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Abstract

In this paper we give a randomness-efficient sampler for matrix-valued functions. Specif-
ically, we show that a random walk on an expander approximates the recent Chernoff-like
bound for matrix-valued functions of Ahlswede and Winter [AW02], in a manner which
depends optimally on the spectral gap. The proof uses perturbation theory, and is a gen-
eralization of Gillman’s and Lezaud’s analyses of the Ajtai-Komlos-Szemeredi sampler for
real-valued functions [Gil93, Lez98, AKS87].

Derandomizing our sampler gives a few applications, yielding deterministic polynomial
time algorithms for problems in which derandomizing independent sampling gives only quasi-
polynomial time deterministic algorithms. The first (which was our original motivation) is
to a polynomial-time derandomization of the Alon-Roichman theorem [AR94, LR04, LS04]:
given a group of size n, find O(log n) elements which generate it as an expander. This
implies a second application - efficiently constructing a randomness-optimal homomorphism
tester, significantly improving the previous result of Shpilka and Wigderson [SW04]. The
third is to a “non-commutative” hypergraph covering problem - a natural extension of the
set-cover problem which arises in quantum information theory (e.g. [AW02, HLSW04]), in
which we efficiently attain the integrality gap when the fractional semi-definite relaxation
cost is constant.
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1 Introduction

1.1 Background

The Chernoff bound [Che52] and its variants are among the most useful mathematical results,
and in particular are extremely useful in theoretical computer science. Roughly stated, it says
that if we wish to estimate the mean of a bounded real function on some domain V , the average of
the values at k independent samples deviates from the true mean (by a small additive constant)
only with error probability bounded by 2−Ω(k). Note that if every sample requires r random
bits, this sampling procedure requires a total of rk random bits to achieve error 2−Ω(k).

A remarkable construction and analysis of Ajtai, Komlos and Szemeredi [AKS87] suggested a
way of achieving essentially the same error using only r + O(k) bits. The idea is to impose a
good constant degree expander graph G on the vertex set V , and select k (highly dependent)
samples by taking a random path of length k in this graph. The analysis of this sampler
due to Gillman [Gil93], which is the first to consider sampling any bounded real function (see
also [Kah95, Lez98]), shows that the error is bounded by 2−Ω(εk), where ε is the spectral gap
of the random walk on the expander G. The fact that explicit families of constant degree
expanders with constant spectral gap are known [GG81, Mar88, LPS88, RVW00] show that
such a randomness-efficient sampler can be efficiently implemented.

This sampler has become a paramount tool in theoretical computer science. Indeed, it has
found a large number of applications in a variety of areas such as deterministic amplifica-
tion [CW89, IZ89], security amplification in cryptography [GIL+90], hardness of approximation
[ALM+98, AFWZ95], extractor construction (e.g. see surveys [NT99, Gol97, Sha02]), construc-
tion of efficient error-correcting codes [Spi95, BH04], construction of ε-biased spaces [NN93]
and much more. In algorithmic applications, including some of the ones above, often both r
and k are O(log n) where n = |V | is the input size of the problem, so derandomizing simply
(i.e. enumerating all possible values of the random bits) the independent sampling requires
quasi-polynomial time, while the AKS-sampler can be derandomized in polynomial time.

Recently, a Chernoff-like bound was introduced by Ahlswede and Winter [AW02] for matrix-
valued random variables. Here we seek to estimate the average of a function from V to d × d
complex Hermitian1 matrices of bounded norm. The [AW02] generalization of the Chernoff
bound states that the average of k independent points deviates significantly in norm from the
mean with probability bounded by d2−Ω(k). Note the linear dependence on d.

Like the Chernoff bound, this generalization has quickly found applications. Many of them
are in quantum information theory (and private quantum channels) [AW02, HLSW04], where
such matrices arise naturally. A notably different one is to a new proof [LR04, LS04] of the
Alon-Roichman theorem [AR94], showing that for every finite group of size n, choosing O(log n)
random generators gives an expanding Cayley graph with high probability.

1.2 Our results

In this paper we show that the AKS-sampler works as well as independent sampling even for
matrix valued functions. If one samples k points on a walk of an expander of spectral gap ε,
the error probability is bounded by d2−Ω(εk), “derandomizing” [AW02] in complete analogy to
the way [AKS87, Gil93] derandomized Chernoff in the real (1-dimensional) case.

1For all practical purposes the reader can think of real symmetric matrices.
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Let G = (V,E) be an expander graph with spectral gap ε. Define Yi (0 ≤ i ≤ k) to be the i’th
vertex visited in a random walk on G that starts from Y0 which is uniformly distributed in V .
Let W = (Y1, . . . , Yk) be the random variable representing the sequence of vertices encountered
on a random walk.

Let f be any function on V taking values in d × d Hermitian matrices such that the matrix
norm ‖f(v)‖ ≤ 1 for all v ∈ V , and let E[f ] be the mean value of f uniformly over all vertices.
Define f(W ) =

∑k
i=1 f(Yi) to be the value of the random walk.

Our main theorem states the following.2

Theorem 1.1. For every 1 ≥ γ > 0 and every k ≥ 4
γ we have

Pr[ ‖ 1
kf(W )− E[f ]‖ > γ] ≤ d2−Ω(γ2εk)

The dependence on d is linear, just as in the independent case of [AW02], and we show (by the
examples in Appendix B) that our dependence on d, ε is essentially optimal.

Note that for ε = 1 (i.e. a complete graph) this bound is just independent sampling and
thus the Chernoff bound of [AW02] (we state this in Theorem 2.15). For d = 1 it is just the
1-dimensional AKS sampler of [Gil93, AKS87, Lez98, Kah95]. For ε = d = 1 it is just the
classical Chernoff bound. Thus our work essentially generalizes all of these (up to constant
factors in the exponent).

Our proof uses perturbation theory, generalizing the proofs of [Gil93, Lez98]. We also give a
simpler analysis in Appendix A, using basic linear algebra, of a slightly weaker bound3 where
the dependence on ε in the exponent is close to cubic instead of linear. Interestingly, this proof
follows quite closely that of the bound on the second-largest eigenvalue in the zig-zag product
[RVW00]. We believe that the connection between the two results may be deeper and deserves
further investigation.

A simple extension of the theorem above gives rise to a randomness-efficient sampler for weighted
averages of matrix-valued functions, which is useful for some of our applications.

1.3 Applications

Our main application is a complete derandomization of the Alon-Roichman theorem (which was
our motivation to begin with). [AR94] showed that given any group H if we choose S ⊆ H of size
O(log |H|) at random then with high probability the induced Cayley graph is a good expander.
We note that derandomizing independent sampling gave only a quasi-polynomial algorithm,
and that the best previous polynomial time algorithm [SW04] could only produce |H|Ω(1) ex-
panding generators. Our algorithm finds O(log |H|) expanding generators deterministically in
polynomial time.

Theorem 1.2. Fix β < 1. Given an arbitrary finite group H (specified by its multiplication
table), one can find in time |H|O(1) a symmetric generating multi-set S of size O( 1

β2 log |H|)
such that λ2(X(H;S)) < β.

2One may ask why the main theorem is interesting, as we could use a union bound to independently bound
the entries of the matrices. However this loses a factor of d in the bound of the eigenvalues, which is insufficient
for our purposes. Other naive approaches are similarly insufficient in our setting.

3When using an expander for sampling, ε is a constant and this bound simply has a different constant in the
exponent.
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This will immediately imply the following optimal solution to a problem of [SW04] (see also
[GS02]), significantly improving their results. More details appear in Section 4.2.

Corollary 1.3. Given an arbitrary group H, one can construct in time |H|O(1) a homomor-
phism tester for functions on H which uses only log |H|+ log log |H|+ O(1) random bits.

We also derandomize a natural problem arising in [AW02] concerning quantum hypergraphs.
The result is discussed in Section 4.3, where we present a randomness-efficient algorithm to find
a small cover of a quantum hypergraph. Here we simply note that this is a generalization of the
set cover problem, and from [AW02] it can be shown to have the same integrality gap. However
in this noncommutative setting the standard deterministic greedy method for obtaining an
integral solution to set cover does not extend in any obvious way, whereas a derandomization of
our randomness-efficient algorithm provides an efficient alternative, at least when the fractional
cover (found by semidefinite programming) has constant value. Other quantum information
theoretic results in [AW02, HLSW04] pose interesting derandomization problems for which we
believe our result may be useful.

1.4 Organization of the paper

The remainder of the paper is organized as follows. In Section 2 we define the background
material needed to prove our main theorem. In Section 3 we prove the main technical result,
Theorem 1.1. In Section 4 we derive some applications of this sampler.

The following other results appear in the Appendix. In Appendix A we give a simple proof of
a weak version of Theorem 1.1 based on ideas from the proof of the Zig-Zag theorem [RVW00].
In Appendix B we show that our bound is essentially optimal with regard to two parameters
(up to constant factors). In Appendix C we give a generalization of Theorem 1.1 that allows
for an ensemble of different functions f1, . . . , fk rather than a single function.

2 Preliminaries

2.1 Expander graphs

Given a connected undirected d-regular graph G = (V,E) on n vertices, we define its normalized
adjacency matrix A, Aij = eij/d where eij is the number of edges between vertices i and j (we
allow self-loops and multiple edges). It is easy to see that A is real and symmetric, hence
Hermitian.

It is well-known that the set of eigenvalues (called the spectrum) of A is of the form 1 = λ1 >
λ2 ≥ . . . ≥ λn. The spectrum of G is the spectrum of A. Note that 1 is an eigenvalue of multiplic-
ity 1. We will frequently refer to the unit eigenvector of eigenvalue 1 as u = [1/

√
n, . . . , 1/

√
n]T ,4

where T denotes the matrix transpose of a matrix (or vector). The spectral gap of A is defined
as 1−λ2. A family of graphs {Gi}i≥1 is said to be an expander family if the spectral gap of each
Gi is strictly greater than some fixed ε > 0. Recall that explicit such families with constant
degree exist: we can construct arbitrarily large graphs with fixed degree such that given a node
in the graph we can compute its neighbors in time poly log in the size of the graph. An explicit
example is the following.

