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Abstract. An (n, k)-bit-fixing source is a distribution X over {0, 1}n such that there is a subset
of k variables in X1, . . . , Xn which are uniformly distributed and independent of each other, and
the remaining n − k variables are fixed. A deterministic bit-fixing source extractor is a function E :
{0, 1}n → {0, 1}m which on an arbitrary (n, k)-bit-fixing source outputs m bits that are statistically-
close to uniform. Recently, Kamp and Zuckerman [44th FOCS, 2003] gave a construction of a
deterministic bit-fixing source extractor that extracts Ω(k2/n) bits and requires k >

√
n.

In this paper we give constructions of deterministic bit-fixing source extractors that extract
(1 − o(1))k bits whenever k > (log n)c for some universal constant c > 0. Thus, our constructions
extract almost all the randomness from bit-fixing sources and work even when k is small. For k � √

n

the extracted bits have statistical distance 2−n
Ω(1)

from uniform, and for k ≤ √
n the extracted bits

have statistical distance k−Ω(1) from uniform.
Our technique gives a general method to transform deterministic bit-fixing source extractors that

extract few bits into extractors which extract almost all the bits.
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1. Introduction.

1.1. Deterministic randomness extractors. A “deterministic randomness
extractor” is a function that “extracts” bits that are (statistically close to) uniform
from “weak sources of randomness” which may be very far from uniform.

Definition 1.1 (deterministic extractor). Let C be a class of distributions on
{0, 1}n. A function E : {0, 1}n → {0, 1}m is a deterministic ε-extractor for C if for
every distribution X in C the distribution E(X) (obtained by sampling x from X and
computing E(x)) is ε-close to the uniform distribution on m bit strings.1

The distributions X in C are often referred to as “weak random sources”. That
is, distributions that “contain” some randomness. Given a class C the goal of this
field is to design explicit (that is efficiently computable) deterministic extractors that
extract as many random bits as possible.

1.2. Some related work on randomness extraction. Various classes C of
distributions were studied in the literature: The first construction of deterministic
extractors can be traced back to von Neumann [37] who showed how to use many
independent tosses of a biassed coin (with unknown bias) to obtain an unbiased coin.
Blum [6] considered sources that are generated by a finite Markov-chain. Santha and
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1Two distributions P and Q over {0, 1}m are ε-close (denoted by P
ε

∼ Q) if for every event
A ⊆ {0, 1}m, |P (A) − Q(A)| ≤ ε.
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Vazirani [29], Vazirani [34, 35], Chor and Goldreich [10], Barak et al. [2], Barak et
al. [3] and Raz [25] studied sources that are composed of several independent samples
from various classes of distributions. Trevisan and Vadhan [31] studied sources which
are “samplable” by small circuits.

A negative result was given by Santha and Vazirani that exhibit a very natural
class of high-entropy sources that does not have deterministic extractors. This led to
the development of a different notion of extractors called “seeded extractors”. Such
extractors are allowed to use a short seed of few truly random bits when extracting
randomness from a source. (The notion of “seeded extractors” emerged from attempts
to simulate probabilistic algorithms using weak random sources [36, 10, 12, 38, 39] and
was explicitly defined by Nisan and Zuckerman [23].) Unlike deterministic extractors,
seeded extractors can extract randomness from the most general class of sources:
Sources with high (min)-entropy. The reader is referred to [21, 22, 30, 32] for various
surveys on randomness extractors.

1.3. Bit-fixing sources. In this paper we concentrate on the family of “bit-
fixing sources” introduced by Chor et al. [11]. A distribution X over {0, 1}n is a
bit-fixing source if there is a subset S ⊆ {1, . . . , n} of “good indices” such that the
bits Xi for i ∈ S are independent fair coins and the rest of the bits are fixed.2

Definition 1.2 (bit-fixing sources and extractors). A distribution X over {0, 1}n
is an (n, k)-bit-fixing source if there exists a subset S = {i1, . . . , ik} ⊆ {1, . . . , n} such
that Xi1 , Xi2 , . . . , Xik

is uniformly distributed over {0, 1}k and for every i 6∈ S, Xi is
constant.

A function E : {0, 1}n → {0, 1}m is a deterministic (k, ε)-bit-fixing source extrac-
tor if it is a deterministic ε-extractor for all (n, k)-bit-fixing sources.

One of the motivations given in the literature for studying deterministic bit-
fixing source extractors is that they are helpful in cryptographic scenarios in which
an adversary learns (or alters) n − k bits of an n bit long secret key [11]. Loosely
speaking, one wants cryptographic protocols to remain secure even in the presence
of such adversaries. Various models for such “exposure resilient cryptography” were
studied [28, 7, 8, 14]. The reader is referred to [13] for a comprehensive treatment of
“exposure resilient cryptography” and its relation to deterministic bit-fixing source
extractors.

Every (n, k)-bit-fixing source “contains” k “bits of randomness”. It follows that
any deterministic (k, ε)-bit-fixing source extractor with ε < 1/2 can extract at most
k bits. The function E(x) = ⊕1≤i≤nxi is a deterministic (k, 0)-bit-fixing source
extractor which extracts one bit for any k ≥ 1. Chor et al. [11] concentrated on
deterministic “errorless” extractors (that is deterministic extractors in which ε = 0.)
They show that such extractors cannot extract even two bits when k < n/3. They
also give some constructions of deterministic errorless extractors for large k.

Our focus is on extractors with error ε > 0 (which allows extracting many bits
for many choices of k). A probabilistic argument shows the existence of a determin-
istic (k, ε)-bit-fixing source extractor that extracts m = k − O(log(n/ε)) bits for any
choice of k and ε. Thus, it is natural to try and achieve such parameters by explicit
constructions.

In a recent paper Kamp and Zuckerman [17] constructed explicit deterministic
(k, ε)-bit-fixing source extractors that extract m = ηk2/n bits for some constant

2We remark that such sources are often referred to as “oblivious bit-fixing sources” to differentiate
them from other types of “non-oblivious” bit-fixing sources in which the bits outside of S may depend
on the bits in S (cf. [5]). In this paper we are only concerned with the “oblivious case”.
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0 < η < 1 with ε = 2−Ω(k2/n). They pose the open problem to extract more bits
from such sources. Note that the extractor of Kamp and Zuckerman is inferior to the
nonexplicit extractor in two respects:

• It only works when k >
√

n.
• Even when k >

√
n the extractor may extract only a small fraction of the

randomness. For example, if k = n1/2+α for some 0 < α < 1/2 the extractor
only extracts m = ηn2α bits.

1.4. Our results. In this paper, we give two constructions of deterministic bit-
fixing source extractors that extract m = (1−o(1))k bits from (n, k)-bit-fixing sources.
Our first construction is for the case of k � √n.

Theorem 1.3. For every constant 0 < γ < 1/2 there exists an integer n′ (de-
pending on γ) such that for any n > n′ and any k, there is an explicit deterministic
(k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m where m = k − n1/2+γ and
ε = 2−Ω(nγ).

Consider k = n1/2+α for some constant 0 < α < 1/2. We can choose any γ < α
and extract m = n1/2+α − n1/2+γ bits whereas the construction of [17] only extracts
m = O(n2α) bits. For this choice of parameters we achieve error ε = 2−Ω(nγ) whereas

[17] achieves a slightly smaller error ε = 2−Ω(n2α). We remark that this comes
close to the parameters achieved by the nonexplicit construction which can extract

m = n1/2+α − n1/2+γ with error ε = 2−Ω(n1/2+γ).
Our second construction works for any k > (log n)c, for some universal constant

c. However, the error in this construction is larger.
Theorem 1.4. There exist constants c > 0 and 0 < µ, ν < 1 such that for any

large enough n and any k ≥ logc n, there is an explicit deterministic (k, ε)-bit-fixing
source extractor E : {0, 1}n → {0, 1}m where m = k −O(kν) and ε = O(k−µ).

We remark that using the technique of [17] one can achieve much smaller error

(ε = 2−
√

k) at the cost of extracting very few bits (m = Ω(log k)). The precise details
are given in Theorem 4.1.

1.5. Overview of techniques. We develop a general technique that transforms
any deterministic bit-fixing source extractor that extracts only very few bits into one
that extracts almost all of the randomness in the source. This transformation makes
use of “seeded extractors”.

1.5.1. Seeded randomness extractors. A seeded randomness extractor is a
function which receives two inputs: In addition to a sample from a source X, a seeded
extractor also receives a short “seed” Y of few uniformly distributed bits. Loosely
speaking, the extractor is required to output many more random bits than the number
of bits “invested” as a seed.

