On the expansion of the giant component in percolated (n, d, λ) graphs

Eran Ofek
Department of Computer Science and Applied Mathematics
Weizmann Institute, Rehovot 76100, Israel
eran.ofek@weizmann.ac.il

October 9, 2005

Abstract

Let $d \geq d_{0}$ be a sufficiently large constant. A $(n, d, c \sqrt{d}) \operatorname{graph} G$ is a d-regular graph over n vertices whose second largest (in absolute value) eigenvalue is at most $c \sqrt{d}$. For any $0<p<1, G_{p}$ is the graph induced by retaining each edge of G with probability p. It is known that for $p>\frac{1}{d}$ the graph G_{p} almost surely contains a unique giant component (a connected component with linear number vertices). We show that for $p \geq \frac{5 c}{\sqrt{d}}$ the giant component of G_{p} almost surely has an edge expansion of at least $\frac{1}{\log _{2} n}$.

1 Introduction

This paper deals with the affect of percolation on the edge expansion property of algebraic expander graphs. These are d-regular graphs in which the second largest eigenvalue (in absolute value) λ of their adjacency matrix is smaller than $d / 5$. We call such a graph a (n, d, λ) algebraic expander. A more intuitive (combinatorial) notion of expansion for a finite graph G is the edge expansion, defined as:

$$
c_{E}(G)=\inf _{S \subset V_{G},|S|<|G| / 2} \frac{\left|\partial_{E} S\right|}{|S|}
$$

where $\partial_{E} S$ denotes the set of edges with exactly one vertex in S. It is known (due to Tanner, Alon and Milman [5], [23]) that algebraic expansion implies also a lower bound on the edge expansion: for a (n, d, λ) algebraic expander it holds that $c_{E}(G) \geq \frac{d-\lambda}{2}$. (There is also an inequality in the opposite direction: $c_{E}(G) \leq \sqrt{2 d(d-\lambda)}$, see [1] for details).

Expander graphs received a considerable amount of attention in the literature in recent years, mostly because these graphs have numerous applications in theoretical computer science; see, for example, $[6,15,22,20]$. It is well known
that for any fixed $d \geq 3$, random d-regular graphs of size n are asymptotically almost surely expanders, as n grows. The problem of constructing infinite families of bounded degree expanders is more difficult, and there are several known constructions of this type $[18,17,21,9]$. The result in this paper applies to the constructions of [17, 21, 9].

Various applications of expanders rely on their fault-tolerance as networks. For example, after deleting an appropriate constant fraction of the edges (arbitrarily), the remaining graph still contains some linear size connected components or some linear size paths; see [3, 24]. We show that for algebraic expanders if the deletions are random and independent then with high probability (with probability that tends to 1 as n increases) the giant component has an edge expansion proportional to $\frac{c \sqrt{d}}{\log _{2} n}$. Up to constants, this bound is tight since with probability bounded away from 0 , the giant component will contain a $\frac{\log _{2} n}{2 c \sqrt{d}}$ long "chain" of vertices each of them, except the first and the last ones, has degree of exactly 2 in the giant component. The edge expansion of such a "chain" is $\frac{4 c \sqrt{d}}{\log _{2} n}$.

Given a graph G, we use G_{p} to denote the subgraph of G obtained by retaining each edge of G independently with probability p. The graph G_{p} is the percolated version of G. For any graph property of G one can ask if this property is almost surely retained in G_{p}. A well studied example is the existence and the uniqueness of a giant component. Roughly speaking, a giant component is a connected component of G_{p} that contains linear fraction of vertices. A question of the same flavour can be asked also for an infinite graph G : for which values of p, G_{p} is likely to contain an infinite cluster (connected component) ? is the infinite cluster likely to be unique ? For several types of graphs, e.g. the d dimensional grid, the finite/infinite versions turned out to be related. For many interesting graphs the probability of containing a giant component (or infinite cluster in the infinite case) exhibits a sharp threshold around some value called the critical probability (this is due to $0 / 1$ laws). The critical probability is denoted by p_{c}. For values of p slightly smaller than p_{c} the probability for giant component is close to 0 and for p slightly larger than p_{c} the probability for giant component is close to 1 . Benjamini and Schramm [8] showed that if G is an infinite graph with a positive vertex Cheeger constant $c_{V}(G)>0$ (the Cheeger constant can be defined with respect to the vertex boundary), then the critical probability for the existence of an infinite cluster in G_{p} is $<\frac{1}{1+c_{V}(G)}<1$. They also observed that their proof can be applied to the finite case. Their technique can be easily applied also to the edge Cheeger constant as shown in [19].

