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Abstract

We study the round complexity of two-party protocols for generating a random n-
bit string such that the output is guaranteed to have bounded bias (according to some
measure) even if one of the two parties deviates from the protocol (even using unlimited
computational resources). Specifically, we require that the output’s statistical difference
from the uniform distribution on {0, 1}n is bounded by a constant less than 1.

We present a protocol for the above problem that has 2 log∗ n + O(1) rounds, im-
proving a previous 2n-round protocol of Goldreich, Goldwasser, and Linial (FOCS ‘91).
Like the GGL protocol, our protocol actually provides a stronger guarantee, ensuring
that the output lands in any set T ⊆ {0, 1}n of density µ with probability at most
O(
√

µ + δ), where δ is an arbitarily small constant.
We then prove a matching lower bound, showing that any protocol guaranteeing

bounded statistical difference requires at least log∗ n− log∗ log∗ n−O(1) rounds. As far
as we know, this is the first nontrivial lower bound on the round complexity of random
selection protocols (of any type) that does not impose additional constraints (e.g. on
communication or “simulatability”).

We also prove several results for the case when the output’s bias is measured by the
maximum multiplicative factor by which a party can increase the probability of a set
T ⊆ {0, 1}n.
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1 Introduction

One of the most basic protocol problems in cryptography and distributed computing is
that of random selection, in which several mutually distrusting parties aim to generate
an n-bit random string jointly. The goal is to design a protocol so that even if a party
cheats, the outcome will still not be too “biased”. (There are many different choices for
how to measure the “bias” of the output; the one we use will be specified later.) Random
selection protocols can dramatically simplify the design of protocols for other tasks via the
following common methodology: first design a protocol in a model where truly random
strings are provided by a trusted third party (generally a much easier task), and then use
the random selection protocol to eliminate the trusted third party. For this reason, there is
a wide literature on random selection protocols, both in the computational setting, where
cheating parties are restricted to polynomial time (starting with Blum’s “coin flipping by
telephone” [Blu82]), and the information-theoretic setting, where security is provided even
against computationally unbounded adversaries.

We will focus on two-party protocols in the information-theoretic setting (also known
as the “full information model”). In addition to its stronger security guarantees, the
information-theoretic setting has the advantage that protocols typically do not require
complexity-theoretic assumptions (such as the existence of one-way functions). Various such
random selection protocols have been used to construct perfectly hiding bit-commitment
schemes [NOVY98], to convert honest-verifier zero-knowledge proofs into general zero-
knowledge proofs [Dam94, DGW94, GSV98], to construct oblivious transfer protocols in
the bounded storage model [CCM98, DHRS04], and to perform general fault-tolerant com-
putation [GGL98]. There has also been substantial work in the k-party case for k ≥ 3,
where the goal is to tolerate coalitions of a minority of cheating players. This body of
work includes the well-studied “collective coin-flipping” problem e.g., [BL89, Sak89, AN90,
ORV94, RZ98, Fei99] (closely related to the “leader election” problem), and again the use
of random selection as a tool for general fault-tolerant computation [GGL98].

In most of the lines of work mentioned above (computational and information-theoretic,
two-party and k-party), the round complexity has been a major parameter of interest. For
some forms of random selection and their applications, constant-round protocols have been
found (e.g. [DGW94, GSV98] improving [Dam94], [DHRS04] improving [CCM98], and
[Lin01, KO04] improving [Blu82, Yao86]), but for others the best known protocols have a
nonconstant number of rounds, e.g. [NOVY98, GGL98, RZ98]. Lower bounds on round
complexity, however, have proven much more difficult to obtain, and we only know of exam-
ples that impose additional constraints on the protocol (beyond the basic security guarantee
of bounded bias). For example, in the computational setting, it has been recently shown
that 5 rounds are necessary and sufficient for random selection protocols satisfying a certain
“black-box simulation” condition [KO04]. In the information-theoretic setting, a long line
of work on the collective coin-flipping problem has culminated in the (log∗ n + O(1))-round
protocol1 of Russell and Zuckerman [RZ98] (see also Feige [Fei99]), but the only known lower

1As in other work [RZ98], for the purposes of this paper we will define log
(k)
b n to be k base b iterated

logarithms of n:

log
(k)
b n =

{

1 : if log
(k−1)
b n < b

logb

(

log
(k−1)
b n

)

: otherwise

with log
(0)
b n = n. Moreover, for n ≥ 1, we define log∗

b n to be the least natural number k such that
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bound (of Ω(log∗ n) rounds), due to Russell, Saks, and Zuckerman [RSZ99], is restricted
to protocols where each party can only communicate a small number of bits per round.
Without this restriction, it is not even known how to prove that 1 round is impossible.

The problem and main results. As mentioned above, previous works on random se-
lection have considered a number of different measures of the bias of the output, typically
motivated by particular applications. Here we focus on what we consider to be the most
natural measure — the statistical difference (i.e., variation distance) of the output from
the uniform distribution.2 Specifically, we seek a two-party protocol (A, B) that produces
an output in {0, 1}n, such that even if one party deviates arbitrarily from the specified
protocol, the statistical difference of the output from uniform is bounded by a constant less
than 1. Equivalently, we want to satisfy the following criterion.

Statistical Criterion: There are fixed constants µ > 0 and ε > 0 such that for every n
and every subset T ⊆ {0, 1}n of density at most µ, the probability that the output
lands in T is at most 1 − ε, even if one party deviates arbitrarily from the specified
protocol.

In addition to being a natural choice, this criterion is closely related to others considered
in the literature. In particular, the standard criterion for the “collective coin-flipping”
problem is that the output bit B ∈ {0, 1} satisfies max{Pr [B = 0] , Pr [B = 1]} < p, where
p is a constant less than 1; this is equivalent to B’s statistical difference from uniform being
bounded away from 1. (Here we see that the problem we consider is in some sense “dual”
to collective coin-flipping — we restrict to two players but the output comes from a large
set, whereas in collective coin-flipping there are many players but the output has only two
possibilities.)

Of course, the first question is whether or not the Statistical Criterion can be met at all,
regardless of round complexity. Indeed, being able to tolerate computationally unbounded
cheating strategies is a strong requirement. In fact, when n = 1 (i.e. the output is a single
bit), it turns out that one of the two parties can always force the outcome to be constant.
This implies that the Statistical Criterion is impossible to meet for µ = 1/2. Surprisingly,
the criterion is achievable, however, for some smaller constant µ > 0. This is implied by
the following result of Goldreich, Goldwasser, and Linial [GGL98].

Theorem 1.1 ([GGL98]) For every n, there is a two-party protocol producing output in
{0, 1}n such that, as long as one party plays honestly, the probability that the output lands
in any set T ⊆ {0, 1}n of density µ is at most p = O(

√
µ). The protocol has 2n rounds.

Notice that for sufficiently small µ, the probability p is indeed a constant less than 1. This
implies that the Statistical Criterion is achievable with a linear number of rounds. Our goal
is to determine the minimal round complexity of this problem.

First, we give a protocol achieving the Statistical Criterion with substantially fewer
rounds than the above.

Theorem 1.2 For every constant δ > 0, there is a two-party protocol producing output
in {0, 1}n with 2 log∗ n + O(1) rounds such that, as long as one party plays honestly, the
probability that the output lands in any set T of density µ is at most p = O(

√
µ + δ).

log
(k)
b n ≤ 1.
2The statistical difference between two random variables X and Y taking values in a universe U is defined

to be ∆(X, Y ) = maxS⊆U |Pr [X ∈ U ] − Pr [Y ∈ U ] |.
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Our protocol is inspired by the log∗ n-round protocols for leader election [RZ98, Fei99]
and Lautemann’s proof that BPP is contained in the polynomial hierarchy [Lau83]. Specif-
ically, we exhibit a 2-round protocol that reduces the universe of size N = 2n to a universe
of size polylog(N), while approximately preserving the density of the set T with high prob-
ability. Repeating this protocol log∗ n times reduces the universe size to a constant, after
which point we apply the GGL protocol.

Second, we prove a lower bound that matches the above up to a factor of 2 + o(1).

Theorem 1.3 Any two-party protocol producing output in {0, 1}n that satisfies the Statis-
tical Criterion must have at least log∗ n− log∗ log∗ n−O(1) rounds.

Our proof of this theorem is a technically intricate induction on the game tree of the
protocol. Roughly speaking, we associate to each node z of the game tree, a collection Sz

of very small sets such that if the protocol is started at z and R is a random subset of the
universe of density o(1), one of the players X can force the outcome of the protocol to land
in R∪S with probability 1−o(1), for any S ∈ Sz. The challenge is to keep the size of the sets
in the collections Sz small as we induct up the game tree (so that they remain of density o(1)
when z is the root, which yields the desired lower bound). In particular, a node can have an
arbitrary number of children, so we cannot afford to take unions of sets S occurring across
all children. The key idea that allows us to keep the sets small is the following. We consider
two cases: If we have a collection of sets that contains a large disjoint subcollection, then
the random set R will contain one of the sets with high probability and so we do not need
to carry the set through the recursion. On the other hand, if the collection of sets has no
large disjoint subcollection, then we show how we can use this fact to construct a successful
strategy for the other player (based on how we inductively construct the collections Sz).

We stress that our lower bound does not impose any additional constraint on the pro-
tocol, such as the number of bits sent per round. Thus, we hope that our techniques can
help in establishing unrestricted lower bounds on round complexity for other problems, in
particular for the collective coin-flipping (and leader election) problem.

Results on multiplicative guarantees. A different measure of the quality of random
selection protocol is a multiplicative guarantee, whereby we require that, even if one player
cheats, the probability that the outcome lands in any set T of density µ is at most ρ · µ,
for some parameter ρ ≥ 1. The goal, naturally, is for ρ to be as small as possible (ideally a
constant independent of n). Previous protocols, e.g. [DGW94], have given a multiplicative
guarantee to one player while the other has a statistical guarantee (i.e. a bound on the
output’s statistical difference from uniform if the other cheats). Our observations and
results on multiplicative guarantees are the following:

• If both parties have multiplicative guarantees ρA and ρB, then an argument of [GGL98]
implies ρA · ρB ≥ 2n, regardless of the number of rounds.

• There is a simple two-round protocol achieving ρA · ρB ≤ 2n, for any desired ρA.

• If one party has a multiplicative guarantee ρ and the other has a statistical guarantee
ε, then ε ≥ 1/ρ − 1/2n. This explains inverse relationships in existing protocols of
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[DGW94] (where ε = 1/poly(n) and ρ = poly(n)) and [GSV98] (where ε = poly(n) ·
2−k and ρ = 2k for any k).3

• There is a protocol with 2 log∗ n + O(1) rounds that provides a constant statistical
guarantee to one player and a (arbitrarily small) constant multiplicative guarantee
to the other. Theorem 1.3 implies that this round complexity is tight up to a con-
stant factor, because a constant multiplicative guarantee implies a constant statistical
guarantee.