4This is the uniform distribution on V , normalized to have ‖u‖ = 1.
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Theorem 2.1 ([LPS88, Mar88]). Fix any prime p such that p ≡ 1 (mod 4). Then for all
primes q such that q ≡ 1 (mod 4), one can efficiently construct a graph of size q +1 and degree
p + 1 with second-largest eigenvalue at most 2

√
p/(p + 1).

Cayley graphs are graphs defined on groups:

Definition 2.2. Let H be a finite group and let T be a multi-set with elements in H. Let
S = T tT−1 denote the multi-set containing all elements T and their inverses with appropriate
multiplicity. Then we can define the Cayley graph X(H;S) = (V,E) where V = H and
{h, hs} ∈ E for all h ∈ H, s ∈ S, again with appropriate multiplicities.

We will also use matrix tensor products, which give us a simple language to work with block
matrices. Recall that if A is a n×m matrix and B is a p× q matrix, then A⊗ B, the matrix
tensor product, is the np×mq matrix given by

(A⊗B)(i,k),(j,`) = Ai,j · Bk,`

The following facts about the matrix tensor product are well-known:

1. If A has spectrum (λi)1≤i≤n and B has spectrum (µj)1≤j≤p then A ⊗ B has spectrum
(λiµj)1≤i≤n,1≤j≤p.

2. If (A⊗B)(x⊗v) = Ax⊗Bv where A,B are matrices and x, v are vectors of the appropriate
dimensions.

3. We have 〈x ⊗ y, u ⊗ v〉 = 〈x ⊗ u〉〈y ⊗ v〉 for x, u vectors of the same dimension and u, v
vectors of the same dimension.

2.2 Perturbation Theory

The proof of Lemma 3.9, the heart of our proof of the main theorem, relies on many facts from
perturbation theory. We state some of the results that we will require. We use [Bau84] (see also
[Kat80]) as our guide. We will not state the theorems in full generality for simplicity’s sake.

An analytic perturbation (of a matrix A0) is a matrix-valued power series A(t) =
∑∞

i=0 tiAi in
the variable t with matrix coefficients (Ai)i≥0. Note that A(0) = A0. We will only be concerned
here with the case that A0 is Hermitian and all coefficients Ai have norm at most 1.

Perturbation theory studies various matrix parameters of A(t) (such as eigenvalues, eigenspaces
etc.) as a function of t. More specifically, we’d like them to be convergent power series in t for
some radius around t = 0, and perturbation theory tells us how these power series behave, as
well as the dependence of the convergence radius on the coefficients of the perturbation A(t).

[Bau84] states that an eigenvalue λ of A0 of multiplicity m may split into as many as m
distinct eigenvalues λ(1)(t), . . . , λ(m)(t) upon perturbation [Bau84, Ch. 3.2], where the λ(i)(t)
are continuous at t = 0 and furthermore λ = λ(i)(0) for all 1 ≤ i ≤ m.

The “stability” of the perturbation of λ primarily depends on the separation of λ from the other
eigenvalues of A0 (again, we assume that all Ai have norm ≤ 1, otherwise this stability depends
on these norms as well). The radius of convergence also depends on this separation, which we
define below.
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Definition 2.3. We call
ε = min

λ′∈Spec(A0), λ′ 6=λ
|λ− λ′|

the separation of λ from the other eigenvalues of A0.
5

We will work with the projection onto the eigenspace of all the eigenvalues splitting from λ.

Theorem 2.4 ([Bau84, pp. 116-117, p. 326]). Consider a perturbation A(t). Let λ be an
eigenvalue of multiplicity m of the unperturbed operator A(0) = A0. Consider the space Λ(t)
spanned by the eigenvectors of the eigenvalues λ(1)(t), . . . , λ(m)(t) splitting from λ. Λ(t) is a
space of dimension m. For each t there is an operator P (t) that projects onto Λ(t), and for all
t ≤ ε/3 the function P (t) is analytic in t: there exist matrices Pi (themselves not necessarily
projections) such that

P (t) =

∞
∑

i=0

tiPi (2.1)

projects onto Λ(t). Here, P (0) = P0 is the projection onto the eigenspace of eigenvalue λ of A0.

We will also need a few additional facts from perturbation theory.

Lemma 2.5 ([Bau84, p. 115]). Let ε be the separation of λ from the other eigenvalues of
A0. Suppose additionally that ‖Ai‖ ≤ 1

2i−1 for all i ≥ 1. Then for all t ≤ ε/3, the eigenvalues
of A(t) in the range [λ − ε/2, λ + ε/2] all split from λ (i.e. they do not split from some other
eigenvalue of A0).

Proof. Lemma 3 of [Bau84, p. 115] tells us that we only need to verify that

∞
∑

i=1

ti‖Ai‖ < ε/2

for all t ≤ ε/3. This is easily done by calculation using the fact that ‖Ai‖ ≤ 1/2i−1 for all
i ≥ 1.

Definition 2.6 ([Bau84, pp. 74-75]). The reduced resolvent S0 of a matrix A0 with respect
to the eigenvalue λ is the pseudo-inverse of λI − A0. That is, its restriction on the eigenspace
of the eigenvalue λ of A0 is 0 and its restriction on the orthogonal complement is (λI −A0)

−1.

Lemma 2.7. ‖S0‖ = 1
ε where ε is the separation of λ from the other eigenvalues of A0.

Proof. Let the eigenvalues of A0 be λ1 ≥ λ2 ≥ . . . ≥ λn. Since S0 is the pseudo-inverse
of λI − A0, the eigenvalues of S0 are 0 and 1

λi−λ for all λi 6= λ. It is easy to see that S0 is
Hermitian, so it follows that ‖S0‖ equals its eigenvalue largest in absolute value, which is exactly
1
ε .

The definition of the reduced resolvent is applied in the following identity.

5Notice that the spectral gap of a graph is exactly the separation of the eigenvalue 1 of the normalized
adjacency matrix of the graph from the other eigenvalues.
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Theorem 2.8 ([Bau84, p. 156]). If A(t), P (t) are defined as above, then

(A(t)− I)P (t) =
∞
∑

i=1

tiZ(i) where Z(i) = −
i
∑

k=1

∑

µ1+...+µk=i

σ1+...+σk+1=k−1

µj≥1,σj≥0

S
(σ1)
0 Aµ1S

(σ2)
0 . . . Aµk

S
(σk+1)
0

(2.2)

The S
(σ)
0 is shorthand, where S

(0)
0 is the projection P (0) = P0, and for σ ≥ 1 we define S

(σ)
0 =

−(−S0)
σ, where S0 is the reduced resolvent of A with respect to the eigenvalue λ. This series

is convergent for t ≤ ε/3.

Remark 2.9. For a full discussion of this expression see [Bau84]. The curious reader will note
that in our statement there is no constant term in the series

∑∞
i=1 tiZ(i). This is because A(t)

is diagonalizable and so the constant term6 is zero. He or she will also note that the summation
in the definition of Z (i) is over σj ≥ 0, which is different from the statement in [Bau84]. This
also follows from the fact that A(t) is diagonalizable.

2.3 Probability theory of matrix-valued random variables

We will write I to be the identity, or Id when the dimension d is not clear.

Theorem 1.1 is stated in terms of the matrix 2-norm, which is defined for any d×d matrix A as
‖A‖ = maxx∈Cd ‖Ax‖/‖x‖. If A is Hermitian then ‖A‖ = |λmax|, where λmax is the eigenvalue
of A with largest absolute value.

To prove Theorem 1.1, we will work with a different though related partial ordering of Hermitian
matrices. A Hermitian matrix is positive semi-definite (p.s.d.) if all its eigenvalues (which are
real) are non-negative. Note that non-negative linear combinations of p.s.d. Hermitian matrices
are also p.s.d. Hermitian, i.e. Hermitian p.s.d. matrices form a real cone. We define that A ≥ 0
if A is p.s.d., and A ≥ B if A − B ≥ 0. The interval [A,B] is defined as all Hermitian X such
that A ≤ X ≤ B. Note one can test whether A ≥ B in polynomial-time by finding all the
eigenvalues of A−B.

Remark 2.10. For real γ, saying A ∈ [−γI, γI] is equivalent to saying ‖A‖ ≤ γ. Note that this
means the probability bounded in Theorem 1.1 is exactly the probability Pr[ 1

kf(W ) − E[f ] 6∈
[−γI, γI]].

[AW02] develops a theory of probability inequalities for Hermitian matrices, including analogues
of the traditional Markov, Chebyshev, and Chernoff inequalities. We state some of the theorems
from [AW02] here without proof.

Lemma 2.11 (Markov’s inequality [AW02] ). Let Y be a matrix-valued random variable
taking value in the Hermitian, p.s.d. matrices of dimension d. Let M = E[Y ] and let A also be
a Hermitian p.s.d. matrix. Then we have that

Pr[Y 6≤ A] ≤ Tr(MA−1)

We will apply Bernstein’s trick (taking the exponential generating function and then applying
Markov) on this lemma to get an exponential bound. This uses the matrix exponential :

6This is the eigennilpotent of A(t).
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Definition 2.12. exp(A) = I + A + A2/2 + . . . =
∑∞

i=0 Ai/i!

This series is convergent for all A. Also, if X is Hermitian then so is exp(X), and exp(X) ≥ 0 for
any Hermitian X. In general exp(A + B) is not necessarily equal to exp(A) exp(B). However,
the Golden-Thompson inequality gives a relationship between the traces of exp(A + B) and
exp(A) exp(B):

Theorem 2.13 ([Gol65, Tho65]). For A,B Hermitian matrices we have

Tr(exp(A + B)) ≤ Tr(exp(A) · exp(B))

We can use the definition of matrix exponential to apply Bernstein’s trick to Lemma 2.11 and
get the following.