Definition 1.5 (seeded extractors). Let C be a class of distributions on {0, 1}n.
A function E : {0, 1}n × {0, 1}d → {0, 1}m is a seeded ε-extractor for C if for every
source X in C the distribution E(X,Y ) (obtained by sampling x from X and a uniform
y ∈ {0, 1}d and computing E(x, y)) is ε-close to the uniform distribution on m bit
strings.

A long line of research focuses on constructing such seeded extractors with as
short as possible seed length that extract as many as possible bits from the most
general family of sources that allow randomness extraction: The class of sources with
high min-entropy.

Definition 1.6 (seeded extractors for high min-entropy sources). The min-
entropy of a distribution X over {0, 1}n is H∞(X) = minx∈{0,1}n log2(1/Pr(x)). A
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function E : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor if it is a seeded ε-extractor
for the class of all sources X with H∞(X) ≥ k.

There are explicit constructions of (k, ε)-extractors that use seed of length polylog(n/ε)
to extract k random bits. The reader is referred to [30] for a detailed survey on various
constructions of seeded extractors.

Our goal is to construct deterministic bit-fixing source extractors. Nevertheless,
in the next definition we introduce the concept of a seeded bit-fixing source extractor.
We use such extractors as a component in our construction of deterministic bit-fixing
source extractors.

Definition 1.7 (seeded extractors for bit-fixing sources). A function E : {0, 1}n×
{0, 1}d → {0, 1}m is a seeded (k, ε)-bit-fixing source extractor if it is a seeded ε-extractor
for the class of all (n, k)-bit-fixing sources.

1.5.2. Seed obtainers. There is a very natural way to try to transform a deter-
ministic bit-fixing source extractor that extracts few (say polylogn) bits into one that
extracts many bits: First run the deterministic bit-fixing source extractor to extract
few bits from the source, and then use these bits as a seed to a seeded extractor that
extracts all the bits from the source. The obvious difficulty with this approach is that
typically the output of the first extractor is correlated with the imperfect random
source. Seeded extractors are only guaranteed to work when their seed is independent
from the random source. To overcome this difficulty we introduce a new object which
we call a “seed obtainer”.

Loosely speaking, a seed obtainer is a function F that given an (n, k)-bit-fixing
source X outputs two strings X ′ and Y with the following properties:

• X ′ is an (n, k′)-bit-fixing source with k′ ≈ k good bits.
• Y is a short string that is almost uniformly distributed.
• X ′ and Y are almost independent.

The precise definition is slightly more technical and is given in Definition 3.1.
Note that a seed obtainer reduces the task of constructing deterministic extractors
into that of constructing seeded extractors: Given a bit-fixing source X, one first runs
the seed obtainer to obtain X ′ and a short Y , and then uses Y as a seed to a seeded
extractor that extracts all the randomness from X ′. (In fact, it is even sufficient to
construct seeded extractors for bit-fixing sources.)

1.5.3. Constructing seed obtainers. Note that every seed obtainer F (X) =
(X ′, Y ) “contains” a deterministic bit-fixing source extractor by setting E(X) = Y .
We show how to transform any deterministic bit-fixing source extractor into a seed
obtainer. In this transformation the length of the “generated seed” Y is roughly the
length of the output of the original extractor.

It is helpful to explain the intuition behind this transformation when applied
to a specific deterministic bit-fixing source extractor. Consider the “xor-extractor”
E(x) = ⊕1≤i≤nxi. Let X be some (n, k)-bit-fixing source, and let Z = E(X). Note
that the output bit Z is indeed very correlated with the input X. Nevertheless,
suppose that we somehow obtain a random small subset of the indices of X. It
is expected that the set contains a small fraction of the good bits. Let X ′ be the
string that remains after “removing” the indices in the sampled set. The important
observation is that X ′ is a bit-fixing source that is independent from the output Z. It
turns out that the same phenomena happens for every deterministic bit-fixing source
extractor E(X). However, it is not clear how to use this idea as we don’t have
additional random bits to perform the aforementioned sampling of a random set.
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Surprisingly, we show how to use the bits extracted by the extractor E to perform
this sampling.

Following this intuition, given an extractor E(X) which extracts an m bit string
Z, we partition Z into two parts Y and W . We then use W as a seed to a randomness
efficient method of “sampling” a small subset T of {1, . . . , n}. The first output of the
seed obtainer X ′ is given by “removing” the sampled indices from X. More formally,
X ′ is the string X restricted to the indices outside of T . The second output is Y (the
other part of the output of the extractor E).

The intuition is that if T was a size n/r uniformly distributed subset of {1, . . . , n}
then it is expected to hit approximately k/r good bits from the source. Thus, k−k/r
good bits remain in X ′. We will require that the extractor E extracts randomness
from (n, k/r)-bit-fixing sources. Loosely speaking, we can hope that E will extract
its output from XT (the string obtained by restricting X to the indices of T ). Thus,
its output will be independent from X ′ (the string obtained by removing XT ).

Note that the intuition above is far from being precise. The set T is sampled
using random bits W that are extracted from the source X, and thus T depends on
X. Whereas, the intuition corresponds to the case where T is independent from X.
The precise argument appears in Section 3. We remark that the analysis requires that
the extractor E has error ε that is smaller than 2−|W | (where |W | is the number of
bits used by the sampling method).

1.5.4. A deterministic extractor for large k (i.e. k � √n). Our first con-
struction builds on the deterministic bit-fixing source extractor of Kamp and Zucker-
man [17] that works for k >

√
n and extracts at least Ω(k2/n) bits from the source.

We first transform this extractor into a seed obtainer F . Next, we run the seed ob-
tainer F on the input source to generate a bit-fixing source X ′ and a seed Y . Finally,
we extract all the randomness in X ′ by running a seeded extractor on X ′ using Y as
seed.

1.5.5. A deterministic extractor for small k (i.e. k <
√

n). In order to use
our technique for k <

√
n we need to start with some deterministic bit-fixing source

extractor that works when k <
√

n and extracts a small number of bits. Our first
observation is that methods similar to the ones of Kamp and Zuckerman [17] can be
applied when k <

√
n but only give deterministic bit-fixing source extractors that

extract very few bits (i.e. Ω(log k) bits)3.

Deterministic extractors that extract Ω(log k) bits. Kamp and Zuckerman [17]
consider the distribution obtained by using a bit-fixing source X = (X1, . . . , Xn) to
perform a random walk on a d-regular graph. (They consider a more general model
of bit-fixing sources in which every symbol Xi ranges over an alphabet of size d). The
walk starts from some fixed vertex in the graph and at step i, one uses Xi to select
a neighbor of the current vertex. They show that the distribution over the vertices
converges to the uniform distribution at a rate which depends on k and the “spectral
gap” of the graph. It is known that 2-regular graphs cannot have small “spectral
gap”. Indeed, this is why Kamp and Zuckerman consider alphabet size d > 2 which
allows using d-regular expander graphs that have small spectral gap. Nevertheless,
using their technique choosing the graph to be a short cycle of length k1/4 produces
an extractor construction which extracts log(k1/4) = Ω(log k) bits.4

3This was observed independently by Lipton and Vishnoi [18].
4In fact, a similar idea is used in [17] in order to reduce the case of large d to the case of d = 2.
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A seeded extractor for bit-fixing sources with seed length O(log log n). Converting
the deterministic bit-fixing source extractor above into a seed obtainer we “obtain”
an Ω(log k) bits seed. This allows us to use a seeded extractor with seed length
d = Ω(log k). However, d < log n and by a lower bound of [23, 24] the class of high
min-entropy sources does not have seeded extractors with seed d < log n. To bypass
this problem we construct a seeded extractor for bit-fixing sources with seed length
O(log log n). Note that the aforementioned deterministic extractor extracts these
many bits as long as k > logc n for some constant c (when Ω(log k) ≥ O(log log n)).

The seeded extractor uses its seed to randomly partition the indices {1, . . . , n}
into r sets T1, . . . , Tr (for r equals, say, log4 n), with the property that with high
probability each one of these sets contains at least one good bit. We elaborate on this
partitioning method later on. We then output r bits, where the i’th bit is given by
⊕j∈Ti

xj .
By combining the seed obtainer with the seeded bit-fixing source extractor we

obtain a deterministic bit-fixing source extractor which extracts r = log4 n bits. To
extract more bits, we convert this deterministic extractor into a seed obtainer. At
this point we obtain a seed of length log4 n and can afford using a seeded extractor
which extracts all the remaining randomness.