2 Defining Random Selection Protocols

We can formally characterize a random selection protocol as follows:

Definition 2.1 A random selection protocol Π = (A, B, f) over a universe U 4 consists of
a pair of functions A and B and a function f such that:

• Both A (Alice) and B (Bob) alternately output strings (“messages”) mi of arbitrary
length that are a function of the conversation thus far and their sequences of random
coin tosses rA and rB, respectively. That is, m1 = A(rA), m2 = B(rB, m1), m3 =
A(rA, m1m2), etc.

• The conversation between Alice and Bob is the transcript (A, B) = m1m2 . . .mr, where
r is a parameter defining the number of messages5 of the protocol.

• The output of the protocol is f(m1m2 . . .mr), which is some element of U .

We are interested in the behavior of the protocol when one of these programs is replaced
with an arbitrary “cheating” program A∗ or B∗, which may send its messages as an arbitrary
function of the conversation and input length.

Although the formulation we have provided assumes a protocol operates over a single
fixed universe, in general we will be interested in studying asymptotic behavior of protocols
as the universe size increases. Thus, we define a random selection protocol ensemble to be
a sequence (Π(1), Π(2), . . .) where each Π(N) is a protocol over U = {1, . . . , N}.

¿From now on, we blur the distinction between random selection protocols over a fixed
universe and random selection protocol ensembles. Results depending on asymptotics will
hold for random selection protocol ensembles, and other results will hold for any fixed-
universe random selection protocol–in particular, every protocol in the ensemble.

Two desirable properties of random selection protocols are (a) the output is uniformly
distributed in U assuming honest players, and (b) in a protocol ensemble, honest strategies
can be computed in time polynomial in the output length, log N . Our protocols will have
these properties, but our lower bounds will apply even to protocols without them.

We now introduce a formalism that will be invaluable in the proofs of this paper.

Definition 2.2 Given a protocol Π over universe U , define the game tree T as follows:

3Actually, the protocol of [GSV98] does not provide a multiplicative guarantee of 2k, but rather ensures
that the probability that the output lands in any set T of density µ is at most 2k ·µ+o(1). Our lower bound
also applies to this more general type of guarantee.

4Although we introduced the problem for a universe {0, 1}n, for the rest of the paper we assume we have
an arbitrary universe U .

5We use “messages” interchangeably with “rounds” and “turns.”

4



• A set of nodes V , each representing a partial transcript of messages, (m1, . . . , mi).

• A set of edges E, defined by (u, v) ∈ E if and only if u = (m1, . . . , mi) and (abusing
notation) v = (u, mi+1), for any message mi+1. That is, u connects to v if v is a
potential protocol state after one message from u.

• For each node z, a distribution Dz over the children zi whereby A or B chooses the
next message.

• For every leaf z = (m1, . . . , mr), a label equal to f((m1, . . . , mr)), the output of the
protocol ending at node z.

One can verify that this formalism produces an equivalent specification as Definition 2.1 of
a random selection protocol.

Just as any node of a tree is the root of another, any node of a protocol’s game tree
induces its own random selection protocol starting from that state. We simply fix the mes-
sages leading to that node, and have the players choose the remaining messages as in the
original protocol. This observation is one of the main reasons that the abstraction of a
random selection protocol as a tree will prove useful.

Evaluating a Random Selection Protocol. We evaluate random selection protocols
with metrics measuring how “close” the output is to the uniform distribution on U . The
primary metric we use is the following.

Definition 2.3 The statistical difference (a.k.a. variation distance) of a distribution X
over universe U from uniform is defined to be

max
T

∣

∣

∣

∣

Pr
x←X

[x ∈ T ]− µ(T )

∣

∣

∣

∣

= max
T

(

Pr
x←X

[x ∈ T ]− µ(T )

)

where T ⊆ U and µ(T ) is the density of T in U (i.e., |T |/|U|).

Statistical difference finds the subset of the universe that is hit with probability most differ-
ent from uniform. It can be verified that this distance is in the interval [0, 1− 1/N ], where
N is the size of the universe U . A statistical difference of 0 implies that X is uniform, and
1− 1/N implies X is concentrated on a single point.

We will want to avoid distributions X whose statistical difference from uniform is very
close to 1. The following lemma demonstrates this (undesirable) property is equivalent to
X landing in a small set with high probability.

Lemma 2.4 If X has statistical difference at least 1− ε from uniform, then there exists a
set T such that µ(T ) ≤ ε and Prx←X [x ∈ T ] ≥ 1− ε. Conversely, if there exists such a set
T , then X has statistical difference at least 1− 2ε from uniform.

Proof: If X has statistical difference at least 1− ε from uniform, then there exists a set
T such that Pr[x ∈ T ]− µ(T ) ≥ 1− ε. Since Pr[x ∈ T ] ≤ 1, we can conclude µ(T ) ≤ ε, and
since µ(T ) ≥ 0, we can conclude Pr[x ∈ T ] ≥ 1− ε.

The reverse direction follows directly from the definition of statistical difference.

We also consider multiplicative difference:
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Definition 2.5 The multiplicative difference of a distribution X is

max
T

Pr
x←X

[x ∈ T ]/µ(T )

where T ranges over all subsets of U .

We defer all of our results regarding multiplicative difference to Section 5. Given these
metrics, we can define:

Definition 2.6 The statistical guarantee for Alice playing honest strategy A in a protocol Π
(denoted εA) is the maximum over all B∗ of the statistical difference between the distribution
of f((A, B∗)) and the uniform distribution over U . The guarantees for Bob are defined
analogously.

Intuitively, the guarantee of a protocol for a player bounds the damage that the opponent
can effect on the distribution by deviating from the protocol. Unfortunately, the terminology
here is a bit counterintuitive—the lower the number, the better the guarantee. We will try
to avoid confusion by saying a guarantee is “at best x”, rather than “at least x.”

Armed with this notion of a guarantee, we can state the following important equivalence,
following directly from Lemma 2.4:

Proposition 2.7 The Statistical Criterion is equivalent to both of the statistical guarantees
of a protocol being bounded away from 1.

3 The Iterated Random Shift Protocol

In this section we describe the main protocol of this paper, the Iterated Random Shift
Protocol, and prove its main properties. That is, we show that for any constant δ, Iterated
Random Shift is a 2 log∗N + O(1)-round protocol where the probability the output falls in
a set of density µ is at most O(

√
µ + δ). It follows that the protocol satisfies the Statistical

Criterion given above.
Our protocol is inspired by the log∗ n-round protocols for leader election [RZ98, Fei99]

and Lautemann’s proof that BPP is contained in the polynomial hierarchy [Lau83]. It is
built by iteration of the following 2-round protocol, which we will call the Random Shift
Protocol:

The Random Shift Protocol Π(A, B): Given a universe U of size N and m ∈ N,

1. Alice randomly selects a sequence of strings a1, . . . , am ∈ U .

2. Bob randomly selects a sequence of strings b1, . . . , bm ∈ U .

3. Output the sequence (ai + bj : 1 ≤ i ≤ m), where + is a group operation over U .

Note that the Random Shift Protocol is not, strictly speaking, a random selection pro-
tocol over U : its output is a sequence of strings from the universe. In using it, we will
typically choose the parameter m so that the number of output strings, m2, is much smaller
than N (e.g. m = polylog(N)), and recursively use our random selection protocol to select
one of the m2 output strings. To show that this approach yields a protocol with bounded
statistical guarantees, we argue that even if one of the players cheats, any subset T of the
universe is unlikely to appear in much more than a µ(T ) fraction of the outputs of the
Random Shift Protocol. This is formalized by the following lemma.
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Lemma 3.1 Let T be an arbitrary subset of U . Let µ(T ) = |T |/N , and let µ′(T ) denote
the density of T in the sequence output by the Random Shift Protocol: µ′(T ) = #{(i, j) :
ai + bj ∈ T}/m2. Then as long as one player plays honestly (i.e., chooses strings uniformly
at random) and m ≥ (1/2ε2) · log(N/δ), we have

Pr[µ′(T ) ≥ µ(T ) + ε] ≤ δ.

That is, when one player is honest, the sequence ai + bj will be sufficiently random so that
it is very unlikely that the density of T in the output sequence will increase substantially.

Proof: Suppose Alice plays honestly and chooses her strings a1, . . . am at random from
U . The lemma certainly holds a fortiori for an honest Bob, as a cheating Bob can see what
strings Alice has selected.

Fix an arbitrary string b ∈ U . Define random variables

X
(b)
i =

{

1 : if (ai + b) ∈ T
0 : otherwise

Then define X(b) = (1/m)
∑m

i=1 X
(b)
i . Notice that E[X

(b)
i ] = µ(T ) and that these random

variables are independent.
By a Chernoff bound, we may conclude the following for any ε:

Pr[X(b) ≥ µ(T ) + ε] ≤ e−2ε2m ≤ δ

N

Using a union bound, we conclude:

Pr[∃b ∈ U such that X(b) ≥ µ(T ) + ε] ≤ N · δ

N
= δ

But if for all b, we have X(b) < µ(T ) + ε, then no matter what strings b1, . . . , bm Bob
chooses, we have

µ′(T ) = (1/m)

m
∑

j=1

X(bj) < µ(T ) + ε

It follows that Pr[µ′(T ) ≥ µ(T ) + ε] ≤ δ as desired.

Remark 3.2 We note that the number of strings sent by Bob need only be (1/2ε2)·log(1/δ)
(i.e. the log N factor can be eliminated), since there is no need to do a union bound as
in the above proof when proving Bob’s guarantee. However, the symmetry of the protocol
as presented above has the advantage that it can actually be implemented in one round in
a model of simultaneous communication (where honest parties can send messages at the
same time, but a cheating party may wait to see the other party’s message before sending
its own message), as is typically used in many-party protocols (e.g. leader election and
collective coin-flipping). This reduces the round complexity of our Iterated Random Shift
Protocol below to log∗N +O(1) in the simultaneous communication model. It is interesting
to know whether our lower bound of log∗N − log∗ log∗N − O(1) rounds (in Section 4.2)
can be extended to the simultaneous communication model (without paying the factor of 2
in the trivial reduction to our non-simultaneous model), since we would then have a lower
bound in that model that is tight up to a factor of 1 + o(1).
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Figure 1: The Iterated Random Shift Protocol

Let M ∈ N be a “cutoff” parameter that is a power of 2, let U be a universe of size N .
We assume that N ≥ M 2, else we use the protocol below to select from U ′ = U × [M2]
and take the first component of the output.

Recursive Protocol: If N > M 2, let m = max{M, dlog3 Ne}, and let + be a fixed
group operation over universe U (e.g., addition mod N).

Alice Bob

a1, . . . , am ∈R U−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b1, . . . , bm ∈R U←−−−−−−−−−−−−−−−−−−−−−−−−−−−

Recursive execution on
U = [m]× [m]

⇓ Output (i, j)

Output x = ai + bj

If N = M2,

Alice Bob

Choose x using GGL [GGL98]
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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We now describe our Iterated Random Shift Protocol satisfying Theorem 1.2, which con-
sists of recursively applying the Random Shift Protocol until the universe size is small (say,
less than a fixed constant), after which we apply the Goldreich–Goldwasser–Linial [GGL98]
Protocol. We define the Iterated Random Shift Protocol in Figure 1.