Lemma 2.14 ([AW02]). If Y is a matrix-valued random variable and B is a constant matrix,
both taking value in the Hermitian matrices of the same dimension, then for every t > 0

Pr[Y 6≤ B] ≤ Tr(E[exp(t(Y −B))])

[AW02] uses this and Theorem 2.13 to get a Chernoff bound, similar to Theorem 1.1 but with
true independent samples. We state only a special case of their bound.

Theorem 2.15 (Chernoff bound, [AW02]). Let Y1, . . . , Yk be independent, identically dis-
tributed random variables taking value in the Hermitian matrix interval [−I, I] with mean 0.
Suppose 1 ≥ γ > 0. Then Pr[‖ 1

k

∑k
i=1 Yi‖ > γ] ≤ 2de−γ2k/(2 ln 2).

The constant is better than what we are able to achieve in Theorem 3.6 but qualitatively
the bound achieves the same effect. See the example in Theorem B.1 of the Appendix for a
discussion of the factor of d in the bound.

3 Randomness-efficient sampling of matrix-valued functions

In Section 3.1 we prove the classical Chernoff bound to give a feel of the style of proof. In
Section 3.2 we prove the 1-dimensional case as another warm-up to the main theorem. In
Section 3.3 we prove Theorem 1.1 and finally in Section 3.4 we derive the randomness-efficient
and derandomized samplers.

3.1 Chernoff bound

We recall the following one-sided classical Chernoff bound. Better constants in the bound may
be obtained; we give this proof for its simplicity.

Theorem 3.1 ([Che52]). Let Yi for 1 ≤ i ≤ k be i.i.d. random variables taking value in
[−1, 1]. Suppose E[Yi] = 0. Then for any 1/2 ≥ γ > 0 we have

Pr

[

1
k

k
∑

i=1

Yi ≥ γ

]

< e−γ2k/2.4
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Proof. We apply the “Bernstein trick”: multiply 1
k

∑k
i=1 Yi ≥ γ by a positive constant t (to be

set later), take the exponential, and apply Markov’s inequality to get

Pr

[

1
k

k
∑

i=1

Yi ≥ γ

]

= Pr[et(
Pk

i=1 Yi) ≥ eγkt]

≤ e−γkt
E[et(

Pk
i=1 Yi)]

At this point we apply independence and some analysis to bound the expectation on the RHS.
We note for reference that the proof of the expander walk bound diverges exactly at this point.

By the independence of the Yi we have that this is equal to

e−γkt
E[etY ]k

where Y is distributed like the Yi’s. Expanding etY as its power series and noticing that its
O(t2) terms are bounded by 0.6t2 for t < 1/2, we have that this is at most

e−γkt
E[1 + Y t + 0.6t2]k ≤ e−γkt(1 + 0.6t2)k

< e−γkte0.6kt2

= e−γkt+0.6kt2

It is easy to see that the exponent is most negative when t = γ/1.2, which confirms our
assumption that t < 1/2. This gives that the entire probability is at most e−γ2k/2.4.

3.2 The 1-dimensional case

In this section we prove the 1-dimensional expander walk Chernoff bound of [AKS87, Gil93,
Lez98, Kah95]. This will be instructive because the proof of both the 1- and d-dimensional
cases consist of two steps. In the first step we reduce the problem of bounding the sampling
error to the problem of bounding the largest eigenvalue of a perturbation matrix. The second
step consists of bounding this eigenvalue. The first step is simpler in the 1-dimensional case so
we choose to illustrate it as a warm-up to the d-dimensional case. We defer the proof of the
second step to the proof of the main theorem, as it is essentially identical in both cases.

Suppose we are given an expander with spectral gap ε > 0. Define Yi (1 ≤ i ≤ k) to be the i’th
vertex visited in a random walk on G that starts from Y0 which is uniformly distributed in V .
Let W = (Y1, . . . , Yk) be the random variable representing the walk and f(W ) =

∑k
i=1 f(Yi) be

the value of the walk.

Theorem 3.2 ([AKS87, Gil93, Lez98]). For any f : V → [−1, 1] with E[f ] = 0, for any
1/2 ≥ γ > 0 and any k ≥ 4

γ we have

Pr[ 1
kf(W ) > γ] ≤ e−γ2εk/60

An identical bound can be proved for Pr[ 1
kf(W ) < −γ] by replacing f with −f .

We use the proof of Theorem 3.1 as a model for our proof of Theorem 3.2.
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Proof of Theorem 3.2. We begin as in the proof of the traditional Chernoff bound:

Pr[ 1
kf(W ) > γ] = Pr[etf(W ) > eγkt]

≤ e−γkt
E[etf(W )]

Thus it remains to bound E[etf(W )]. Unfortunately we can’t use independence because Y1, . . . , Yk

are not independent. However, let A be the normalized adjacency matrix of G, and Dt =
diag(etf(i)), then we can show the following:

Claim 3.3. Let u = [ 1√
n
, . . . , 1√

n
]T be the unit uniform column vector. Then E[etf(W )] =

〈u, (DtA)ku〉.

Proof of Claim 3.3. We can use the fact that Y1, . . . , Yk come from a walk. Let w = (y1, . . . , yk)
represent a particular walk, pw its probability, and f(w) =

∑k
i=1 f(yi) its value. Then we have

that
E[etf(W )] =

∑

w

pwetf(w)

One interprets the right-hand side as follows. We keep track of the value of the walk, which
starts at 1. Each time we arrive at a vertex yi we multiply this value by etf(yi). It is easy to see
that the expectation of this corresponds exactly to 〈u, (DtA)ku〉

We have by Cauchy-Schwarz that

E[etf(W )] = 〈u, (DtA)ku〉
≤ ‖(DtA)k‖

Thus we require a bound on ‖(DtA)k‖. The following definition will be useful:

Definition 3.4. A(t) = Dt/2ADt/2

Notice that
(DtA)k = Dt/2(A(t))kD−t/2

The following lemma will give us an appropriate bound:

Lemma 3.5. ‖A(t)‖ ≤ 1 + (7.5/ε)t2 for all t ≤ ε/15.

This is in fact a consequence of the Main Lemma 3.9. Indeed Lemma 3.5 is just the 1-
dimensional case of Lemma 3.9. There is no advantage in clarity to treat this 1-dimensional
case separately here with our technique7, so we will use it here and prove the more general
Lemma 3.9 later in Section 3.3.

Applying Lemma 3.5 and the fact that ‖Dt/2‖ ≤ et/2 and ‖D−t/2‖ ≤ et/2 we get that

‖(DtA)k‖ ≤ ‖Dt/2(A(t))kD−t/2‖ ≤ et(1 + (7.5/ε)t2)k ≤ e(7.5k/ε)t2+t

Then we finish the probability calculation:

Pr[ 1
kf(W ) > γ] ≤ e−γkt+(7.5k/ε)t2+t

7Alternatively one could apply the analyses of [Gil93, Lez98] at this point.
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Choose t = γε
15 and use the fact k ≥ 4

γ , which gives finally

Pr[ 1
kf(W ) > γ] ≤ e−γ2εk/60 (3.1)

3.3 Expander walks for matrix-valued functions

In this section we prove the main theorem following the same structure as that of Theorem 3.2.

In addition, we apply perturbation theory akin to that of [Gil93, Lez98] to prove Lemma 3.9, the
d-dimensional analogue of Lemma 3.5. Note in the d-dimensional case there is an extra factor
of d in both the independent sampling Chernoff bound of Theorem 2.15 and in our expander
walk Chernoff bound Theorem 1.1. This is because by bounding a d× d Hermitian matrix, we
are in some sense bounding d variables (the eigenvalues) simultaneously, and so the d falls out
of a union bound. The tightness of this factor is discussed in Section B.1 of the Appendix.

The d-dimensional case is delicate for several reasons. First, because matrices do not necessarily
commute, the matrix exponential does not behave as the real exponential, which is why we need
Theorem 2.13. Second, [Gil93, Lez98] study the perturbation of the largest eigenvalue of the
normalized adjacency matrix A of the graph, which has multiplicity 1. Although we also study
a similar eigenvalue, it will have multiplicity d instead of 1. Because of this, the techniques of
[Gil93, Lez98] do not apply in the obvious way.

Recall the setting of the main theorem. We have a random walk W = (Y1, . . . , Yk) on an
expander G = (V,E), where Yi is the i’th vertex visited in the walk. The spectral gap of G is ε.
For simplicity of notation in the proof we will only prove Theorem 3.6 below. For any f such
that ‖f(v)‖ ≤ 1 for all v, we can simply shift and scale f to fit the hypotheses of Theorem 3.6,
changing only constants in the bound. Thus our Main Theorem 1.1 follows immediately from
Theorem 3.6 and Remark 2.10.

Theorem 3.6. Let f : V → [−I, I] and E[f(v)] = 0. Let f(W ) =
∑k

i=1 f(Yi). Then for every
1 ≥ γ > 0 and every k ≥ 4

γ , we have

Pr[ 1
kf(W ) 6≤ γI] ≤ de−γ2εk/60 and Pr[ 1

kf(W ) 6≥ −γI] ≤ de−γ2εk/60

Proof of Theorem 3.6. Note that the lower bound follows immediately from the upper bound
by replacing f with −f , thus we only prove the first inequality.

We reduce the problem of computing the probability bound to bounding the largest eigenvalue
of a perturbation matrix. Then in the proof of the Main Lemma 3.9, the generalization of
Lemma 3.5, we use perturbation theory to bound the norm of this perturbed operator, which
in turn implies the theorem.