Sampling and partitioning with only O(log log n) random bits. We now explain
how to use O(log log n) random bits to partition the indices {1, . . . , n} into r =
poly log n sets T1, . . . , Tr such that for any set S ⊆ {1, . . . , n} of size k, with high
probability (probability at least 1 − O(1/ log n)) all sets T1, . . . , Tr contain approxi-
mately k/r indices from S.

Suppose we could afford using many random bits. A natural solution is to choose
n random variables V1, . . . , Vn ∈ {1, . . . , r} and have Tj be the set of indices i such
that Vi = j. We expect k/r bits to fall in each Tj and by a union bound one can show
that with high probability all sets T1, . . . , Tr have a number of indices from S that is
close to the expected value.

To reduce the number of random bits we derandomize the construction above
and use random variables Vi which are ε-close to being pairwise independent (for
ε = 1/ loga n for some sufficiently large constant a). Such variables can be constructed
using only O(log log n) random bits [20, 1, 15] and suffice to guarantee the required
properties.

The same technique also gives us a method for sampling a set T of indices in
{1, . . . , n} (which we require in our construction of seed obtainers). We simply take
the first set T1. This sampling method uses only O(log log n) random bits and thus,
we can afford it when transforming our deterministic extractor into a seed obtainer.
(Recall that our transformation uses part of the output of the deterministic extractor
for sampling a subset of the indices). We remark that this sampling technique was
used previously by Reingold et al. [27] as a component in a construction of seeded
extractors.

1.6. Outline. In Section 2 we define the notations used in this paper. In Section
3 we introduce the concept of seed obtainers and show how to construct them from
deterministic bit-fixing source extractors and “averaging samplers”. In Section 4 we
observe that the technique of [17] can be used to extract few bits even when k is
small. In Section 5 we give constructions for averaging samplers. In Section 6 we give
a construction of a seeded bit-fixing source extractor that makes use of the sampling
techniques of Section 5. In Section 7 we plug all the components together and prove
our main theorems. Finally, in Section 8 we give some open problems.
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2. Preliminaries.

Notations. We use [n] to denote the set {1, . . . , n}. We use P (S) to denote the
set of subsets of a given set S. We use Un to denote the uniform distribution over n
bits. Given a distribution A we use w ← A to denote the experiment in which w is
chosen randomly according to A. Given a string x ∈ {0, 1}n and a set S ⊆ [n] we use
xS to denote the string obtained by restricting x to the indices in S. We denote the
length of a string x by |x|. Logarithms will always be taken with base 2.

Asymptotic Notation. As this paper has many parameters we now explain exactly
what we mean when using O(·) and Ω(·) in a statement involving many parameters.
We use the Ω and O signs only to denote absolute constants (i.e., not depending on any
parameters even if these parameters are considered constants). Furthermore, when
writing for example, f(n) = O(g(n)) we always explicitly mention the conditions on
n (and maybe other parameters) for which the statement holds.

2.1. Averaging samplers. A sampler is a procedure which given a short seed
generates a subset T ⊆ [n] such that for every set S ⊆ [n], |S ∩ T | is with high
probability “close to the expected size”.

Definition 2.1. An (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]) is a
function such that for any S ⊆ [n] such that |S| = k :

Pr
w←Ut

(kmin ≤ |Samp(w) ∩ S| ≤ kmax) ≥ 1− δ

The definition above is nonstandard in several respects. In the more common
definition (c.f. [16] a sampler is required to work for sets of arbitrary size. In the
definition above (which is similar in spirit to the one in [33]) the sampler is only
required to work against sets of size k and the bounds kmin, kmax are allowed to
depend on k. Furthermore, we require that the sampler has “distinct samples” as we
do not allow T to be a multi-set.5

We will use samplers to “partition” bit-fixing sources. Note that in the case of
an (n, k)-bit-fixing source, Samp returns a subset of indices such that, w.h.p., the
number of good bits in the subset is between kmin and kmax.

2.2. Probability distributions. Some of the proofs in this paper require care-
ful manipulations of probability distributions. We use the following notation. We use
Um to denote the uniform distribution on m bit strings. We denote the probability of
an event B under a probability distribution P by PrP [B] . A random variable R that
takes values in U is a function R : Ω→ U (where Ω is a probability space). We some-
times refer to R as a probability distribution over U (the distribution of the output of
R). For example, given a random variable R and a distribution P we sometimes write
“R = P” and this means that the distribution of the output of R is equal to P . Given
two random variables R1, R2 over the same probability space Ω we use (R1, R2) to
denote the random variable induced by the function (R1, R2)(ω) = (R1(ω), R2(ω)).
Given two probability distributions P1, P2 over domains Ω1,Ω2 we define P1 ⊗ P2 to
be the product distribution of P1 and P1 which is defined over the domain Ω1 × Ω2.

5We remark that some of the “standard techniques” for constructing averaging samplers (such as
taking a walk on an expander graph or using a randomness extractor) perform poorly in this setup,
and do not work when k <

√
n (even if T is allowed to be a multi-set). This happens because in

order to even hit a set S of size k these techniques require sampling a (multi-)set T of size larger
than (n/k)2 which is larger than n for k <

√
n. In contrast, note that a completely random set of

size roughly n/k will hit a fixed set S of small size with good probability.
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Definition 2.2 (conditioning distributions and random variables). Given a prob-
ability distribution P over some domain U and an event A ⊆ U such that PrP [A] > 0
we define a distribution (P |A) over U as follows: Given an event B ⊆ U , Pr(P |A)(B) =

PrP [B|A] = PrP [A∩B]
PrP [A] .

We extend this definition to random variables R : Ω → U . Given an event
A ⊆ Ω we define (R|A) to be the probability distribution over U given by Pr(R|A)[B] =
PrR[R ∈ B|A].

We also need the notion of convex combination of distributions.

Definition 2.3 (convex combination of distributions). Given distributions P1, . . . , Pt

over U and coefficients α1, . . . , αt ≥ 0 such that
∑

1≤i≤t αi = 1 we define the distribu-
tion P =

∑

1≤i≤t αiPi as follows: Given an event B ⊆ U , PrP [B] =
∑

1≤i≤t αi PrPi
[B].

We also need the following technical lemmas.

Lemma 2.4. Let X,Y and V be distributions over {0, 1}n such that X is ε-close
to Un and Y = δ · V + (1− δ) ·X. Then Y is (2δ + ε)-close to Un

Proof. Let B ⊆ {0, 1}n be some event.

|Pr
Y

(B)−Pr
Un

(B)| = |δ Pr
V

(B)+(1− δ) Pr
X

(B)−Pr
Un

(B)| ≤ 2δ + |Pr
X

(B)−Pr
Un

(B)| ≤ 2δ + ε

Lemma 2.5. Let (A,B) be a random variable that takes values in {0, 1}u×{0, 1}v
and suppose that there exists some distribution P over {0, 1}v such that for every
a ∈ {0, 1}u with Pr[A = a] > 0 the distribution (B|A = a) is ε-close to P . Then
(A,B) is ε-close to (A⊗ P ).

Proof.

1

2
·
∑

a,b

|Pr[(A,B) = (a, b)]− Pr
A⊗P

[a, b]| = 1

2
·
∑

a,b

|Pr[A = a] Pr[B = b|A = a]−Pr[A = a] Pr
P

[b]|

≤ 1

2
·
∑

a

Pr[A = a]
∑

b

|Pr[B = b|A = a]− Pr
P

[b]| ≤ ε/2

Lemma 2.6. Let (A,B) be a random variable that takes values in {0, 1}u×{0, 1}v
which is ε-close to (A′ ⊗ Uv) then for every b ∈ {0, 1}v the distribution (A|B = b) is
(ε · 2v+1)-close to A′.

Proof. Assume for the purpose of contradiction that there exists some b∗ ∈ {0, 1}v
such that the distribution (A|B = b∗) is not α-close to A′ for α = ε ·2v+1. Then there
is an event D such that

| Pr
(A|B=b∗)

[D]− Pr
A′

[D]| > α

By complementing D if necessary we can w.l.o.g. remove the absolute value from
the inequality above. We define an event D′ over {0, 1}u × {0, 1}v. The event D′ =
{(a, b)|b = b∗, a ∈ D}. We have that:

Pr
(A′,Uv)

[D′] = Pr
A′

[D] · 2−v

8



And similarly,

Pr
(A,B)

[D′] = Pr
(A|B=b∗)

[D] Pr
B

[B = b∗]

We know that B is ε-close to Uv and therefore PrB [B = b∗] ≥ 2−v − ε. Thus,

Pr
(A,B)

[D′]− Pr
(A′,Uv)

[D′] = Pr
(A|B=b∗)

[D] Pr
B

[B = b∗]− Pr
A′

[D] · 2−v

≥ Pr
(A|B=b∗)

[D](2−v − ε)− Pr
A′

[D] · 2−v ≥ 2−v[ Pr
(A|B=b∗)

[D]− Pr
A′

[D]]− ε

By our assumption the expression in square brackets is at least α and thus,

> 2−vα− ε = ε

Thus, we get a contradiction.