Theorem 3.3 If M ≥ 1/ε3, then for any set T ⊆ U , the probability that the output of the
Iterated Random Shift Protocol lands in T is O(

√
µ + ε), assuming at least one player plays

honestly.

Corollary 3.4 For a sufficiently large constant M , the Iterated Random Shift Protocol
satisfies the Statistical Criterion. Equivalently, there exists a constant ε > 0 such that such
an Iterated Random Shift Protocol achieves max{εA, εB} ≤ 1− ε.

Observe that Theorem 3.3 is much stronger than what we need to show Corollary 3.4.
Using Theorem 3.3, we know that when one player is honest, for any “small” set T , the
probability the output falls in T is close to zero. The Statistical Criterion requires only that
this probability is not arbitrarily close to 1.

Proof of Theorem 3.3: The key idea is that in the ith application of the Random Shift
Protocol, we can bound the increase in density of any particular set T by at most some
small εi (with high probability) and these εi’s can be chosen so that

∑

i εi ≤ ε. The Iterated
Random Shift Protocol concludes by applying the GGL Protocol to this small universe, and
then Theorem 1.1 gives us the result.

We first note that the modification of the protocol in case N < M 2, of selecting from
U×[M2] and taking the first component, does not affect the property claimed in the theorem
(because the density of T × [M 2] in U × [M2] equals the density of T in U). Thus we assume
that N ≥M2, and let N0, N1, . . . , Nk∗ be the universe sizes in an execution of the Iterated
Random Shift Protocol, where k∗ is the first value of k such that Nk = M2. That is,

N0 = N

Nk = m2
k, for mk = max{M, dlog3 Nk−1e}

Note that for sufficiently large M , the sequence of Ni’s is strictly decreasing and there exists
a finite k∗ such that Nk∗ = M2.

Now, given a subset T ⊆ U , we track how T evolves through an execution of the Iterated
Random Shift protocol by the following for k = 0, . . . , k∗:

U0 = U Uk = [mk]× [mk]
T0 = T Tk = {(i, j) ∈ Uk : (ai + bj) ∈ Tk−1, 1 ≤ i, j ≤ mk}
µ(Tk) = |Tk|/|Uk|

where in the definition of Tk, (ai) and (bj) are the sequences of elements of Uk−1 chosen
by Alice and Bob in the kth application of the Random Shift Protocol, and + is the group
operation over Uk−1 used in the protocol.

Intuitively, Uk is the remaining universe (of size Nk) after k iterations and Tk represents
the portion of the remaining universe such that choosing (i, j) ∈ Tk will lead to an element
of T being the output of the whole protocol. We call µ(Tk) the “effective density” of T in
the kth iteration.
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Claim 3.5 There is a constant c such that for all N and M , we have

Pr
[

µ(Tk∗) ≥ µ(T ) + c · 2−M1/3
]

≤ c ·M−1/3,

provided at least one party plays honestly.

Proof of Claim: Recall that in the k’th iteration, we are applying the Random
Shift Protocol with parameter m = mk = max{M, dlog3 Nk−1e}. Define δk =

2−m
1/3
k , and εk = 1/m

1/3
k . Notice that mk ≥ (1/2ε2

k) · log(Nk−1/δk).
Inducting on Lemma 3.1 and using a union bound, we have that for any k,

Pr

[

µ(Tk) ≥ µ(T ) +
k
∑

i=1

εi

]

≤
k
∑

i=1

δi

Since the Nk’s are decreasing extremely fast, we have

k∗
∑

i=0

εi = O(εk∗)

= O(1/m
1/3
k∗ ))

= O(1/M1/3).

Similarly,
k∗
∑

i=1

δi = O(2−m
1/3
k∗ ) = O(2−M1/3

).

This completes the proof. �

Applying Claim 3.5 and using Theorem 1.1, we deduce that the probability that the
output lands in T is at most

O

(√

µ(T ) +
c

M1/3

)

+
c

2M1/3
= O

(

√

µ(T ) +
1

M1/3

)

= O
(

√

µ(T ) + ε
)

,

provided M ≥ 1/ε3. Theorem 3.3 is proven.

It finally remains to verify the round complexity of the Iterated Random Shift Protocol:

Proposition 3.6 For all sufficiently large M and all N , the Iterated Random Shift Protocol
over a universe U of size N with parameter M takes 2 log∗N + O(log M) rounds.

Proof: Each application of the Random Shift Protocol (except for the last) reduces
the universe size from N to dlog3 Ne2 < log7 N for sufficiently large N , and takes two
rounds. A lemma proven in [RZ98] states that if f(n) ≤ loga n for some constant a, then
f (log∗ n)(n) ≤ b for some constant b, where f (k) represents k = log∗ n repeated applications
of f . This implies that, if M is sufficiently large and the initial universe size is N ≥ M 2,
the Random Shift Protocol is applied at most log∗N times. (If N < M2, then we apply the
Random Shift Protocol at most log∗(NM2) = log∗N + O(log M) times.) By Theorem 1.1,
the GGL protocol on a universe of size at most M 2 takes at most 4 log M rounds.
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Thus, taking M to be a sufficiently large constant, we obtain a protocol with 2 log∗N +O(1)
rounds satisfying the Statistical Criterion, thereby proving Theorem 1.2. More generally,
we obtain a protocol of 2 log∗N + O(log(1/ε)) rounds such that the output lands in a sets
of density µ with probability at most O(

√
µ + ε). Note that we can take ε to be a slowly

vanishing function of N and still have O(log∗N) rounds.
In the next section, we will prove that the Iterated Random Shift Protocol has optimal

round complexity, up to a factor of 2 + o(1), among protocols achieving the Statistical
Criterion.

4 Lower Bounds on Statistical Guarantees

4.1 Tradeoffs between Statistical Guarantees

As a warmup to our main lower bound, in this section, we present a tradeoff between the
statistical guarantees εA and εB of Alice and Bob, resp.:

Proposition 4.1 In any random selection protocol Π over universe U achieving statistical
guarantees εA and εB, εA + εB ≥ 1− 1/N , where N = |U|.

Corollary 4.2 In any random selection protocol Π, max{εA, εB} ≥ 1/2− 1/(2N).

Proof:
Suppose we have a protocol where εA + εB < 1 − 1/N . Then we can partition the

universe into two sets, S and U − S, where |S| > εAN and |U − S| > εBN .
View the protocol as a game where Alice wins if the output lands in S and Bob wins if

the output lands in U −S. A well-known result in game theory is Zermelo’s theorem: that,
in such a game, one of the players will have a winning strategy (one that wins regardless
of how the other player plays). The basic reasoning is backwards induction on the game
tree: every leaf node can be labelled a-win or b-win, and then we inductively label the
remaining nodes depending on whether there exists a winning child for the current player
to select. If there is, the current player will choose that child and will thus have a winning
strategy from the current node. If there is not, then the opposing player will certainly win
from the current node, as all children of the node lead to nodes from which he or she has a
winning strategy.

This result implies one of the following:

• There exists strategy A∗ where Pr[f((A∗, B∗)) ∈ S] = 1, for any B∗. Taking B∗ = B
(Bob’s honest strategy), this contradicts the guarantee of εB given to Bob, since
|U − S| > εBN .

• There exists strategy B∗ where Pr[f((A∗, B∗)) ∈ U−S] = 1, for any A∗. This similarly
contradicts guarantee εA.

The main intuition behind the proof is that, at every stage, either there exists a move
that is good for the current player or all moves are good for the other player. In either
case, the result is good for one of the two players. All that is needed is a way to make sure
that every node on the bottom level can be defined as “winning” for someone, and that this
notion can propagate up the tree. As we will see, this type of reasoning will figure strongly
in the proof of our main lower bound. There, the primary challenge will be to handle the
cases when some nodes do not appear to be “winning” for either player.
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4.2 The Main Lower Bound

In this section, we prove Theorem 1.3, giving a lower bound on round complexity matching
the Iterated Random Shift Protocol up to a factor of 2 + o(1).

Theorem 4.3 (Thm. 1.3, restated) For any ε, µ > 0, there exists constant c such that
any random selection protocol on a universe of size N satisfying the Statistical Criterion
with parameters ε and µ requires at least log∗N − log∗ log∗N − c rounds.

Corollary 4.4 If there exists constant δ such that a protocol Π achieves εA, εB ≤ 1 − δ,
then there exists constant c such that Π has at least log∗N − log∗ log∗N − c rounds.

To prove this theorem, we must show that in a protocol with “few” rounds, one of the
two players will be able to find a set of small size that will contain the output with high
probability. We will refer to such a set (that the cheating player is trying to make the
output fall in) as the cheating set. The proof will rely to some degree on the probabilistic
method: we will show the existence of such a cheating set by assuming it is chosen, at least
in part, randomly. Specifically, we will prove:

Theorem 4.5 There exists a function f such that for any µ, ε > 0, r ∈ N and protocol Π
with r rounds, one of the following three cases holds:

1. When R is a randomly chosen set of density µ, and Alice plays a strategy maximizing
the probability that the output of the protocol falls in R assuming that Bob plays
honestly, she will succeed with probability 1− ε, on average over all possible R. That
is, we say that ER [maxA∗ {PrB [Π(A∗, B) ∈ R]}] ≥ 1− ε.

2. ER[maxB∗{PrA[Π(A, B∗) ∈ R]}] ≥ 1− ε.

3. When R is a randomly chosen set of density µ, both Alice and Bob can force the output
into R plus an additional o(N) elements with high probability. That is, the following
two conditions hold:

(a) ∃T , |T | ≤ f(r, ε, µ), such that

ER[max
A∗
{Pr

B
[Π(A∗, B) ∈ R ∪ T ]}] ≥ 1− ε

(b) ∃S, |S| ≤ f(r, ε, µ), such that

ER[max
B∗
{Pr

A
[Π(A, B∗) ∈ R ∪ T ]}] ≥ 1− ε

Moreover, f does not grow too fast in r. Specifically, there exists a function ζ(ε, µ) such
that f(r, ε, µ) is o(N) for all r ≤ log∗N − log∗ log∗N − ζ(ε, µ).

Putting the three conditions together, this theorem says that either one player can make
the output fall into a random set of certain density with high probability, or both players
can make the output fall into a set consisting of a randomly chosen set of certain density
and a certain bounded number of (non-random) elements. We call a protocol in Case 1 a
win protocol for Alice, Case 2 a win protocol for Bob, Case 3 a tie protocol for both.

To prove Theorem 4.3 using Theorem 4.5, suppose the protocol satisfied the Statistical
Criterion with parameters µ′ and ε′. Then we can set µ slightly less than µ′, ε slightly less
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than ε′, and Cases 1 and 2 would violate the Statistical Criterion. (By averaging, there
exists a fixed set R of density µ such that one of the players can force the output into R
with probability at least 1 − ε.) Case 3 would also violate it for sufficiently large N , if
f(r, ε, µ) is o(N), which holds unless r ≥ log∗N − log∗ log∗N −O(1).

