × k) ES-sources. In each step we will reduce the number of independent
ES-sources by 2, but will reduce the number of blocks in each of the sources by a factor of 2. Actually,
in each step we will convert ES-sources with t blocks into ES-sources with dt/2e blocks. To simplify the
presentation we will assume that t is always even, this does not really affect any of the claims made. After
O(log n) steps, we will have reduced the number of blocks to 2. We can then use the XOR function to
extract random bits. Now we describe one condensing step in detail.

Let S1 = {1, 2} × [r], S2 = {3, 4} × [r], . . . , St/2 = {t − 1, t} × [r]. In the rest of this section we will
write Xj to denote XSj

.

Construction: ICond(X1, . . . , Xu)
Input: X1, . . . , Xu, (t × r) ES-sources.
Output: Z1, . . . , Zu−2.
Let BasicESExt be as in Theorem 3.6.

1. For 1 ≤ i ≤ u − 2, 1 ≤ j ≤ t/2 let Z i
j = BasicESExt(X i

j , X
u−1
j , Xu

j).

2. For 1 ≤ i ≤ u − 2, let Z i be the ES-source whose blocks are Z i
1, Z

i
2, . . . , Z

i
t/2.

Lemma 3.14. If X1, . . . , Xu are independent aligned (t× r) ES-sources, Z1, . . . , Zu−2 are 2u
√

ε-close to
being a convex combination of independent aligned (t/2 × m) ES-sources, where m and ε are the output
length and error of BasicESExt.

10

Assuming this lemma, we can prove the theorem for this section.

Proof of Theorem 3.13. If we use the strong ES-source extractor promised by Corollary 3.10, after applying
the condenser O(log n) times, we will have reduced the number of blocks in each of the sources to 2 and
the length of each of the sources will still be k − O(

√
k log n). We can then use the XOR function to get

a distribution which is statistically close to uniform. The error adds in each step, but since the error of
BasicESExt can be made as small as 2−kΩ(1)

, for large k this does not affect the final error. The dominant
error comes in the first step, when we convert the general sources to ES-sources. This concludes the proof
of Theorem 3.13.

Proof of Lemma 3.14. Let
−→
Y denote the concatenation of Xu−1, Xu. Let h be s.t. Sh contains the truly

random block. Let
−→
Yh denote the concatenation of Xu−1

h , Xu
h . Let m be the output length of BasicESExt.

We will prove the lemma by partitioning the support of
−→
Y into a good set and a bad set s.t.

Claim 3.15. For good ~y, the distribution Z1|−→Y =~y ◦ · · · ◦ Zu−2|−→Y =~y is u
√

ε-close to being a collection
of independent aligned (dt/2e × m) ES-sources.

Claim 3.16. Pr[
−→
Y is not good] < u

√
ε

We will call ~y good for X i if

‖ BasicESExt(X i
h, ~yh) − Um ‖<

√
ε

We will call ~y good if it is good for all 1 ≤ i ≤ u − 2.
Since BasicESExt is a strong extractor, for any i, a

√
ε fraction of the seeds are good for X i by Claim 3.7.

The second claim then follows by the union bound.
For any fixed ~y, Z1|−→Y = ~y, . . . , Zu|−→Y = ~y are independent. When ~y is good, each of the Z i’s is

√
ε-

close to being a (t/2 × m) ES-source, with the hth block being the random one. By the union bound and
Proposition 2.12 we get the first claim and the lemma follows.

3.3 Extracting from fewer sources

In this section we will prove Theorem 3.1. We will obtain the final construction in the following steps.

1. We will show how to extract from 3 independent aligned (nγ ×n) ES-sources for any constant γ < 1.

2. We will show how to use the construction from the previous step to extract from O(log n
log k) independent

aligned (n × k) ES-sources when k > log4 n.