First apply Lemma 2.14 to the expression, then bring out γI:

Pr[ 1
kf(W ) 6≤ γI] ≤ TrE[exp(t(f(W )− kγI))] ≤ e−γktTrE[exp(tf(W ))]

Applying Theorem 2.13 and the fact that trace and expectation commute, we can write that

11



this is at most

≤ e−γkt
ETr

[

exp

(

t

(

k
∑

i=1

f(Yi)

))]

≤ e−γkt
ETr

[

k
∏

i=1

exp(tf(Yi))

]

≤ e−γktTrE

[

k
∏

i=1

exp(tf(Yi))

]

It is important to note here that the exp(tf(Yi)) do not commute so the product notation means
the product in the order exp(tf(Yk)) exp(tf(Yk−1)) . . . exp(tf(Y1)).

Let A be the normalized adjacency matrix of G and let Ã = Id ⊗ A. One can visualize this as
A but where each entry is Ai,jId instead of just Ai,j. Define, D̃t, which is the dn × dn block
diagonal matrix with d × d blocks where the i’th diagonal block is exp(tf(i)). Define ũ to be
the dn×d matrix Id⊗u where u = [1/

√
n, . . . , 1/

√
n]T is the unit uniform column vector. This

is in some sense a “unit eigenvector of the eigenvalue 1 of Ã”.

Claim 3.7. We have that E

[

∏k
i=1 exp(tf(Yi))

]

= ũT (D̃tÃ)kũ

Proof of Claim 3.7. The reasoning to this is similar to the reasoning for Claim 3.3. The expec-
tation on the LHS is taken over all walks on G. Let w = (y1, . . . , yk) be a walk, yi the i’th
vertex visited of the walk, and pw be the probability of w. Then

E

[

k
∏

i=1

exp(tf(Yi))

]

=
∑

w

pw

k
∏

i=1

exp(tf(yi))

We interpret the expression on the RHS as follows. We initialize the value of the walk to I, then
take a random walk starting from a random start vertex, and at each vertex yi we encounter,
we multiply the value of the walk on the left by exp(tf(yi)). Thus a calculation yields that the
RHS is ũT (D̃tÃ)kũ.

Now note that Tr(ũT (D̃tÃ)kũ) =
∑d

i=1〈(ei ⊗ u), (D̃tÃ)k(ei ⊗ u)〉 ≤ d‖(D̃tÃ)k‖. The final
inequality follows from applying Cauchy-Schwarz, since ‖ei ⊗ u‖ = 1.

Thus we have
Pr[ 1

kf(W ) 6≤ γI] ≤ de−γkt‖(D̃tÃ)k‖ (3.2)

The proof requires a bound on ‖(D̃tÃ)k‖.
Definition 3.8. Ã(t) = D̃t/2ÃD̃t/2

Note that Ã(0) = Ã and D̃tÃ is similar Ã(t) . We will apply perturbation theory to Ã(t) to get
the Main Lemma:

Lemma 3.9 (Main Lemma). ‖Ã(t)‖ ≤ 1 + (7.5/ε)t2 for all t ≤ ε/15.
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The intuition behind the Main Lemma is that Ã(t) is close to Ã for small t. In particular, the
spectral gap of Ã is large so the largest eigenvalue of Ã(t) is close to the largest eigenvalue 1 of
Ã. Note interestingly that d, the dimension of the blocks in the matrices we work with, does
not appear at all in the above lemma. Intuitively, this is because the spectral behavior of Ã
depends only on its spectral gap between 1 and λ2, not its size, even though 1 and λ2 are of
multiplicity d.

Before we prove the Main Lemma, we use it to derive Theorem 3.6. We will fix t = γε/15 later.
Thus, since ‖D̃t/2‖ ≤ et/2 and ‖D̃−t/2‖ ≤ et/2, we have

‖(D̃tÃ)k‖ = ‖D̃t/2(Ã(t))kD̃−t/2‖ ≤ et‖Ã(t)‖k ≤ et(1 + (7.5/ε)t2)k

which is at most et+(7.5k/ε)t2 by the fact that 1 + α ≤ eα for all α ∈ R. So from Equation 3.2
we have

Pr[ 1
kf(W ) 6≤ γI] ≤ de−γkt+(7.5k/ε)t2+t

We fix t = γε/15, which along with the fact that k ≥ 4
γ gives us that

Pr[ 1
kf(W ) 6≤ γI] ≤ de−γ2εk/60

Now we turn to the proof of the Main Lemma:

Proof of Lemma 3.9. Ã(t) = D̃t/2ÃD̃t/2 is an analytic perturbation of the form Ã(t) =
∑∞

i=0 tiÃi

where Ã(0) = Ã0 = Id ⊗A, and where the other coefficients are given by the following.

Claim 3.10.

Ãi =
1

i!

1

2i

i
∑

j=0

(

i

j

)

∆̃iÃ∆̃j

Here ∆̃ is the block diagonal matrix diag(f(i)). This claim is easily derived by direct calculation
using the Taylor expansion of D̃t/2. Since Ã and ∆̃ are Hermitian it follows that Ã(t) is Hermi-

tian for all t, so its eigenvalues are real and the largest eigenvalue λ̃(t) = ‖Ã(t)‖. Furthermore
Theorem 2.4 applies to Ã(t) and its perturbed eigenvalue λ̃(t), because Ã(0) = Ã is Hermitian
and one can calculate from Claim 3.10 that ‖Ãi‖ ≤ 1 for all i.

We want to find the largest eigenvalue of Ã(t). It is easy to verify using Claim 3.10 that
‖Ãi‖ ≤ 1/2i−1 for all i ≥ 1. In addition t ≤ ε/15, so we can apply Lemma 2.5, which tells us
that all the eigenvalues of Ã(t) in the range [1 − ε/2, 1 + ε/2] split from 1. In particular, the
trivial bound ‖Ã(t)‖ ≤ et tells us that ‖Ã(t)‖ < 1 + ε/2 for t ≤ ε/15, and therefore the largest
eigenvalue of Ã(t) splits from 1.

By Theorem 2.4 there is an analytic projection-valued function P̃ (t) with matrix coefficients
P̃i that projects onto the eigenspace of all the eigenvalues splitting from the eigenvalue 1 of
Ã. Recall that P̃ (0) = P̃0 is the projection onto the space spanned by the eigenvectors of the
eigenvalue 1 of Ã.

We noted earlier that the eigenvalue 1 of Ã may split into d distinct eigenvalues upon pertur-
bation by D̃t because it is of multiplicity d. Fortunately we are simply interested in the largest
one that splits from 1, which is still in the space that P̃ (t) projects onto.
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We thus have that ‖Ã(t)‖ = ‖Ã(t)P̃ (t)‖. We remark for comparison here that the techniques
of Gillman and Lezaud [Gil93, Lez98] fail at this point because the assumption that 1 is an
eigenvalue of multiplicity 1 is essential to their analyses.

Continuing onwards, we wish to bound λ̃(t) = ‖Ã(t)P̃ (t)‖. For intuition, consider that P̃ (t) is
a projection onto eigenspaces of Ã(t), so we have that Ã(t)P̃ (t) = P̃ (t)Ã(t)P̃ (t). By calculating
the power series expansion of P̃ (t)Ã(t)P̃ (t) one can see that the linear term is 0, and the rest
are O(t2) for small enough t. This is why one expects that λ̃(t) ≤ 1 + O(t2). However we use a
different approach to actually prove the lemma.

Formalizing this intuition, we wish to bound

λ̃(t) = ‖Ã(t)P̃ (t)‖ = ‖P̃ (t) + (Ã(t)− I)P̃ (t)‖ ≤ 1 + ‖(Ã(t)− I)P̃ (t)‖ (3.3)

(Ã(t)− I)P̃ (t) is a power series, which is given by Theorem 2.8. We will show shortly that the
constant and linear coefficients of this series are 0 and whose i’th coefficient for i ≥ 2 has norm
≤ (5

ε )i−1. Therefore the norm of the entire series is bounded as in the claim below:

Claim 3.11. ‖(Ã(t)− I)P̃ (t)‖ ≤ (7.5/ε)t2 for all t ≤ ε/15.

Since our choice of t = γε/15 in the proof of Theorem 3.6 satisfies t ≤ ε/15, we can apply this
claim to Equation 3.3 to finally get λ̃(t) ≤ 1 + (7.5/ε)t2.

Thus it only remains to prove Claim 3.11.

Proof of Claim 3.11. We apply Theorem 2.8 to our perturbation Ã(t) =
∑∞

i=0 tiÃi. Equation 2.2
implies that

‖(Ã(t)− I)P̃ (t)‖ =

∥

∥

∥

∥

∥

∞
∑

i=1

tiZ̃(i)

∥

∥

∥

∥

∥

≤
∞
∑

i=1

ti‖Z̃(i)‖ (3.4)

where

Z̃(i) = −
i
∑

k=1

∑

µ1+...+µk=i
σ1+...+σk+1=k−1

µj≥1,σj≥0

S̃0
(σ1)

Ãµ1 S̃0
(σ2)

. . . Ãµk
S̃0

(σk+1)
(3.5)

where S̃0
(0)

= P̃0, S̃0
(σ)

= −(−S̃0)
σ for σ ≥ 1, and S̃0 is the reduced resolvent of Ã for the

eigenvalue 1.

We see that

Z̃(1) = P̃0
1

2
(∆̃Ã + Ã∆̃)P̃0 = P̃0∆̃P̃0

and we claim that this last expression is actually 0. For any x̃ ∈ C
dn, we have

P̃0∆̃P̃0x̃ = P̃0∆̃(x⊗ u)

= P̃0

(

n
∑

i=1

f(i)x⊗ ei

)

=

(

1√
n

n
∑

i=1

f(i)x

)

⊗ u

= 0
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We use two facts in the above. First, P̃0 is the projection onto the space {x⊗u | x ∈ C
d}. That

is, if we decompose x̃ =
∑n

i=1 xi⊗ ei where the xi ∈ C
d, then P̃0x̃ = 1√

n

∑n
i=1 xi⊗u. The other

fact, used in the last line, is that
∑

f(i) = nE[f ] = 0.

