On the expansion of the giant component in percolated \((n, d, \lambda)\) graphs

Eran Ofek

Department of Computer Science and Applied Mathematics
Weizmann Institute, Rehovot 76100, Israel
eran.ofek@weizmann.ac.il

September 18, 2005

Abstract

Let \(d \geq d_0\) be a sufficiently large constant. A \((n, d, c\sqrt{d})\) graph \(G\) is a \(d\)-regular graph over \(n\) vertices whose second largest (in absolute value) eigenvalue is at most \(c\sqrt{d}\). For any \(0 < p < 1\), \(G_p\) is the graph induced by retaining each edge of \(G\) with probability \(p\). It is known that for \(p > \frac{1}{d}\) the graph \(G_p\) almost surely contains a unique giant component (a connected component with linear number vertices). We show that for \(p \geq \frac{1}{c}\) the giant component of \(G_p\) almost surely has an edge expansion of at least \(\frac{1}{\log_2 n}\).

1 Introduction

This paper deals with the affect of percolation on the edge expansion property of algebraic expander graphs. These are \(d\)-regular graphs in which the second largest eigenvalue (in absolute value) \(\lambda\) of their adjacency matrix is smaller than \(d/5\). We call such a graph a \((n, d, \lambda)\) algebraic expander. A more intuitive (combinatorial) notion of expansion for a finite graph \(G\) is the edge expansion, defined as:

\[c_E(G) = \inf_{S \subset \mathcal{V}_G, |S| < |G|/2} \frac{|\partial E S|}{|S|}, \]

where \(\partial E S\) denotes the set of edges with exactly one vertex in \(S\). It is known (due to Tanner, Alon and Milman [5], [22]) that algebraic expansion implies also a lower bound on the edge expansion: for a \((n, d, \lambda)\) algebraic expander it holds that \(c_E(G) \geq \frac{d-\lambda}{2}\). (There is also an inequality in the opposite direction: \(c_E(G) \leq \sqrt{2d(d-\lambda)}\), see [1] for details).

Expander graphs received a considerable amount of attention in the literature in recent years, mostly because these graphs have numerous applications in theoretical computer science; see, for example, [6, 14, 21, 19]. It is well known

1
that for any fixed $d \geq 3$, random d-regular graphs of size n are asymptotically almost surely expanders, as n grows. The problem of constructing infinite families of bounded degree expanders is more difficult, and there are several known constructions of this type [17, 16, 20, 8]. The result in this paper applies to the constructions of [16, 20, 8].

Various applications of expanders rely on their fault-tolerance as networks. For example, after deleting an appropriate constant fraction of the edges (arbitrarily), the remaining graph still contains some linear size connected components or some linear size paths; see [3, 23]. We show that for algebraic expanders if the deletions are random and independent then with high probability (with probability that tends to 1 as n increases) the giant component has an edge expansion proportional to $\frac{c \sqrt{d}}{\log_2 n}$. Up to constants, this bound is tight since with probability bounded away from 0, the giant component will contain a $\frac{\log_2 n}{2c \sqrt{d}}$ long "chain" of vertices each of them, except the first and the last ones, has degree of exactly 2 in the giant component. The edge expansion of such a "chain" is $\frac{4c \sqrt{d}}{\log_2 n}$.

Given a graph G, we use G_p to denote the subgraph of G obtained by retaining each edge of G independently with probability p. The graph G_p is the percolated version of G. For any graph property of G one can ask if this property is almost surely retained in G_p. A well studied example is the existence and the uniqueness of a giant component. Roughly speaking, a giant component is a connected component of G_p that contains linear fraction of vertices. A question of the same flavour can be asked also for an infinite graph G: for which values of p, G_p is likely to contain an infinite cluster (connected component) ? is the infinite cluster likely to be unique ? For several types of graphs, e.g. the d dimensional grid, the finite/infinite versions turned out to be related. For many interesting graphs the probability of containing a giant component (or infinite cluster in the infinite case) exhibits a sharp threshold around some value called the critical probability (this is due to $0/1$ laws). The critical probability is denoted by p_c. For values of p slightly smaller than p_c the probability for giant component is close to 0 and for p slightly larger than p_c the probability for giant component is close to 1. Benjamini and Schramm [7] showed that if G is an infinite graph with a positive vertex Cheeger constant $\alpha_c(G) > 0$ (the Cheeger constant can be defined with respect to the vertex boundary), then the critical probability for the existence of an infinite cluster in G_p is $< \frac{1}{1 + \alpha_c(G)} < 1$. They also observed that their proof can be applied to the finite case. Their technique can be easily applied also to the edge Cheeger constant as shown in [18].