Proving Theorem 4.5 will require an intricate analysis of the game tree using backwards
induction. Like the proof of Proposition 4.1, we will show how to “label” the nodes of
the game tree, where each label corresponds to a power of a player to force a particular
outcome. To build intuition for the full result, we begin by proving why the Statistical
Criterion cannot be achieved by any protocol of at most r rounds for r = 1, 2, 3, in the
process sketching the key ideas of Theorem 4.5.

4.2.1 Proof Ideas

We stress that the informal discussion in this section is only meant to convey the main ideas,
and the reader who prefers a more precise treatment right away can skip to Section 4.2.2.
For a visual depiction of the ideas presented in this section, the reader is directed to the
conference talk [San05].

r = 1. In a 1-round protocol, Alice sends a message that determines the output of the pro-
tocol. Certainly the Statistical Criterion cannot be achieved here: Alice can fix the output
and so the output will fall with probability 1 in a set of density 1/N , which will be less than
any µ for sufficiently large N . (Note that this is not sufficient to establish Theorem 4.5 for
the case r = 1, but this will be done by our proof below that 2-round protocols cannot meet
the Statistical Criterion.)

r = 2. In a 2-round protocol, the output is a function of an initial message β from Bob
and then a message α from Alice. Suppose such a protocol satisfies the Statistical Criterion
with parameters µ, ε.

Note that Bob’s message β defines a distribution Dβ whereby Alice chooses the output.
We divide the analysis into cases depending on the size of the support Sβ = Support(Dβ):

r = 2, Case I. There exists a Bob message β such that |Sβ | ≤ s(µ, ε), where s(µ, ε) is
a sufficiently large constant to be defined later. In this case, Bob can force the output
into the set Sβ with probability 1 by sending β as his message. This certainly violates the
Statistical Criterion, since s(µ, ε)/N < µ for sufficiently large N .

r = 2, Case II. For every Bob message β, |Sβ | > s(µ, ε). Then the key observation is
that, for an appropriate choice of the function s(µ, ε), if Alice chooses a set R of density µ
at random, then R∩Sβ 6= ∅ with probability 1− ε over her choice R and Bob’s choice β, in
which case Alice will be able to select an output in R. This corresponds to a win for Alice
in Theorem 4.5.

Basically what we have done is proven a simple case of Theorem 4.5 for the 1-round
protocol induced by Bob’s message β, where Case I corresponds to Case (3b) of the The-
orem (taking S = Sβ), and Case II corresponds to Case (1) of the Theorem (win for Alice).

r = 3 Assume Alice goes first, sending a message γ, after which Bob sends a message β, and
Alice sends a message α. We will again denote by Sγ,β the set of possible outputs when the

13



messages γ and β are fixed and α varies. Fix µ and ε that purportedly satisfy the Statistical
Criterion.

First, inductively we observe that no “child” (i.e., 2-round protocol based on Alice’s
first message γ) can be a win for Alice (i.e., such that for all β, |Sγ,β | > s(µ, ε)), because
then by choosing this child Alice can contradict the Statistical Criterion by the analysis in
Case II of the proof for r = 2. It follows that for every child γ, Bob can choose a message
β such that |Sγ,β | ≤ s(µ, ε). The basic issue now is that although Bob knows he will have
the ability to choose a small support, he doesn’t know which small support he will be able
to choose, as this is a function of Alice’s first message.

r = 3, Case I. For every Alice message γ, there exists a collection of s′(µ, ε, s(µ, ε)) choices
for β that yield disjoint sets Sγ,β . Then, generalizing the probabilistic argument from above,
we observe that for an appropriate choice of the function s′, if Bob chooses a cheating set
R of density µ at random, then with probability greater than 1 − ε (over the choice of
Alice’s message γ and Bob’s choice of R), there will exist a β such that Sγ,β ⊆ R. Bob can
subsequently send the message β, forcing the output to fall in R. But the output falling
into R, µ(R) ≤ µ, with probability greater than 1− ε contradicts the Statistical Criterion.
This protocol is a win for Bob in Theorem 4.5.

r = 3, Case II. There exists an Alice message γ such that there do not exist s′(µ, ε, s(µ, ε))
disjoint small sets Sγ,β . The key here is the following fact (proven in Lemma 4.14): If a
collection S of nonempty sets, each of size at most s, does not have a disjoint subcollection
of size t, then there exists a set X of size at most t · s such that X ∩ S 6= ∅ for all S ∈ S.

The reason: let S ′ be the largest subcollection S ′ ⊆ S where Si∩Sj = ∅ for all Si, Sj ∈ S ′.
Then X =

⋃S ′ will certainly have |X| ≤ t ·s and moreover, X∩S 6= ∅ for all S ∈ S because
otherwise we contradict the assumption S ′ is the largest disjoint subcollection.

We conclude that when fewer than s′(µ, ε, s(µ, ε)) disjoint small supports exist, we can
produce a set X, |X| ≤ s′(µ, ε, s(µ, ε)) · s(µ, ε) intersecting every small support. Now, Alice
can set her cheating set to be X∪R, where R is randomly chosen of density µ′ < µ. She can
send γ as her first message. Then, if Bob chooses a message β leading to a small support
Sγ,β , by design X∩Sγ,β 6= ∅ and Alice can make the output fall in her set X∪R. Otherwise,
Bob will choose a large support Sγ,β , and so R∩ S 6= ∅ with probability greater than 1− ε.
Either way, since µ(X ∪ R) < µ for sufficiently large N , we will contradict the Statistical
Criterion.

r = 4. We do not present this case in detail, but rather just outline its high-level structure,
which reflects the structure of the full induction required to prove Theorem 4.5. Suppose
Bob goes first, sending a message δ and assume the Statistical Criterion holds for ε′ and µ′.

Certainly, if there exists a choice of δ producing an induced subprotocol that is a win for
Bob, (i.e., a choice whereby for every Alice message γ, there are more than s′(µ, ε, s(µ, ε))
disjoint sets Sδ,γ,β), then this protocol is a win for him and he can violate the Statistical
Criterion by choosing that message δ and then applying the strategy from the r = 3 analysis.
Similarly, if for all messages δ Bob can send, the induced subprotocol is a win for Alice,
then this protocol is a win for Alice too (this would correspond to the case where, for every
message Bob can send, there exists a message Alice can send wherein Bob would be forced
to send a large support to Alice).

Otherwise, some messages δ lead to a protocol corresponding to the r = 3, Case II
(where the induced subprotocol is a tie, as in Case 3a of Thm. 4.5): Alice can pick a
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message γ, so that there is a set X of size s′′ = s′(µ, ε, s(µ, ε)) · s(µ, ε) intersecting every
small set Sδ,γ,β . Just as before, the problem for Alice is that the set X to use depends on
Bob’s first message δ. As above, we partition the analysis into two cases, depending on
whether or not there are many disjoint possibilities for the set X. If yes, then a random set
will encompass such a set X with high probability, and it is a win for Alice. If not, there
is a small set Y intersecting all these choices for X. Here, however, the use of this fact to
construct an effective strategy for Bob is more subtle than in the r = 3 case.

Many of the technical ideas used in the full proof of Theorem 4.5 already occur in
the cases above. However, setting up a claim suitable for proof by induction is somewhat
delicate, and is done via the lengthy statements of Definition 4.8 and Lemma 4.10 in the
next section. Jumping ahead, the reason why the induction will stop at log∗ n rounds is
that the sizes of the “small” sets (e.g. the functions s, s′, s′′ in the intuition above) grow
like a tower with the number of rounds.

4.2.2 Proof of Theorem 4.5

We proceed by backwards induction on the game tree of the protocol.

Definition 4.6 Given a protocol Π with r rounds and constants ε and µ, let f(r, ε, µ) =
g(r, r, ε, µ), where

g(0, r, ε, µ) = 1

g(k, r, ε, µ) = (r/ε) · (re/µ)g(k−1,r,ε,µ) · g(k − 1, r, ε, µ)

For clarity we write sk for g(k, r, ε, µ), as r, ε, and µ will remain fixed throughout the proof.
A concept that will prove helpful is that of a maximal disjoint subcollection.

Definition 4.7 Let S be a collection of sets over a given universe U . Then a maximal
disjoint subcollection P of S is a collection P ⊆ S satisfying S ∩ T = ∅ for all S, T ∈ P,
and for every T ∈ S \P, there exists S ∈ P such that S ∩ T 6= ∅.

Such a subcollection always exists, so we will refer to the canonical maximal disjoint
subcollection to be one chosen by some fixed but arbitrary method.

Now, fix a protocol Π with r rounds, and consider the game tree T it induces (see
Definition 2.2). At each node of this tree, we will associate a certain collection of sets
(subsets of the universe U). These sets will correspond to the sets S and T of case (3) of
Theorem 4.5. This association will be defined inductively on the game tree.

Specifically, we inductively label the nodes of the tree as either a-win, a-lose, a-tie,
b-win, b-lose, or b-tie. For each of the tie nodes, we will also associate a collection Sz

of subsets of U , as defined below. The ‘a’ or ‘b’ just tells us whose turn it is, and as we will
see, win, lose, and tie will say something about the power of the player whose turn it is
at that point.

Definition 4.8 Fix a protocol Π. Let z be a node on its game tree at level k (where leaves
are at level 0). Assume it is Alice’s turn at this node.

If k = 0 (i.e., z is a leaf of the tree) then label z as a-tie. Moreover, let Sz = {{x}}, where
x is the output of the protocol ending at node z.

If k > 0, consider the children z1, . . . , z` of z. Use the following rules to label the nodes:
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1. If there exists 1 ≤ i ≤ ` such that zi is in case b-lose, then label z as a-win.

2. If, for all 1 ≤ i ≤ `, zi is in case b-win, then label z as a-lose.

3. Otherwise, denote Tz = {S : zi is b-tie and S ∈ Szi}. That is, Tz is the union of the
collections of sets associated with all children of z that are labelled b-tie. Now, let
P denote the canonical maximal disjoint subcollection of Tz, as defined above, and let
sk, sk−1 be defined as in Definition 4.6.

Two cases:

(a) |P| ≥ sk/sk−1 ⇒ label z as a-win.

(b) |P| < sk/sk−1 ⇒ label z as a-tie, and define Sz to be {S ⊆ U : |S| ≤ sk and
S ∩ T 6= ∅ for all T ∈ Tz}. That is, the sets associated with z consist of all sets
that intersect all of the sets associated to the children zi (which will be in case
b-tie, since those are the only nodes to which we associate sets), and have size
≤ sk.

Likewise, label all nodes at which it is Bob’s turn, by swapping a with b in the above
specification.

Intuitively, this structure defines the power of the players at various stages of the proto-
col. The win, lose, and tie nodes refer to cases (1), (2), and (3) of Theorem 4.5. Moreover,
the collections Sz correspond to S and T in Case (3) of Theorem 4.5.