For i ≥ 2 we use Lemma 2.7 and the fact that the spectral gap is the separation of 1 from the
other eigenvalues to see that ‖S̃0‖ = 1

ε . Also, it is evident that ‖P̃0‖ = 1 since it is a projection,

and we have already remarked that ‖Ãi‖ ≤ 1. Thus each summand of Equation 3.5 has norm
at most (1/ε)i−1.

Notice that the number of terms in the summation in Equation 3.5 is exactly

i
∑

k=1

(

i− 1

k − 1

)(

2k − 1

k

)

It is clear that
(2k−1

k

)

= 1
2

(2k
k

)

and by Stirling’s formula we have
(2k

k

)

≤ 4k/
√

kπ. Thus the
number of terms is at most

1

2
+

1

2
√

π

i
∑

k=2

4k

√
k

(

i− 1

k − 1

)

≤ 1

2
+

2√
2π

i−1
∑

k=1

4k

(

i− 1

k

)

≤ 1

2
+

√

2

π
(5i−1 − 1)

We obtain the last inequality by recognizing a binomial expansion. Finally

1

2
+

√

2

π
(5i−1 − 1) ≤ 5i−1

for all i ≥ 2. Therefore ‖Z̃(i)‖ ≤ (5
ε )i−1 for all i ≥ 2.

Since Z̃(1) = 0 and ‖Z̃(i)‖ ≤ (5
ε )i−1 for i ≥ 2, we have that the RHS of Equation 3.4 is at most

5

ε
t2
∞
∑

i=0

(5t
ε )i

Thus for t ≤ ε
15 it is clear that this is at most (7.5/ε)t2.

3.4 A randomness-efficient sampler for matrix-valued functions

Here we use Theorem 3.6 to derive a randomness-efficient sampler for matrix-valued functions
over arbitrary distributions. We then derandomize this sampler to get deterministic samples in
polynomial time.

Theorem 3.6 treats sampling a function f : [n] → [−I, I] uniformly, where [n] = {1, . . . , n}.
That is, let x

R← X denote sampling x from X uniformly, then Theorem 3.6 allows us to

(approximately) sample f(x) where x
R← [n] using little randomness. Here we generalize this

so that the distribution on [n] is not necessarily uniform. In the following, let Ep[f ] denote the
expectation of f(Y ) where Y is sampled from [n] according to the probability distribution p.

Proposition 3.12. Let p : [n] → [0, 1] be a probability distribution on [n]. For any 1 ≥ γ > 0
and every k ≥ 4

γ , we can construct a poly(n)-time computable sampler σ : {0, 1}r → [n]k with

r = log n + O(k) + O(log 1
γ ) such that for all functions f : [n] → [−Id, Id] with Ep[f ] = 0 we

have

Pr
w

R←{0,1}r

[
∥

∥

∥

∥

∥

1
k

k
∑

i=1

f(σ(w)i)

∥

∥

∥

∥

∥

≤ γ

]

≥ 1− 2de−γ2k/70 (3.6)
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Proof of Proposition 3.12. Our strategy is to construct in time polynomial in n a constant-
degree expander graph G = (V,E) and a map ϕ : V → [n]. Our sampler σ will map a walk on
the expander of length k (which can clearly be encoded using r = log |V |+ O(k) bits) to [n]k,
namely all the vertices it visits on the walk.

Recall we can construct Ramanujan graphs efficiently from Theorem 2.1, so let us pick the
degree such that the spectral gap is at least 0.95. Fix such a graph of size ≥ 40n

γ . Call this
graph G = (V,E).

We define the function ϕ : V → [n] such that for each value y ∈ [n] we map any Jp(y) · |V |K
vertices in G to y, where the brackets J·K denote rounding either up or down, so that in the
end all the vertices V are mapped to [n]. Thus G,ϕ give an altered distribution pG, which is
pG(y) = Pr

v
R←V

[ϕ(v) = y].

Claim 3.13. ‖EpG
[f ]‖ ≤ γ/40

We first use this claim to prove the proposition. Let f ′(v) = 40
40+γ (f(v)− EpG

[f ]), then clearly

f ′ : V → [−I, I] and EpG
[f ′] = 0. Take a random walk of length k on G and let this sequence

be called W . Then we have by Theorem 3.6, Claim 3.13, and Remark 2.10 that

Pr[ 1
kf ◦ ϕ(W ) ∈ [−γI, γI]] ≥ Pr

[

1
kf ′ ◦ ϕ(W ) ∈

[

−39γ

41
I,

39γ

41
I

]]

≥ 1− 2de−γ2k/70

where the inequality on the first line is obtained by adding −EpG
[f ] and scaling by 40

40+γ to both
sides of the event and then applying Claim 3.13 and the fact that γ ≤ 1.

We can encode each walk by r = log |V | + O(k) bits, which by our choice of |V | is exactly
r = log n + O(k) + O( 1

γ ). Thus σ is the map that for any walk w = (v1, . . . , vk) out-
puts (ϕ(v1), . . . , ϕ(vk)). We can plug σ into the above calculations to derive the bounds of
Proposition 3.12.

Proof of Claim 3.13. The only thing remaining is to show that the G = (V,E) we chose is large
enough to satisfy

‖EpG
[f ]‖ =

∥

∥

∥

∥

∥

∥

∑

y∈[n]

(pG(y))f(y)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

y∈[n]

((pG(y)− p(y))f(y) + Ep[f(y)])

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

y∈[n]

(pG(y)− p(y))f(y)

∥

∥

∥

∥

∥

∥

≤ γ/40

where we use the fact that Ep[f(y)] = 0. Note that since ‖f(y)‖ ≤ 1 for all y, it suffices to show
that

∑

y∈[n]

|pG(y)− p(y)| ≤ γ/40

Since pG(y) = Jp(y)|V |K/|V |, this is

∑

y∈[n]

∣

∣

∣

∣

Jp(y)|V |K− p(y)|V |
|V |

∣

∣

∣

∣
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The numerator is at most 1, so after summing we get ‖EpG
[f ] − Ep[f ]‖ ≤ n/|V |, and thus it

suffices to take |V | ≥ 40n
γ .

An easy corollary of the proposition states that for short enough walks we can completely
derandomize the procedure.

Corollary 3.14. Suppose we are in the setting of Proposition 3.12. Then there exists k =
O(log d) and a n · poly(d/γ) algorithm (in fact an NC algorithm) to find a sample T =
(σ1, . . . , σk) such that ‖ 1

k

∑k
i=1 f(σi)‖ ≤ γ.

Proof. Take the smallest integer k > 70
γ2 (log d+log 2), then we have that the RHS of Equation 3.6

is positive. Thus since r = log n + O(log d) + O(log 1
γ ), by enumerating over all w ∈ {0, 1}r in

time 2r = n(d/γ)O(1) we can deterministically find w0 such that ‖ 1
k

∑k
i=1 f(σ(w0)i)‖ ≤ γ. Let

T = σ(w0).

Remark 3.15. We note that the f in Proposition 3.12 and Corollary 3.14 is not identical to
the one in Theorem 1.1. This is unimportant as we may apply these results to any bounded
function f by shifting and scaling f ; this only changes the resulting bounds by constant factors.

4 Applications

In Section 4.1 we apply Theorem 1.1 to prove Theorem 1.2 and in Section 4.2 we apply this
to affine homomorphism testing to get Corollary 1.3. In Section 4.3 we define quantum hyper-
graphs and show an efficient algorithm for the quantum hypergraph cover problem for quantum
hypergraphs with constant size fractional covers.

4.1 A Derandomization of the Alon-Roichman Theorem

In this section we prove Theorem 1.2, which gives a deterministic polynomial time algorithm for
the Alon-Roichman theorem. We first give a simple version of the proof of the Alon-Roichman
Theorem due to [LR04, LS04] that does not use representation theory. We note that better
constants in the final size of S may be achieved using the proof based on representation theory
given in [LR04, LS04].

Theorem 4.1 ([AR94, LS04, LR04]). Fix β < 1 and q < 1.8 For an arbitrary group
H, by picking a random generating multi-set T of size O( 1

β2 log |H|) and taking its symmetric

closure multi-set S = T t T−1 we have that the second-largest eigenvalue of the Cayley graph
λ2(X(H;S)) satisfies

Pr[λ2(X(H;S)) ≤ β] > q

Proof. Pick a generating multi-set set T uniformly at random from H and take its symmetric
closure S = T t T−1 (i.e. if a is in T i times and in T−1 j times then a is in S i + j times).
Define the homomorphism R such that for each h ∈ H, R(h) is the |H| × |H| (real-valued)
permutation matrix associated with the action of h on H. Define

f(h) =
1

2
((R(h) − J/n) + (R(h−1)− J/n))

8Here we may take q = 1 − 1/poly(n), but constant suffices for our purposes.
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where J is the matrix with 1 in all entries. It is easy to observe that f(h) is symmetric (and
thus Hermitian), and E[f ] = 0. If we let P be the projection onto the space orthogonal to
u the uniform vector, then a calculation shows that PR(h) = R(h) − J/n. Thus f(h) =
1
2(PR(h) + PR(h−1)), and looking at ‖f(h)‖ it is also clear that −I ≤ f(h) ≤ I.

Finally, a simple calculation shows that 1
|T |
∑

h∈T f(h) = PA where P is the projection men-

tioned above and A is the adjacency matrix of X(G;S). Therefore we have λ2(X(H;S)) =
‖ 1
|T |
∑

h∈T f(h)‖. So we wish to bound

Pr[λ2(X(H;S)) ≤ β] = Pr

[∥

∥

∥

∥

∥

1

|T |
∑

h∈T

f(h)

∥

∥

∥

∥

∥

≤ β

]

(4.1)

We can apply Theorem 2.15 to get that the RHS is ≥ 1− 2|H|e−β2k/(2 ln 2). Thus choosing the
smallest integer |T | > 2 ln 2

β2 (log |H|+ log 2
1−q ) shows that the RHS is > q.