A family of expanders is a sequence of d-regular graphs $G(n)$, where $G(n)$ has n vertices and edge expansion of least $b > 0$ (independent of n). Alon, Benjamini and Stacey [2] studied the existence and uniqueness of a giant component when percolation is applied to families of edge expander graphs. One of their results is about expander families with increasing girth (the girth of a graph G is the length of minimum size cycle in it). They show that for an expander family $G(n)$, with girth($G(n)$) that goes to infinity as n increases, the critical probability p_c for the existence (and uniqueness) of a giant component is exactly $\frac{1}{d-1}$.
Specifically, for any fixed ϵ, and $p \geq \frac{\log n}{d^2} \mu$ a.h.p. (with high probability, i.e. with probability that goes to 1 as n, the size of graph, goes to infinity) G_p contains a connected component with a linear number of vertices. The fraction of vertices in the giant component depends on ϵ. The girth, the edge expansion, d and ϵ influence the speed in which the probability for a g.c. (giant component) goes to 1. For $p \leq \frac{\log n}{d^2}$, w.h.p. G_p breaks into connected components of sub-linear size.

It is further shown in [2] that if $G(n)$ is an infinite family of d-regular graphs, each one with edge expansion of at least $b > 0$, then for p sufficiently close to 1 (which depends on b) $G(n)_p$ is w.h.p. a $\frac{\log n}{d}$ expander. They leave as an open problem the values of p which are close (from above) to the critical probability p_c. Notice that p_c can be as small as $\frac{\log n}{d^2}$ as in the case of an infinite family of expanders with girth that goes to infinity.

Percolation of (n, d, λ) graphs has been previously studied by Frieze, Krivelevich and Martin [12]. They gave tight results about the existence and the uniqueness of the giant component when $\lambda = o(d)$. Specifically, for $p < \frac{1}{d}$ the graph G_p almost surely contains only connected components of size $O(\log n)$. For $p > \frac{1}{d}$ the graph G_p has almost surely a unique giant component and all other components are of size at most $O(\log n)$.

1.1 Our result

Theorem 1.1. Let $d \geq d_0$ be a fixed constant, let G be a $(n, d, c\sqrt{d})$ algebraic-expander and let $p \geq \frac{\log n}{c\sqrt{d}}$ (assuming $\frac{\sqrt{d}}{c} < 1$). W.h.p. the edge expansion of the giant component in G_p is at least $\frac{c\sqrt{d}}{\log n}$.

Theorem 1.1 implies that in the case of algebraic expanders even when $p << 1$ the giant component has edge expansion $\geq \frac{1}{\log n}$. In contrast, the result in [2] is based on a weaker assumption (edge expansion greater than ϵ) but it implies that the giant component has edge expansion $\geq \frac{1}{\log n}$ only for values of p close to 1. While Theorem 1.1 requires a somewhat stronger assumption (spectral gap) from G, it implies that the giant component in G_p has expansion $\geq \frac{1}{\log n}$ also for values of p close to 0 (depending on the degree d and $\lambda = c\sqrt{d}$).