We codify this power in Lemma 4.10. Before stating it, it will help to define the following:

Definition 4.9 Let Π = (A, B, f) be a protocol, and let T be its equivalent game tree
(see Definition 2.2). For any node z = (m1, . . . , mr−k) on level k of the tree T , let Πz =
(Az, Bz, fz) be a protocol of k rounds, where fz(m

′
1, . . . , m

′
k) = f(m1, . . . , mr−k, m

′
1, . . . , m

′
k),

and where Az and Bz denote the strategies of A and B conditioned on history z (i.e. we
choose their coin tosses rA and rB uniformly from those consistent with the history).

Intuitively, Πz is the protocol induced by starting the protocol at node z (i.e., assuming
all messages leading to z are fixed in advance).

Lemma 4.10 Fix ε and µ, and suppose the protocol has r turns. Let z be some node on
the tree at level k, at which it is Alice’s turn to play. Throughout, let R be a uniformly
random subset of U of density kµ/r.

1. If z is in case a-win, then

ER

[

max
A∗

{

Pr
B

[Πz(A
∗, B) ∈ R]

}]

≥ 1− kε/r

where R is a random subset of U of density kµ/r, and Πz is the protocol induced by
beginning at node z, as defined in Definition 4.9. (We say Alice can “win” from node
z).

2. If z is in case a-lose, then similarly,

ER

[

max
B∗

{

Pr
A

[Πz(A, B∗) ∈ R]

}]

≥ 1− kε/r

(We say Bob can “win” from node z).
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3. If z is in case a-tie, then:

(a) Sz and, if k > 0, Tz, are nonempty.

(b) When k > 0, then for any T ∈ Tz,

ER

[

max
A∗

{

Pr
B

[Πz(A
∗, B) ∈ R ∪ T ]

}]

≥ 1− kε/r

(c) For any S ∈ Sz,

ER

[

max
B∗

{

Pr
A

[Πz(A, B∗) ∈ R ∪ S]

}]

≥ 1− kε/r

(We say both Alice and Bob “win” from node z, with “helper sets” T and S, respec-
tively).

Moreover, the same (with “Alice” exchanged for “Bob”, and “a” exchanged for “b”)
holds for all nodes for which it is Bob’s turn.

Lemma 4.10 more precisely asserts Theorem 4.5 at each level of the game tree. To use
this lemma to prove Theorem 4.5, we simply need to apply it with k = r and z being the
root of the game tree. Certainly, if zr is in Case (1) or (2) of Lemma 4.10, it is in Case (1)
or (2) of Theorem 4.5, respectively. If zr is in Case (3) of Lemma 4.10, then subcases (3.a),
(3.b), and (3.c) directly prove subcases (3.a) and (3.b) respectively, where the sets of Sz and
Tz of (3.a) and (3.b) correspond precisely to the sets T and S we need in those subcases of
the theorem. The existence of such sets is guaranteed by subcase (3.a) of the lemma.

We prove Lemma 4.10 by induction on the levels of the tree.

Base Cases:
k = 0: So z is a leaf node, and the output of Πz is just deterministically fixed at, say, x.
According to Definition 4.8, Sz = {{x}}, and we are in case a-tie. Since the density of R
must be zero (it is kµ/r), R = ∅ and so we need to show that

max
B∗

{

Pr
A

[Πz(A, B∗) ∈ {x}]
}

= 1

This of course holds because the output is fixed at x.

k = 1: We assume without loss of generality that it is Alice’s turn at node z. No-
tice first that all of the children of z are in case b-tie, by the reasoning in the k = 0
case. Consequently, z must be labelled a-win or a-tie. Which case we’re in depends
directly on the size of the canonical maximal disjoint subcollection P of Tz (Tz, recall,
is {S : zi is b-tie and S ∈ Szi}). Notice that since k = 1, all of the children of z
are labelled b-tie and Tz = {{x} : ∃i such that x is the output at zi}. It follows that
|P| = |{x : ∃i such that x is the output at zi}|. |P| is precisely the size of the support of
the distribution by which Alice chooses the output of the protocol.

k = 1, Case 1: Suppose |P| ≥ s1/s0 = s1. Then by Rule 3a of Definition 4.8, z is in case
a-win. Thus, we must verify that ER[maxA∗{PrB[Πz(A

∗, B) ∈ R]}] ≥ 1− ε/r, where R is a
random subset of the universe of density µ/r. That is, if at node z Alice plays to maximize
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the probability that the output falls in a set R of density µ/r, her average probability of
success over choices of R will be 1− ε/r.

We use the following lemma, which intuitively says that if we have a large number of
disjoint small sets, then one would expect a randomly chosen set of constant density to
contain one of them with high probability.

Lemma 4.11 Suppose we have a collection of disjoint sets S1, . . . Sm over a fixed universe
U , |U| = n, where for all i, |Si| ≤ s. Choose a set R randomly of density µ (i.e., n · µ
distinct elements). With probability ≥ 1−(1/m)(e/µ)s, there will exist Si such that Si ⊆ R.

The proof is by Chebyshev’s inequality, and is deferred to the appendix.
We know P consists of m ≥ s1 disjoint sets. So, by Lemma 4.11, a randomly chosen set

of density µ/r will contain an element of P with probability ≥ 1− (1/m)(re/µ) (recall the
sets have size 1), where m ≥ s1 = (r/ε)(re/µ). Thus, it will contain an element of P with
probability 1− ε/r. (Notice that Lemma 4.11 explains the way we defined the constants sk

in Definition 4.6.)
In such an event, when the random set R contains an S ∈ P, we claim there exists a

strategy A∗ for Alice whereby Πz(A
∗, B) ∈ R. By definition, S = {x}, where x is the output

at some leaf zi that is a child of z. To force the output into R, Alice can play the strategy A∗

which selects zi on her turn at node z. Whenever R contains S ∈ P this strategy succeeds
with probability 1, and since this event occurs for at least a 1− ε/r fraction of the choices
of R, it follows that ER[maxA∗{PrB[Πz(A

∗, B)]}] ≥ 1− ε/r.

k = 1, Case 2: Suppose P consists of m < s1 elements, and thus z is in case a-tie. To
prove z satisfies Lemma 4.10 in this case, we must verify the following: (a) Sz and Tz are
nonempty, (b), for any T ∈ Tz,

ER

[

max
A∗

{

Pr
B

[Πz(A
∗, B) ∈ R ∪ T ]

}]

≥ 1− ε/r

and (c), for any S ∈ Sz,

ER

[

max
B∗

{

Pr
A

[Πz(A, B∗) ∈ R ∪ S]

}]

≥ 1− ε/r

Tz is certainly nonempty; each child zi of z is a b-tie node, and Tz consists of singletons
of each’s output.

Since |P| ≤ s1, and since all of the elements of Tz are singletons, it follows that fewer
than s1 distinct elements appear in the sets of Tz. A set S consisting of precisely these
elements will be a set of size less than s1 intersecting every set in Tz—thus S ∈ Sz by
definition, and Sz is nonempty. This verifies condition (a) above.

To verify condition (b), notice that node z is Alice’s turn, and so Bob has no influence
on the output of the protocol. Moreover, any T ∈ Tz consists of a single element x that is
the output of the protocol at a child zi. Thus, for any such T , Alice can play the strategy
A∗ which selects the corresponding child zi. Thus, PrB[Πz(A

∗, B) ∈ T ] = 1, and a fortiori,
ER[maxA∗{PrB[Πz(A

∗, B) ∈ R ∪ T ]}] ≥ 1 − ε/r. This will succeed with probability 1, as
well.

To verify condition (c), recall that any set S ∈ Sz must intersect every set in Tz, which,
when k = 1, implies that it contains the entire support by which Alice will choose the
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output. Thus, PrA[Πz(A, B∗) ∈ S] = 1 by definition, which is again stronger than what we
need.

Inductive Step. Suppose Lemma 4.10 holds for nodes on all levels up to level k − 1. We
will show that it holds for an arbitrary node z on level k. Assume it is Alice’s turn at z.
There are several possibilities:

Claim 4.12 If z is in case a-lose, then

ER

[

max
B∗

{

Pr
A

[Πz(A, B∗) ∈ R]

}]

≥ 1− kε/r

where R is a random subset of density kµ/r.

Proof: We will use Definition 4.8 and the inductive hypothesis to show that every child
node zi is “good” for Bob–that is, on average over R, B∗ can make the outcome land in
R with probability 1 − (k − 1)ε/r. Then certainly the same holds for node z, since Alice
cannot help but move to such a node.

Formally, we first notice that it suffices to show:

ER′

[

max
B∗

{

Pr
A

[

Πz(A, B∗) ∈ R′
]

}]

≥ 1− (k − 1)ε/r

where R′ is a ranges over all sets of density (k − 1)µ/r.
Now, for z to be labelled a-lose, we must have used Rule 2 of Definition 4.8. Thus, all

of the children of z are in case b-win. By the inductive hypothesis:

ER′

[

max
B∗

{

Pr
A

[

Πzi(A, B∗) ∈ R′
]

}]

≥ 1− (k − 1)ε/r (1)

for each child zi of z, where R′ ranges over all sets of density (k − 1)µ/r. Since at node z
it is Alice’s turn, we have

ER′

[

max
B∗

{

Pr
A

[

Πz(A, B∗) ∈ R′
]

}]

= ER′,zi←Dz

[

max
B∗

{

Pr
A

[

Πzi(A, B∗) ∈ R′
]

}]

≥ 1− (k − 1)ε/r,

where Dz is the distribution according to which Alice chooses child zi of z when playing
honestly, and the last inequality is by (1).

Claim 4.13 If z is in case a-win, then

ER

[

max
A∗

{

Pr
B

[Πz (A∗, B) ∈ R]

}]

≥ 1− kε/r

where R is a random subset of density kµ/r.

Proof: By Definition 4.8, z could have been labelled a-win either by Rule 1 or Rule 3a.
In Rule 1, z has a child zj that is in case b-lose. Since it is Alice’s turn at node z, if

she can choose a node zj “good” for her then node z will be “good” for her too.
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Formally, by the inductive hypothesis applied to zj , we have that

ER

[

max
A∗

{

Pr
B

[

Πzj (A
∗, B) ∈ R

]

}]

≥ 1− (k − 1)ε/r

But maxA∗ {PrB [Πz(A
∗, B) ∈ R]} will always be at least maxA∗

{

PrB

[

Πzj (A
∗, B) ∈ R

]}

,
since node z is Alice’s turn and she can always at least choose zj . Taking expectations of
both sides, the claim is proven for this case.

The alternative possibility is that z is in a-win because of Rule 3a. So among the sets
Tz (for all children zi in b-tie), we can find a disjoint subcollection P, where |P| ≥ sk/sk−1.