Our derandomization, Theorem 1.2, follows easily from Theorem 4.1 and Corollary 3.14

Proof of Theorem 1.2. We wish to apply Corollary 3.14. We identify H with [|H|] and let
p be the uniform distribution over [|H|]. We apply Corollary 3.14 to get a sample T of
size O( 1

β2 log |H|) in time |H|2O(|T |) = |H|O(1) such that ‖ 1
|T |
∑

h∈T f(h)‖ ≤ β and hence

λ2(X(H;T t T−1)) ≤ β.

4.2 Improved Affine Homomorphism Testers

Theorem 1.2 answers a question about the derandomization of homomorphism testers posed in
[SW04]. In this section we will use Theorem 1.2 to prove Corollary 1.3.

Recall that an affine homomorphism between two groups H,H ′ is a map f : H → H ′ such that
f−1(0)f is a homomorphism. An (δ, η)-test for affine homomorphisms is a tester that accepts
any affine homomorphism surely and rejects with probability 1− δ any f : H → H ′ which is η
far from being an affine homomorphism. Here distance is measured by the normalized Hamming
distance: d(f, g) = Pr[f(x) 6= g(x)].

[SW04] showed how to efficiently construct a tester TH×S where λ2(X(H;S)) < λ: simply

pick a random element x
R← H and a random element of y

R← S and check to see that
f(0)f(x)−1f(xy) = f(y). It is clear this accepts f surely if f is an affine homomorphism.
[SW04] shows that if 12δ < 1− λ then this rejects with probability 1− δ any f that is 4δ

1−λ -far
from being an affine homomorphism.

Theorem 4.2 ([SW04]). For all groups H,H ′ and S ⊆ H an expanding generating set such
that λ2(X(H;S)) < λ, we can construct a tester TH×S that surely accepts any affine homomor-
phism f : H → H ′ and rejects with probability at least 1− δ any f : H → H ′ which is 4δ/(1−λ)
far from being an affine homomorphism, given that 12δ

1−λ < 1. That is, TH×S is a (δ, 4δ
1−λ)-test

for affine homomorphisms.

In [SW04] the deterministic construction of S gave a set of size |H|ε for arbitrary ε > 0. The
explicit construction given in [SW04] requires that TH×S use (1 + ε) log |H| random bits and
asks whether it is possible to improve this dependency on randomness. Theorem 1.2 allows us
indeed to improve this dependency to the following.

Recall Corollary 1.3:
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Corollary 1.3 (Restated). Given an arbitrary group H, one can construct in time |H|O(1) a
homomorphism tester for functions on H which uses only log |H| + log log |H| + O(1) random
bits.

This follows easily from Theorem 1.2:

Proof of Corollary 1.3. Theorem 4.2 says we can construct a homomorphism tester that only
uses randomness to pick an element of H and an element of an expanding generating set of H.
Theorem 1.2 implies this only requires log |H| + log log |H| + O(1) random bits since we can
deterministically construct an expanding generating set of size log |H| in polynomial time.

Note that Corollary 1.3 is essentially optimal for “Cayley testers” of the above form, i.e. testers
that pick one element at random and a second from an expanding generating set. This is
because the tester requires that S be an expanding generating set of H and there are groups
(for example, Z

n
2 ) for which Ω(log |H|) generators are necessary for the Cayley graph to expand.

However, note that [GS02] prove the existence of testers for homomorphisms H → H ′ where
|H ′| = O(1) that use only log |H|+O(1) bits of randomness. Finding explicit such constructions
remains an interesting open problem.

4.3 Covers of Hypergraphs and Quantum Hypergraphs

In this section we define hypergraphs and quantum hypergraphs and discuss the cover prob-
lem for both. The quantum hypergraph cover problem is a generalization of set cover arising
in quantum information theory [AW02]. We apply our randomness-efficient sampler to give an
algorithm to find a quantum hypergraph cover that is optimal up to logarithmic factors. This al-
gorithm can be derandomized to run in deterministic polynomial time for quantum hypergraphs
of constant cover size.

4.3.1 Hypergraphs

A hypergraph is a pair (V,E) where E ⊆ 2V , i.e. E is a collection of subsets of V . Say |V | = d.
One often views an edge e as a vector in {0, 1}d, where the i’th entry is 1 if vertex i is in the
edge and 0 otherwise.

It will actually be convenient for us to view e ∈ E as d × d diagonal matrix with 1 or 0 at
each diagonal entry to signify whether that vertex is in the edge. In this section we will denote
the matrix associated with e as Me. This representation will naturally generalize to quantum
hypergraphs.

A cover of a hypergraph Γ = (V,E) is a set of edges C such that
⋃

e∈C e = V , i.e. each vertex
is in at least one edge. Note that this definition of cover coincides exactly with the definition
of set cover. The size of the smallest cover is called the cover number and dentoted c(Γ).

Using the matrix representation of E, one sees that

⋃

e∈C

e = V ⇔
∑

e∈C

Me ≥ I

where the second expression uses our usual ordering of matrices.
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A fractional cover is a set of non-negative weights w over E such that
∑

e∈E w(e)Me ≥ I.
Likewise, we say that the fractional cover number

c̃(Γ) = min
w

{

∑

e∈E

w(e)

∣

∣

∣

∣

∣

∑

e∈E

w(e)Me ≥ I

}

Clearly fractional cover is a LP relaxation of the cover,9 and it is well-known that the integrality
gap is log |V | and can be achieved efficiently10 This is stated formally in the following theorem.

Theorem 4.3 (see e.g. [CLRS01, p. 1035]). One can find a cover of a hypergraph Γ =
(V,E) of size c̃(Γ) log |V | in polynomial time.

Proof. This may be done by a greedy algorithm. Simply take the edge that covers the most
vertices, remove the vertices covered from consideration, take the edge that covers the most of
the remaining vertices, and so on. This gives the desired approximation.

The following weaker alternative method will be more useful for our generalization. We can use
an LP solver to efficiently find the fractional cover, which as we mentioned is a LP. This solution
is a set of non-negative weights, which we may normalize to be a probability distribution. Then
we may use the AKS-sampler of [AKS87, Gil93] to sample according to this distribution which
will give us a cover with high probability. Derandomizing this sampling will give us a cover with
logarithmic integrality gap in time |V |O(c̃(Γ)2), which is polynomial if c̃(Γ) is constant. This is
the idea we will generalize in the next section.

4.3.2 Quantum Hypergraphs

[AW02] defines quantum hypergraphs as generalizations of hypergraphs. Recall that we repre-
sented an edge of a hypergraph as a d × d diagonal matrix with 1, 0 along the diagonal. So a
hypergraph is equivalent to (V, E) where V is a d-dimensional complex Hilbert space, identified
say with Cd, E is a set of projections on V of the following kind. The vertex set V is identified
with an orthonormal basis of V. Each edge e ∈ E is identified with a projection Me ∈ E onto
the space spanned by the basis vectors corresponding to the vertices v ∈ e.

We generalize this to non-commutative “edges” by allowing E to contain other operators, i.e.
Me can be any Hermitian operator (i.e. matrix) in [0, I].

Definition 4.4. Γ = (V, E) is a quantum hypergraph where V is a d-dimensional Hilbert space
and E is a finite set such that each e ∈ E is identified with a Hermitian operator Me ∈ [0, Id].

One can extend the definition of a cover of a quantum hypergraph Γ = (V, E) to be a finite
subset C ⊆ E such that

∑

e∈C Me ≥ I. The cover number c(Γ) is the size of the smallest cover
of Γ.

9This is a linear program, since the Me are diagonal.
10One can show a lower bound for the integrality gap using the Hadamard matrix. Consider the hypergraph

on d nodes with d edges, such that the i’th edge is associated with the diagonal matrix whose j’th diagonal entry
is the element (i, j) of the Hadamard matrix. That is, each edge is associated with a matrix that has a row of
the Hadamard matrix along the diagonal. The Hadamard matrix is discussed in more detail in Section B.1. It is
easy to show that the LP solution has weight 1 but the integral solution has weight log d.
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Likewise, we define a fractional cover to be a non-negative combination w of e ∈ E such that
∑

e∈E w(e)Me ≥ I, and the fractional cover number as

c̃(Γ) = min
w

{

∑

e∈E
w(e)

∣

∣

∣

∣

∣

∑

e∈E
w(e)Me ≥ I

}

Note that this corresponds exactly with our previous definitions for hypergraphs. The problem
of finding the fractional cover has equivalent forms that are natural and interesting, which are
discussed at the end of this section.

It is important to note that the notion of “vertex” is lost because the matrices Me ∈ E are
not necessarily diagonal in a common basis. This is why the greedy algorithm of the previous
section does not extend in any obvious way.

However, in the following theorem we show that the sampler of Proposition 3.12 allows us to
efficiently find a cover from a fractional cover provided certain conditions are met. Theorem 24
of [AW02] showed that the integrality gap of the SDP relaxation of fractional cover of quantum
hypergraphs is log d, and our derandomization gives a poly-time deterministic way of finding a
cover provided that c̃(Γ) is constant. It is an interesting problem whether one can efficiently
find such a cover when c̃(Γ) is super-constant.

Theorem 4.5. Let Γ = (V, E) be a quantum hypergraph with cover number c̃(Γ), with d = |V|.
Then one can find a cover of Γ of size k = c̃(Γ)2O(log d) in time dO(c̃(Γ)2) (which is polynomial
in d if c̃(Γ) is constant).