The main idea in the proof of Theorem 1.1 is to iteratively remove from G_p vertices of low degree until we are left with an induced subgraph G^k_p that has minimal degree $\geq \frac{2\log n}{d}$. Using known techniques it can be shown that for large enough d this process removes only small fraction of the vertices. Moreover, the obtained subgraph G^k_p has edge expansion bounded away from 0. To show that the giant component of G_p has expansion $\geq \frac{1}{\log n}$ (which is best possible up to constants) we need to handle sets of the giant component that contain vertices from $OUT \triangleq V \setminus G^k_p$. To do this it is enough to show that in the graph induced by G_p on OUT, the connected components are smaller than $\log n$. Following the work of Alon and Kahale [4] on coloring random 3-colorable graphs, several papers [9, 11, 13, 10] dealt with similar versions of this problem: proving that a set OUT which is the outcome of some procedure applied to a random graph
has no large connected components. Yet, in all the above cases the graph model was a simple variant of the $G_{n,p}$ model. Our result can be though of as a "derandomization" of the previous results as we deal with predetermined constant degree "pseudo-random" graphs for which there is less randomness in the induced model.

Remarks:

1. Possibly, Theorem 1.1 can be extended also for values of $p > \frac{c}{\sqrt{d}}$, using the same proof technique. To keep the proof simple, we did not try to optimize this constant.

2. Theorem 1.1 holds also for d which is a function of n if one of the following holds: $c\sqrt{d} = \lambda = \omega(\log d)$ or $d = o(n)$.

1.2 Notation

For a set $U \subset V$, $G[U]$ denotes the subgraph induced by the edges of G on the vertices of U. We use $e(S, S)$ to denote twice the number of edges having only vertices in S. The graph induced by retaining each edge of G independently with probability of p is denoted by G_p. The degree of a vertex v inside a graph G is denoted by $\deg v$. The second largest eigenvalue (in absolute value) of G is denoted by λ. We use the term with high probability (w.h.p) to denote a sequence of probabilities that tends to 1 as n, the size of G, goes to infinity.

1.3 Spectral gap and pseudo-randomness

In the following proofs we will use the fact that a graph G with a noticeable spectral gap is pseudo-random. This is formulated by the following Lemma also known as the expander mixing lemma (see [6] for proof).

Lemma 1.2. Let G be a d-regular graph with second largest (in absolute value) eigenvalue λ. Then, for any $S,T \subseteq V$:

$$|e(S,T) - \frac{d}{n} |S||T| | < \lambda \sqrt{|S||T|},$$

where $e(S, T)$ is the number of directed edges from S to T in the adjacency matrix of G.

In terms of undirected edges (when G is undirected), $e(S, T)$ equals the number of edges between $S \setminus T$ to T plus twice the number of edges that contain only vertices of $S \cap T$.

Corollary 1.3. Let G be a $(n, d, c\sqrt{d})$ algebraic expander. For any set U of size $\leq \frac{c\sqrt{d}}{k\sqrt{d}}$ the average degree in $G[U]$ is at most $c\sqrt{d}(1 + 1/k)$.

4
Proof. The number of edges inside \(G[U] \) is \(e(U, U)/2 \) since every edge whose both endpoints are in \(U \) is in fact two directed edges from \(U \) to \(U \). It follows that the average degree in \(G[U] \) is \(e(U; U) = 2 \) since every edge whose both endpoints are in \(U \) is in fact two directed edges from \(U \) to \(U \). It follows that the average degree in \(G[U] \) is \(e(U; U) = 2 \) since every edge whose both endpoints are in \(U \) is in fact two directed edges from \(U \) to \(U \).

By the expander mixing lemma:

\[
e(U; U) \leq \frac{d[U]^2}{n} + cvd[U] \leq cvd[U] \left(1 + \frac{vd[U]}{cn} \right) \leq cvd[U](1 + 1/k)
\]

We will frequently use the fact that small enough sets in \(G \) are rather sparse, as stated in Corollary 1.3. When \(c \) close to its smallest possible value for constant degree graphs (i.e. \(\lambda = cv\sqrt{d} \approx 2\sqrt{d - 1} \), see [1] for details) there is a slightly stronger bound on the density of small sets given by [15]. We do not use this stronger bound as it gives asymptotically the same result for large values of \(c \).