3. Obtaining an independent seed.

3.1. Seed obtainers and their application. One of the natural ways to try
and extract many bits from imperfect random sources is to first run a “weak extractor”
which extracts few bits from the input distribution and then use these few bits as a
seed to a second extractor which extracts more bits. The obvious difficulty with
this approach is that typically the output of the first extractor is correlated with the
imperfect random source and it is not clear how to use it. (Seeded extractors are only
guaranteed to work when the seed is independent from the random source). In the next
definition we introduce the concept of a “seed obtainer” that overcomes this difficulty.
Loosely speaking, a seed obtainer is a deterministic function which given a bit-fixing
source X outputs a new bit-fixing source X ′ (with roughly the same randomness)
together with a short random seed Y which is independent from X ′. Thus, the seed
Y can later be used to extract randomness from X ′ using a seeded extractor.

Definition 3.1 (seed obtainer). A function F : {0, 1}n → {0, 1}n × {0, 1}d is
a (k, k′, ρ)-seed obtainer if for every (n, k)-bit-fixing source X, the distribution R =
F (X) can be expressed as a convex combination of distributions R = ηQ +

∑

a αaRa

(here the coefficients η and αa are nonnegative and η +
∑

a αa = 1) such that η ≤ ρ
and for every a there exists an (n, k′)-bit-fixing source Za such that Ra is ρ-close to
Za ⊗ Ud.

It follows that given a seed obtainer one can use a seeded extractor for bit-fixing
sources to construct a deterministic (i.e., seedless) extractor for bit-fixing sources.

Theorem 3.2. Let F : {0, 1}n → {0, 1}n × {0, 1}d be a (k, k′, ρ)-seed obtainer.
Let E1 : {0, 1}n×{0, 1}d → {0, 1}m be a seeded (k′, ε)-bit-fixing source extractor. Then
E : {0, 1}n → {0, 1}m defined by E(x) = E1(F (x)) is a deterministic (k, ε + 3ρ)-bit-
fixing source extractor

Proof. By the definition of a seed obtainer we have that E(X) = ηE1(Q) +
∑

a αaE1(Ra) for some η ≤ ρ. For each a we have that E1(Ra) is (ε + ρ)-close to Um.
It follows that E(X) is (ε + ρ)-close to ηE1(Q) + (1− η)Um and therefore by Lemma
2.4 we have that E(X) is (2η + ε + ρ)-close to uniform. The lemma follows because
2η + ε + ρ ≤ ε + 3ρ.

9



Fig. 3.1. A seed obtainer for (n, k)-bit-fixing sources

Ingredients:
• An (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]).
• A deterministic (kmin, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m with m > t.

Result: A (k, k′, ρ)-seed obtainer F : {0, 1}n → {0, 1}n × {0, 1}m−t with k′ = k − kmax and
ρ = max(ε + δ, ε · 2t+1).

The construction of F :
• Given x ∈ {0, 1}n compute E(x) and let E1(x) denote the first t bits of E(x) and

E2(x) denote the remaining m− t bits.
• Let T = Samp(E1(x)).
• Let x′ = x[n]\T . If |x′| < n we pad it with zeroes to get an n-bit long string.
• Let y = E2(x), Output x′, y.

3.2. Constructing seed obtainers. Note that every seed obtainer “contains”
a deterministic extractor for bit-fixing sources. More precisely, given a seed obtainer
F (x) = (x′, y) the function E(x) = y is a deterministic extractor for bit-fixing sources.
We now show how to convert any deterministic bit-fixing source extractor with suffi-
ciently small error into a seed obtainer.

Our construction appears in Figure 3.1. In words, given x, the seed obtainer first
computes E(x). It uses a part of E(x) as the second output y and another part to
sample a substring of x. It obtains the first output x′ by erasing the sampled substring
from x. We now state the main theorem of this section.

Theorem 3.3 (construction of seed obtainers). For every n and k < n, Let Samp
and E be as in Figure 3.1 (that is, Samp : {0, 1}t → P ([n]) is an (n, k, kmin, kmax, δ)-
sampler and E : {0, 1}n → {0, 1}m is a deterministic (kmin, ε)-bit-fixing source ex-
tractor). Then, F : {0, 1}n → {0, 1}n×{0, 1}d defined in Figure 3.1 is a (k, k′, ρ)-seed
obtainer for d = m− t, k′ = k − kmax and ρ = max(ε + δ, ε · 2t+1).

Proof of Theorem 3.3. In this section we prove Theorem 3.3. Let E be a
bit-fixing source extractor and Samp be a sampler which satisfy the requirements
in Theorem 3.3. Let X be some (n, k)-bit-fixing source and let S ⊆ [n] be the set
of k good indices for X. We will use capital letters to denote the random variables
which come up in the construction. We split E(X) into two parts (E1(X), E2(X)) ∈
{0, 1}t × {0, 1}m−t. For a string a ∈ {0, 1}t we use Ta to denote Samp(a) and T ′a to
denote [n] \ Samp(a). Given a string x ∈ {0, 1}n, we use xa to denote xTa

and x′a
to denote the n bit string obtained by padding xT ′

a
to length n. Let X ′ = X ′E1(X)

and Y = E2(X). Our goal is to show that the pair (X ′, Y ) is close to a convex
combination of pairs of distributions where the first component is a bit-fixing source
and the second is independent and uniformly distributed.

Definition 3.4. We say that a string a ∈ {0, 1}t correctly splits X if kmin ≤
|S ∩ Ta| ≤ kmax.

Note that by the properties of the sampler, almost all strings a correctly split X.
We start by showing that for every fixed a which correctly splits X the variables X ′a
and E(X) are essentially independent. Loosely speaking this happens because we can
argue that there are enough good bits in Xa and therefore the extractor can extract
randomness from Xa which is independent of the randomness in X ′a.
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Lemma 3.5. For every fixed a ∈ {0, 1}t which correctly splits X the pair of
random variables (X ′a, E(X)) is ε-close to the pair (X ′a ⊗ Um).

Proof. Let ` = |Samp(a)|. Given a string σ ∈ {0, 1}` and a string σ′ ∈ {0, 1}n−`

we define [σ;σ′] to be the n bit string obtained by placing σ in the indices of Ta and σ′

in the indices of T ′a. More formally, we denote the ` indices of Ta by i1 < i2 < . . . < i`
and the n−` indices of T ′a by i′1 < i′2 < . . . < i′n−`. Given an i ∈ Ta we define index(i)
to be the index j such that ij = i, and equivalently given i ∈ T ′a we define index′(i)
to be the index j such that i′j = i. The string [σ;σ′] ∈ {0, 1}n is defined as follows:

[σ;σ′]i =

{

σindex(i) i ∈ Ta

σ′index′(i) i ∈ T ′a

Note that in this notation X = [Xa;X ′a]. We are interested in the distribution of
the random variable (X ′a, E(X)) = (X ′a, E([Xa;X ′a])). For every b ∈ {0, 1}n−` we
consider the event {X ′a = b}. Fix some b ∈ {0, 1}n−` such that Pr[X ′a = b] > 0. The
distribution

(E(X)|X ′a = b) = (E([Xa;X ′a])|X ′a = b) = E([Xa; b])

where the last equality follows because Xa and X ′a are independent and therefore Xa

is not affected by fixing X ′a. Note that as a correctly splits X, the distribution [Xa; b]
is a bit-fixing source with at least kmin “good” bits. We conclude that for every
b ∈ {0, 1}n−` such that Pr[X ′a = b] > 0 the distribution (E(X)|X ′a = b) is ε-close to
uniform. We now apply Lemma 2.5 with A = X ′a and B = E(X) and conclude that
the pair (X ′a, E(X)) is ε-close to (X ′a ⊗ Um).

We now argue that if ε is small enough then the pair (X ′a, E2(X)) is essentially
independent even when conditioning the probability space on the event {E1(X) = a}.

Lemma 3.6. For every fixed a ∈ {0, 1}t that correctly splits X, the distribution
((X ′a, E2(X))|E1(X) = a) is ε · 2t+1-close to (X ′a ⊗ Um−t).

