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Abstract

An (n, k)-affine source over a finite field F is a random variable
X = (X1, ..., Xn) ∈ Fn, which is uniformly distributed over an (unknown) k-dimensional
affine subspace of Fn. We show how to (deterministically) extract practically all the randomness
from affine sources, for any field of size larger than nc (where c is a large enough constant). Our
main results are as follows:

1. (For arbitrary k): For any n, k and any F of size larger than n20, we give an explicit
construction for a function D : Fn → Fk−1, such that for any (n, k)-affine source X over
F, the distribution of D(X) is ε-close to uniform, where ε is polynomially small in |F|.

2. (For k = 1): For any n and any F of size larger than nc, we give an explicit construction
for a function D : Fn → {0, 1}(1−δ) log2 |F|, such that for any (n, 1)-affine source X over
F, the distribution of D(X) is ε-close to uniform, where ε is polynomially small in |F|.
Here, δ > 0 is an arbitrary small constant, and c is a constant depending on δ.

1 Introduction

Let F be a finite field of size q and let n be an integer. The famous Hales-Jewett theorem [14] implies
that if n is large enough compared to q then in any two-coloring of the vector space Fn there exists
a monochromatic line1. On the other hand, if q is significantly larger than n (say, q ≥ 3n log2 n)
then a random two-coloring of the vector space Fn doesn’t have monochromatic lines (with high
probability). Assume that q is large enough (say, q ≥ n20). Can one give an explicit two-coloring
of Fn that doesn’t have monochromatic lines ? More generally, can one give an explicit coloring
D : Fn → {0, 1}, such that every line will have roughly the same number of zeros and ones ?

∗Research supported by Israel Science Foundation (ISF) grant.
†Research supported by Israel Science Foundation (ISF) grant.
1A line is a 1-dimensional affine subspace of Fn.
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The problem of extracting randomness from affine sources is a more general problem. Fix n, k
and F. Assume that X is uniformly distributed over an unknown k-dimensional affine subspace of
Fn. The goal is to give an explicit example for a function D : Fn → Ω (for some finite set Ω), such
that the distribution of D(X) is ε-close to uniform. Naturally, we would like Ω to be as large as
possible and ε to be as small as possible.

1.1 Affine source extractors

Denote by Fq the finite field with q elements. Denote by Fnq the n-dimensional vector space over Fq.
Definition 1 (affine source). A distribution X over Fnq is an (n, k)q-affine source if it is uniformly
distributed over an affine subspace of dimension k. That is, X is sampled by choosing t1, . . . , tk
uniformly and independently in Fq and calculating

k
∑

j=1

tj · a(j) + b

for some a(1), . . . , a(k), b ∈ Fnq such that a(1), . . . , a(k) are linearly independent.

For a finite set Ω, we denote by UΩ the uniform distribution on Ω. We say that two distributions
P and Q over Ω are ε-close (denoted by P

ε
∼ Q) if for every event A ⊆ Ω, |PrP (A)−PrQ(A)| ≤ ε.

Definition 2 (deterministic affine source extractor). A function D : Fnq → Ω is a deterministic
(k, ε)-affine source extractor if for every (n, k)q-affine source X the distribution D(X) is ε-close to
uniform. That is2,

D(X)
ε
∼ UΩ.

1.2 Our results

We construct deterministic extractors for affine sources over large fields. Specifically, we work with
a field size that is polynomially large in n. We give constructions that extract practically all the
randomness in all cases. We have two main constructions. The first is designed for k ≥ 2 and the
second for k = 1.

Our first construction gives a deterministic affine source extractor that extracts k − 1 random
elements in Fq from any (n, k)q-affine source, provided q is a large enough polynomial in n. Note
that we didn’t make any attempt to optimize the constants 20 and 21 in the following theorem (as
they depend on each other).
Theorem 1. There exists a constant q0 such that for any field Fq and integers n, k with q >
max[q0, n

20], there is an explicit deterministic (k, ρ)-affine source extractor D : Fnq → Fk−1
q , with

ρ ≤ q−1/21.

2Our extractors will sometimes output bits and sometimes output field elements. Therefore, the definition here uses
a general output domain.
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Our second result is for k = 1. It gives a deterministic affine source extractor that extracts all the
randomness except for an entropy loss of 2 log2(n/ε) + o(log2 q) bits.
Theorem 2. For any field Fq, integer n and ε > 0, there is an explicit deterministic (1, ε)-affine
source extractor D : Fnq → {0, 1}d, with d = blog2 q − 2 log2(n/ε)− 2 log2 log2 q − 4c.

We note the following possible instantiations of the theorem.

• Assuming q > nc, we can extract a (1− δ) fraction of the source randomness, where δ > 0 is
an arbitrarily small constant, and c is a constant3 depending on δ.

• Using any q ≥ n2 · log3
2 n and ε = 1/4 with a one bit output, we get an explicit two-coloring

of Fq such that no line is monochromatic.

The main drawback of Theorem 1 is the large error. The error that we achieve is polynomially small
in q. However, the error ρ does not decrease as k increases. (We might have hoped to have error
exponentially small in k.) This is because, as will be explained in section 2, the first stage of our
construction extracts randomness from an (n, 1)q-affine source. The error of the entire construction
is bounded from below by the error of this stage.

1.3 Previous work

The only previous work that we are aware of studied the problem over the field F2 (i.e., GF [2]) [4].
In that work, Barak, Kindler, Shaltiel, Sudakov and Wigderson show how to extract one non-constant
bit for k slightly sub-linear in n. In other words, their result gives a two-coloring of Fn

2 , in which no
affine subspace of linear dimension (or slightly sub-linear dimension) is monochromatic. It is also
known how to extract one random bit when k > n/2 [5].

1.4 Background

Our results can be put in the broader context of deterministic extractors. A “deterministic random-
ness extractor” is a function that “extracts” an (almost) uniformly distributed output from “weak
sources of randomness” which may be very far from uniform. More precisely, let C be a class of dis-
tributions on some finite set Ω. D is a deterministic randomness extractor for the class C, if for every
distribution X in C, the distribution of D(X) is close to uniform. The distributions X ∈ C are often
referred to as “weak random sources”. That is, distributions that “contain” some randomness. Given
a class C, the goal of this field is to design explicit (that is, efficiently computable) deterministic
extractors that extract as much randomness as possible.