Proof of Theorem 4.5. Notice that the fractional cover optimization problem for hypergraphs is
not a linear program but a semi-definite program (SDP’s of this form are discussed in [VB96]).
SDP’s are also solvable in polynomial time ([Sho77, Sho87, YN77], for a survey see [VB96]),
and we will show here how to find a cover using a derandomized sampler from a fractional cover
recovered by the SDP.

We begin by solving the following SDP efficiently

min :
∑

e∈E w(e)

constraints :
∑

e∈E w(e)Me ≥ I ∀e, w(e) ≥ 0

Solving this SDP (e.g. using the interior point method) gives us the fractional cover number
c̃(Γ) to an arbitrary accuracy and, by normalizing w, a probability distribution p on the edges,

i.e. p(e) = w(e)
c̃(Γ) .

Suppose we have p and c̃(Γ). The definition of c̃(Γ) above says exactly that Ep[Me] ≥ 1
c̃(Γ)I.

Thus we apply11 Proposition 3.12 to the the distribution p on E (which we identify with [|E|]).
Let A = Ep[Me]. Then, using the resulting sampler σ we can get a sample T ⊆ E of size k such
that

Pr

[

∑

e∈T

Me ≥ I

]

= Pr

[

∑

e∈T

(Me −A) ≥ I − kA

]

≥ Pr

[

1
k

∑

e∈T

(Me −A) ≥
(

1

k
− 1

c̃(Γ)

)

I

]

11One may apply the derandomization of Corollary 3.14 directly but this is slightly delicate and we choose to
state the full proof for clarity.
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We will choose k ≥ 2c̃(Γ). Since Me − A is a random variable in [−I, I] with mean 0,
Proposition 3.12 tells us that

Pr

[

1
k

∑

e∈T

(Me −A) ≥ − 1

2c̃(Γ)
I

]

≥ Pr

[
∥

∥

∥

∥

∥

1
k

∑

e∈T

(Me −A)

∥

∥

∥

∥

∥

≤ 1

2c̃(Γ)

]

≥ 1− 2de
−( 1

2c̃(Γ)
)2k/70

which we want to be non-zero, hence k ≥ 70(2c̃(Γ))2(log 2d)) confirming our previous assump-
tion. Enumerating over all walks from the sampler gives us a deterministic algorithm to find a
cover in time dO(c̃(Γ)2), which is polynomial in |Γ|, as long as c̃(Γ) = O(1).

It is interesting to note that the fractional cover SDP here is exactly the same (up to shifting)
as two other natural problems from quantum information theory. Given a set M1, . . . ,Mn of
Hermitian matrices, one may want to find a probability distribution p over [n] one may want
to solve either of the following

1. minp ‖Ep[Mi]‖, where i is drawn according to p

2. maxp λmin(Ep[Mi]) where i is drawn according to p and λmin(·) denotes the smallest eigen-
value.

The former minimizes the norm of the expected value of the distribution, which is also its largest
eigenvalue in absolute value, while the latter may be viewed as maximizing the lowest energy
state of a quantum system, which is also its smallest eigenvalue. In both cases, our sampler
from Proposition 3.12 gives an integral solution using p that is worse by at most log d. It can
be derandomized in polynomial time when the corresponding eigenvalue is constant.
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A Simple proof of a weaker expander walk bound

Here we demonstrate a simple proof of a weak version of Theorem 3.6 using ideas inspired by
the proof of the Zig-Zag Theorem [RVW00] and without reference to perturbation theory. In
particular, we can use the decomposition of the eigenvectors of D̃tÃ into uniform and orthogonal-
to-uniform parts. For constant γ, ε this gives, as with our stronger Theorem 3.6, an exponential
bound of 2−Ω(k).

Theorem A.1. Suppose we are in the setting of Theorem 3.6 with the additional constraints
that 0 < γ < 1/2 and k > 2

ε log 4
γε . Then we have

Pr[ 1
kf(W ) 6≤ γI] ≤ d

(

2 log 4
γε

ε

)

e
− γ2ε3k

12(2 log 4
γε )3

The proof of this statement will come in two steps. First we prove an even weaker bound with
further restrictions on ε. Then we “boost” it to get the bound above.

A.1 A weak bound

Here we present a proof of a weak version of Theorem 3.6 using ideas from the proof of the
Zig-Zag product [RVW00]. The idea is to decompose vectors into uniform and orthogonal-to-
uniform components, and then maximize over all combinations of such decompositions.

Proposition A.2. Suppose we are in the setting of Theorem 3.6 with the additional constraints
that 2λ2 < γ < 1/2. Then we have:

Pr[ 1
kf(W ) 6≤ γI] ≤ de−(γ−2λ2)2k/6

An identical bound for Pr[ 1
kf(W ) 6≥ −γI] follows similarly.

Proof. To prove this, we follow the proof of Theorem 3.6 until Equation 3.2. As before we wish
to bound ‖(D̃tÃ)‖, except here we will achieve the following weaker bound.

Lemma A.3. For t < min{ 1
2 , 1

2( 1
λ2
2
− 1)}, we have ‖(D̃tÃ)‖ ≤ e2λ2t+ 3

2
t2

We will see that the hypotheses of Lemma A.3 will be satisfied. To see how this lemma applies,
we plug into Equation 3.2 and get

Pr[ 1
kf(W ) 6≤ γI] ≤ de−(γ−2λ2)kt+ 3

2
kt2

Minimizing over t gives us t = (γ − 2λ2)/3 and plugging in gives us

Pr[ 1
kf(W ) 6≤ γI] ≤ de−(γ−2λ2)2k/6

A simple calculation shows that for all 2λ2 < γ < 1/2 the two conditions on t in the hypotheses
of Lemma A.3 are satisfied.
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Proof of Lemma A.3. Our strategy follows from the proof of the Zig-Zag theorem [RVW00].
We look at the eigenvector x̃ of D̃tÃ with maximum eigenvalue and we decompose it into
components in the x ⊗ u, w̃ directions. Here x ∈ R

d and u ∈ R
n and x ⊗ u is a unit vector in

the eigenspace (of dimension d) of the eigenvalue 1 of Ã (i.e. Ã(x⊗ u) = x⊗ u). Also w̃ ∈ R
dn

is a unit vector orthogonal to this eigenspace, i.e. 〈x⊗u, w̃〉 = 0. So we have, x̃ = a(x⊗u)+ bw̃
where a2 + b2 = 1.

We will find it easier to compute ‖D̃tÃ‖2. Thus we may write the following, where Re denotes
the real part of a complex number:

‖D̃tÃ‖2 = 〈D̃tÃ(a(x⊗ u) + bw̃), D̃tÃ(a(x⊗ u) + bw̃)〉
= a2〈D̃t(x⊗ u), D̃t(x⊗ u)〉+ 2abRe〈D̃t(x⊗ u), D̃tÃw̃〉+ b2〈D̃tÃw̃, D̃tÃw̃〉

It is easy to check that D̃t is Hermitian and D̃tD̃t = D̃2t, which we apply to get

≤ a2〈x⊗ u, D̃2t(x⊗ u)〉+ 2abRe〈x⊗ u, D̃2tÃw̃〉+ b2〈D̃tÃw̃, D̃tÃw̃〉

Using the power series expansion D̃t = exp(t∆̃) gives us

a2
∞
∑

i=0

1

i!
〈x⊗ u, (2∆̃t)i(x⊗ u)〉+ 2ab

∞
∑

i=0

1

i!
Re〈x⊗ u, (2∆̃t)iÃw̃〉+ b2〈D̃tÃw̃, D̃tÃw̃〉

We use the facts that 〈x⊗u, ∆̃(x⊗u)〉 = 0 because x⊗u is uniform across “clouds”, 〈x⊗u, Ãw̃〉 =
0, and that ‖D̃t‖ ≤ et. Applying these facts and Cauchy-Schwarz we get

a2(e2t − 2t) + 2abλ2(e
2t − 1) + λ2

2e
2tb2

Maximizing this quantity over a2 + b2 = 1 gives us that the expression is at most

≤ e2t − 2t + λ2
2e

2t

2
+

1

2

√

(2λ2(e2t − 1))2 + (e2t − 2t− λ2
2e

2t)2

≤ e2t − 2t + λ2
2e

2t

2
+

1

2
|2λ2(e

2t − 1)| + |e2t − 2t− λ2
2e

2t|

In the following we will use the fact that 1 +α < eα for all α ∈ R. Since t < 1
2( 1

λ2
2
− 1), we have

(1− λ2
2)e

2t − 2t > (1− λ2
2)(1 + 2t)− 2t > 0, and thus we get that the above is

< e2t − 2t + λ2(e
2t − 1)

From t < 1/2 and simple calculations it follows that we have e2t− 2t < 1+3t2 and e2t− 1 < 4t.
Thus our bound becomes

< 1 + 4λ2t + 3t2 < e4λ2t+3t2

This bound is on ‖D̃tÃ‖2, and taking the square root implies the lemma.

A.2 Boosting the weak bound

First we point out the simple but useful fact that for any graph G we can consider its `’th power
G`. This is the graph on the same vertex set, where each vertex is connected to all vertices
exactly ` steps away in G (with appropriate multiplicities). If the normalized adjacency matrix
of G is A, then the normalized adjacency matrix of G` is the A`, and each eigenvalue λ of G
corresponds to an eigenvalue of G` of λ`.
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Proof of Theorem A.1. The results of the previous section can be strengthened to remove the
restriction that γ > 2λ2 when k is sufficiently large. When taking our walk of length k on
the expander G, consider dividing this walk into ` samples (` will be fixed later). Namely,
we consider steps 1, 1 + `, 1 + 2`, . . . as one sample, 2, 2 + `, 2 + 2`, . . . as another, and so on.
Each of these samples can be viewed as walking on the graph G`. Now the probability that the
average of all these samples deviates by γ is bounded by the probability that at least one of
them deviates by γ/`. This idea was mentioned by [Gil93] who credited it to [Ald87].