2 Proof of Theorem 1.1

We use a process similar to [23] which is aimed to reveal a large edge expanding subgraph of \(G_p \). Let \(S_0 = \{ v \in G_p : \deg_{G_p}^v \notin \left(\frac{d[U]}{\sqrt{d}}, \frac{d[U]}{2\sqrt{d}} \right) \} \). We begin by removing from \(G_p \) the vertices of \(S_0 \). The new induced graph, which we denote by \(G^0_p \), may contain vertices whose degree in \(G^0_p \) is \(< \frac{d[U]}{\sqrt{d}} \), because removing \(S_0 \) affect the degrees of the remaining vertices. We then obtain a sequence of subgraphs \(G^i_p \) by iteratively removing from \(G^i_p \) any vertex whose degree in \(G^{i-1}_p \) is \(< \frac{d[U]}{\sqrt{d}} \). The process stops once the minimal degree in the remaining graph \(G^k_p \) is at least \(\frac{3}{2} pd \). We denote the set \(V \setminus V(G^k_p) \) by OUT.

Remark: Since \(d \) is fixed and \(n \rightarrow \infty \) it holds that the constant \(c \) (from \(\lambda = cv\sqrt{d} \)) is at least 1 (in fact \(c \geq 1 - o(1) \) even if \(d \) grows with \(n \) but it is \(o(n) \)). We will use this fact occasionally.

2.1 Proof overview

The main idea in the proof of Theorem 1.1 is as follows. We remove from \(G_p \) low degree vertices until the induced graph \(G^k_p \) has a large enough minimal degree. We first show that \(G^k_p \) itself has edge expansion of at least \(\frac{3pd}{13} \) and contains almost all the vertices of \(G \) (thus it must be contained in a giant component); this part of the proof uses standard techniques. We then show that in \(G_p[OUT] \) the largest connected component is of size at most \(\log_2 n \) (this implies the uniqueness of the giant component). The above two facts imply that any set that belongs to the giant component and is entirely in \(V(G^k_p) \) or entirely in \(OUT \), has expansion \(\geq \frac{1}{\log_2 n} \). Using also the property that any vertex of \(V(G^k_p) \) has at most \(\frac{3pd}{13} \) neighbors in \(OUT \) we then prove that any set of the giant component with size \(\leq n/2 \) has edge expansion \(\geq \frac{1}{\log_2 n} \).

The expected degree in \(G_p \), which is \(pd \), is large enough so that only few vertices are removed in the process of extracting \(G^k_p \) (namely \(OUT \) is small).
The giant component (inside the dashed line).

The minimal degree in G_p is $3pd / 5$. A set S smaller than cn^p / \sqrt{d} contains at most $c|S|\sqrt{d}$ internal edges (by Corollary 1.3), thus for such sets the expansion is at least $3pd / 5 - 2c\sqrt{d} \geq \frac{pd}{13}$. To establish the edge expansion of larger sets, a standard argument using the Chernoff and union bounds suffices. In Section 2.2 we give the full proof of the following Lemma.

Lemma 2.2. W.h.p. the graph G_p has an edge expansion of at least $\frac{pd}{13}$.

To show it we use the following idea used in [4, 23]. Initially, the set S_0 is small (roughly $e^{-\Omega(c\sqrt{d})}n$). Every vertex which is removed in the iteration process has at least $\frac{pd}{5}$ edges to vertices that were previously removed. Thus if the iteration process is too long, the set $V \setminus V(G_p)$ becomes too dense with contradiction to Corollary 1.3.

Lemma 2.1. W.h.p. the number of vertices in G_p is at least $(1 - e^{-\frac{1}{12}c\sqrt{d}})n$.

The proof of Lemma 2.1 is deferred to Section 2.2.