3.3.1 Extracting from 3 independent aligned (nγ × n) ES-sources, for γ < 1

Theorem 3.17. There exists a polynomial time computable function 3ESExt : ({0, 1}n)3 → {0, 1}m s.t.
for constant γ < 1 if X1, X2, X3 are independent aligned (nγ × n) ES-sources,

‖ 3ESExt(X1, X2, X3) − Um ‖< 2−nΩ(1)

where m = n − O(nβ) for some β ∈ (0, 1).

11

Our starting point is the construction that can extract from O(log n) sources. We’d like to do more or
less the same thing in this situation, but somehow reuse the sources. As in that situation, our construction
will work by repeated condensing, but this time we will not discard any sources. Starting from 3 independent
aligned ES-sources, in each step we will output a distribution that is a convex combination of 3 independent
aligned ES-sources. The number of block in each of the sources will be reduced by a factor of 2 and the
length of each block will be reduced by a little bit.

Intuitively what we will try and do is: to condense the i’th source, we will get the other two sources to
conspire against it. We will use the strong independent aligned (2×n) ES-sources extractor of Theorem 3.6
on the i’th source, with small slices of the other sources as ’seed’. Conditioned on all the small sections of
the sources that we’ve used as seed, we show that the condensing succeeds, we obtain 3 new ES-sources
which have half the number of blocks as the original sources. Since we’re conditioning on the only part
that’s involved in the interactions between the sources, after conditioning, the output of the condensing step
is a collection of independent sources. Iterating this condensing process, we will eventually obtain a single
string that is statistically close to uniformly distributed.

Now we describe one condensing step in detail. As in the previous section, we will assume that t is
even.

We are given: X1, X2, X3, independent aligned (t × r) ES-sources.
Let w and l be parameters that we will choose later (we will have to set w to roughly polylog(r) and l to

roughly rµ for some constant µ < 1). Let S1 = {1, 2}× [w], S2 = {3, 4}× [w], . . . , St/2 = {t−1, t}× [w].

X
i

i

2

t

w

X

1X

X

X

i

i

i
t/2

2

r

Figure 1: Notation in one source

We will adhere to the following notational guidelines:

• The superscript of an expression (if any) indicates which one of the independent sources we are
referring to.

• The subscript of an expression (if any) indicates which of the blocks we are referring to.

• An over-line (for example: X) indicates whether we are referring to the entire block or just a small
section of the blocks.

For all i, j, we introduce the following notation:

12

1X

X

X3X
3

X22X

1X

Figure 2: The region X

• Xi
j = Xi

Sj
, a small slice of the jth pair of blocks in X i.

• Xi = Xi
[t]×[w] = Xi

1 ◦ · · · ◦ X i
t/2, a small slice of X i.

• X = X1 ◦ X2 ◦ X3.

• Xj = X1
j ◦ X2

j ◦ X3
j .

• X 6=i
j denotes the concatenation of Xv

j for all v 6= i.

Construction: ICond(X1, X2, X3)
Input: X1, X2, X3, independent aligned (t × r) ES-sources.
Output: Z1, Z2, Z3.
Let BasicESExt be the extractor that can extract from 3 independent sources A,B,C when A is a

(tr, r − l) source and B,C are independent aligned (2 × w) sources promised by Theorem 3.6.

1. For all i, j let Z i
j = BasicESExt(X i, X 6=i

j).

2. For all i, let Z i be the ES-source whose blocks are Z i
1, Z

i
2, . . . , Z

i
t/2.

3. For all i, output Z i.

Lemma 3.18. Let ICond be as above. If X1, X2, X3 are independent aligned (t×r) ES-sources, Z1, Z2, Z3

are 3(2
√

ε + 2−(l−tw))-close to being a convex combination of independent aligned (t/2 × m) ES-sources,
where m and ε are the output length and error of BasicESExt.

Proof. We will roughly follow the proof for the situation in which we had O(log n) sources. There are a
few additional complications that we have to deal with now.

Let h be s.t. Sh contains the truly random block. We will prove the lemma by partitioning the support
of X into a good set and a bad set s.t.