A family of expanders is a sequence of d-regular graphs $G(n)$, where $G(n)$ has n vertices and edge expansion of least $b>0$ (independent of n). Alon, Benjamini and Stacey [2] studied the existence and uniqueness of a giant component when percolation is applied to families of edge expander graphs. One of their results is about expander families with increasing girth (the girth of a graph G is the length of minimum size cycle in it). They show that for an expander family $G(n)$, with $\operatorname{girth}(G(n))$ that goes to infinity as n increases, the critical probability p_{c} for the existence (and uniqueness) of a giant component is exactly $\frac{1}{d-1}$.

Specifically, for any fixed ϵ, and $p \geq \frac{1+\epsilon}{d-1}$ w.h.p. (with high probability, i.e. with probability that goes to 1 as n, the size of graph, goes to infinity) G_{p} contains a connected component with a linear number of vertices. The fraction of vertices in the giant component depends on ϵ. The girth, the edge expansion, d and ϵ influence the speed in which the probability for a g.c. (giant component) goes to 1. For $p \leq \frac{1-\epsilon}{d-1}$, w.h.p. G_{p} breaks into connected components of sub-linear size. It is further shown in [2] that if $G(n)$ is an infinite family of d-regular graphs, each one with edge expansion of at least $b>0$, then for p sufficiently close to 1 (which depends on b) $G(n)_{p}$ is w.h.p. a $\frac{1}{\log _{2} n}$ expander. They leave as an open problem the values of p which are close (from above) to the critical probability p_{c}. Notice that p_{c} can be as small as $\frac{1}{d-1}$ as in the case of an infinite family of expanders with girth that goes to infinity.

Instead of analyzing the giant component of G_{p}, one can relax the requirement from G_{p} and ask for a linear size subgraphs of G_{p} that have good expansion. A question of this flavour was studied in [7], where they used G to represent a network that have faulty nodes (in this context G_{p} denotes the graph derived from G by removing each node with probability $1-p)$. One of the problems studied in [7] is: for which values of p is G_{p} likely to contain a linear sized subgraph that retains (up to a constant factor) the vertex expansion of G ? Notice that the new question allows us to remove from the giant component the bad parts that have poor expansion. For the d-dimensional mesh they show that when $p \geq 1-\frac{1}{16 e d^{16}}$ the graph G_{p} almost surely contains a subgraph of size $\geq n / 2$ whose expansion is at least $\frac{1}{4 d}$ times the expansion of the d-dimensional mesh.

Percolation of (n, d, λ) graphs has been previously studied by Frieze, Krivelevich and Martin [13]. They gave tight results about the existence and the uniqueness of the giant component when $\lambda=o(d)$. Specifically, for $p<\frac{1}{d}$ the graph G_{p} almost surely contains only connected components of size $O(\log n)$. For $p>\frac{1}{d}$ the graph G_{p} has almost surely a unique giant component and all other components are of size at most $O(\log n)$.

1.1 Our result

Theorem 1.1. Let $d \geq d_{0}$ be a fixed constant, let G be $a(n, d, c \sqrt{d})$ algebraicexpander and let $p \geq \frac{5 c}{\sqrt{d}}$ (assuming $c<\frac{\sqrt{d}}{5}$). W.h.p. the edge expansion of the giant component in G_{p} is at least $\frac{c \sqrt{d}}{61 \log n}$.

Theorem 1.1 implies that in the case of algebraic expanders even when $p \ll$ 1 the giant component has edge expansion $\geq \frac{1}{\log _{2} n}$. In contrast, the result in [2] is based on a weaker assumption (edge expansion greater than ϵ) but it implies that the giant component has edge expansion $\geq \frac{1}{\log _{2} n}$ only for values of p close to 1 . While Theorem 1.1 requires a somewhat stronger assumption (spectral gap) from G, it implies that the giant component in G_{p} has expansion $\geq \frac{1}{\log _{2} n}$ also for values of p close to 0 (depending on the degree d and $\lambda=c \sqrt{d}$).