Various classes C of distributions were studied in the literature: The first construction of deter-
ministic extractors can be traced back to von Neumann [33] who showed how to use many indepen-
dent tosses of a biassed coin (with unknown bias) to obtain an unbiased coin. Blum [6] considered

3See Lemma 5.5 for an exact formulation of such an instantiation.
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sources that are generated by a finite Markov-chain. Santha and Vazirani [22], Vazirani [30, 31],
Chor and Goldreich [7], Barak et al. [3], Barak et al. [4], Dodis et al. [10] and Raz [20] stud-
ied sources that are composed of several independent samples from various classes of distributions.
Trevisan and Vadhan [28] studied sources which are “samplable” by small circuits. Chor et al. [8],
Kamp and Zuckerman [15] and Gabizon et al. [12] studied “bit-fixing sources” in which a subset of
the bits is fixed and the rest of the bits are chosen randomly and independently.

A negative result was given by Santha and Vazirani [22] that exhibit a very natural class of high
min-entropy sources4 that does not have deterministic extractors. This led to the development of a
different notion of extractors called “seeded extractors”. Such extractors are allowed to use a short
seed of few truly random bits when extracting randomness from a source. (The notion of “seeded
extractors” emerged from attempts to simulate probabilistic algorithms using weak random sources
[32, 7, 9, 35, 36] and was explicitly defined by Nisan and Zuckerman [18].) Unlike deterministic
extractors, seeded extractors can extract randomness from the most general class of sources: Sources
with high min-entropy. The reader is referred to [19, 17, 24, 29] for various surveys on randomness
extractors.

2 Overview of techniques

The basic scheme of our construction is as follows: We construct a deterministic affine source ex-
tractor that extracts a few bits. We then use these bits to run a “seeded extractor” that extracts almost
all the randomness from the source. (Usually, seeded extractors require a seed that is independent
of the source. We will construct a “special kind” of seeded extractor that can work well even with a
seed that is correlated with the affine source). The proof that this composition of extractors works
uses an argument similar to [12]. We now elaborate on the components in this scheme.

2.1 Extracting many bits from lines

As described above, the first step of our construction is to extract a few bits deterministically. We do
this by showing a method to extract any constant fraction of the randomness from an (n, 1)q-affine
source, assuming q > nc for large enough c. We first describe how to extract one bit when q is
slightly more than quadratic in n.

Extracting a single bit: We want to extract one random bit from an (n, 1)q-affine source, assuming
q = n2+γ for some γ > 0. Consider first the easier task of outputting a non-constant bit or even
a non-constant value over a larger domain, say Fq. This can be achieved by the following method:
Given input x = (x1, . . . , xn) = (a1 · t+ b1, . . . , an · t+ bn) ∈ Fnq (where ai, bi ∈ Fq are constant and
t is chosen uniformly at random in Fq), we compute the expression

∑n
i=1 x

i
i =

∑n
i=1(ai · t + bi)

i.

4Min-entropy is a measure of the amount of randomness in the source. A distribution has min-entropy k if it gives
no particular element probability greater than 2−k.
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We know that ai 6= 0 for some i. Assume for simplicity that an 6= 0. The n’th summand is a
polynomial of degree n in the variable t. Since the other summands do not contain n’th powers,
the entire expression is a non-constant polynomial in t (the large field size comes in here). Since t
is chosen uniformly in Fq, our output will be non-constant. Actually, by computing this expression
we have “converted” our distribution into a “low degree distribution” of the form f(UFq), that is,
a distribution sampled by choosing t uniformly in Fq and computing f(t) for some low degree
polynomial f (low degree in relation to the field size). Noticing this, the way to a random bit
becomes easy using well known theorems5 of Weil [34] about character sums. Loosely speaking,
the characters of a finite field Fq are functions from Fq to the complex numbers that preserve the
field addition or multiplication. Weil’s theorems show that field characters of order 2 (see subsection
3.2 for definitions) are actually “deterministic extractors” for such “low degree distributions” (unless
the polynomial is of a certain restricted form). Thus, our extractor works by “converting” the source
distribution into a “low degree distribution”6 f(UFq), and then applying a character of order 2.

Extracting many bits: As explained in subsection 3.2, we will need to work a bit differently for
fields of even and odd size. For simplicity, let us consider now the case of an even sized field. As
described in subsection 3.2, when q is even, we use Weil’s theorems to show that the trace function
Tr : Fq → {0, 1} (defined in subsection 3.2) outputs an almost unbiased bit when given a sample
from a “low degree distribution” f(UFq), where f is a polynomial of odd degree. Furthermore, Tr
is an additive function; that is7, Tr(a + b) = Tr(a) ⊕ Tr(b). Our extractor works as follows: In
a way similar to the one bit case, we use our source to produce samples from several “low degree
distributions” of the form U(f ′j) where the (f ′j)s have odd degree. We then apply Tr on each sample.
This gives us several bits that are each individually close to uniform. We want to ensure that their
joint distribution is also close to uniform. For this purpose, we make sure the (f ′j)s have the property
that the sum of any subset of them is also a polynomial of odd degree. We use this property together
with the additivity of Tr to show that the parity of any subset of the output bits is close to uniform.
We then use the Vazirani Xor Lemma to conclude that the output distribution is close to uniform.
The case of an odd sized field is similar but requires a bit more work.

2.2 Linear seeded affine source extractors

Our goal is to construct deterministic affine source extractors. As a component in our construction,
we use linear seeded extractors for affine sources. That is, seeded extractors that work only on
affine sources (and not on general high min-entropy sources). Furthermore, the extractors are linear,
meaning that for any fixed seed, the extractor is a linear function of the source.

5These theorems have already been very fruitful in computer science, e.g., in explicit constructions of ε-biased spaces
[2], tournaments [13, 1] and pseudorandom graphs [16].

6We use a slightly different expression than the one given here to ensure that f will not be of a certain restricted form
on which Weil’s theorems don’t apply.

7Here ’+’ denotes addition in Fq and ’⊕’ denotes addition mod 2.
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Definition 3 (linear seeded affine source extractor). A function E : Fnq ×{0, 1}d → Fmq is a linear
seeded (k, ε)-affine source extractor if

1. For every (n, k)q-affine source X , the distribution E(X,Ud) is ε-close to uniform. That is,

E(X,Ud)
ε
∼ UFm

q
.

2. For a fixed seed, E is a linear function. That is, for any a(1), a(2) ∈ Fnq , t1, t2 ∈ Fq and
y ∈ {0, 1}d, we have

E(t1 · a(1) + t2 · a(2), y) = t1 · E(a(1), y) + t2 · E(a(2), y).