Claim 3.19. For good x, the distribution (Z1|X =x) ◦ (Z2|X =x) ◦ (Z3|X =x) is 3
√

ε-close to being a
collection of independent aligned (t/2 × m) ES-sources.

Claim 3.20. Pr[X is not good] < 3(
√

ε + 2−(l−tw)).

13

Here we will need a more involved notion of good. For any fixed i, we will say x is good for i if

‖ BasicESExt(X i|Xi =xi, x 6=i
h) − Um ‖<

√
ε

We will call x good if it is good for all i.
For any fixed x, Z1|X =x,Z2|X =x,Z3|X =x are independent. When x is good, we have that for any

i,

(Zi
h|X =x) = BasicESExt(X i|X =x, x 6=i

h)

= BasicESExt(X i|Xi =xi, x 6=i
h) since X i is independent of Xj for j 6= i

which is
√

ε-close to the uniform distribution by our notion of good. Thus we get that Z i is
√

ε-close to
being a (t/2 × m) ES-source, with the hth block being the random one. By the union bound, we then get
the first claim.

Now we prove the second claim.

Proof of Claim 3.20. We will first bound the probability that X is bad for a fixed i and then use the union
bound to bound the probability that it is bad for all i. In the following statements, we will explicitly state
what the probabilities are over to avoid confusion. The probability we are trying to bound is this one:

Pr
x←RX

[x is bad for i]

= Pr
x←RX

[‖ BasicESExt((X i|Xi =xi), x 6=i
h) − Um ‖≥

√
ε]

We will rewrite this probability in this way:

Pr
x←RX

[x is bad for i]

=
∑

p∈supp(Xi)

Pr
x←R(X |Xi

=p)

[x is bad for i] Pr
v←RX

i
[v = p]

We’d like to argue that for every term in this sum, either the first probability is small, or the second
probability is small. To this end, we partition the support of X

i
into two sets. Recall that H∞(Xi) ≥ r. We

will say p is atypical if H∞(Xi|Xi =p) < r− l. Otherwise we will say that p is typical. By Proposition 2.6,

Claim 3.21. For atypical p, Pr
v←RX

i [v = p] < 2−l.

On the other hand, when p is typical,

Pr
x←R(X |Xi=p)

[x is bad for i]

= Pr
x←R(X |Xi=p)

[‖ BasicESExt(X i|Xi =p, x 6=i
h) − Um ‖≥

√
ε]

= Pr
x′←R(X 6=i

h
|Xi=p)

[‖ BasicESExt(X i|Xi =p, x′) − Um ‖≥
√

ε]

14

Now observe that

X 6=1
h |X1 =p

= X2
h|X1 =p ◦ X3

h|X1 =p

= X2
h ◦ X3

h

since X2
h and X3

h are independent of X1. We get similar statements for X 6=2
h |X2 =p and X 6=3

h |X3 =p.
Therefore, for p that is typical, using Claim 3.7 we have,

Pr
x←R(X|Xi=p)

[x is bad for i]

= Pr
x′←RX 6=i

h

[‖ BasicESExt(X i|Xi =p, x′) − Um ‖≥
√

ε]

<
√

ε

Thus,

Claim 3.22. For typical p, Pr
x←R(X |Xi=p)

[x is bad for i] <
√

ε.

Going back to the quantity we were trying to bound,

Pr
x←RX

[x is bad for i]

=
∑

p∈supp(Xi)

Pr
x←R(X |Xi=p)

[x is bad for i] Pr
v←RXi

[v = p]

=
∑

p is typical

Pr
x←R(X |Xi=p)

[x is bad for i] Pr
v←RXi

[v = p] +
∑

p is atypical

Pr
x←R(X|Xi=p)

[x is bad for i] Pr
v←RXi

[v = p]

≤
√

ε + 2−l2tw

The first sum was bounded using the fact that
∑

p Pr
v←RXi [v = p] ≤ 1 and Claim 3.22. The second

sum was bounded using the fact that the total number of possible atypical p’s is at most 2tw and Claim 3.21.
Using the union bound over all i, Claim 3.20 follows.