The main idea in the proof of Theorem 1.1 is to iteratively remove from G_{p} vertices of low degree until we are left with an induced subgraph G_{p}^{k} that has minimal degree $\geq \frac{3 p d}{5}$. Using known techniques it can be shown that for large enough d this process removes only small fraction of the vertices. Moreover, the obtained subgraph G_{p}^{k} has edge expansion bounded away from 0 . To show that the giant component of G_{p} has expansion $\geq \frac{1}{\log _{2} n}$ (which is best possible up to constants) we need to handle sets of the giant component that contain vertices from $O U T \triangleq V \backslash G_{p}^{k}$. To do this it is enough to show that in the graph induced by G_{p} on $O U T$, the connected components are smaller than $\log _{2} n$. Following the work of Alon and Kahale [4] on coloring random 3-colorable graphs, several papers $[10,12,14,11]$ dealt with similar versions of this problem: proving that a set $O U T$ which is the outcome of some procedure applied to a random graph has no large connected components. Yet, in all the above cases the graph model was a simple variant of the $G_{n, p}$ model. Our result can be though of as a "derandomization" of the previous results as we deal with predetermined constant degree "pseudo-random" graphs for which there is less randomness in the induced model.

Remarks:

1. Possibly, Theorem 1.1 can be extended also for values of $p>\frac{c}{\sqrt{d}}$, using the same proof technique. To keep the proof simple, we did not try to optimize this constant.
2. Theorem 1.1 holds also for d which is a function of n if one of the following holds: $c \sqrt{d}=\lambda=\omega(\log d)$ or $d=o(n)$.

1.2 Notation

For a set $U \subset V, G[U]$ denotes the subgraph induced by the edges of G on the vertices of U. We use $e(S, S)$ to denote twice the number of edges having only vertices in S. The graph induced by retaining each edge of G independently with probability of p is denoted by G_{p}. The degree of a vertex v inside a graph G is denoted by $\operatorname{deg}_{v}^{G}$. The second largest eigenvalue (in absolute value) of G is denoted by λ. We use the term with high probability (w.h.p) to denote a sequence of probabilities that tends to 1 as n, the size of G, goes to infinity.

1.3 Spectral gap and pseudo-randomness

In the following proofs we will use the fact that a graph G with a noticeable spectral gap is pseudo-random. This is formulated by the following Lemma also known as the expander mixing lemma (see [6] for proof).
Lemma 1.2. Let G be a d-regular graph with second largest (in absolute value) eigenvalue λ. Then, for any $S, T \subseteq V$:

$$
\left|e(S, T)-\frac{d}{n}\right| S||T||<\lambda \sqrt{|S||T|}
$$

where $e(S, T)$ is the number of directed edges from S to T in the adjacency matrix of G.

In terms of undirected edges (when G is undirected), $e(S, T)$ equals the number of edges between $S \backslash T$ to T plus twice the number of edges that contain only vertices of $S \cap T$.

Corollary 1.3. Let G be $a(n, d, c \sqrt{d})$ algebraic expander. For any set U of size $\leq \frac{c n}{k \sqrt{d}}$ the average degree in $G[U]$ is at most $c \sqrt{d}(1+1 / k)$.

Proof. The number of edges inside $G[U]$ is $e(U, U) / 2$ since every edge whose both endpoints are in U is in fact two directed edges from U to U. It follows that the average degree in $G[U]$ is $\frac{e(U, U)}{|U|}$. By the expander mixing lemma:

$$
e(U, U) \leq \frac{d|U|^{2}}{n}+c \sqrt{d}|U| \leq c \sqrt{d}|U|\left(1+\frac{\sqrt{d}|U|}{c n}\right) \leq c \sqrt{d}|U|(1+1 / k)
$$

We will frequently use the fact that small enough sets in G are rather sparse, as stated in Corollary 1.3. When c close to its smallest possible value for constant degree graphs (i.e. $\lambda=c \sqrt{d} \approx 2 \sqrt{d-1}$, see [1] for details) there is a slightly stronger bound on the density of small sets given by [16]. We do not use this stronger bound as it gives asymptotically the same result for large values of c.