We now describe our construction of linear seeded affine source extractors. Fix any affine sub-
space A ⊆ Fnq of dimension k. It is not hard to show that a random linear mapping T : Fnq → Fkq ,
or equivalently, a random k × n matrix over Fq, will map A (uniformly) onto Fkq , with probability
at least 1 − 1

q−1
. Our construction of linear seeded affine source extractors can be viewed as a de-

randomization of this property. Assuming q > n3, we construct a set of less than q matrices with
a similar property. That is, for any affine subspace A ⊆ Fnq of dimension k, most of the matrices in
this set will mapA onto Fkq . The construction is very simple: Pick any subset U ⊆ Fq with |U | > n3.
The set of matrices will be the ”power matrices” of the elements of U . That is, for each u ∈ U we
will have a k × n matrix Tu where (Tu)j,i = uji (where ji is the product of j and i as integers).

For general high min-entropy sources, it is known that encoding the source string with an error
correcting code and outputting random locations of the encoding makes a good extractor. Some
extractor constructions for general high min-entropy sources, specifically the breakthrough con-
struction of Trevisan[27] and it’s improvement by Raz, Reingold and Vadhan[21] and also the very
elegant constructions of Ta-Shma, Zuckerman and Safra[26] and Shaltiel and Umans[25], can be
viewed as using the random seed to select locations from an encoding of the source in a deran-
domized way. From this angle, our construction may be viewed as selecting locations from the
Reed-Solomon encoding8 of the (affine) source in a derandomized way. Specifically, we choose the
first location u randomly from a large enough subset U ⊆ Fq. The other locations are simply the
powers of u, i.e., u2, u3, . . . , uk.
Remark 2.1. We note that some extractor constructions for general high min-entropy sources, for
example, the constructions of [21, 25, 26, 27] discussed above, are already linear seeded affine
source extractors. They are designed to work over the binary field but seem to be easily adaptable to
large fields. Why not use one of these constructions? This is a possibility. However, our construction
is considerably simpler and achieves better parameters for the case of affine sources. In particular,
using one of the above mentioned constructions would not have enabled us to extract almost all
the randomness (as we will need an affine source extractor that can do so with a seed of length
O(log n)).

8The Reed-Solomon encoding of x = (x1, . . . , xn) ∈ Fn
q at location u ∈ Fq , is defined as

∑n

i=1
xi · ui.
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2.3 Using the correlated randomness as a seed

As stated earlier, we wish to use the few bits extracted by the deterministic affine source extractor
D (described in subsection 2.1) as a seed for the linear seeded affine source extractor E described
in subsection 2.2. In principal, this is problematic as a seeded extractor is only guaranteed to work
when its seed is independent of the source. We want to use a seed that is a function of the source.
However, using an argument similar to [12], we show that when the seeded extractor is linear this
does work. Let us sketch the argument: Given a fixed seed u, E is a linear mapping. Therefore,
if X is an affine source, then given a possible output value a, the distribution X conditioned on
E(x, u) = a is also an affine source (as we have just added another linear constraint on the support
of X). Hence, the distribution D(X), even when conditioned on E(x, u) = a, is still close to
uniform. Using simple manipulations of probability distributions, this can be used to show that the
distribution E(X,D(X)) is close to the distribution E(X,Ud) (and therefore close to uniform).

3 Preliminaries

Notation: We use [n] to denote the set {1, . . . , n}. Let Ω,Π be some finite sets. For x ∈ Ωn and
i ∈ [n], we denote by xi the i’th coordinate of x. Similarly, for a function D : Π→ Ωn and i ∈ [n],
we denote by Di the function D restricted to the i’th output coordinate. Logarithms will always be
taken base 2. We denote by Fq the finite field of q elements. We denote by Fq the algebraic closure
of Fq and by Fq[t] the ring of formal polynomials over Fq. We denote by Fnq the vector space of
dimension n over Fq. Given a k × n matrix T over Fq, we also view T as a mapping from Fnq to Fkq
and denote T (x) , T · x, for x ∈ Fnq .

3.1 Probability distributions

Notation for probability distributions: Let Ω be some finite set. Let P be a distribution on Ω.
For B ⊆ Ω, we denote P (B), i.e., the probability of B according to P , by PrP (B) or Pr(P ⊆ B);
When B ∈ Ω, we will also use the notation Pr(P = B). Given a function A : Ω → U , we denote
by A(P ) or by [A(t)]t←P the distribution induced on U when sampling t by P and calculating A(t).
We will use the same notation for expressions not explicitly named as functions. For example, for
a distribution P on Fq we will denote by P + 1 or by [t + 1]t←P the distribution induced on Fq by
sampling t by P and adding 1. When we write t1, . . . , tk ← P , we mean that t1, . . . , tk are chosen
independently according to P . We denote by UΩ the uniform distribution on Ω. For an integer n, we
denote by Un the uniform distribution on {0, 1}n. We abuse notation and denote by Uq the uniform
distribution on Fq. In any expression involving UΩ or Un and other distributions, the instance of Un
or UΩ is independent of the other distributions. For a distribution P on Ωd and j ∈ [d], we denote
by Pj the restriction of P to the j’th coordinate. We denote by Supp(P ) the support of P . The
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statistical distance between two distributions P and Q on Ω, denoted by |P −Q|, is defined as

|P −Q| , max
S⊆Ω

∣

∣

∣

∣

Pr
P

(S)− Pr
Q

(S)

∣

∣

∣

∣

=
1

2

∑

w∈Ω

∣

∣

∣

∣

Pr
P

(w)− Pr
Q

(w)

∣

∣

∣

∣

.

We say that P is ε-close to Q, denoted P
ε
∼ Q, if |P − Q| ≤ ε. We denote the fact that P and Q

are identically distributed by P ∼ Q.

We define conditional distributions.
Definition 4 (Conditional distributions). Let P be a distribution on Ω. Let C ⊆ Ω be an event
such that PrP (C) > 0. We define the distribution (P |C) by

Pr
(P |C)

(B) =
PrP (B ∩ C)

PrP (C)

for any B ⊆ Ω. Given a function A : Ω→ U , we denote by (A(P )|C) the distribution A((P |C)).

We will need the notion of a convex combination of distributions.
Definition 5 (Convex combination of distributions). Given distributions P1, . . . , Pt on a set Ω and
coefficients µ1, . . . , µt ≥ 0 such that

∑t
i=1 µi = 1, we define the distribution P ,

∑t
i=1 µi · Pi by

Pr
P

(B) =
t
∑

i=1

µi · Pr
Pi

(B)

for any B ⊆ Ω.