Following the work of Alon and Kahale [4] on coloring random 3-colorable graphs, several papers [9, 11, 13, 10] dealt with similar versions of this problem.
proving that a set \(OUT \) which is the outcome of some procedure applied to a random graph has no large connected components. Yet, the analysis they gave is rather complicated. The reason for the difficulty is that \(OUT \) is not a random set independent of \(G_p \); its vertices are in fact correlated and depend on the edges of \(G_p \). A new aspect of the current paper is simplifying the proof that \(OUT \) has only small connected components. This is done using a reduction which will be described shortly. The outcome of the reduction is that instead of having to prove that w.h.p. \(G_p[OUT] \) has no large trees, we need only to prove that w.h.p. \(G_p[OUT] \) has no large balanced trees. A balanced tree is a tree in which at least \(\frac{1}{3} \) of its vertices are low degree vertices in \(G_p \). Proving that \(G_p[OUT] \) contains no balanced trees can be done directly by applying the union bound over all possible sets that may form large trees in \(G_p \).

We will now explain the reduction. We show that w.h.p. any maximal connected component \(U \) in \(G_p[OUT] \) is \(\frac{1}{3} \)-balanced, i.e. at least \(\frac{1}{3} \) of its vertices are from \(S_0 \). The argument is as follows: every vertex removed in iterations 1, 2, ..., \(k \) has at least \(\frac{pd}{5} \) edges to previously removed vertices. Thus, if at least \(\frac{2}{3} \) of the vertices of \(U \) are added during the iterations then the average degree in \(G[U] \) is at least \(\frac{4}{3}2c\sqrt{d} \). On the other hand, since \(|U| < e^{-\frac{1}{4\sqrt{d}}}n \) by Corollary 1.3 the average degree in \(G[U] \) is at most \(c\sqrt{d}(1 + e^{-\frac{1}{4\sqrt{d}}}) \), which yields a contradiction. Having established that w.h.p. every maximal connected component in \(G[OUT] \) is balanced, our problem (showing that w.h.p. there are no large connected components in \(G[OUT] \)) is reduced to showing that w.h.p. any maximal balanced connected component of \(G[OUT] \) is of size \(\log_2 n \). Since proving the claim on balanced trees is simpler (it is a private case) we translate the claim into a claim on trees. This is done by showing that any \(\frac{1}{3} \)-balanced connected component of \(G[U] \) of size \(\geq \log_2 n \) contains a \(\frac{1}{3} \)-balanced tree whose size is in \([\log_2 n, 2\log_2 n] \); this follows from following Lemma whose proof is deferred to Section 2.2.

Lemma 2.3. Let \(G \) be a connected graph whose vertices are partitioned into two sets: \(S \) and \(I \). Let \(k \) be a lower bound on the fraction of \(S \) vertices, where \(k \) is an integer. For any \(1 \leq t \leq |V(G)|/2 \) there exists a tree whose size is in \([t, 2t - 1] \) and at least \(\frac{t}{k} \) fraction of its vertices are from \(S \).

To summarize, in order to show that \(G_p[OUT] \) has no connected components of size \(\log_2 n \) we need only to prove the following Claim.

Claim 2.4. W.h.p. \(G_p[OUT] \) has no balanced trees of size in \([\frac{1}{2} \log_2 n, \log_2 n] \).

Proof. We want to bound the probability that \(G_p[OUT] \) contains any \(\frac{1}{3} \)-balanced tree of size in \([t/2, t] \) (we fix the parameter \(t \) later). Such a tree is called "bad".

\[
\sum_{T \text{ is a tree}} \Pr[T \subset OUT \land T \text{ is } \frac{1}{3}-\text{balanced}] \]

The number of trees of size \(t \) in a \(d \)-regular graph \(G \) is at most \(nd^{2t} \), since each tree can be uniquely mapped into a closed path of length \(2t \). For each tree of size \(t \) there are at most \(2^t \) ways of choosing a subset of size \(\geq t/3 \). Any fixed set of
size $\geq t/3$ is in S_0 with probability of at most $e^{-\frac{1}{2}tpdt/3}$. Thus the probability that there is a balanced bad tree in OUT is at most:

$$tnd^2t^e\frac{pd}{e^{pd}} \leq \exp(\log t + \log n + 2t \log d + t - \frac{1}{300}pd) \leq \exp(\log n + 3t \log d - \frac{c\sqrt{d}}{60}) = o(1),$$

(1)

for $t \geq \frac{61\log n}{c\sqrt{d}}$ (for fixed d and large enough n it holds that $c > 1$, see [1]).