Proof. First note that the statement is meaningless unless ε < 2−t we will as-
sume w.l.o.g. that this is the case and then for every fixed a ∈ {0, 1}t the event
{E1(X) = a} occurs with non-zero probability as E1(X) is ε-close to uniform over
{0, 1}t. The lemma will follow as a straightforward application of Lemma 2.6. We set
A = (X ′a, E2(X)), B = E1(X) and A′ = (X ′a, Um−t). We indeed have that (A,B) is
ε-close to (A′, Ut) and the lemma follows.

We are now ready to prove Theorem 3.3.
Proof. (of Theorem 3.3) By the properties of the extractor we have that E1(X) is

ε-close to uniform. It follows (by the properties of the sampler) that the probability
that E1(X) correctly splits X is 1 − η for some η which satisfies η ≤ ε + δ. We
now consider the output random variable R = (X ′, E2(X)). We need to express this
random variable as a convex combination of independent distributions and a small
error term. We set Q to be the distribution (R|“E1(X) doesn’t correctly split X”).
For every correctly splitting a we set Ra to be the distribution (R|E1(X) = a) and
αa = Pr[E1(X) = a]. By our definition we have that indeed R = ηQ +

∑

a αaRa.
For every a that correctly splits X we have that Ra = ((X ′, E2(X))|E1(X) = a) =
((X ′E1(X), E2(X))|E1(X) = a) = ((X ′a, E2(X))|E1(X) = a). By Lemma 3.6 we have

that Ra is ε ·2t+1-close to (X ′a⊗Um−t). As a correctly splits X we have that X ′a is an
(n, k−kmax)-bit-fixing source as required. Thus, we have shown that the distribution
Ra is close to a convex combination of pairs of essentially independent distributions
where the first is a bit fixing source and the second is uniform.
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4. Extracting few bits for any k. The deterministic bit-fixing source extractor
of Kamp and Zuckerman [17] only works for k >

√
n. However, their technique easily

gives a deterministic bit-fixing source extractor that extracts very few bits (Ω(log k)
bits) from a bit fixing source with arbitrarily small k. We will later use this extractor
to construct a seed obtainer that will enable us to extract many more bits.

Theorem 4.1. For every n > k ≥ 100 there is an explicit deterministic (k, 2−
√

k)-
bit-fixing source extractor E : {0, 1}n → {0, 1}(log k)/4.

For the proof, we need the following result, which is a very special case of Lemma
3.3 in [17].

Lemma 4.2. ([17, Lemma 3.3] for ε = 0 and d = 2.) Let the graph G be an odd
cycle with M vertices and second eigenvalue λ. Suppose we take a walk on G for n
steps, starting from some fixed vertex v with the steps taken according to the symbols
from an (n, k)-bit-fixing source X. Let Z be the distribution on the vertices at the end

of the walk, then Z is
(

1
2λk
√

M
)

-close to the uniform distribution on [M ].

To extract few bits from a bit-fixing source X, we will use the bits of X to conduct
a random walk on a small cycle.

Proof. (of Theorem 4.1) We use the source-string to take a walk on a cycle of size
4
√

k from a fixed vertex. The second eigenvalue of a d-cycle is cos( π
d ) ([19, Ex. 11.1]).

Using Lemma 4.2, we reach distance
(

cos
(

π
4√

k

))k

k1/8 from uniform. By the Taylor

expansion of cos, for 0 < x < 1

cos(x) < 1− x2

2
+

x4

24
< 1− x2

4

Therefore

(

cos

(

π
4
√

k

))k

<

(

1− π2

4
√

k

)k

<
(

e−
π2

4

)

√
k

< 4−
√

k

where the second to last inequality holds because (1 − x) < e−x for 0 < x < 1.

Therefore, we reach distance 4−
√

kk1/8 ≤ 2−
√

k . By outputting the final vertex’s

name we get log(k)
4 bits with the same distance from uniform.

5. Sampling and partitioning with a short seed. Let S ⊆ [n] be some
subset of size k. In this section we show how to use few random bits in order perform
two related tasks.
Sampling: Generate a subset T ⊆ [n] such that |S ∩ T | is in a prespecified interval

[kmin, kmax] (see definition 2.1).
partitioning: Partition [n] into r distinct subsets T1, . . . , Tr such that for every 1 ≤

i ≤ r, |S ∩ Ti| is in a prespecified interval [kmin, kmax]. Needless to say a
partitioning scheme immediately implies a sampling scheme by concentrating
on a single Ti.

In this section we present two constructions of such schemes. The first construc-
tion is used in our deterministic bit-fixing source extractor for k >

√
n. In this setup

we can allow the sampler to use many random bits (say nΩ(1) bits) and can have error

2−nΩ(1)

.
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Lemma 5.1 (sampling with low error). Fix any constants 0 < γ ≤ 1/2 and α > 0.
There exists a constant n′ depending on α and γ, such that for any integers n, k satis-
fying n > n′ and n1/2+γ ≤ k ≤ n, there exists an (n, k, (n1/2+γ)/6, n1/2+γ , 2−Ω(α·nγ))-
sampler Samp : {0, 1}t → P ([n]) where t = α · n2γ .

The second constructions is used in our deterministic bit-fixing source extractor
for small k. For that construction we require schemes that use only α log k bits
for some small constant α > 0. The construction of Lemma 5.1 requires at least
log n > log k bits which is too much. Instead, we use a different construction which
has much larger error (e.g. k−Ω(1)).

Lemma 5.2 (sampling with O(log k) bits). Fix any constant 0 < α < 1. There
exist constants c > 0, 0 < b < 1 and 1/2 < e < 1 (all depending on α) such that for
any n ≥ 16 and k ≥ logc n, we obtain an explicit (n, k, ke/2, 3 · ke, O(k−b))-sampler
Samp : {0, 1}t → P ([n]) where t = α · log k.

Lemma 5.3 (partitioning with O(log k) bits). Fix any constant 0 < α < 1. There
exist constants c > 0, 0 < b < 1 and 1/2 < e < 1 (all depending on α) such that for
any n ≥ 16 and k ≥ logc n, we can use α · log k random bits to explicitly partition [n]
into m = Ω(kb) sets T1, . . . , Tm such that for any S ⊆ [n] where |S| = k

Pr(∀i, ke/2 ≤ |Ti ∩ S| ≤ 3 · ke) ≥ 1−O(k−b).

The first construction is based on “`-wise independence”, and the second is based
on “almost 2-wise dependence” [20, 1, 15]. Sampling techniques based on `-wise
independence were first suggested by Bellare and Rompel [4]. However, this technique
is not good enough in our setting and we use a different approach (which was also used
in [27] with slightly different parameters). In appendix A we explain the approach in
detail, compare it to the approach of [4] and give full proofs of the Lemmas above.

6. A seeded bit-fixing source extractor with a short seed. In this section
we give a construction of a seeded bit-fixing source extractor that uses seed length
O(log k) to extract kΩ(1) bits as long as k is not too small. This seeded extractor
is used as a component in our construction of deterministic extractors for bit fixing
sources.

Theorem 6.1. Fix any constant 0 < α < 1. There exist constants c > 0 and
0 < b < 1 (both depending on α) such that for any n ≥ 16 and k ≥ logc n, there exists
an explicit seeded (k, ε)-bit-fixing source extractor E : {0, 1}n×{0, 1}d → {0, 1}m with
d = α · log k, m = Ω(kb) and ε = O(k−b).

Proof. Let X be an (n, k)-bit-fixing source. Let x = x1, . . . , xn be a string sampled
by X. The extractor E works as follows: We use the extractor seed y to construct
a partition of the bits of x into m sets. Then we output the xor of the bits in each
set. With high probability, each set will contain a good bit and therefore, with high
probability, the output will be uniformly distributed.

More formally, let b and c be the constants from Lemma 5.3 when using the lemma
with the parameter α.
E(x,y)

• We use the seed y to obtain a partition of [n] into m = Ω(kb) sets
T1, . . . , Tm using Lemma 5.3 with the parameter α.

• For 1 ≤ i ≤ m, compute zi = ⊕j∈Ti
xj .

• Output z = z1, . . . , zm.
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We give a detailed correctness proof although it is very straightforward:
Let S ⊆ [n] be the set of good indices and let Z be the distribution of the output string
z. We need to prove that Z is close to uniform. Let A be the event {∀i Ti ∩ S 6= ∅}.
That is, A is the ”good” event in which all sets contain a random bit (and therefore
in this case the output is uniform). Let Ac be the complement event, i.e., Ac is the
event {∃i Ti ∩ S = ∅}. We decompose Z according to A and Ac:

Z = Pr(Ac) · (Z|Ac) + Pr(A) · (Z|A)

(Z|A) is uniformly distributed. From Lemma 5.3, when k ≥ logc n, Pr(A) ≥ 1 −
O(k−b). Therefore, by Lemma 2.4

Z
O(k−b)

∼ Um.