We will need a few technical lemmas on probability distributions.

The following lemma shows that convex combinations of similar distributions with similar co-
efficients are statistically close.
Lemma 3.1. Let t be any integer. Let P1, . . . , Pt and Q1, . . . , Qt be sequences of distributions on a
set Ω such that for every i ∈ [t], Pi

ε
∼ Qi. Let µ and ν be distributions on [t] with |µ− ν| ≤ δ. Let

P ,
∑t

i=1 Pr(µ = i) · Pi, Q ,
∑t

i=1 Pr(ν = i) ·Qi. Then P
2·δ+ε
∼ Q.

Proof. Denote µi = Pr(µ = i) and νi = Pr(ν = i). Given B ⊆ Ω, we have

∣

∣

∣

∣

Pr
P

(B)− Pr
Q

(B)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t
∑

i=1

µi · Pr
Pi

(B)−
t
∑

i=1

νi · Pr
Qi

(B)

∣

∣

∣

∣

∣

≤
t
∑

i=1

∣

∣

∣

∣

µi · Pr
Pi

(B)− νi · Pr
Qi

(B)

∣

∣

∣

∣

≤
t
∑

i=1

∣

∣

∣

∣

µi · Pr
Pi

(B)− νi · Pr
Pi

(B) + νi · Pr
Pi

(B)− νi · Pr
Qi

(B)

∣

∣

∣

∣

≤
t
∑

i=1

|µi − νi|+ νi

∣

∣

∣

∣

Pr
Pi

(B)− Pr
Qi

(B)

∣

∣

∣

∣

≤ 2 · δ +
t
∑

i=1

νi

∣

∣

∣

∣

Pr
Pi

(B)− Pr
Qi

(B)

∣

∣

∣

∣

≤ 2 · δ + ε.
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Lemma 3.2. Let P1, . . . , Pt be a sequence of distributions on a set Ω. Let µ be a distribution on [t].
Let P ,

∑t
i=1 Pr(µ = i) · Pi. Assume that the probability given by µ to the non-uniform Pi’s is at

most ε, i.e., Pri←µ(Pi � UΩ) ≤ ε. Then
P

ε
∼ UΩ.

Proof. By the assumption of the lemma, P = (1 − δ) · UΩ + δ · V for some δ ≤ ε and distribution
V on Ω. Let B ⊆ Ω be some event.
∣

∣

∣

∣

Pr
P

(B)− Pr
UΩ

(B)

∣

∣

∣

∣

=

∣

∣

∣

∣

δ · Pr
V

(B) + (1− δ) · Pr
UΩ

(B)− Pr
UΩ

(B)

∣

∣

∣

∣

≤ δ ·
∣

∣

∣

∣

Pr
V

(B)− Pr
UΩ

(B)

∣

∣

∣

∣

≤ δ ≤ ε.

3.2 Characters of finite fields

Loosely speaking, given an abelian group G, a character on G is a map from G to complex roots of
unity that preserves the group action. The characters of a finite field are the characters of the additive
and multiplicative9 groups of the field.
Definition 6 (Additive character). A function ψ : Fq → C is an additive character of Fq if |ψ(a)| =
1 for every a ∈ Fq and

ψ(a+ b) = ψ(a)ψ(b)

for every a, b ∈ Fq. The order of ψ is the smallest integer d such that (ψ(a))d = 1 for every a ∈ Fq.
Definition 7 (Multiplicative character). A function χ : Fq → C is a multiplicative character of Fq
if |χ(a)| = 1 for every a ∈ F∗q and χ(0) = 0 and

χ(ab) = χ(a)χ(b)

for every a, b ∈ Fq. The order of χ is the smallest integer d such that (χ(a))d = 1 for every a ∈ F∗q .

We will concentrate on characters of order 2. Even sized fields have additive characters of order
2 and odd sized fields have a multiplicative character of order 2. We define a character of order 2 for
each case and also a ”boolean version” of the character (i.e., a function with range {0, 1}) that we
will use in our extractor construction.
Definition 8 (Additive character of order 2). Let q = 2l for some integer l. The function Tr :
Fq → {0, 1} is defined to be the trace of Fq over F2. That is10,

Tr(a) = a+ a2 + a22

+ . . .+ a2l−1

.

We define the additive character ψ1 : Fq → {1,−1} by ψ1(a) = −1Tr(a).

9A character χ of F∗
q is extended to 0 by χ(0) = 0.

10It is known (and can be easily proved) that Tr(a) ∈ {0, 1} for every a ∈ Fq (we interpret the field elements 0 and
1 as the corresponding boolean values).
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Definition 9 (Multiplicative character of order 2). Let q = pl for some integer l and odd prime
p. We define the multiplicative character χ1 : Fq → {−1, 0, 1} to be 1 for a non-zero quadratic
residue, −1 for a quadratic non-residue, and 0 on 0. More concisely,

χ1(a) = a
q−1

2 .

We define the function QR : Fq → {0, 1} by QR(a) = 1 if χ1(a) = −1, and QR(a) = 0 otherwise.
That is, QR(a) = 1 for quadratic non-residues and 0 otherwise.

It is obvious that χ1 and ψ1 have order at most 2. It can be shown that their order is exactly 2.

Very useful theorems of Weil [34] state that for any low degree polynomial f that is not of a
certain restricted form, the values of a field character “cancel out” over the range of f (when viewed
as a multi-set). We state two special cases of these theorems. The theorems can be found in [23].
The first theorem deals with additive characters.
Theorem 3. [23][Theorem 2E, page 44] Let ψ be a non-trivial additive character of Fq (that is, not
identically 1). Let f(t) be a polynomial in Fq[t] of degree m. Suppose that gcd(m, q) = 1, then

∣

∣

∣

∣

∣

∣

∑

t∈Fq

ψ(f(t))

∣

∣

∣

∣

∣

∣

≤ mq1/2.

The second theorem deals with multiplicative characters.
Theorem 4. [23][Theorem 2C ′, page 43] Let χ be a multiplicative character of Fq of order d > 1.
Let f(t) be a polynomial in Fq[t] of degree m. Suppose that f(t) is not of the form c · g(t)d for any
c ∈ Fq and g(t) ∈ Fq[t]. Then

∣

∣

∣

∣

∣

∣

∑

t∈Fq

χ(f(t))

∣

∣

∣

∣

∣

∣

≤ mq1/2.

