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Abstract

We discovered an error in the proof of the main theorem of A Randomness-Efficient Sampler

for Matrix-valued Functions and Applications, which appears as ECCC TR05-107 [WX05a], and also
appeared in FOCS [WX05b]. We describe it below. This error invalidates all of the results concerning
the expander walk sampler for matrix-valued functions.

Nevertheless, we are able to use a different technique to prove the main applications of the sam-
pler that appear in that paper. These include a deterministic algorithm for constructing logarithmic-
degree Cayley graphs on any group (derandomizing Alon-Roichman’s theorem [AR94]), and for the
quantum hypergraph cover problem, described in Ahlswede-Winter [AW02]. We state the correct
result - the manuscript with their proof, under the title Derandomizing the AW matrix-valued Cher-

noff bound using pessimistic estimators and applications, is available as ECCC TR06-105 [WX06]
and also will appear on our homepages

1 Error in the proof of the main theorem

We discovered a (seemingly fatal) error in the proof of the main theorem of [WX05a]. This invalidates
all the expander walk sampler results of [WX05a]. Fortunately the main applications survive via a
completely different technique.

The error in [WX05a] is in the application of the Golden-Thompson inequality. The following derivation,
which appears in the proof of Theorem 3.6 at the top of page 12 of [WX05a], is incorrect:
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where the Yi are the steps in a random expander walk and the expectation is over all walks. This is
incorrect because the Golden-Thompson inequality does not generalize to more than two terms, i.e. the
following does not hold in general for real symmetric matrices A, B, C:

Tr(exp(A + B + C)) ≤ Tr(exp(A) exp(B) exp(C))

and it is not hard to come up with counterexamples.

The false inequality above is not needed in full generality for the proof. In the notation of [WX05a], it
would suffice to prove

Tr(E[exp(t

k
∑

i=2

f(Yi)) exp(tf(Y1))]) ≤ ‖ÃD̃t‖ · Tr(E[exp(t
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since the analysis of the above norm ‖ÃD̃t‖ via perturbation theory remains correct.

We do know that both the previous inequalities hold when the normalized adjacency matrix of the graph
A = J/n where J is the all 1’s matrix, i.e. we sample from the complete graph, which corresponds to
independent sampling. We do not know counter-examples for either of these inequalities for sampling
according to an expander walk, namely for A is the random walk matrix on any regular graph. Thus, as
far as we know, our main Theorem 3.6 of [WX05a] may be true as stated.

Our attempts to prove even weaker versions of Theorem 3.6 that would suffice for the applications failed.

2 Surviving results

All applications of the sampler listed in the paper do hold, though via a completely different proof.
These theorems are stated below. For definitions, details, and proofs, see the paper Derandomizing the

AW matrix-valued Chernoff bound using pessimistic estimators and applications, which is available as an
ECCC report [WX06] and also will appear on the authors’ websites.

Theorem 2.1 (Corresponds to Theorem 1.2 of [WX05a]). Fix γ < 1. There exists an algorithm that,

given a group H of size n as a multiplication table, constructs a symmetric multi-set S ⊆ H of size

|S| = O( 1

γ2 log n) such that the second-largest eigenvalue of the Cayley graph Cay(H ; S) is at most γ.

The algorithm runs in time poly(n).

Corollary 2.2 (Corresponds to Corollary 1.3 of [WX05a]). Given an arbitrary group H of size n, one can

construct in time poly(n) a homomorphism tester for functions on H which uses only log n + log log n +
O(1) random bits.

Theorem 2.3 (Supersedes Theorem 4.5 of [WX05a]). Suppose we are given Γ = (V , E) a quantum

hypergraph with fractional cover number c̃(Γ), with |V| = d and |E| = n. Then we can find an integer

cover of Γ of size k = c̃(Γ) · O(log d) in time poly(n, d).

In addition, all of the theorems of [WX05a] still hold when restricted to real-valued functions, since
Inequality 1.1 holds in the one-dimensional case. In particular, Theorem C.1 of [WX05a] holds for real-
valued functions, which was used by Zuckerman [Zuc05]. We do not state our version here, as an even
better version was proven by Healy [Hea06].
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