7. Deterministic extractors for bit-fixing sources. In this section, we com-
pose the ingredients from previous sections to prove Theorems 1.3 and 1.4. Namely,
given choices for a deterministic bit-fixing source extractor, sampler and seeded bit-
fixing source extractor, we use Theorems 3.2 and 3.3 to get a new deterministic bit-
fixing source extractor. This works as follows: We “plug in” a deterministic extractor
that extracts little randomness and sampler into Theorem 3.3 to get a seed obtainer.
We then “plug in” this seed obtainer and a seeded extractor into Theorem 3.2 to
get a new deterministic extractor which extracts almost all of the randomness. It is
convenient to express this composition as follows:

Theorem 7.1. Assume we have the following ingredients
• An (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]).
• A deterministic (kmin, ε∗)-bit-fixing source extractor E∗ : {0, 1}n → {0, 1}m′

.
• A seeded (k − kmax, ε1)-bit-fixing source extractor E1 : {0, 1}n × {0, 1}d →
{0, 1}m.

where m′ ≥ d + t. Then we construct a deterministic (k, ε)-bit-fixing source extractor
E : {0, 1}n → {0, 1}m where ε = ε1 + 3 ·max(ε∗ + δ, ε∗ · 2t+1).

Proof. We use Samp and E∗ in Theorem 3.3 to get a (k, k−kmax,max(ε∗+ δ, ε∗ ·
2t+1))-seed obtainer F : {0, 1}n → {0, 1}n × {0, 1}m′−t. Since m′ − t ≥ d, we can use
F and E1 in Theorem 3.2 to obtain a deterministic (k, ε)-bit-fixing source extractor
E : {0, 1}n → {0, 1}m where ε = ε1 + 3 ·max(ε∗ + δ, ε∗ · 2t+1).

We also require the following construction of a seeded extractor (which is in
particular a seeded bit-fixing source extractor).

Theorem 7.2. [26] For any n, k and ε > 0, there exists a (k, ε)-extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}m where m = k and d = O(log2 n · log(1/ε) · log k)

7.1. An extractor for large k (proof of Theorem 1.3). To prove Theorem
1.3, we first state results about the required ingredients and then use the ingredients
in Theorem 7.1.

We use the deterministic bit-fixing source extractor of Kamp and Zuckerman [17].
Loosely speaking, the following theorem states that when k >>

√
n, we can deter-

ministically extract a polynomial fraction of the randomness with an exponentially
small error.

Theorem 7.3. [17] Fix any integers n, k such that k = b · n1/2+γ for some
b > 0 and 0 < γ ≤ 1/2. There exists a constant c > 0 (not depending on any of
the parameters) such that there exists an explicit deterministic (k, ε∗)-bit-fixing source
extractor E∗ : {0, 1}n → {0, 1}m where m = cb2 · n2γ and ε∗ = 2−m.

14



Using the theorem above we can obtain a seed of length O(n2γ). This means that
we can afford these many bits for our sampler and seeded bit-fixing source extractor.
We use the sampler based on `-wise independence from Lemma 5.1. We use the seeded
extractor of [26] (Theorem 7.2) which we now restate in the following form:

Corollary 7.4. Fix any constants 0 < γ ≤ 1/2 and α > 0. There exists
a constant n′ depending on γ such that for any integers n, k satisfying n > n′ and
k ≤ n there exists a (k, ε1)-extractor E1 : {0, 1}n × {0, 1}d → {0, 1}m where m = k,
d = α · n2γ and ε1 = 2−Ω(α·nγ).

Proof. We use the extractor of Theorem 7.2. We need d = c1 · (log3 n · log(1/ε1))
random bits for some constant c1 > 0. We want to use at most α · n2γ random bits.

We get the inequality α ·n2γ ≥ c1 · log3 n · log(1/ε1). Equivalently, ε1 ≥ 2
− α·n2γ

c1·log3 n . So

for a large enough n (depending on γ), we can take ε1 = 2−
α·nγ

c1 = 2−Ω(α·nγ).
We now compose the ingredients from Theorem 7.3, Lemma 5.1 and Corollary 7.4

to prove Theorem 1.3. The composition is a bit cumbersome in terms of the different
parameters. The main issue is that when k = n1/2+γ , the deterministic extractor of
Kamp and Zuckerman extracts Ω(n2γ) random bits; and this is enough to use as a
seed for a sampler and seeded extractor (that extracts all the randomness) with error
2−Ω(nγ).

Proof. (Of Theorem 1.3) Let c be the constant in Theorem 7.3. We use Theorem
7.1 with the following ingredients:

• The (n, k, (n1/2+γ)/6, n1/2+γ , δ = 2−Ω(nγ))-sampler Samp : {0, 1}t → P ([n])
from Lemma 5.1 where t = (c/72)n2γ .

• The deterministic ((n1/2+γ)/6, ε∗ = 2−m′

)-bit-fixing source extractor E∗ :
{0, 1}n → {0, 1}m′

from Theorem 7.3 where m′ = (c/36)n2γ .
• The (k − n1/2+γ , ε1 = 2−Ω(nγ))-extractor E1 : {0, 1}n × {0, 1}d → {0, 1}m

from Corollary 7.4 with d ≤ (c/72)n2γ and m = k − n1/2+γ .
Note that all three objects exist for a large enough n depending only on γ (c is a
universal constant). Note that m′ ≥ t + d. Therefore, applying Theorem 7.1, we
get a deterministic (k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m where
m = k − n1/2+γ and

ε = ε1+3·max(ε∗+δ, ε∗·2t+1) = 2−Ω(nγ)+3·max
(

2−(c/36)n2γ

+ 2−Ω(nγ), 2−(c/36)n2γ · 2(c/72)n2γ+1
)

= 2−Ω(nγ) + 3 ·max
(

2−Ω(nγ), 2−(c/72)n2γ+1
)

= 2−Ω(nγ)

(for a large enough n depending on γ).

7.2. An extractor for small k (proof of Theorem 1.4). To prove Theorem
1.4 we need a deterministic bit-fixing source extractor for k <

√
n. We use the

extractor of Theorem 4.1. We prove the Theorem in two steps. First, we use Theorem
7.1 to convert the initial extractor into a deterministic bit-fixing source extractor that
extracts more bits. We then apply Theorem 7.1 again to obtain a deterministic bit-
fixing source extractor which extracts almost all bits.

The following lemma implements the first step and shows how to extract a polyno-
mial fraction of the randomness with a polynomially small error, whenever k ≥ logc n
for some constant c.
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Lemma 7.5. There exist constants c, b > 0 such that for any k ≥ logc n and
large enough n, there exists an explicit deterministic (k, k−b)-bit-fixing source extractor
E : {0, 1}n → {0, 1}m where m = kΩ(1).

Proof. Roughly speaking, the main issue is that we can get Ω(log k) random bits
using the deterministic extractor of Theorem 4.1. We will need c1 · log log n random
bits to use the sampler of Lemma 5.2 and the seeded extractor of Theorem 6.1 (for
some constant c1). Thus, when k ≥ logc n for large enough c, we will have enough
bits.

Formally, we use Theorem 7.1 with the following ingredients:
• The (n, k, ke/2, 3 · ke, δ = k−Ω(1))-sampler Samp : {0, 1}t → P ([n]) from

Lemma 5.2 where t = log k/32 and e > 1/2 is the constant from that lemma.

• The deterministic (ke/2, ε∗ = 2−
√

ke/2)-bit-fixing source extractor E∗ : {0, 1}n →
{0, 1}m′

from Theorem 4.1 where m′ = log(ke/2)/4.
• The seeded (k − 3 · ke, ε1 = (k − 3 · ke)−Ω(1))-bit-fixing source extractor

E1 : {0, 1}n × {0, 1}d → {0, 1}m from Theorem 6.1 with d = log k/32 and
m = (k − 3 · ke)Ω(1) .

Note that all three objects exist for k ≥ logc n for some constant c and large enough
n. Assume that n is large enough so that k ≥ logc n ≥ 2. To use Theorem 7.1 we
need to check that m′ ≥ t+d: Indeed, m′ = log(ke/2)/4 ≥ log k/16 = t+d (where we
used e > 1/2, as stated in Lemma 5.2). Applying Theorem 7.1, we get a deterministic
(k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m. Notice that for large enough
n: ε1 = k−Ω(1), therefore

ε = ε1+3·max(ε∗+δ, ε∗·2t+1) = k−Ω(1)+3·max
(

2−
√

ke/2 + k−Ω(1), 2−
√

ke/2 · 2log k/32+1
)

= k−Ω(1)

(for a large enough n). Also, m = (k − 3 · ke)Ω(1) = kΩ(1) (for a large enough n) so
we get the required parameters.