This concludes the proof of Lemma 3.18.

Proof of Theorem 3.17. Let 3ESExt be the following function.

Construction: 3ESExt(X1, X2, X3)
Input: X1, X2, X3, independent aligned (nγ × n) ES-sources, γ ∈ (0, 1).
Output: Z .

1. Repeatedly condense the sources using ICond from Lemma 3.18 until each source has just one block.

2. Output Z , the block from the first source.

15

Since we need to repeat the condensation step at most dlog ne times, by Lemma 3.18 the final error
is O((

√
ε + 2−(l−tw)) log n). If we use BasicESExt as in Corollary 3.8, the final output length is at least

n − O(l log4(n/ε)).
Setting l = 2n(1+γ)/2, w = l/(2t) and ε = 2−nΩ(1)

, we get a total error of 2−nΩ(1)
with final output

length at least n − nβ for some β ∈ (0, 1).

Replacing the extractor from Theorem 3.6 with Bourgain’s extractor from Theorem 3.11, we can extract
from just 2 independent (nγ × n) ES-sources for any γ ∈ (0, 1). In addition, we can actually show that the
extractor is strong. To summarize, we obtain the following theorem, which we state without proof:

Theorem 3.23. There exists a polynomial time computable function 2ESExt : ({0, 1}n)2 → {0, 1}m s.t.
for constant γ < 1 if X,Y are independent aligned (nγ × n) ES-sources,

‖ Y ◦ 2ESExt(X,Y) − Y ◦ Um ‖< 2−nΩ(1)

where Um is independent of Y and m = n − O(nβ) for some β ∈ (0, 1).

Remark 3.24. Using Bourgain’s extractor here seems like overkill. Bourgain’s extractor can extract from
any 2 sources with min-entropy rate slightly less than half, where as our sources have a lot of structure. It
would be interesting to find a simple construction like that in Theorem 3.6 which is a strong extractor for 2
independent aligned (2 × n) ES-sources.

3.3.2 Extracting from O(log n
log k) aligned independent (n × k) ES-sources

In this section we describe the final trick needed to complete the construction of the independent sources
extractor. To do so we will use the extractor 3ESExt from Theorem 3.17 as a black box. We will set up
3ESExt to extract from three independent (

√
r × r) ES-sources. The extractor is obtained by repeatedly

using the construction from the previous section to obtain ES sources with few and fewer blocks.
Let S1 = {1, . . . ,√r} × [r], S2 = {√r + 1, . . . , 2

√
r} × [r], . . . , St/

√
r = {t −√

r + 1, . . . , t} × [r].

Construction: ICond(X, Y 1, Y 2, Y 3)
Input: X , an (n, k) source and Y 1, Y 2, Y 3, (t × r) ES-sources.
Output: Z .
Let Ext be a (n, k, ε) extractor with output length m and seed length r.

1. For all 1 ≤ j ≤ t/
√

r, let Zj = Ext(X, 3ESExt(Y 1
Sj

, Y 2
Sj

, Y 3
Sj

)).

2. Let Z = Z1 ◦ · · · ◦ Zt/
√

r.

The following lemma is easy to see given our previous work:

Lemma 3.25. If X,Y 1, Y 2, Y 3 are independent sources, with X an (n, k) source and Y 1, Y 2, Y 3 aligned
(t × r) ES-sources, then Z is ε close to a (t/

√
r × m) ES-sources.

Here the error can be made exponentially small in r. In addition, notice that if X 1, X2, X3 are inde-
pendent (n, k) sources and Y 1, Y 2, Y 3 are as before, ICond(X1, Y 1, Y 2, Y 3) ◦ ICond(X2, Y 1, Y 2, Y 3) ◦
ICond(X3, Y 1, Y 2, Y 3) is

√
ε close to being a convex combination of independent aligned (t/

√
r × m)

ES-sources as long as 3
√

ε < 1. Using this basic tool, we can now prove the main theorem.