Applying Proposition A.2 and the union bound, this is at most

`de−(γ/`−2λ`
2)2k/(6`) (A.1)

where we assume for convenience that k is a multiple of `.

Claim A.4. If ` = 2
ε log 4

γε then γ/`− 2λ`
2 ≥ γ/2`.

Proof. We use some simple facts about the exponential and the fact that ` is large. The claim
is equivalent to saying

`(1− ε)` ≤ γ/4

The derivation is given below:

`(1− ε)` ≤
(

2 log 4
γε

ε

)

(1− ε)
2 log 4

γε
ε ≤

(

2 log 4
γε

ε

)

e−2 log 4
γε

≤ 1
εe
− log 4

γε ≤ γ/4

Here we used the simple fact that αe−α < e−α/2 for all real α.

Thus substituting this setting of ` and γ/`− 2λ`
2 ≥ γ

2` into Equation A.1 gives us the theorem.

B Tightness

Here we show that two parameters (d and ε) in our bounds Theorem 1.1 (and Theorem 3.6)
are essentially tight asymptotically.

B.1 Tightness in d

Note that the bound in Theorem 1.1 has the form d2−Ω(γ2εk) = 2−Ω(γ2εk)+O(log d). Here we show
that the relationship to d cannot be improved beyond 2−Ω(γ2εk)+Θ(log d).

Consider the following simple example based on the Hadamard matrix. Suppose we are working
in dimension d = 2k+1 for some k to be fixed later. Each z ∈ {0, 1}k may be viewed as a subset
of {0, 1}k , namely all i ∈ {0, 1}k such that 〈i, z〉 = 1, where the inner product is taken viewing
{0, 1}k as GF (2)k. With this idea, for each z construct the diagonal matrix diag(〈i, z〉). Let D
be a random variable that is uniform over these diagonal matrices. Note that E[D] = 1

2I.

It is easy to show that one needs at least log d = k + 1 such subsets to cover {0, 1}k. So

the probability that
⋃k

i=1 Zi 6= {0, 1}k , where the Zi
R← {0, 1}k are viewed as subsets, is 1 for
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k = log d− 1. To rephrase this in our matrix terminology, we have that the probability of the
event above is exactly

Pr

[

k
∑

i=1

Di 6≥ I

]

= 1 (for k = log d− 1)

We put this into the form of Theorem 1.1:

1 = Pr

[

k
∑

i=1

Di 6≥ I

]

= Pr

[

k
∑

i=1

Di −
k

2
I 6≥ −k(1

2 − 1
k )I

]

= Pr

[

k
∑

i=1

Di −
k

2
I 6≥ −k

4
I

]

The last line holds if we take k > 4. Now suppose that the dependence on d in Theorem 1.1
could be improved, say so that the RHS of the above is at most 2−Ω(εk)+f(d) for some function
f(d). By our reasoning above, for k = log d− 1 it must be that

2−Ω(ε(log d−1))+f(d) ≥ 1

Solving this inequality shows that f(d) = Ω(log d) and hence the best bound we can hope for
is 2−Ω(k)+Θ(log d).

B.2 Exponent of bound is linear in ε

The bound of Theorem 3.6 is of the form d2−Ω(γ2εk). Here we show that in general one could
not hope for a sublinear dependence on ε in the exponent. We will work with the 1-dimensional
case d = 1.

Consider a boolean hypercube Bn = ({0, 1}n, E) where x, y ∈ {0, 1}n are connected iff they
differ in exactly one coordinate. It is easy to check that its second-largest eigenvalue is 1 − 2

n
and its spectral gap is ε = 2

n . Consider a dimension cut of {0, 1}n: choose a coordinate i and
put all vertices v with vi = 1 in S and put the rest in T = {0, 1}n \ S. This defines a function
f : {0, 1}n → {−1, 1}, where f(v) = 1 for all v ∈ S and f(v) = −1 for v /∈ S. Note that E[f ] = 0
(here the image of f is one-dimensional).

The probability that the value of a two-step walk W deviates above is

Pr[12f(W ) ≥ I] < e−ε/30

by Theorem 3.6 (or Theorem 3.2). But this event is exactly the event that picking a random
edge of the graph stays in one of the sets in the cut defined by f , and a direct calculation of
this probability shows that it is in fact exactly 1− ε

2 .

Now suppose for the sake of contradiction that in general one could get a bound like Theorem 3.6
for the two-step walk with g(ε) = o(ε):

Pr[12f(W ) ≥ I] < e−
g(ε)
30

Then by a power expansion one would have that

1− ε

2
= Pr[12f(W ) ≥ I] < 1− 1

60g(ε) + ( 1
7200g(ε))2
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It is clear that for any g(ε) = o(ε) that for ε close enough to 0 this is a contradiction, and since
we take ε as close to 0 as we like using a large enough hypercube, it follows that g(ε) = Ω(ε) is
the best we can hope for.

C Multiple functions

In this section we will generalize our Main Theorem 1.1 to allow for an ensemble of different
functions fi : V → [−I, I] (for 1 ≤ i ≤ k). This is used by Zuckerman [Zuc05] to construct an
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m that, for any constants δ, ε > 0, gives parameters
d = log n+O(1) and m = Ω(n) and that given any δn-source gives an output ε-close to uniform.

As before we will state our theorem in the setting of Theorem 3.6 for convenience of notation.
The analogous result for the setting of Theorem 1.1 is obtained by shifting and scaling the
functions fi.

Theorem C.1. Suppose we are given an expander graph G = (V,E) whose spectrum is non-
negative12 and with spectral gap ε.

For any 0 < γ ≤ I and k > 6/γ and any ensemble of functions fi : V → [−I, I], define
W = (Y1, . . . , Yk) to be a random walk on G of length k and let f(W ) =

∑k
i=1 fi(Yi) be the

value of the walk. Then it holds that

Pr[ 1
kf(W ) 6≤ γI] ≤ de−γ2εk/60 and Pr[ 1

kf(W ) 6≥ −γI] ≤ de−γ2εk/60

Proof. As before we only prove one of the bounds. It is straight-forward and entirely analogous
to reasoning of proof of Theorem 3.6 to see that the bound reduces to

Pr[ 1
kf(W ) 6≤ γI] ≤ de−γkt

∥

∥

∥

∥

∥

k
∏

i=1

D̃
(i)
t Ã

∥

∥

∥

∥

∥

where D̃
(i)
t is the diagonal block matrix with the j’th diagonal block being exp(tfi(j)) and Ã is

A⊗ Id. This is the analogue of Equation 3.2.

At this point we write

∥

∥

∥

∥

∥

k
∏

i=1

D̃
(i)
t Ã

∥

∥

∥

∥

∥

≤ ‖D̃(1)
t ‖ · ‖

√

Ã‖ ·
∥

∥

∥

∥

∥

k
∏

i=2

(
√

ÃD̃
(i)
t

√

Ã)

∥

∥

∥

∥

∥

· ‖
√

Ã‖

et
k
∏

i=2

‖
√

ÃD̃
(i)
t

√

Ã‖

Thus we need a bound on ‖
√

ÃD̃
(i)
t

√

Ã‖.

Claim C.2. For all 1 ≤ i ≤ k and any t ≤ ε/15 we have that ‖
√

ÃD̃
(i)
t

√

Ã‖ ≤ 1 + (7.5/ε)t2.

Proof sketch of claim. We will only sketch the ideas since the details are almost identical to

the proof of the Main Lemma 3.9. Define our perturbation Ã(t) =
√

ÃD̃
(i)
t

√

Ã. It is clear

12This is so that the square root of the adjacency matrix is Hermitian. One can obtain such a graph from any
expander either by squaring the expander, or by adding self-loops.
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that Ã(0) = Ã. Note that since A has a non-negative spectrum,
√

Ã is Hermitian and so is
√

ÃD̃
(i)
t

√

Ã and so it suffices to find the largest eigenvalue of
√

ÃD̃
(i)
t

√

Ã. Also, the j’th term

Ãj in the power series expansion of
√

ÃD̃
(i)
t

√

Ã is given by 1
j!

√

Ã(∆̃(i))j
√

Ã. Therefore it also

holds that ‖Ãj‖ ≤ 1/2j−1.

Therefore there exists a projection-valued power series P̃ (t) =
∑∞

j=1 tjP̃j that is convergent for
t ≤ ε/15 that projects onto the eigenspace of eigenvalues splitting from the largest eigenvalue
of Ã(t). Thus ‖Ã(t)‖ = ‖Ã(t)P̃ (t)‖ and we have

‖Ã(t)‖ ≤ 1 + ‖(Ã(t)− I)P̃ (t)‖ ≤
∞
∑

j=1

tj‖Z̃(j)‖

by Theorem 2.8. It is easy to verify that Z̃(1) = 0 by direct computation, and it also holds that
‖Z̃(j)‖ ≤ (5/ε)j−1 for j ≥ 2 by the same reasoning as in the proof of Claim 3.11, i.e. ‖Ã‖ ≤ 1
and ‖∆̃(i)‖ ≤ 1.

Thus it follows since t ≤ ε/15 that

‖
√

ÃD̃
(i)
t

√

Ã‖ ≤ ‖Ã(t)‖ ≤ 1 + (7.5/ε)t2

We apply this to the bound and get that

Pr[ 1
kf(W ) 6≤ γI] ≤ de−γkt+t(1 + (7.5/ε)t2)k−1 ≤ det+(k−1)(7.5/ε)t2

Choosing t = γε/15 and applying the fact that k > 6/γ gives us that

Pr[ 1
kf(W ) 6≤ γI] ≤ de−γ2εk/60

Remark C.3. One can do away with the assumption that G has a non-negative spectrum
by using the simple proof of Theorem A.1, where we do not need to take square roots of the

adjacency matrix in order to bound ‖D̃(i)
t Ã‖. Of course this leads to an inferior bound. The

proof is straight-forward and left to the reader.
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