Remark: Notice that in the last inequality we used $\frac{c\sqrt{d}}{60} \geq 3\log d$. This holds also when d is a function of n, if n is large enough and $d = o(n)$ (it is known that $c\sqrt{d} = \lambda \geq \sqrt{d - \frac{d^2}{n-1}}$).

Since all connected components of $G[OUT]$ are of size at most $\frac{61\log n}{c\sqrt{d}}$, sets from OUT that belong to the giant component have expansion of at least $c\sqrt{d} = \lambda \geq \sqrt{d - \frac{d^2}{n-1}}$.

Lemma 2.5. W.h.p. any set S that belongs to the giant component and whose size is at most $n/2$ has edge expansion of at least $\frac{c\sqrt{d}}{61\log n}$.

Proof. We already handled sets which are completely in OUT or completely in $V(G_p^k)$. Let S be a set of the giant component that intersects both OUT and $V(G_p^k)$. Denote by \bar{S} the complement of S in the giant component. Denote by S_1, S_2 the intersection of S with $OUT, V(G_p^k)$ respectively. We further partition S_1 into S_{11}, S_{12} as follows: S_{11} contains all the connected components of $G_p[S_1]$ that have at least one edge into \bar{S} and S_{12} contains all the connected components of $G_p[OUT]$ that have only edges to S_2. It is enough to show that:

$$|E(S_{11}, \bar{S})| \geq \frac{|S_{11}|c\sqrt{d}}{61\log n}, \quad |E(S_{12} \cup S_2, \bar{S})| \geq \frac{|S_{12} \cup S_2|}{18}.$$

The first inequality follows immediately from the definition of S_{11}. The second inequality is derived as follows: $|E(S_{12} \cup S_2, \bar{S})| \geq |E(S_2, \bar{S})| \geq |S_2|pd/13$. Thus

$$\frac{|E(S_{12} \cup S_2, \bar{S})|}{|S_{12}| + |S_2|} \geq \frac{|S_2|pd/13}{|S_{12}| + |S_2|} \geq \frac{1}{|S_{12}|(|S_{12}|/|S_2| + 1)} \geq \frac{1}{18},$$

where the last inequality holds because every vertex of G_p^k has at most $\frac{6pd}{c\sqrt{d}}$ neighbors in OUT.

2.2 Proofs of lemmas 2.1, 2.2, 2.3

The proofs of Lemmas 2.2 and 2.1 are rather standard and are based on the fact that every small enough set S (< $\frac{c\sqrt{d}}{\sqrt{n}}$) contains at most $|S|c\sqrt{d}(1 + o(1))/2$ internal edges.
Proof of Lemma 2.1. A fixed vertex \(v \) belongs to \(S_0 \) with probability \(< e^{-\frac{1}{n}\frac{1}{d^2}pd} \leq e^{-\frac{1}{\sqrt{n}}c\sqrt{d}} \). Thus, the expected size of \(S_0 \) is \(e^{-\frac{1}{\sqrt{n}}c\sqrt{d}n} \). With probability of \(1 - o(1) \) the cardinality of \(S_0 \) is at most \(e^\frac{1}{\sqrt{n}}c\sqrt{d}n \). We briefly sketch the proof. We use the edge exposure martingale to prove that \(S_0 \) is concentrated around its expectation. We fix some order on the \(m = nd/2 \) edges of \(G \). Let \(X_0, X_1, ..., X_m \) be the martingale sequence, where \(X_i \) is the expectation of \(S_0 \) after exposing the first \(i \) edges of \(G_p \). Notice that \(X_0 = \mathbb{E}_{G_p}[S_0] \). The value of \(X_m \) is the value of the random variable \(S_0 \) where the probability measure is induced by \(G_p \). To use the Azuma inequality we need to upper bound the martingale difference \(|X_{i+1} - X_i| \) (for \(i = 0, ..., m - 1 \)). It is known that if \(S_0 \) satisfies the edge Lipschitz condition with a constant \(\Delta \), then also the martingale difference is bounded by \(\Delta \) (see [6]). It is clear that for a fixed graph \(G' \), adding/removing a single edge can change the value of \(S_0 \) by at most 2. By Azuma’s inequality:

\[
\Pr[X_m > X_0 + \lambda] \leq e^{-\lambda^2/(2m\Delta^2)}.
\]

Substituting \(\lambda = e^{-\frac{1}{\sqrt{n}}c\sqrt{d}n}, \Delta = 2, m = nd/2 \) we derive that w.h.p. \(|S_0| \) is at most \(e^{-\frac{1}{\sqrt{n}}c\sqrt{d}n} \).

We next show that the number of vertices removed after removing \(S_0 \) (that is \(k \)) is at most \(|2S_0| \). Every vertex that is removed in the iterative process has at least \(\frac{2pd}{5} \geq c\sqrt{d} \) edges which go to previously removed vertices, because its degree drops from at least \(\frac{2pd}{2} \) (as it does not belong to \(S_0 \)) down to at most \(\frac{3pd}{2} \) (at the point it was removed). By contradiction, assume that \(k \geq 2|S_0| \). Consider the situation immediately after iteration \(i = 2|S_0| \). Denote by \(U \) the set of vertices not in \(G_p \). The average degree in \(G_p[U] \) is at least \(\frac{2}{3}2c\sqrt{d} \). At this point \(|U| \leq 3e^{-\frac{1}{\sqrt{n}}c\sqrt{d}n} \). We derive a contradiction as by Corollary 1.3 the average degree in \(G[U] \) is at most \(c\sqrt{d}(1 + e^{-\frac{1}{\sqrt{n}}c\sqrt{d}}) \).

Proof of Lemma 2.2. The proof is divided into two parts. First consider sets of cardinality \(\leq \frac{\alpha n}{\sqrt{d}} \). Fix a set \(S \subset V \). The edge expansion of \(S \) (in \(G_p[k] \)) is at least:

\[
\sum_{v \in S} \deg(v) - e(S, S),
\]

(remember that \(e(S, S) \) is twice the number of edges inside \(S \)). Every vertex \(v \) of \(G_p[k] \) has degree of at least \(\frac{3pd}{2} \geq 3c\sqrt{d} \) in \(G_p[k] \). By Corollary 1.3 \(e(S, S) \) in \(G \) is at most \(|S|c\sqrt{d}(1 + 1) = 2|S|c\sqrt{d} \). It follows that the edge expansion of \(S \) is at least \(\frac{3pd}{2} - 2c\sqrt{d} \geq \frac{3pd}{2} \).

Consider now a set \(S \subset V \) of size \(\alpha n \) such that \(\frac{\alpha n}{\sqrt{d}} < \alpha \leq \frac{1}{2} \). By the expander mixing lemma, the number of edges between \(S \) and \(V \setminus S \) in \(G \) is at least:

\[
\alpha(1 - \alpha)dn - c\sqrt{d}\alpha(1 - \alpha)n = \alpha(1 - \alpha)dn \left(1 - \frac{e}{\sqrt{d}\alpha(1 - \alpha)} \right) \geq \alpha(1 - \alpha)dn/3.
\]