Intuitively, what is going on here? Since no b-lose nodes are available among the
children of z, Alice cannot simply choose such a branch as above. However, we know that
from the b-tie nodes, for a high proportion of sets R, Alice can ensure the output lands in
S ∪R where S ∈ Szi , with high probability. But this is true for many possible sets S—not
only at a given child, but also across all the potential children that are in case b-tie (i.e.,
any S ∈ Tz). Thus, we can expect that with enough disjoint sets in Tz, the random set R
will encompass S ∈ Tz with high probability. The inductive hypothesis will then give the
desired result.

Using Lemma 4.11, since P ⊆ Tz consists of at least sk/sk−1 = (r/ε)(re/µ)sk−1 (disjoint)
sets of size at most sk−1, we can conclude:

ER1 [∃S ∈ Tz, S ⊆ R1] ≥ 1− ε/r (2)

where R1 is a random subset of density µ/r.
For any S ∈ Tz, we can then assert:

ER2

[

max
A∗

{

Pr
B

[Πz(A
∗, B) ∈ R2 ∪ S]

}]

≥ 1− (k − 1)ε/r (3)

where R2 is a random subset of density (k−1)µ/r. This comes from applying the inductive
hypothesis to the child zj such that S ∈ Szj , and since maxA∗ {PrB [Πz(A

∗, B) ∈ R2 ∪ S]}
is always at least maxA∗

{

PrB

[

Πzj (A
∗, B) ∈ R2 ∪ S

]}

(because at node z it is Alice’s turn).
Now, considering the selection of a random subset R of density kµ/r to be the random

and independent choices of subsets R1 and R2 of densities µ/r and (k − 1)µ/r respectively
(compensating for any overlap by adding random elements), we can combine (2) and (3) to
derive

ER

[

max
A∗

{

Pr
B

[Πz(A
∗, B) ∈ R]

}]

≥ (1− ε/r) · (1− (k − 1)ε/r)

The claim follows.

The final possibility is that z is in case a-tie. Since z is not a leaf, this can only come
about by Rule 3b from Definition 4.8. That is, no children of z are in case b-lose, and at
least some are in b-tie. Moreover, among Tz the canonical maximal disjoint subcollection
P has less than sk/sk−1 elements.

We must prove the following: Sz is nonempty, Tz is nonempty, Alice can win from this
node with a helper set from Tz, and Bob can win from this node with a helper set from Sz

(see Lemma 4.10).
We will require the following combinatorial lemma:
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Lemma 4.14 Let S be a collection of nonempty sets S1, . . . Sm over a finite universe U ,
|U| = N , where for all i, |Si| ≤ s. Suppose that S has a maximal disjoint subcollection
of size t. Then there exists a set X that intersects every S ∈ S (i.e., X ∩ S 6= ∅), and
|X| ≤ t · s.

That is, either a collection of small sets has many disjoint members or it has a small
“intersect-set”—a set intersecting each member of the collection. Intuitively, the union of
a maximal disjoint subcollection must intersect every set, for otherwise one could add the
disjoint set to form a larger disjoint subcollection.

Proof: Given a maximal disjoint subcollection P = {S1, . . . , St}, we can define X =
⋃

1≤i≤t Si. That |X| ≤ t · s follows from the assumption that all S ∈ S have |S| ≤ s. Since
S 6= ∅ for any S ∈ S, X ∩ S 6= ∅ for any S ∈ P. Now, suppose there exists S /∈ P such
that X ∩ S = ∅. But then, by the definition of X, P ∪ {S} consists of t + 1 disjoint sets,
contradicting the assumption that P was a maximal disjoint subcollection. So X ∩ S 6= ∅
for all S ∈ S.

Claim 4.15 Sz 6= ∅ and Tz 6= ∅.

Proof: By Lemma 4.14, since the canonical maximal disjoint subcollection P of Tz has
size ≤ sk/sk−1 and since all S ∈ P have size ≤ sk−1, there exists a set X of size at most
(sk/sk−1) · sk−1 = sk intersecting every set in Tz. By Definition 4.8, X ∈ Sz.

We have already established that z has children in case b-tie (this follows from Defini-
tion 4.8 and from our assumption that z ∈ a-tie). By the inductive hypothesis on such a
child zi, Szi , and thus Tz is nonempty.

Claim 4.16 ER[maxA∗{PrB[Πz(A
∗, B) ∈ S ∪R]}] ≥ 1− kε/r where R is a random subset

of density kµ/r, and S is any element of Tz.

The proof of this claim is identical to the proof of equation (3) in the proof of Claim
4.13.

The final claim required to prove Lemma 4.10 is the following:

Claim 4.17 ER[maxB∗{PrA[Πz(A, B∗) ∈ S ∪R]}] ≥ 1− kε/r where R is a random subset
of density kµ/r, and S is any element of Sz.

This claim is the heart of the entire proof. All we know now is that there is at least one
b-tie node that is a child of the current node z, and that among the corresponding sets in
Tz, the canonical maximal disjoint subcollection P ⊆ Tz contains fewer than sk/sk−1 sets.
That P is so small is a limitation on the power of Alice, who would like there to be enough
such disjoint sets in P that she could choose randomly and encompass a set in P with high
probability. The key to this proof is converting this limitation on Alice into an ability for
Bob to cheat.

Proof: Fix a set S ∈ Sz. Since an honest Alice will choose a child zi at random, it suffices
to prove the following for each child zi:

ER

[

max
B∗

{

Pr
A

[Πzi(A, B∗) ∈ S ∪R]

}]

≥ 1− kε/r (4)
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where R is a random subset of density kµ/r. So fix an arbitrary child zi. Looking to
Definition 4.8, the only way we could have defined z to be in case a-tie is if all children zi

are either in case b-win or case b-tie. So zi is in one of these two cases.
If zi is in case b-win, then we are done by the inductive hypothesis. So suppose zi

is in case b-tie. Applying the inductive hypothesis to zi, we know that Tzi is nonempty.
Moreover, for any T ∈ Tzi :

ER1

[

max
B∗

{

Pr
A

[Πzi(A, B∗) ∈ T ∪R1]

}]

≥ 1− (k − 1)ε/r (5)

where R1 is a random subset of density (k − 1)µ/r.
We divide the proof in two cases: First, suppose there exists T ∈ Tzi such that T ⊆ S.

Then (4) follows immediately from (5). Otherwise, consider the collection of sets T =
{T − S : T ∈ Tzi}. By assumption, ∅ /∈ T .

Claim 4.18 Let T be defined as above. Assuming ∅ /∈ T , then there exists a disjoint
subcollection T ′ ⊆ T , where |T ′| ≥ sk−1/sk−2.

Informally, there aren’t many disjoint sets in Tzi—if there were, we would have labelled
zi as a case b-win node for Bob. That said, by intersecting every (small) set that intersected
every set in Tzi , S captures the lack of disjointness of Tzi in the first place. This claim states
that once the elements of S are removed from consideration, the result has a large number
of disjoint sets.

Proof: Suppose for the sake of contradiction that T contains fewer than sk−1/sk−2

disjoint sets. Recalling that these sets all have size at most sk−2, and since ∅ /∈ T , by
Lemma 4.14 we can produce a set I of size at most (sk−1/sk−2) · sk−2 = sk−1 intersecting
every element of T . Without loss of generality, we can assume I ∩ S = ∅ (since for every
T ′ ∈ T , S ∩ T ′ = ∅). Since I intersects every set in T , it follows that I intersects every set
of Tzi , and since we know I has size at most sk−1, we conclude that by definition, I ∈ Szi .
But we defined S to be an arbitrary element of Sz, which means it intersects all elements
of Szi , including I. Contradiction. Thus, T contains at least sk−1/sk−2 disjoint sets.

Returning to the proof of Claim 4.17, by Lemma 4.11 we may conclude the following:

Pr
R2

[

∃T ′ ∈ T , T ′ ⊆ R2

]

≥ 1− ε/r

where R2 is a random subset of density µ/r. By the definition of T , this in turn implies:

Pr
R2

[∃T ∈ Tzi , T ⊆ S ∪R2] ≥ 1− ε/r

Using (5) and choosing R through independent choices of R1 and R2 as in the proof of
Claim 4.13, we are done.

Taking together Claims 4.12, 4.13, 4.15, 4.16, and 4.17, the proof of Lemma 4.10 is
complete.

To conclude Theorem 4.5, it remains to prove the function f defining the set sizes sk

does not grow too fast in the number of rounds. Intuitively, the reason the lower bound only
holds for protocols with fewer than log∗ n− log∗ log∗ n−O(1) rounds is that these “helper
sets” must have no more than o(N) elements to be useful, but this function f grows as a
tower—where both the base and the height of the tower grow with the number of rounds.
Our challenge is to lower bound the number of rounds that keep this tower of size o(N).
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Lemma 4.19 Recall the definition f(r, ε, µ) = g(r, r, ε, µ), where we define

g(0, r, ε, µ) = 1

g(k, r, ε, µ) = (r/ε)(re/µ)g(k−1,r,ε,µ)g(k − 1, r, ε, µ)

There exists a function ζ(ε, µ) such that, when r < log∗N − log∗ log∗N − ζ(ε, µ), we have
f(r, ε, µ) ≤ log N .

By applying Lemma 4.10 to the root of the tree and using Lemma 4.19, we prove
Theorem 4.5 and thus Theorem 4.3.

5 Multiplicative Guarantees

5.1 Defining Multiplicative Guarantees

Recall Definition 5: the multiplicative difference of a distribution X from uniform is
maxT Prx←X [x ∈ T ]/µ(T ), where T ranges over all subsets of U .

The multiplicative difference is always a rational in [1, N ], where 1 implies the uniform
distribution, and N implies one element is chosen with probability 1. The multiplicative
difference of a distribution is actually equal to the factor by which a single element’s prob-
ability of being the protocol’s output can be increased from uniform. Formally:

Lemma 5.1 The multiplicative difference of a distribution X from uniform is equal to

max
s∈U

(

N · Pr
x←X

[x = s]

)

Proof: Fix a distribution X. That the multiplicative difference is at least maxs N ·
Prx←X [x = s] follows because we can consider the subset T = {s}, where s maximizes
Prx←X [x = s].

For the other direction, let T be the set maximizing Prx←X [x ∈ T ]/µ(T ). We claim
there exists an element s ∈ T such that the following holds:

Pr
x←X

[x ∈ T ]/µ(T ) ≤ N · Pr
x←X

[x = s]

To see this, consider an arbitrary set T = {x1, . . . xt}. Then we have:

Pr
x←X

[x ∈ T ] =
∑

xi∈T

Pr
x←X

[x = xi] ≤ t ·max
i

Pr
x←X

[x = xi].

This implies that there exists an i such that

Pr
x←X

[x = xi] ≥
Prx←X [x ∈ T ]

t
=

Pr[x← X]

µ(T ) ·N .

Multiplicative and statistical difference are different, but related. Both work by bound-
ing a function of the probability a distribution falls in a set and the density of that set.
Even so, multiplicative difference tends to focus on the concentration of probability into
small sets (indeed, by Lemma 5.1, sets of size 1), while statistical difference will prove more
useful when considering larger subsets (e.g., a constant fraction of the universe).