16

Proof of Theorem 3.1. First consider the following function to extract from independent (n, k) sources.
Here d is a constant that depends on the seed length of the strong seeded extractor used and the output
length of the strong extractor.

Construction: IExt(X1, . . . , X
3d log n

log k
+3)

1. First use a strong seeded extractor to convert three of the sources to aligned independent ES-sources.

2. Iteratively run ICond on three general sources using the three ES-sources as seed. In each step we
obtain three ES-sources with fewer blocks. After d log(n)/ log(k) iterations, we will have brought
the number of blocks down to small enough.

3. Finally apply 3ESExt to get random bits.

The error adds in each step, but as long as k > log4 n, the dominant error comes from the conversion of
the general source to an ES-source (where we incur error of 1/poly(n)).

In this way we get an extractor for O(log n
log k) independent (n, k) sources with output length k − o(k) and

error of 1/poly(n). To get k bits, we can simply run the extractor twice on two disjoint sets of independent
sources to double the output length. To reduce the error, we will use the following lemma from [BIW04]:

Lemma 3.26. [BIW04] Let Z1, . . . , Zv be independent distributions over {0, 1}k with ‖ Z i − Uk ‖< ε for
every i = 1, . . . , v. Then

‖ Z1 ⊕ Z2 ⊕ · · · ⊕ Zv − Uk ‖< εv

Using this lemma, we can increase the number of sources used by a constant factor to reduce the error
to less than 1/nc for any constant c.

4 Extracting from 2 Independent Blockwise Sources

In this section we show how to use essentially the same construction from the previous section to obtain
an extractor for 2 independent blockwise sources with very few blocks. This is analogous to an idea from
[BKS+05], where they show how to use a 4-source somewhere extractor to get a somewhere extractor for 2
blockwise sources with just 2 blocks each. The main theorem of this section is the following:

Theorem 4.1 (2 Blockwise Source Extractor). There exists a polynomial time computable function IExt :
{0, 1}un × {0, 1}un → {0, 1}k s.t. for constant γ < 1 if X = X1 ◦ · · · ◦ Xu and Y = Y 1 ◦ · · · ◦ Y u are
independent (k, . . . , k) block-wise sources with k > log4 n, u = O(log n

log k) then

‖ IExt(X,Y) − Uk ‖< ε

with ε = 1/nΩ(1).

The extractor here is essentially the same one as the one we constructed in the previous section for a few
truly independent sources, if we use 2ESExt from Theorem 3.23 at the lowest level instead of 3ESExt.

Let S1 = {1, . . . ,√r} × [r], S2 = {√r + 1, . . . , 2
√

r} × [r], . . . , St/
√

r = {t −√
r + 1, . . . , t} × [r].

Construction: ICond(X1 ◦ · · · ◦ Xu, Y 1 ◦ · · · ◦ Y u)

17

Input: X = X1 ◦ · · · ◦ Xu and Y = Y 1 ◦ · · · ◦ Y u, independent blockwise sources with X1 and Y 1

independent aligned (t × r) ES-sources.
Output: A = A1 ◦ · · · ◦ Au−1 and B = B1 ◦ · · · ◦ Bu−1.
Let Ext be a (n, k, ε) extractor with output length m and seed length r.

1. For all 1 ≤ j ≤ t/
√

r, let A1
j = Ext(X2, 2ESExt(Y 1

Sj
, X1

Sj
)).

2. For all 1 ≤ j ≤ t/
√

r, let B1
j = Ext(Y 2, 2ESExt(X1

Sj
, Y 1

Sj
)).

3. Let A1 = A1
1 ◦ · · · ◦ A1

t/
√

r
.

4. Let B1 = B1
1 ◦ · · · ◦ B1

t/
√

r
.