9
The last inequality follows from $\frac{c}{\sqrt{d}} \leq \alpha \leq \frac{1}{2}$ and $c \leq \frac{7}{\sqrt{10}}$. The number of edges between S and $V \setminus S$ in G_p is at least $pa(1-\alpha)dn/6$ with probability of $e^{-\frac{1}{8}p\alpha(1-\alpha)dn/3}$ (follows from the Chernoff bound). The number of subsets of size n is at most $(\frac{npd}{n})^{n} \leq e^{an(1+\log \frac{1}{2})}$. Thus the probability for a “bad” set of size an is at most:

$$\exp\left\{an(1 + \log \frac{1}{a}) - \frac{1}{8}p\alpha(1-\alpha)dn/3\right\} \leq \exp\left\{an(1 + \log \frac{1}{a}) - \frac{5c\sqrt{d}(1-\alpha)}{24}\right\} \leq \exp\left\{-\alpha cn\sqrt{d}/10\right\}.$$

The last inequality holds for large enough d (and $\frac{1}{a} < \sqrt{d}$). Summing over all values of an gives that w.h.p. there is no bad set. In other words, every set of size $cnpd$ has an edges expansion of at least pd^{13} in G_p. Since the number of edges that contain at least one vertex from OUT is bounded by $de^{-\frac{7}{\sqrt{10}}}n$, we conclude that any subset U of $V(G_p^n)$ with size $\geq \frac{cn}{\sqrt{d}}$ has edge expansion of at least $\left(\frac{pd}{12}|U| - de^{-\frac{7}{\sqrt{10}}n}\right)/|U| \geq \frac{pd}{13}$.

Proof of lemma 2.3. We use the following well know fact: any tree T contains a center vertex v such that each subtree hanged on v contains strictly less than half of the vertices of T.

Let T be an arbitrary spanning tree of G, with center v. We proceed by induction on the size of T. Consider the subtrees $T_1, ..., T_k$ hanged on v. If there exists a subtree T_j with at least t vertices then also $T \setminus T_j$ has at least t vertices. In at least one of $T_j, T \setminus T_j$ the fraction of S vertices is at least $\frac{1}{k}$ and the lemma follows by induction on it. Consider now the case in which all the trees have less than t vertices. If in some subtree T_j the fraction of S vertices is at most $\frac{1}{k}$, then we remove it and apply induction to $T \setminus T_j$. The remaining case is that in all the subtrees the fraction of S vertices is strictly more than $\frac{1}{k}$. In this case we start adding subtrees to the root v until for the first time the number of vertices is at least t. At this point we have a tree with at most $2t - 1$ vertices and the fraction of S vertices is at least $\frac{1}{k}$. To see that the fraction of S vertices is at least $\frac{1}{k}$, we only need to prove that the tree formed by v and the first subtree has $\frac{1}{k}$ fraction of S vertices. Let r be the number of S vertices in the first subtree and let b be the number of vertices in it. Since k is integer we have: $\frac{r}{b} > \frac{1}{k} \iff \frac{r}{b} \geq \frac{1}{k}$.

3 Open problems

We were able to show that a percolation applied to a family of d-regular expander graphs with eigenvalue gap retains some expansion properties of the original graphs, even when p is close to 0. There are still many open problems, we list here two of them:
1. Find other classes of expander families that retain expansion properties after percolated with values of p close to 0. For example, a family of expanders with girth that goes to infinity (for such a family some result is given at [2] for p close to 1).

2. Is Theorem 1.1 is tight? If we drop the requirement that d is a constant and allow it to be a function of n, then the current proof of Claim 2.4 breaks done (when d is proportional to n). However it is plausible that a different counting argument may work; one example where a modified argument works is K_n (we have a proof for this case). If this is the case then Theorem 1.1 is tight (up to constant factors) because for the complete graph K_n it holds that $d = n - 1, c = \frac{1}{\sqrt{n} - 1}$ and for $p << \frac{1}{c}$ the percolated graph is not likely to contain a giant component. Anyway, for constant d the question is interesting: there is a gap between the critical probability $1/d$ for which there is a giant component and the probability $\frac{1}{\log n}$ for which there is $1/\log n$ edge expansion.

Acknowledgments

I thank Itai Benjamini for suggesting the problem and for useful discussions.

References