This said, we can prove some basic relationships between the two metrics that will prove
useful:
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Lemma 5.2 Let X be an arbitrary distribution over universe U , with N = |U|. Denote
by ε the statistical difference of X from uniform and by ρ the multiplicative difference from
uniform. Then:

1. ρ ≤ Nε + 1

2. ε ≤ 1− 1/ρ.

That a distribution will have statistical difference at most 1−1/ρ is especially interesting
because the relationship contains no dependence on N . This fact implies that a distribution
with a constant multiplicative difference will have a constant statistical difference, though
the converse is not necessarily true. Put another way, a strong multiplicative guarantee is
harder to achieve than a strong statistical guarantee.

Proof of Lemma 5.2: Suppose a distribution X has statistical difference ε from uniform.
Let ρ denote the multiplicative difference of X. Then by Lemma 5.1, we have:

ρ = N ·max
s∈U

Pr
x←X

[x = s]

But by the definition of statistical difference, we have for any x ∈ U ,

Pr
x←X

[x = s] ≤ ε + 1/N

(Just set T = {s}.) Part (1) of the lemma follows.

For the reverse direction, suppose X has multiplicative difference ρ. It suffices to show
that for all T :

Pr
x←X

[x ∈ T ]− µ(T ) ≤ 1− 1/ρ

If µ(T ) ≥ 1/ρ, then this certainly holds, since Prx←X [x ∈ T ] ≤ 1. So suppose µ(T ) <
1/ρ. Then we can derive:

Pr
x←X

[x ∈ T ] =
∑

s∈T

Pr
x←X

[x = s] ≤ |T | · (ρ/N) = µ(T )ρ

Plugging back into the above, we have:

Pr
x←X

[x ∈ T ]− µ(T ) ≤ µ(T )ρ− µ(T ) = (ρ− 1)µ(T ) < (ρ− 1)/ρ

5.2 Multiplicative Lower Bounds

In this subsection, we concentrate on lower bounds regarding multiplicative guarantees–
and indeed show that no protocol exists that provides constant multiplicative guarantees to
either player. This is a very strong limitation on the ability of protocols to limit cheating
player’s power in this regard.
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An Initial Lower Bound. Proposition 4.1 can be adapted to provide a quick lower
bound for multiplicative guarantees. Specifically:

Proposition 5.3 In any random selection protocol, (ρA− 1)/ρA +(ρB − 1)/ρB ≥ 1− 1/N .
Moreover, εA + (ρB − 1)/ρB ≥ 1− 1/N (or equivalently, εA ≥ 1/ρB − 1/N).

Proof: The results follow immediately from Theorem 4.1 and from the second part of
Lemma 5.2.

This lower bound for multiplicative guarantees is not very strong—ρ is a number from 1
to N , but this lower bound is satisfied (for instance) as long as both ρA and ρB are at least
2. In Theorem 5.4 we will prove that ρAρB ≥ N , which is a substantially stronger result.

On the other hand, when looking at one player getting a statistical guarantee and the
other player getting a multiplicative guarantee, Proposition 5.3 does provide some useful
information. Specifically, it tells us that (minus a small 1/N term) we can always expect
the statistical guarantee for one player to be worse than the reciprocal of the multiplicative
guarantee to the other player. This explains inverse relationships in existing protocols of
[DGW94] (where ε = 1/poly(n) and ρ = poly(n)) and [GSV98] (where ε = poly(n) · 2−k

and ρ = 2k for any k).6 Notice that these earlier works focus on the case of nonconstant
guarantees (ε → 0 and ρ → ∞). Later, we show that the Iterated Random Shift Protocol
presented earlier achieves simultaneous constant statistical and multiplicative guarantees,
and prove it has optimal round complexity up to a factor of 2 + o(1).

A Tight Lower Bound. The lower bound follows from the work of Goldreich, Gold-
wasser, and Linial [GGL98].

Theorem 5.4 [GGL98] For any protocol Π, ρA · ρB ≥ N .

Corollary 5.5 In any protocol Π, max{ρA, ρB} ≥
√

N .

Recalling the multiplicative guarantee ρA is the greatest factor by which Bob can improve
the probability that a single element is chosen over uniform, we conclude:

In any random selection protocol, at least one of the players can improve the probability
that a single element is chosen by a factor exponential in the length of the output (which
equals log N).

Goldreich et. al. [GGL98] showed a more general result than Theorem 5.4 (for multiparty
protocols) using different language and a moderately involved proof. Restricting to the two-
party case, as we will see, provides a simple and elegant proof.

Proof of Theorem 5.4: Fix some element v of the universe. Now, consider the game
tree T of the protocol (see Definition 2.2). At each node z of the tree, denote the protocol
induced by beginning at node z to be Πz. Then define:

φz
A = max

A∗
Pr
B

[Πz((A
∗, B)) = v]

φz
B = max

B∗
Pr
A

[Πz((A, B∗)) = v]

pz = Pr
A,B

[Πz((A, B)) = v]

6Actually, the protocol of [GSV98] does not provide a multiplicative guarantee of 2k, but rather ensures
that the probability that the output lands in any set T of density µ is at most 2k ·µ+o(1). Our lower bound
also applies to this more general type of guarantee.
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That is, φz
A (resp. φz

B) is the highest probability Alice (resp. Bob) can make the the
output to be v, given that the protocol is now at node z and that Bob (resp. Alice) is
playing honestly. pz is the probability that v is chosen starting from z and assuming both
player play honestly.

The following lemma is the heart of the proof:

Lemma 5.6 For every node z on T , φz
A · φz

B ≥ pz.

To prove the theorem from Lemma 5.6, take z to be the root of the tree. Then we have
that φA ·φB ≥ p, where φA (resp. φB) is the probability that Alice (resp. Bob) can force the
output to be v, and p is the probability that v is chosen when both players play honestly.
Notice that v was arbitrary, so we certainly can choose v such that p ≥ 1/N . By definition,
ρA ≥ φB/(1/N) = φB ·N , and likewise ρB ≥ φA ·N . But then we have:

ρA · ρB ≥ (φA ·N)(φB ·N) ≥ pN2 ≥ N

Proof of Lemma 5.6: We will prove the lemma by backwards induction on the levels
of the tree.

When z is a leaf, the protocol is complete. If v is the output of the protocol at leaf z,
then φz

A = φz
B = pz = 1. Otherwise, φz

A = φz
B = pz = 0. In either case, the lemma holds.

Now, suppose that the lemma holds for all children of z—denote them z1, . . . zm. Thus,
we know φzi

Aφzi
B ≥ pzi for all children zi. Suppose also, without loss of generality, that at

node z it is Alice’s turn.
Suppose an honest Alice chooses child node zi with probability λi. Then pz =

∑

λipzi ,
and φz

B =
∑

λiφ
zi
B . This latter equality holds because the probability v will be chosen when

Alice is honest will just be the sum of the probabilities v will be chosen from each child,
weighted by the probability of reaching that child. When considering φz

A, however, Alice
will have the option of cheating. She will simply choose the child that affords her the best
probability of successfully forcing the output to be v. That is, φz

A = maxzi φzi
A , and so in

particular for all i, φz
A ≥ φzi

A .
Now just compute:

φz
Aφz

B = φz
A

∑

λiφ
zi
B ≥

∑

λiφ
zi
Aφzi

B ≥
∑

λipzi = pz

This completes the proof of the lemma, and thus the theorem is proven.

What is the intuition for this result? It is best to try to understand the intuition for the
lemma—that φz

A · φz
B ≥ pz. From there it is only symbol manipulation to determine that

ρA · ρB ≥ N .
To see this, suppose that there were only one path down the tree that led to v being

chosen as the output. At each node along that path, starting from the root, there is a certain
probability that the given player will choose the (unique) next node in the path when it
plays honestly. So the probability that v is chosen is the product of these probabilities when
both players play honestly. If Alice is cheating, then the probability v will be chosen is the
product of the probabilities at nodes where it’s Bob’s turn. Likewise, the probability that v
is chosen when Bob is cheating is the product of the probabilities at nodes where it’s Alice’s
turn. In this case, the lemma holds with equality.
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Intuitively, then, the probability v is chosen honestly is the product of the two cheating
probabilities because choosing v honestly requires both Alice and Bob to happen to choose
the right paths (i.e., to the leaf where v is selected), whereas choosing v with one player
cheating requires only the honest player to happen to choose correctly (the cheating player
will always choose the right path).

It remains to understand why multiple paths yielding v only help the cheaters. This
makes sense, because it merely provides more options to the cheating player—if two routes
exist that both could yield output v, the cheating player can now choose the more attractive
option.

Note that, unlike Theorem 4.1, this result relies centrally on the assumption that, when
one player is cheating, the other player is playing honestly. This assumption is certainly one
of the key drivers of the result, as it then allows us to relate the probability of an element
being chosen by both players being honest to the probability it is chosen when one cheats.

This lower bound is tight:

Proposition 5.7 For all positive integers N ≥ K, there exists a 2-round protocol for se-
lecting from a universe of size N satisfying ρA = K and ρB = N/K.

Proof: Consider the following protocol Π(A, B) over universe U of size N , which we call
the Random Set Protocol with parameter K :

1. Alice chooses a random subset T of U of size K.

2. Bob chooses a random element x ∈ T .

3. The output is x.

Claim 5.8 ρB = N/K.

Proof of Claim: Using Lemma 5.1,

ρB = max
s∈U

max
A∗

(

N · Pr
B

[Π((A∗, B)) = s]

)

But for every s ∈ U and fixed A∗, since we assume Bob plays honestly,
PrB[Π((A∗, B)) = s] ≤ 1/K. Conversely, considering the strategy A∗ that sends
any fixed set S to Bob, PrB[Π((A∗, B)) = s] = 1/K for any s ∈ S. �

Claim 5.9 ρA = K.

Proof of Claim: Again, by Lemma 5.1,

ρA = max
s∈U

max
B∗

(

N · Pr
A

[Π((A, B∗)) = s]

)

If Alice plays honestly, then in order for Π((A, B∗)) = s, she must select it,
which occurs with probability K/N . Bob can achieve this probability for any
s ∈ U assuming he always selects s when available. �
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Note that one negative aspect of the Random Set Protocol is that it is not efficient—
sending a description of the random subset requires communication linear in N (rather
than polylog(N)). It should be emphasized that this is not necessary to achieve ρAρB = N :
other very simple and efficient protocols achieve this tradeoff. Specifically, instead of using
all sets of size K, we can use any subcollection such that every element of [N ] is contained
in the same number of sets. For example, if N = K · L for an integer L, then we can view
the universe as [K]× [L] and use only the sets of the form Sa = [M ]×{a} for each a ∈ [L],
so the communication becomes log L + log K = log N .

The optimality of such a trivial protocol tells us that, ultimately, multiplicative guaran-
tees are not by themselves very interesting metrics of study for two-party random selection
protocols. Optimal protocols are very easy to come by, and protocols that do not feel very
effective prove to be the best possible. We must look to other metrics that are more capable
of separating out protocols that are intuitively “good” from those that are not.