5. For all 2 ≤ i ≤ u − 1, let Ai = Xi+1, Bi = Y i+1.

The following lemma can be obtained by applying the techniques from the previous section. We state it
without proof.

Lemma 4.2. If X = X1 ◦ · · · ◦ Xu and Y = Y 1 ◦ · · · ◦ Y u are independent (k, . . . , k)-blockwise sources
with each block except the first one of length n, and X 1 and Y 1 independent aligned (t × r) ES-sources,
then A = A1 ◦ · · · ◦Au−1 and B = B1 ◦ · · · ◦Bu−1 are statistically close to being a convex combination of
independent (k, . . . , k)-blockwise sources with each block except the first one of length n with A1 and B1

independent aligned (t/
√

r × m) ES-sources.

Here the error can be made exponentially small in r. Iteratively applying this condenser, we obtain the
extractor for Theorem 4.1.

Remark 4.3. It can be shown that the extractor from Theorem 4.1 is strong. The extractor can also be made
to work when the two sources and all blocks are of different lengths with different min-entropies, as long as
the parameters are all polynomially related.

4.1 A new 2-source somewhere-extractor

One of the main results in the work of Barak et. al. [BKS+05] was the construction of a new bipartite
Ramsey Graph (a 2-source disperser). Their construction was based on a technique called the challenge
response mechanism. A basic tool used as a black box in their construction is a somewhere-extractor:

Definition 4.4. A function SExt : {0, 1}n1 × {0, 1}n2 → ({0, 1}m)u is a (k1, k2, ε) 2-source somewhere-
extractor if for all X,Y independent (n1, k1) and (n2, k2) sources respectively, SExt is ε close to a (u×m)
somewhere-random source.

For the construction of the 2-source disperser, the techniques of [BKS+05] require that the somewhere-
extractor used outputs a constant number of blocks with each block of length some arbitrarily large constant
and error that is some arbitrarily small constant when given two independent constant min-entropy rate
sources. Using their constant seed condenser, they construct a 2-source somewhere-extractor that outputs a
constant number of blocks of linear length, with exponentially small error. Here we outline how to use our
previous construction to give an alternate somewhere-extractor for two constant min-entropy rate sources
that outputs a constant number of blocks of linear length with polynomially small error. This is good enough
for the application of building a 2-source disperser. Thus we obtain a 2-source disperser which is not based
on the results from additive number theory.

18

Construction: SExt(X, Y)
Input: X,Y , two independent (n1, δ1n1), (n2, δ2n2) sources.
Output: Z = Z1 ◦ · · · ◦ Zv

Let IExt be as in Theorem 4.1.

1. Let u be the number of blocks required by IExt in each source when the two sources have min-entropy
rate min(δ1/2, δ2/2).

2. Let γ be s.t. uγ � min(δ1/100, δ2/100).

3. Partition the bits of X and Y into 1/γ blocks, each of equal length. X = X 1, . . . , X1/γ , Y =
Y 1, . . . , Y 1/γ .

4. For i = 1, 2, . . . ,
(1/γ

u

)

u!, let πi(X) denote the source obtained by choosing u blocks from X 1, . . . , Xu

and permuting them in the i’th way. Similarly define πi(Y).

5. For all pairs (i, j) ∈ [
(

1/γ
u

)

u!] × [
(

1/γ
u

)

u!], let the (i, j)’th block of Z be IExt(πi(X), πj(Y)).

6. Output Z .

Lemma 4.5. If X is an (n1, δ1n1) source and Y is an independent (n2, δ2n2) source, SExt(X,Y) is 1/nΩ(1)

close to being somewhere-random.

Proof Sketch. It can be shown that every (n1, δ1n1) source X is statistically close to a convex combination
of sources {X l}l∈I s.t. for each X l, there exists an i for which πi(X

l) is a blockwise source. A similar
statement is true for every source Y that is a (n2, δ2n2) source. Thus we get that X ◦ Y is statistically
close to a convex combination of sources s.t. for every source in the combination there exists some (i, j) s.t.
πi(X), πj(Y) are independent blockwise sources. The extractor succeeds in extracting random bits for that
choice of (i, j). Further, the number of possible choices for (i, j) is just a constant.