We now compose the ingredients from Lemmas 5.2 and 7.5, and Theorem 7.2 to
prove Theorem 1.4. The composition is a bit cumbersome in terms of the different
parameters. The main issue is that we can extract kΩ(1) random bits using the
deterministic extractor of Lemma 7.5. We want log5 n random bits to use the seeded
extractor of Theorem 7.2. Thus, when k ≥ logc n for large enough c, we will have
enough bits.

Proof. (of Theorem 1.4) Let b be the constant in Lemma 7.5. We use Theorem
7.1 with the following ingredients:

• The (n, k, ke/2, 3 · ke, δ = k−Ω(1))-sampler Samp : {0, 1}t → P ([n]) from
Lemma 5.2 where t = (b/2) log k and e > 1/2 is the constant from that
lemma.

• The deterministic (ke/2, ε∗ = (ke/2)−b)-bit-fixing source extractor E∗ : {0, 1}n →
{0, 1}m′

from Lemma 7.5 where m′ = (ke/2)Ω(1).
• The (k − 3 · ke, ε1 = 1/n)-extractor E1 : {0, 1}n × {0, 1}d → {0, 1}m from

Theorem 7.2 with d ≤ log5 n and m = (k − 3 · ke) .
Note that all three objects exist for k ≥ logc n for some constant c and for large enough
n. To use Theorem 7.1 we need to check that m′ ≥ t + d: Note that m′ = kΩ(1). We
take c large enough so that for large enough n m′/2 > log5 n and m′/2 > (b/2)/ log k.
So for such n

m′ ≥ log5 n + (b/2) log k ≥ d + t

Applying Theorem 7.1, we get a deterministic (k, ε)-bit-fixing source extractor
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E : {0, 1}n → {0, 1}m, where

ε = ε1+3·max(ε∗+δ, ε∗·2t+1) = 1/n+3·max
(

(ke/2)−b + k−Ω(1), 2 · (ke/2)−b · kb/2
)

= k−Ω(1)

(for large enough n). Since m = k −O(ke) where 1/2 < e < 1 we are done.

8. Discussion and open problems. We give explicit constructions of deter-
ministic bit-fixing source extractors that extract almost all the randomness. However,
we achieve rather large error ε = k−Ω(1) in the case that k <

√
n. We now explain

why this happens and suggest how to reduce the error. Recall that in this case our
final extractor is based on an initial extractor that extracts only m = O(log k) bits.
When transforming the initial extractor into the final extractor we use the output
bits of the initial extractor as a seed for an averaging sampler. The error parameter
δ of an averaging sampler has to be larger than 2−m and as this error is “inherited”
by the final extractor we can only get error about 1/k. A natural way to improve our
result is to find a better construction for the initial extractor.

Some applications of deterministic bit-fixing source extractors in adaptive settings
of exposure resilient cryptography require extractors with ε � 2−m. We do not
achieve this goal (even in our first construction that has relatively small error (unless
we artificially shorten the output)). Suppose one wants to extract m = k − u bits
(for some parameter u). It is interesting to investigate how small can the error be as
a function of u? We point out that the existential nonexplicit result achieves error
ε ≥ 2−u and thus cannot achieve ε < 2−m when m ≥ k/2. We remark that for bit-
fixing sources we have examples of settings where the nonexplicit result is not optimal.
For example when m = 1 the xor-extractor which is errorless (see also [11]). Given
the discussion above we find it interesting to achieve m = Ω(k) with ε = 2−Ω(k) for
every choice of k.
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Appendix A. Sampling and partitioning.
In this section we give constructions of samplers and prove Lemmas 5.1,5.2 and

5.3.

A.1. Sampling using `-wise independence. Bellare and Rompel [4] gave a
sampler construction based on `-wise independent variables. We use a twist on their
method: Suppose we are aiming to hit k/r bits when given a subset S of size k. We
generate `-wise independent variables Z1, . . . , Zn ∈ [r] and define T = {i|Zi = 1}. It
follows that with high probability S ∩ T is of size approximately k/r. This is stated
formally in the following Lemma. (We explain the difference between this method
and that of [4] in Remark A.3.)

Lemma A.1. For every integers n, k, r, t such that r ≤ k ≤ n and 6 log n ≤ t ≤
k log n
20r there is an explicit (n, k, 1

2 · k
r , 3 · k

r , 2−Ω(t/ log n))-sampler which uses a seed of t
random bits.
Before proving this Lemma we show that Lemma 5.1 is a special case.

Proof. (of Lemma 5.1) We use Lemma A.1 with the parameters n, k and r =
3k

n1/2+γ , t = α · n2γ . We need to check that 6 log n ≤ t ≤ k log n
20r . Clearly, t ≥ 6 log n

(for a large enough n depending on α and γ). On the other hand,

k log n

20r
=

n1/2+γ log n

60
≥ α · n2γ = t

(for a large enough n depending on α and γ). Thus, applying lemma A.1, we get an
(n, k, k/2r, 3k/r, δ)-sampler Samp : {0, 1}t → P ([n]) where

δ = 2−Ω(t/ log n) = 2−Ω(α·n2γ/ log n) = 2−Ω(α·nγ)

(for a large enough n depending on α and γ).
We need the following tail-inequality for `-wise independent variables due to Bellare
and Rompel [4].

Theorem A.2. [4] Let ` ≥ 6 be an even integer. Suppose that X1, . . . , Xn are
`-wise independent random variables taking values in [0, 1]. Let X =

∑

1≤i≤n Xi, and
µ = E(X), and let A > 0. Then

Pr[|X − µ| ≥ A] ≤ 8

(

`µ + `2

A2

)`/2

We now prove Lemma A.1.
Proof. (of Lemma A.1) Let ` be the largest even integer such that ` log n ≤ t and

let q = blog rc ≤ log n. There are constructions which use ` log n ≤ t random bits to
generate n random variables Z1 . . . , Zn ∈ {0, 1}q that are `-wise independent [9]. The
sampler generates such random variables. Let a ∈ {0, 1}q be some fixed value. We
define a random variable T = {i|Zi = a}. Let S ⊆ [n] be some subset of size k. For
1 ≤ i ≤ n we define a boolean random variable Xi such that Xi = 1 if Zi = a. Let
X = |S ∩ T | = ∑i∈S Xi. Note that µ = E(X) = k/2q and that the random variables
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X1, . . . , Xn are `-wise independent. Applying Theorem A.2 with A = k/2r we get
that

Pr[|X − µ| ≥ A] ≤ 8

(

`k/2q + `2

A2

)`/2

Note that

{|X − µ| < A} ⊆
{

k

2q
−A < X <

k

2q
+ A

}

⊆
{

k

r
−A < X <

2k

r
+ A

}

⊆ {kmin ≤ X ≤ kmax}

for kmin = k/2r and kmax = 3k/r. Note that ` ≤ t
log n ≤ k

20r . We conclude that

Pr[kmin ≤ |S ∩ T | ≤ kmax] ≥ 1− 8

(

` k
2q + `2

( k
2r )2

)`/2

≥ 1− 8

(

4r2( 2`k
r + `k

20r )

k2

)`/2

≥ 1− 8

(

10`r

k

)`/2

≥ 1− 2−(`/2+3) ≥ 1− 2−Ω(t/ log n)

Remark A.3. We remark that this construction is different than the common
way of using `-wise independence for sampling [4]. The more common way is to take
n/r random variables V1, . . . , Vn/r ∈ [n] which are `-wise independent and sample the

multi-set T =
{

V1, . . . , Vn/r

}

. The expected size of the multi-set |S∩T | is k/r and one

gets the same probability of success δ = 2−Ω(`) by the tail inequality of [4]. The two
methods require roughly the same number of random bits. Nevertheless, the method of
Lemma A.1 has the following advantages:

• It can also be used for partitioning.
• The method used in Lemma A.1 guarantees that T is a set whereas the stan-

dard method may produce a multi-set.
• The method used in Lemma A.1 can be derandomized and use much fewer bits

(at least for small r and large δ). More precisely, suppose that r ≤ log n and
say ` = 2. In this range of parameters, one can use O(log log n) random bits to
generate n variables Z1, . . . , Zn ∈ {0, 1}log r which are (1/ log n)-close to being
pairwise independent. Thus, the same technique can be used to construct more
randomness efficient samplers (at the cost of having larger error parameter δ.)
We use this idea in Section A.2. We remark that in the case of the standard
method no savings can be made as it requires variables Zi over {0, 1}log n and
even sampling one such variable requires log n random bits.