That said, it is interesting to consider multiplicative guarantees as one half of the
equation: producing a protocol with an optimal tradeoff of statistical guarantee to one
player and multiplicative guarantee to the other player is certainly nontrivial. Though we
will not be able to match the lower bound of Proposition 5.3, in the next subsection we show
that the Iterated Random Shift Protocol presented earlier achieves simultaneous constant
statistical and multiplicative guarantees, and prove it has optimal round complexity up to
a factor of 2 + o(1).

5.3 The Multiplicative Guarantees of the Iterated Random Shift Protocol

In this section we discuss the multiplicative guarantees provided by the Iterated Random
Shift Protocol. Although we have seen how lower bounds require that one of the players
(in this case, Alice) receives a very poor multiplicative guarantee, we can show that Bob
receives a very strong guarantee. In this way, we can say something about the ability of a
protocol to provide a strong multiplicative guarantee to one player, while providing a strong
statistical guarantee to the other.

Theorem 4.3 implies a lower bound on the round complexity of protocols achieving
simultaneous statistical and multiplicative guarantees:

Theorem 5.10 For every two constants εA < 1 and ρB, there exists a constant c such that
any protocol Π selecting from a universe of size N and achieving statistical guarantee εA

and multiplicative guarantee ρB will have at least log∗N − log∗ log∗N − c rounds. Similarly
for ρA and εB.

This theorem follows immediately from Theorem 4.3 and the second part of Lemma 5.2.
We can show that the Iterated Random Shift Protocol achieves this:

Theorem 5.11 There exist constants ε < 1 and ρ such that the Iterated Random Shift
Protocol with the cutoff parameter M taken to be a sufficiently large constant achieves
guarantees ρB ≤ ρ and εA ≤ ε.

This is the first protocol achieving constant statistical and multiplicative guarantees we
know of, and according to the lower bound of Theorem 5.10 it has optimal round complexity
up to a factor of 2 + o(1).

Given Theorem 1.2, it suffices to show the following:
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Proposition 5.12 Let Π be a Iterated Random Shift Protocol defined with constant cutoff
parameter M . Then Π provides a constant multiplicative guarantee to Bob: there exists
constant ρ such that, as long as Bob plays honestly, the output of the Iterated Random Shift
Protocol will fall in a set T with probability at most M 2 · µ(T ), for any set T .

Proof of Proposition 5.12: Fix an arbitrary set T ⊆ U . Recall the definition of the
following variables in the proof of Theorem 1.2: N0, N1, . . . , Nk∗ are the universe sizes in
an execution of the Iterated Random Shift Protocol, k∗ is the first value of k such that
Nk = M2, mk = max{M, dlog3 Nk−1e} is the parameter used in the k’th execution of the
Random Shift Protocol, and we define:

U0 = U Uk = [mk]× [mk]
T0 = T Tk = {(i, j) ∈ Uk : (ai + bj) ∈ Tk−1, 1 ≤ i, j ≤ mk}
µ(Tk) = |Tk|/|Uk|.

The following is the key lemma:

Lemma 5.13 Assuming Bob plays honestly, E[µ(Tk)] = E[µ(Tk−1)] for all k = 1, . . . , k∗.

Proof: Consider the Random Shift Protocol. Let a1, . . . , am be given. Then if b1, . . . , bm

are chosen uniformly at random, it follows that for each i, j, the element ai + bj is uniform
over U (since + is a group operation), and thus Pr[ai + bj ∈ T ] = µ(T ). By linearity of
expectations, we can conclude that E[#(ai + bj) ∈ T ] = µ(T ) ·m2 (where m2 is the size of
the new universe), and thus E[µ(T ′)] = µ(T ), where µ(T ′) is the residual density of T in
the resulting universe.

Applying this logic within the Iterated Random Shift Protocol, the lemma is proven
(since for given µ(Tk−1), we know E[µ(Tk)] = µ(Tk−1)).

By induction, we then have that for all k, E[µ(Tk)] = µ(T ). In particular, this is true
for k = k∗. We can then derive:

µ(T ) = E[µ(Tk∗)]

≥ (1/M2)] · E[|Tk∗ |]
≥ (1/M2) · Pr[|Tk∗ | > 0]

Since if |Tk∗ | = 0, the protocol’s output cannot possibly fall in T , we conclude that the
probability the output falls in T is at most M 2 · µ(T ). This proves the proposition, and
thus Theorem 5.11.

As an aside, notice that by using Lemma 5.2, this logic allows us to conclude one half of
Theorem 1.2: the Iterated Random Shift Protocol provides a constant statistical guarantee
to Bob.

We can conclude that the Iterated Random Shift Protocol has the following properties:

• It has only 2 log∗N + O(1) rounds.

• It provides both Alice and Bob with constant statistical guarantees (equivalently, it
satisfies the Statistical Criterion).
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• It provides Bob with a constant multiplicative guarantee.

Notice that in the above proof, we never used the multiplicative guarantee properties
of the GGL Protocol–we simply relied on the initial recursions of Random Shift to provide
the strong guarantee to Bob.

In fact, by changing the protocol used when the universe size becomes of size M 2 in
the definition of the Iterated Random Shift Protocol, we can improve even further the
multiplicative guarantee given to Bob. The current protocol only implies that Bob gets
some constant multiplicative guarantee. By using the Random Set Protocol on the universe
of size M2 with parameter K = M 2/(1 + γ) instead of GGL, however, (see definition in
Proposition 5.7), Bob can achieve a multiplicative guarantee 1+γ, while still keeping Alice’s
statistical guarantee constant (when γ is constant).
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A Assorted Proofs

We include in this appendix the proofs of two lemmas required for the main lower bound.

A.1 Growth of f(r, ε, µ)

Lemma 4.19 Recall the definition f(r, ε, µ) = g(r, r, ε, µ), where we define

g(0, r, ε, µ) = 1

g(k, r, ε, µ) = (r/ε)(re/µ)g(k−1,r,ε,µ)g(k − 1, r, ε, µ)
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There exists a function ζ(ε, µ) such that, when r < log∗N − log∗ log∗N − ζ(ε, µ), we have
f(r, ε, µ) ≤ log N .

Proof: First, bound r by log∗N . Again, for shorthand we will write sk for g(k, r, ε, µ).
Thus, we have that

sk = (r/ε)(re/µ)sk−1sk−1

Notice that this is no more than (r2e/(εµ))sk−1 . (xy ≤ xy if x, y ≥ 2.) Letting d = r2e/(εµ),
we can then bound sk by tk, where tk is defined by t0 = 1 and tk = dtk−1 .

This means that we can set k = log∗d N − 1 and still have sk ≤ tk ≤ log N (recall that
by our definition, log∗b N is always an integer, for any b or N). It only remains to relate this
to a base 2 logarithm:

Claim A.1 If d ≥ 4, log∗d N ≥ log∗N − log∗(2 log d).

Proof: Recall log(k) N is k iterated logarithms of N . We claim the following:

Claim A.2 For k ≤ log∗d N , d ≥ 4, log(k) N ≤ (2 log d) log
(k)
d N .

Proof: The base case k = 0 is clear. Assume, then, that log(k−1) N ≤ (2 log d) log
(k−1)
d N .

Applying log to both sides, we have that:

log(k) N ≤ log(2 log d) + log(log
(k−1)
d N)

= log(2 log d) + (log
(k)
d N)(log d)

≤ (2 log d)(log
(k)
d N)

where the last line follows because for d ≥ 4, d ≥ 2 log d and for k ≤ log∗d N , log
(k)
d N ≥ 1.

Plugging in k = log∗d N , then we have that log(log∗d N) N ≤ 2 log d. Applying log∗(2 log d)
logarithms to both sides, we have log(log∗d N+log∗(2 log d)) N ≤ 1. Since log∗N is defined to be
the least k such that log(k) N ≤ 1, it follows that log∗N ≤ log∗d N + log∗(2 log d).

Thus we have that we can set k to be at least log∗d N − 1 and sk will be no more than
log N . Moreover,

log∗d N − 1 ≥ log log∗N − log∗(2 log d)− 1

= log∗N − log∗(2 log((r2e)/εµ))− 1

≥ log∗N − log∗ log∗N − ζ(ε, µ)

for an appropriately chosen constant ζ, since we can bound r by log∗N .

32



A.2 Encompassing Small Sets with a Random Set

Lemma 4.11 Suppose we have a collection of disjoint sets S1, . . . Sm over a fixed universe
U , |U| = n, where for all i, |Si| ≤ s. Choose a set R randomly of density µ (i.e., n · µ
elements). With probability ≥ 1− (1/m)(e/µ)s, there will exist Si such that Si ⊆ R.

Proof : The proof is an application of Chebyshev’s inequality.
Define random variable Xi to be 1 if Si ⊆ R, 0 otherwise, and set X =

∑

Xi. We are
interested in upper-bounding the probability that X = 0. By Chebyshev’s inequality, we
have:

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ E[X]]

≤ Var[X]/E[X]2

=





∑

i

Var[Xi] +
∑

i6=j

Cov[Xi, Xj ]



 /E[X]2

Claim A.3 ∀i 6= j, Cov[Xi, Xj ] ≤ 0

Intuitively, the fact that Si ⊆ R makes it less likely that Sj ⊆ R.

Proof of Claim:
More formally, let |Si| = p, |Sj | = q, |R| = r and assume without loss of

generality that p ≤ q. Since Si and Sj are disjoint, E[Xi] =
(

n
p

)

/
(

r
p

)

(sim. for

Xj), and E[XiXj ] =
(

n
p+q

)

/
(

r
p+q

)

. Then:

E[XiXj ]

E[Xi]E[Xj ]
=

(

r
p+q

)(

n
p

)(

n
q

)

(

n
p+q

)(

r
p

)(

r
q

)

=

(

r!

(p + q)!(r − p− q)!

n!

p!(n− p)!

n!

q!(n− q)!

)

·
(

(p + q)!(n− p− q)!

n!

p!(r − p)!

r!

q!(r − q)!

r!

)

=
n!(n− p− q)!(r − p)!(r − q)!

r!(r − p− q)!(n− p)!(n− q)!

=

(

n(n− 1) . . . (n− p + 1)

r(r − 1) . . . (r − p + 1)

)

·
(

(r − q)(r − q − 1) . . . (r − p− q + 1)

(n− q)(n− q − 1) . . . (n− p− q + 1)

)

≤
(

n− p

r − p

)p( r − q

n− q

)p

≤
(

n− p

r − p

)p( r − p

n− p

)p

= 1

Since Cov[Xi, Xj ] = E[XiXj ]− E[Xi]E[Xj ], the claim follows.
�
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We can thus remove the covariance term from the upper bound:

Pr[X = 0] ≤
(

∑

i

Var[Xi]

)

/E[X]2

≤
(

∑

i

E[Xi]

)

/E[X]2

= 1/

(

∑

i

E[Xi]

)

≤ 1

m
·
(

n
s

)

(

r
s

)

≤ 1

m
·
(ne

r

)s

=
1

m
·
(

e

µ

)s
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