Remark 4.6. Applying Raz’s merger [Raz05] to the sources before we partition them, we can actually
ensure that almost all blocks in the output are statistically close to uniformly random.

5 Improving the constructions of [BKS+05, Raz05]

The constructions of [BKS+05, Raz05] work by first converting the input sources to a convex combination of
two or more independent somewhere-random sources, where each somewhere-random source has a constant
number of blocks. At this point they take a constant sized section of each of the sources and do a brute force
search for an optimal independent sources extractor. In this way they obtain a constant number (you can
actually get say log log log n) random bits with large error (say 1/ log log n).

Instead of doing brute force search in these construction, we can apply our techniques to get almost all
the random bits out of the somewhere random sources, with exponentially small error.

Applying this to the constructions from [BKS+05], we get the following results:

• We get an extractor for 3 sources that can extract a linear fraction of the min-entropy with exponen-
tially small error when the sources have min-entropy rate any small constant.

• We get a 2-source disperser that outputs a linear number of bits with exponentially small error when
the min-entropy rate of the sources is an arbitrarily small constant.

19

Applying our techniques to [Raz05] we can get this result:

• We get an extractor for 3 sources where one source needs to have constant min-entropy rate and
the other two may have k = polylog(n) min-entropy, s.t. the extractor outputs Ω(k) bits with error
exponentially small in k.

Another way to compose our techniques with previous work to get something new is the following, due
to Avi Wigderson.

Theorem 5.1. There exists a polynomial time computable function Ext : ({0, 1}n)3 → {0, 1}Ω(nδ) s.t. for
any small constant 0 < δ ≤ 1 there exists a constant 0 < α = α(δ) < 1 so that if X 1 is an (n, n1−α) source
and X2, X3 are (n, nδ) sources, with all sources independent of each other, Ext(X 1, X2, X3) is ε-close to
the uniform distribution with with ε < 2−nΩ(1)

.

Proof Sketch. If α is small enough, we can use the condenser construction of [BKS+05] to convert the first
source to a source with nγ blocks, so that the source has somewhere-min-entropy rate 0.9. We now interpret
this source as nγ candidate 0.9-min-entropy rate seeds. We use these seeds with Raz’s strong extractor
construction [Raz05] and the other two sources to obtain two sources which, conditioned on the seeds, are
statistically close to independent aligned (nγ × nδ) somewhere random sources. As long as δ > γ, we can
then use our techniques to get Ω(nδ) bits which are exponentially close to uniformly distributed.

In this way we obtain an extractor that can extract from just 3 sources which need have only polynomial
min-entropy (the polynomial cannot be arbitrarily small).

6 Acknowledgments

I would like to thank Amnon Ta-Shma for pointing out that the independent sources construction from
O(log n) sources works even when the min-entropy of the sources is as small as polylog(n) and Avi Wigder-
son for his observations on obtaining a 3 source extractor: Theorem 5.1. Thanks to Vladimir Trifonov, Salil
Vadhan, Adam Klivans and David Zuckerman for useful comments and discussions.

References

[BIW04] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness using few independent
sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 384–393, 2004.

[BKS+05] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:
New constructions of condensers, Ramsey graphs, dispersers, and extractors. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pages 1–10, 2005.

[Blu84] M. Blum. Independent unbiased coin flips from a correlated biased source: a finite state Markov
chain. In Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 425–433. IEEE, 1984.

[Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. Inter-
national Journal of Number Theory, 1:1–32, 2005.

[BKT04] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields, and applications.
Geometric and Functional Analysis, 14:27–57, 2004.

20

[CRVW02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and constant-
degree lossless expanders. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, pages 659–668, 2002.