For the case of a field character of order 2, Weil’s theorems actually show that the character is a
“deterministic extractor”11 for distributions of the form f(Uq) for almost any low degree polynomial
f . We formalize this in the following corollaries of Theorems 3 and 4 stated for the boolean versions
of the characters ψ1 and χ1.
Corollary 3.3. Let q be a power of 2. Let f ∈ Fq[t] be a polynomial of odd degree m. Then

Tr(f(Uq))
m

2
√

q

∼ U1.

Proof.
∣

∣

∣

∣

∣

∣

∑

t∈Fq

ψ1(f(t))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

t∈Fq ,ψ1(f(t))=1

1−
∑

t∈Fq ,ψ1(f(t))=−1

1

∣

∣

∣

∣

∣

∣

11Characters of higher order are also extractors, but with larger error.
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= q·
∣

∣

∣

∣

Pr
t←Uq

(ψ1(f(t)) = 1)− Pr
t←Uq

(ψ1(f(t)) = −1)

∣

∣

∣

∣

= q·
∣

∣

∣

∣

Pr
t←Uq

(Tr(f(t)) = 0)− Pr
t←Uq

(Tr(f(t)) = 1)

∣

∣

∣

∣

= q ·
∣

∣

∣

∣

2 · Pr
t←Uq

(Tr(f(t)) = 0)− 1

∣

∣

∣

∣

= 2q ·
∣

∣

∣

∣

Pr
t←Uq

(Tr(f(t)) = 0)− 1/2

∣

∣

∣

∣

= 2q · |Tr(f(Uq))− U1| .

Since gcd(m, q) = 1, using Theorem 3 we have

|Tr(f(Uq))− U1| =
1

2q
·

∣

∣

∣

∣

∣

∣

∑

t∈Fq

ψ1(f(t))

∣

∣

∣

∣

∣

∣

≤ 1

2q
·mq1/2 =

m

2
√
q
.

The proof of the analogous claim for χ1 is a bit more cumbersome as we have to deal with the
artificial extension of χ1 to Fq by χ1(0) = 0. We will use the following definition.
Definition 10 (Square multiple). We say that a polynomial f(t) in Fq[t] is a square multiple in Fq[t]
if f(t) = c · g(t)2 for some c ∈ Fq and g(t) ∈ Fq[t].
Corollary 3.4. Let q = pl for some integer l and odd prime p. Let f(t) ∈ Fq[t] be a polynomial of
degree m that is not a square multiple in Fq[t]. Then

QR(f(Uq))
m√

q

∼ U1.

Proof. Assume without loss of generality that
∑

t∈Fq
χ1(f(t)) ≥ 0. We have

∑

t∈Fq

χ1(f(t)) =





∑

t∈Fq ,χ1(f(t))=1

1−
∑

t∈Fq ,χ1(f(t))=−1

1





= q ·
[

Pr
t←Uq

(χ1(f(t)) = 1)− Pr
t←Uq

(χ1(f(t)) = −1)

]

= q ·
[

Pr
t←Uq

(QR(f(t)) = 0)− Pr
t←Uq

(f(t) = 0)− Pr
t←Uq

(QR(f(t)) = 1)

]

= q ·
[

2 · Pr
t←Uq

(QR(f(t)) = 0)− 1

]

− q · Pr
t←Uq

(f(t) = 0)

= 2q·
[

Pr
t←Uq

(QR(f(t)) = 0)− 1/2

]

−q· Pr
t←Uq

(f(t) = 0) = 2q·|QR(f(Uq))−U1|−q· Pr
t←Uq

(f(t) = 0).

Since χ1 is of order 2 and f(t) is not of the form c · g(t)2 for any c ∈ Fq and g(t) ∈ Fq[t], using
Theorem 4 we have

|QR(f(Uq))− U1| =
1

2q
·
∑

t∈Fq

χ1(f(t)) + (1/2) · Pr
t←Uq

(f(t) = 0)

≤ 1

2q
·mq1/2 +

m

2q
≤ m

2
√
q

+
m

2
√
q

=
m√
q
.

11



4 Extracting one bit from lines

In the next section we show how to extract any constant fraction of the randomness from an (n, 1)q-
affine source, provided q is a large enough polynomial in n. For simplicity of the presentation, we
first show how to extract one bit from an (n, 1)q-affine source when q is slightly more than quadratic
in n.

As explained in section 2, we first “convert” a uniform distribution on a one-dimensional affine
subspace into a distribution of the form f ′(Uq), where f ′ is low degree polynomial; We then apply
a (boolean version of a) field character of order 2. Weil’s theorems guarantee that our output will be
close to uniform. As explained in subsection 3.2, since we want a field character of order 2 we need
to use an additive character for even sized fields and a multiplicative character for odd sized fields.

The following lemma shows how to extract one bit when the field size is even.
Lemma 4.1. Let q be a power of 2. Fix any integer n <

√
q. Define the multivariate polynomial

f : Fnq → Fq by f(x) =
∑n

i=1 x
2i−1
i . The function D0 : Fnq → {0, 1} defined by D0(x) = Tr(f(x))

is a deterministic (1, ε)-affine source extractor, where ε = n/
√
q.

Proof. Fix an (n, 1)q-affine source X . Recall that X ∼ [t · a+ b]t←Uq
for some a, b ∈ Fnq such that

a 6= 0. We have

D0(X) ∼ Tr(f(X)) ∼ [Tr(f(t · a1 + b1, . . . , t · an + bn))]t←Uq

∼
[

Tr

(

n
∑

i=1

(t · ai + bi)
2i−1

)]

t←Uq

.

Denote f ′(t) =
∑n

i=1(t · ai + bi)
2i−1. Note that f ′ is a polynomial of odd degree m, where m ≤ 2n.

Therefore, using corollary 3.3 we have

D0(X) ∼ Tr(f ′(Uq))
n√
q

∼ U1.

The following lemma shows how to extract one bit when the field size is odd.
Lemma 4.2. Let q = pl for some integer l and odd prime p. Fix any integer n <

√
q/2. Define

the multivariate polynomial f : Fnq → Fq by f(x) =
∑n

i=1 x
2i−1
i . The function D0 : Fnq → {0, 1}

defined by D0(x) = QR(f(x)) is a deterministic (1, ε)-affine source extractor, where ε = 2n/
√
q.

Proof. Fix an (n, 1)q-affine source X ∼ [t · a+ b]t←Uq . We have

D0(X) ∼ QR(f(X)) ∼ [QR(f(t · a1 + b1, . . . , t · an + bn))]t←Uq

∼
[

QR

(

n
∑

i=1

(t · ai + bi)
2i−1

)]

t←Uq

.