A.2. Sampling and partitioning using fewer bits. We now derandomize the
construction of Lemma A.1 to give schemes which use only O(log k) bits and prove
Lemmas 5.2 and 5.3. These two Lemmata follow from the following more general
Lemma.

Lemma A.4. Fix any integer n ≥ 16. Let k be an integer such that k ≤ n. Let r
satisfy r ≤ k. Let r′ be the power of 2 that satisfies (1/2)r < r′ ≤ r. Let ε > 0 satisfy
1/kr ≤ ε ≤ 1/8r. We can use 7 log r +3(log log n+ log(1/ε)) random bits to explicitly
partition [n] into r′ sets T1, . . . , Tr′ such that for any S ⊆ [n] where |S| = k

Pr(∀i, k/2r ≤ |Ti ∩ S| ≤ 3k/r) ≥ 1−O(ε · r3).
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We prove Lemma A.4 in the next section. We now explain how the two Lemmata
follow from Lemma A.4.

Proof. (of Lemma 5.3) Set b = α/38. Use Lemma A.4 with the parameters r = kb

and ε = k−4b to obtain a partition T1, . . . , Tr′ of [n] where (1/2)r < r′ ≤ r is a power
of 2.

To use Lemma A.4 with these parameters we need 7 log r+3(log log n+log(1/ε)) =
7 log kb + 3(log log n + log k4b) random bits.
We want to use at most α · log k bits.
Set c = 6/α. Since we assume that k ≥ logc n

(α/2) log k ≥ (α/2)(6/α) log log n = 3 log log n

So now we need

(α/2) log k ≥ 7 log kb + 3 log k4b = b(7 + 12) log k

Or, equivalently

b ≤ α/38

Set e = 1− b. So k/2r = ke/2 and 3k/r = 3 · ke. Note that e > 1/2 as required.
Using Lemma A.4

Pr(∀i, ke/2 ≤ |Ti ∩ S| ≤ 3 · ke) ≥ 1−O(ε · r3) = 1−O(k−b)

Lemma 5.2 easily follows from Lemma 5.3.
Proof. (of Lemma 5.2) Use Lemma 5.3 with the parameters n, k and α to obtain

a partition of [n] T1, . . . , Tm and take T1 as the sample. It is immediate that the
required parameters are achieved.

Proof of Lemma A.4. The sampler construction in Lemma A.1 relied on ran-
dom variables Z1, . . . , Zn ∈ [r] which are `-wise independent. We now show that we
can derandomize this construction and get a (weaker) sampler by using Z1, . . . , Zn

which are only pair-wise ε-dependent. Naor and Naor [20] (and later Alon et al. [1])
gave constructions of such variables using very few random bits. This allows us to
reduce the number of random bits required for sampling and partitioning.

The following definition formalizes a notion of limited independence, slightly more
general than the one discussed above:

Definition A.5. (`-wise ε-dependent variables). Let D be a distribution.
We say that the random variables Z1, . . . , Zn are `-wise ε-dependent according to D if
for every M ⊆ [n] such that |M | ≤ ` the distribution ZM (that is, the joint distribution
of the Zi’s such that i ∈M) is ε-close to the distribution D⊗|M |, i.e., the distribution
of |M | independent random variables chosen according to D. We sometimes omit D
when it is the uniform distribution.
Random bit variables B1, . . . , Bn are `-wise ε-dependent with mean p, if they are `-
wise ε-dependent according to the distribution D = (1− p, p) on {0, 1}. We need two
properties about `-wise ε-dependent variables: That they can be generated using very
few random bits and that their sum is concentrated around the expectation. The first
property is proven in Lemma A.7 and the second in Lemma A.8.
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The following theorem states that `-wise ε-dependent bit variables can be gener-
ated by very few random bits.

Theorem A.6. ([1]) 6

For any n ≥ 16, ` ≥ 1 and 0 < ε < 1/2, `-wise ε-dependent bits B1, . . . , Bn can
be generated using 3(` + log log n + log(1/ε)) truly random bits.

We can generate pair-wise ε-dependent variables in larger domains using `-wise
ε-dependent bit variables.7

Lemma A.7. Let r < n be a power of 2. For any n ≥ 16 and 0 < ε < 1/2, we can
generate pair-wise ε-dependent variables Z1, . . . , Zn ∈ [r] using 7 log r + 3(log log n +
log(1/ε)) truly random bits.

Proof. Using Theorem A.6, we generate 2 log r-wise ε-dependent bit variables
B1, . . . , Bn log r using
3(2 log r + log log(n log r) + log(1/ε)) ≤ 7 log r + 3(log log n + log(1/ε)) bits. We parti-
tion the Bi’s into n blocks of size log r and interpret the i’th block as a value Zi ∈ [r].
The joint distribution of the bits in any block or 2 blocks is ε-close to uniform. There-
fore, the Zi’s are pair-wise ε-dependent.

In the following lemma, we use Chebichev’s inequality to show that the sum of
pair-wise ε-dependent bit variables is close to its expectation with high probability.

Lemma A.8. Let p satisfy 0 < p < 1. Let ε > 0 satisfy p/k ≤ ε ≤ p/4. Let

B1, . . . , Bk be pair-wise ε-dependent bit variables with mean p. Let B =
∑k

i=1 Bi.
Then

Pr(|B − pk| > pk/2) = O(ε/p2).

Proof. Using linearity of expectation we get |E(B)− pk| ≤ εk.
Therefore

Pr(|B − pk| > pk/2) ≤ Pr(|B − E(B)| > pk/2− εk)

So it’s enough to bound

Pr(|B − E(B)| > pk/2− εk)

Fix any i, j ∈ [k] where i 6= j. The covariance of Bi and Bj will be small since
they are almost independent:

cov(Bi, Bj) = E(Bi ·Bj)− E(Bi)E(Bj)

= Pr(Bi = 1;Bj = 1)− Pr(Bi = 1)Pr(Bj = 1)

≤ (p2 + ε)− (p− ε)2 = (1 + 2p− ε)ε ≤ 3ε

6The theorem is stated a bit differently and only for odd ` in ([1]) but this form is easily deduced
from theorem 3 in that paper observing that (` + 1)-wise ε-dependence implies `-wise ε-dependence.

7Actually, a construction of such (and more general types of ) variables already appears in [15].
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(where the second equality is because Bi and Bj are bit variables)

Therefore, the variance of B won’t be too large:

V ar(B) =
∑

i

V ar(Bi) +
∑

i6=j

cov(Bi, Bj) ≤ (p + ε)k + 3εk2 ≤ pk + 4εk2

Therefore, by Chebichev’s inequality

Pr(|B − E(B)| > pk/2− εk) <
pk + 4εk2

(pk/2− εk)2

We required that ε ≤ p/4 and therefore

≤ pk + 4εk2

(pk/4)2
= O(1/pk) + O(ε/p2) = O(ε/p2)

(where the last equality follows by the requirement that ε ≥ p/k)
Now we can easily prove Lemma A.4.
Proof. (of Lemma A.4) Let r′ be the power of 2 in the statement of the lemma.

Using Lemma A.7, we generate pair-wise ε-dependent Z1, . . . , Zn ∈ [r′]. For 1 ≤ i ≤
r′, we define Ti = {j|Zj = i}.
Assume, w.l.o.g., that S = {1, . . . , k}.
Given i ∈ [r′], define the bit variables B1, . . . , Bk by Bj = 1⇔ Zj = i.
It is easy to see that the Bj ’s are pairwise 2ε-dependent with mean 1/r′.

Define Ci =
∑k

j=1 Bj . Note that Ci = |Ti ∩ S|.
Notice that 1/r′ and 2ε satisfy the requirements in Lemma A.8.
Using Lemma A.8

Pr(|Ci − k/r′| > k/2r′) = O(ε · (r′)2) = O(ε · r2)

Using the union bound

Pr(∃i s.t |Ci − k/r′| > k/2r′) = O(ε · r3)

Thus, we can obtain a partition T1, . . . , Tr′ of [n] such that, with probability at least
1−O(ε · r3)

∀i k/2r′ ≤ |Ti ∩ S| ≤ 3k/2r′

Which implies that with at least the same probability

∀i k/2r ≤ |Ti ∩ S| ≤ 3k/r
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