[CFG+85] B. Chor, J. Friedman, O. Goldreich, J. Håstad, S. Rudich, and R. Smolensky. The bit extrac-
tion problem or t–resilient functions. In Proceedings of the 26th Annual IEEE Symposium on
Foundations of Computer Science, pages 396–407, 1985.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[CW89] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random
sources. In Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science, pages 14–19, 1989.

[GR05] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields. In To
appear, 2005.

[GRS04] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic extractors for bit-fixing sources by obtaining
an independent seed. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, 2004.

[KZ03] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and exposure-
resilient cryptography. In Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 92–101, 2003.

[Kon03] S. Konyagin. A sum-product estimate in fields of prime order. Technical report, Arxiv, 2003.
http://arxiv.org/abs/math.NT/0304217.

[LRVW03] C. J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to constant factors.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 602–611,
2003.

[MU02] E. Mossel and C. Umans. On the complexity of approximating the VC dimension. Journal of
Computer and System Sciences, 65:660–671, 2002.

[Nis96] N. Nisan. Extracting randomness: How and why – a survey. In Proceedings of the 11th Annual
IEEE Conference on Computational Complexity, pages 44–58, 1996.

[NT99] N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructions. Journal
of Computer and System Sciences, 58:148–173, 1999.

[NZ93] N. Nisan and D. Zuckerman. More deterministic simulation in logspace. In Proceedings of the
25th Annual ACM Symposium on Theory of Computing, pages 235–244, 1993.

[Raz05] R. Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, pages 11–20, 2005.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and reducing the error
in Trevisan’s extractors. In Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pages 149–158, 1999.

21

[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing. In
Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pages
22–31, 2000.

[SV86] M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-random sources.
Journal of Computer and System Sciences, 33:75–87, 1986.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the Euro-
pean Association for Theoretical Computer Science, 77:67–95, 2002.

[TS96] A. Ta-Shma. Refining randomness. In ECCCTH: Electronic Colloquium on Computational
Complexity, theses, 1996.

[TSUZ01] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced expanders, and
extractors. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pages
143–152, 2001.

[TV00] L. Trevisan and S. Vadhan. Extracting randomness from samplable distributions. In Proceed-
ings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pages 32–42,
2000.

[Vaz85] U. Vazirani. Towards a strong communication complexity theory or generating quasi-random
sequences from two communicating slightly-random sources (extended abstract). In Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, pages 366–378, 1985.

[vN51] J. von Neumann. Various techniques used in connection with random digits. Applied Math
Series, 12:36–38, 1951. Notes by G.E. Forsythe, National Bureau of Standards. Reprinted in
Von Neumann’s Collected Works, 5:768-770, 1963.

[WZ99] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: Explicit construc-
tion and applications. Combinatorica, 19(1):125–138, 1999.

[Zuc90] D. Zuckerman. General weak random sources. In Proceedings of the 31st Annual IEEE Sym-
posium on Foundations of Computer Science, pages 534–543, 1990.

[Zuc96] D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica, 16:367–
391, 1996.

[Zuc05] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Technical Report TR05-100, ECCC: Electronic Colloquium on Computational
Complexity, 2005.

22

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

	Introduction
	Modeling the source
	History and Previous Results
	Overview of New Results and Techniques
	New Results
	Techniques

	Preliminaries
	 Notation
	Min-Entropy and Special Sources
	Statistical Distance
	Convex Combinations
	Extractors and Dispersers
	Seeded Extractors
	Few Source Extractors

	Extracting from Independent Sources by Condensing ES-Sources
	Strong Extractors for independent aligned (2 n) ES-sources
	Warm-up: Extracting randomness from O(logn) independent sources
	Extracting from fewer sources
	Extracting from 3 independent aligned (nn) ES-sources, for < 1
	Extracting from O(lognlogk) aligned independent (n k) ES-sources

	Extracting from 2 Independent Blockwise Sources
	A new 2-source somewhere-extractor

	Improving the constructions of BarakKSSW05, Raz05
	Acknowledgments