12



Denote f ′(t) =
∑n

i=1(t ·ai+ bi)
2i−1. Note that f ′(t) is a polynomial of odd degree m (and therefore

not a square multiple in Fq[t]) where m ≤ 2n. Therefore, using corollary 3.4 we have

D0(X) ∼ QR(f ′(Uq))
2n√

q

∼ U1.

5 Extracting many bits from lines

In this section we prove Theorem 2. In particular, we show how to extract any constant fraction of
the randomness from an (n, 1)q-affine source provided q is a large enough polynomial in n. We will
prove the correctness of our construction by showing that the parity of any subset of the output bits
is almost unbiased. The following ”Xor Lemma” due to Vazirani states that this indeed implies that
the output is close to uniform. (For a proof see for example [11].)
Lemma 5.1. Let X be a distribution on {0, 1}d. Assume that for every non-empty subset S ⊆ [d]

⊕

j∈S
Xj

ε
∼ U1

(where
⊕

denotes addition mod 2). Then

|X − Ud| ≤ ε · 2d/2.

We first deal with fields of even size. As explained in section 2, we use the source distribution
to produce samples from several “low degree distributions” of the form f ′j(Uq), where the (f ′j)s are
low degree polynomials of odd degree. We then apply the function Tr on each sample. We make
sure that the (f ′j)s have the property that the sum of any subset of them is also a polynomial f ′ of
odd degree. We use this property together with the additivity of Tr to show that the parity of any
subset of the output bits is close to uniform. We then conclude using Lemma 5.1.
Lemma 5.2. Let q be a power of 2. Fix any integers d and n. For every j ∈ [d], define the
multivariate polynomial fj : Fnq → Fq by fj(x) =

∑n
i=1 x

2j+(2i−1)
i . The function D : Fnq → {0, 1}d

defined by Dj(x) = Tr(fj(x)) is a deterministic (1, ε)-affine source extractor, where ε = (d+n)·2d/2

√
q

.

Proof. Fix an (n, 1)q-affine source X ∼ [t · a+ b]t←Uq . Fix a non-empty subset S ⊆ [d]. We have

⊕

j∈S
Dj(X) ∼

⊕

j∈S
Tr(fj(X))

∼ Tr

(

∑

j∈S
fj(X)

)
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∼
[

Tr

(

∑

j∈S

n
∑

i=1

(t · ai + bi)
2j+(2i−1)

)]

t←Uq

.

Denote f ′(t) =
∑

j∈S
∑n

i=1(t ·ai+ bi)
2j+(2i−1). Note that f ′ is a polynomial of odd degree m where

m ≤ 2d+ 2n. Therefore, using corollary 3.3 we have

⊕

j∈S
Dj(X) ∼ Tr(f ′(Uq))

d+n√
q

∼ U1.

Using lemma 5.1 we get

|D(X)− Ud| ≤
(d+ n) · 2d/2√

q
.

We now deal with fields of odd size. The proof is roughly analogous to the case of even sized
fields but requires a bit more work.

We will need the following special case of a lemma from [23].
Lemma 5.3. [23][Lemma 4B, page 51] Let q = pl for some integer l and odd prime p. Let f(t) be a
polynomial in Fq[t]. The following are equivalent.

• f(t) is a square multiple in Fq[t].

• f(t) = c · (t − ν1)
e1 · · · (t − νs)es for some ν1, . . . , νs ∈ Fq and c ∈ Fq, where ei is even for

all i ∈ [s].

Lemma 5.4. Let q = pl for some integer l and odd prime p. Fix any integers d and n such that
d ≤ q. Let c1, . . . , cd be distinct elements in Fq. Define the multivariate polynomial f0 : Fnq → Fq
by f0(x) =

∑n
i=1 x

2i−1
i . For j ∈ [d], define the multivariate polynomial fj : Fnq → Fq by fj(x) =

f0(x) + cj . The function D : Fnq → {0, 1}d defined by Dj(x) = QR(fj(x)) is a deterministic

(1, ε)-affine source extractor, where ε = 4dn·2d/2

√
q

.

Proof. Fix an (n, 1)q-affine source X ∼ [t · a + b]t←Uq . Fix a non-empty subset S ⊆ [d]. For any
x = t · a+ b in Supp(X), we have

⊕

j∈S
Dj(x) =

⊕

j∈S
QR(fj(x))

=
⊕

j∈S
QR

((

n
∑

i=1

(t · ai + bi)
2i−1

)

+ cj

)

.
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For j ∈ S, denote f ′j(t) = (
∑n

i=1(t · ai + bi)
2i−1)+ cj . For x = t · a+ b, we call x good if f ′j(t) 6= 0

for every j ∈ S. For any good x = t · a+ b, we have

⊕

j∈S
Dj(x) =

⊕

j∈S
QR(f ′j(t)) = QR

(

∏

j∈S
f ′j(t)

)

.

Since there are at most d · 2n bad x’s, we get
∣

∣

∣

∣

∣

⊕

j∈S
Dj(X)−QR

(

∏

j∈S
f ′j(Uq)

)∣

∣

∣

∣

∣

≤ d · 2n/q.

Denote f ′(t) =
∏

j∈S f
′
j(t). We will show that f ′(t) is not a square multiple in Fq[t]. Fix some

j0 ∈ S. Since f ′j0 has odd degree it is not a square multiple in Fq[t]. Therefore, by Lemma 5.3 (and
by the fact that any polynomial decomposes into linear factors in Fq), f ′j0(t) = c·(t−ν1)

e1 ···(t−νs)es

for distinct ν1, . . . , νs ∈ Fq, where ek is odd for some k ∈ [s]. Assuming that |S| ≥ 2, fix any j1 ∈ S
where j1 6= j0. For any t ∈ Fq, f ′j0(t) − f ′j1(t) = cj0 − cj1 6= 0. Therefore, f ′j0 and f ′j1 do not
have a common linear factor in Fq. Hence, the factor (t − νk) appears an odd number of times in
f ′(t) =

∏

j∈S f
′
j(t). Therefore, by Lemma 5.3 f ′(t) is not a square multiple in Fq. Thus, using

Corollary 3.4 we have
∣

∣

∣

∣

∣

⊕

j∈S
Dj(X)− U1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

⊕

j∈S
Dj(X)−QR (f ′(Uq))

∣

∣

∣

∣

∣

+ |QR (f ′(Uq))− U1|

≤ d · 2n
q

+
2dn√
q
≤ 4dn√

q
.

Therefore, using Lemma 5.1 we have

|D(X)− Ud| ≤
4dn · 2d/2√

q
.

We restate and prove Theorem 2

Theorem 2 For any field Fq, integer n and ε > 0, there is an explicit deterministic (1, ε)-affine
source extractor D : Fnq → {0, 1}d, with d = blog q − 2 log(n/ε)− 2 log log q − 4c.

Proof. Using Lemmas 5.2 and 5.4, we can get an explicit deterministic (1, ε)-affine source extractor
D : Fnq → {0, 1}d for any ε,n,q and d such that

ε ≥ 4dn · 2d/2√
q

.
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Squaring, we get

ε2 ≥ 16d2n2 · 2d
q

.

Taking the logarithm on both sides, we get

2 log(1/ε) ≥ 4 + 2 log d+ 2 log n+ d− log q

Rearranging and using d ≤ log q, we get

d ≤ log q − 2 log(n/ε)− 2 log log q − 4.

We also prove the following instantiation of Lemmas 5.2 and 5.4 which we will use in the
proof of Theorem 1. The following lemma states that we can extract any constant fraction of the
randomness from an (n, 1)q-affine source, provided q is a large enough polynomial in n.
Lemma 5.5. Fix any constant 0 < δ < 1. There exists a constant q0 (depending on δ) such that for
any integers q and n with q > q0 and q ≥ n7/δ, there is an explicit deterministic (1, ε)-affine source
extractor D : Fnq → {0, 1}d where ε ≤ q−δ/3 and d = b(1− δ) log qc.

Proof. According to whether q is even or odd we use Lemma 5.2 or Lemma 5.4 with d and n as
stated in the lemma. We get an explicit deterministic (1, ε)-affine source extractor D : Fnq → {0, 1}d
where

ε ≤ 4dn · 2d/2√
q

≤ 4 · (1− δ) log q · qδ/7 · q 1−δ
2

√
q

.

We take q large enough so that qδ/42 ≥ 4 · (1− δ) log q. For such q, we have

ε ≤ qδ/42+δ/7+1/2−δ/2

q1/2
= q−δ/3.

6 A linear seeded extractor for affine sources

In this section we describe our construction of linear seeded affine source extractors. As described
in section 2, this seeded extractor will be used as a component in our construction of deterministic
affine source extractors.

Given u ∈ Fq and an integer k, we define a k × n matrix Tu,k by (Tu,k)j,i = uji (where ji is an
integer product). That is,

Tu,k(x) =

(

n
∑

i=1

xi · ui,
n
∑

i=1

xi · u2i, . . . ,

n
∑

i=1

xi · uki
)
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for x ∈ Fnq .

The following theorem shows how to extract all the randomness from an (n, k)q-affine source
using a seed of length dlog n+ 2 log k + log(1/ε)e, whenever q > 2n · k2/ε.
Theorem 5. Fix any field Fq, integers n, k, and ε > 0, such that q ≥ 2n·k

2

ε
. Let s be the smallest

power of 2 such that s ≥ n·k2

ε
. Let U = {u1, . . . , us} be a set of distinct elements in Fq. Let

d = log s. We identify [s] with {0, 1}d. The function E : Fnq × {0, 1}d → Fkq defined by

E(x, y) = Tuy ,k(x) =

(

n
∑

i=1

xi · uiy,
n
∑

i=1

xi · u2i
y , . . . ,

n
∑

i=1

xi · ukiy

)

is a linear seeded (k, ε)-affine source extractor.

The theorem will be derived easily from the following lemma.
Lemma 6.1. Fix any field Fq and integers n, k such that q ≥ n · k2. Fix any affine subspace A ⊆ Fnq
of dimension k. There are at most n · k2 elements u ∈ Fq such that Tu(A) ( Fkq , where Tu = Tu,k.

Proof. First note that if A = A1 + b where b ∈ Fnq and A1 is a linear subspace of dimension k,
then (Tu(A1) = Fkq) ↔ (Tu(A) = Fkq). Therefore, we assume A is a linear subspace with basis
{a(1), a(2), . . . , a(k)} where a(j) ∈ Fnq . Denote by B the n× k matrix

B =
(

a(1), a(2), . . . , a(k)
)

.

We have
Tu(A) = Tu ·B(Fkq)

where · denotes the matrix product.

Denote by Cu the k × k matrix Tu ·B. That is,

(Cu)j,l =
n
∑

i=1

a(l)
i · uji.

Cu =

















∑n
i=1 a

(1)
i · ui

∑n
i=1 a

(2)
i · ui . . .

∑n
i=1 a

(k)
i · ui

∑n
i=1 a

(1)
i · u2i

∑n
i=1 a

(2)
i · u2i . . .

∑n
i=1 a

(k)
i · u2i

. . . . . .

. . . . . .

. . . . . .
∑n

i=1 a
(1)

i · uki
∑n

i=1 a
(2)

i · uki . . .
∑n

i=1 a
(k)

i · uki

















Recall that (Cu(F
k
q) = Fkq)↔ (Det(Cu) 6= 0).

Let f(u) = Det(Cu). We will show that f(u) is a non-zero polynomial of degree at most n · k2.
It follows that Det(Cu) = 0 for at most n · k2 u’s and the lemma follows.

f(u) = Det(Cu) =
∑

σ∈Sk

sgn(σ) · fσ(u),
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where

fσ(u) =
k
∏

j=1

(Cu)j,σ(j).

For j ∈ [k], we define jmax to be the maximal i ∈ [n] such that a(j)
i is non-zero. Note that, using

Gaussian elimination, we can find a basis a(1), . . . , a(k) of A such that,

0 < 1max < 2max < . . . < kmax.

We assume without loss of generality that this is the case. Let Id ∈ Sk be the identity permutation.
We will show that for every σ 6= Id in Sk, deg(fσ) < deg(fId).

Assume for contradiction that there exists σ 6= Id in Sk with deg(fσ) ≥ deg(fId). Fix such a
permutation σ that maximizes deg(fσ). (That is, deg(fσ) ≥ deg(fσ′) for every σ′ ∈ Sk). (Cu)j,σ(j)

is a polynomial in u of degree j · σ(j)max. Therefore, fσ(u) has degree
∑k

j=1 j · σ(j)max. Since
σ 6= Id, there exist j1 < j2 such that σ(j1) > σ(j2). Let τ = σ · (σ(j1)σ(j2)), i.e., the permutation
τ consists of applying σ and then ”switching” between σ(j1) and σ(j2).

We have

deg(fτ )− deg(fσ) = j2(σ(j1)max − σ(j2)max) + j1(σ(j2)max − σ(j1)max)

= j2(σ(j1)max − σ(j2)max)− j1(σ(j1)max − σ(j2)max)

= (j2 − j1)(σ(j1)max − σ(j2)max) > 0

which contradicts the maximality of deg(fσ).

Therefore, for any σ 6= Id, we have deg(fId) > deg(fσ). Thus, fId cannot be ”canceled out”
by the other summands in f(u), and f(u) is a non-zero polynomial of degree deg(fId) =

∑k
j=1 j ·

jmax ≤ n ·
∑k

j=1 j = n · k(k+1)
2
≤ n · k2.

We can now easily prove the theorem.

Proof. (of Theorem 5) Fix any (n, k)q-affine source X . Using Lemma 6.1 we get

Pr
y←Ud

(E(X, y) � UFk
q
) ≤ n · k2

|U | ≤ ε.

Therefore, by lemma 3.2
E(X,Ud)

ε
∼ UFk

q
.

18



7 Composing extractors

Let E be a linear seeded affine source extractor. In this section, we show that we can use E with a
correlated seed that we have extracted deterministically from our affine source.

Our starting point will be the following lemma which is a combination of Lemmas 2.5 and 2.6 in
[12].12 Fix a distribution X on Fnq and functions T and D. Roughly speaking, the lemma states that
if D(X) is close to uniform even when conditioning on a certain output value of T , then the output
distribution T (X) is “almost not affected” by conditioning on a value of D.
Lemma 7.1. Let X be a distribution on Fnq . Let T : Fnq → Fmq and D : Fnq → {0, 1}d be any
functions. Assume that for every a ∈ Supp(T (X)) we have |(D(X)|T (x) = a)−Ud| ≤ ε. Then for
every y ∈ Supp(D(X)) we have

(T (X)|D(x) = y)
ε·2d+1

∼ T (X).

The following corollary of Lemma 7.1 shows that, for a fixed linear mapping T , the output
distribution of T on an affine source X is “almost not affected” by conditioning on an output value
of a deterministic affine source extractor D.
Corollary 7.2. Fix any field Fq, integers n, k,m, d, and ε > 0, such that k > m and ε < 2−(d+1)

. Let D : Fnq → {0, 1}d be a deterministic (1, ε)-affine source extractor. Let X be an (n, k)q-affine
source. Then for any linear mapping T : Fnq → Fmq and y ∈ {0, 1}d ,we have

|(T (X)|D(x) = y)− T (X)| ≤ ε · 2d+1.

Proof. Fix any a ∈ Supp(T (X)). It is easy to see that (X|T (x) = a) is an (n, k ′)q-affine source for
some k′ ≥ 1 (since k > m). Therefore,

(D(X)|T (x) = a)
ε
∼ Ud.

Fix any y ∈ {0, 1}d. Since ε < 2−d, we know that y ∈ Supp(D(X)). Thus, using lemma 7.1, we
have

|(T (X)|D(x) = y)− T (X)| ≤ ε · 2d+1.

Corollary 7.2 works for any linear T and output value y. In particular, as observed in [12], T can
be a function of y. We use this fact to compose a deterministic affine source extractor with a linear
seeded affine source extractor, and get a new deterministic affine source extractor that extracts more
randomness.

12In [12] they assume all distributions are over binary strings, but it is easy to see that the proof follows in the case
stated here.
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Theorem 6. Fix any field Fq, integers n, k,m, d, and ε, ε′ > 0, such that k > m and ε′ < 2−(d+1).
Let D′ : Fnq → {0, 1}d be a deterministic (1, ε′)-affine source extractor. Let E : Fnq × {0, 1}d → Fmq
be a linear seeded (k, ε)-affine source extractor. Then D : Fnq → Fmq defined by

D(x) = E(x,D′(x))

is a deterministic (k, ρ)-affine source extractor, where ρ = 4ε′ · 2d + ε.

Proof. Fix an (n, k)q-affine source X . Note that,

D(X) ∼ E(X,D′(X)) ∼
∑

y∈{0,1}d
Pr(D′(X) = y) · (E(X, y)|D′(x) = y),

and
E(X,Ud) ∼

∑

y∈{0,1}d
Pr(Ud = y) · E(X, y).

We know that |D′(X) − Ud| ≤ ε′. Fix any y ∈ {0, 1}d. Ty(x) = E(x, y) is a linear mapping from
Fnq to Fmq , where m < k. Therefore, by corollary 7.2, we have

|(E(X, y)|D′(x) = y)− E(X, y)| ≤ ε′ · 2d+1.

By lemma 3.1, we have
|D(X)− E(X,Ud)| ≤ 2ε′ + ε′ · 2d+1.

Therefore,
|D(X)− UFm

q
| ≤ 2ε′ + ε′ · 2d+1 + ε ≤ 4ε′ · 2d + ε.

8 Putting it all together

In this section we present our main extractor construction.

Using Theorem 6, we compose the deterministic extractor of Lemma 5.5 and the seeded extractor
of Theorem 5 to get a deterministic extractor that extracts almost all the randomness from an (n, k)q-
affine source assuming q is a large enough polynomial in n. We restate and prove Theorem 1.

Theorem 1 There exists a constant q0 such that for any field Fq and integers n, k with q >
max[q0, n

20], there is an explicit deterministic (k, ρ)-affine source extractor D : Fnq → Fk−1
q , with

ρ ≤ q−1/21.
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Proof. We use Lemma 5.5 with δ = 4/5. For large enough q and any n ≤ qδ/7, we get an explicit
deterministic (1, ε′)-affine source extractor D′ : Fnq → {0, 1}d′ , where d′ = b(1/5) log qc and

ε′ ≤ q−4/15. We use Theorem 5 with parameters q, n, k − 1 and ε = 8n3

q1/5 . Note that,

2n · k2

ε
≤ 2n3 · q1/5

8n3
≤ q

as required in Theorem 5. We get a linear seeded (k, ε)-affine source extractor E : Fnq × {0, 1}d →
Fk−1
q , where 2d ≤ 2n·k2

ε
≤ q1/5/4 ≤ 2d

′
. Since d ≤ d′, we can use theorem 6 with D′ and E and get

an explicit deterministic (k, ρ)-affine source extractor D : Fnq → Fk−1
q , where

ρ = 4ε′ · 2d + ε ≤ 4q−4/15 · q1/5/4 +
8n3

q1/5

≤ q−3/15 + 8 · q3/20−1/5 ≤ 9 · q−1/20 ≤ q−1/21

for large enough q.
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