2 Proof of Theorem 1.1

We use a process similar to [24] which is aimed to reveal a large edge expanding subgraph of G_{p}. Let $S_{0}=\left\{v \in G_{p}: \operatorname{deg}_{v}^{G_{p}} \notin\left[\frac{4 p d}{5}, \frac{6 p d}{5}\right]\right\}$. We begin by removing from G_{p} the vertices of S_{0}. The new induced graph, which we denote by G_{p}^{0}, may contain vertices whose degree in G_{p}^{0} is $<\frac{4}{5} p d$, because removing S_{0} affect the degrees of the remaining vertices. We then obtain a sequence of subgraphs G_{p}^{i} by iteratively removing from G_{p}^{i-1} any vertex whose degree in G_{p}^{i-1} is $<\frac{3}{5} p d$. The process stops once the minimal degree in the remaining graph G_{p}^{k} is at least $\frac{3}{5} p d$. We denote the set $V \backslash V\left(G_{p}^{k}\right)$ by $O U T$.

Remark: Since d is fixed and $n \rightarrow \infty$ it holds that the constant c (from $\lambda=c \sqrt{d}$) is at least 1 (in fact $c \geq 1-o(1)$ even if d grows with n but it is $o(n)$). We will use this fact occasionally.

2.1 Proof overview

The main idea in the proof of Theorem 1.1 is as follows. We remove from G_{p} low degree vertices until the induced graph G_{p}^{k} has a large enough minimal degree. We first show that G_{p}^{k} itself has edge expansion of at least $\frac{p d}{13}$ and contains almost all the vertices of G (thus it must be contained in a giant

The giant component (inside the dashed line).

Figure 1: The structure of G_{p}.
component); this part of the proof uses standard techniques. We then show that in $G_{p}[O U T]$ the largest connected component is of size at $\operatorname{most}^{\log }{ }_{2} n$ (this implies the uniqueness of the giant component). The above two facts imply that any set that belongs to the giant component and is entirely in $V\left(G_{p}^{k}\right)$ or entirely in $O U T$, has expansion $\geq \frac{1}{\log _{2} n}$. Using also the property that any vertex of $V\left(G_{p}^{k}\right)$ has at most $\frac{3 p d}{5}$ neighbors in $O U T$ we then prove that any set of the giant component with size $\leq n / 2$ has edge expansion $\geq \frac{1}{\log _{2} n}$.

The expected degree in G_{p}, which is $p d$, is large enough so that only few vertices are removed in the process of extracting G_{p}^{k} (namely $O U T$ is small). To show it we use the following idea used in [4, 24]. Initially, the set S_{0} is small (roughly $e^{-\Omega(c \sqrt{d})} n$). Every vertex which is removed in the iteration process has at least $\frac{p d}{5}$ edges to vertices that were previously removed. Thus if the iteration process is too long, the set $V \backslash V\left(G_{p}^{i}\right)$ becomes too dense with contradiction to Corollary 1.3.
Lemma 2.1. W.h.p. the number of vertices in G_{p}^{k} is at least $\left(1-e^{-\frac{1}{12} c \sqrt{d}}\right) n$.
The proof of Lemma 2.1 is deferred to Section 2.2.
The minimal degree in G_{p}^{k} is $\frac{3 p d}{5} \geq 3 c \sqrt{d}$. A set S smaller than $\frac{c n}{\sqrt{d}}$ contains at most $c|S| \sqrt{d}$ internal edges (by Corollary 1.3), thus for such set the expansion is at least $\frac{3 p d}{5}-2 c \sqrt{d} \geq \frac{p d}{5}$. To establish the edge expansion of larger sets, a standard argument using the Chernoff and union bounds suffices. In Section 2.2 we give the full proof of the following Lemma.

Lemma 2.2. W.h.p. the graph G_{p}^{k} has an edge expansion of at least $\frac{p d}{13}$.

We next show that the connected components in $G_{p}[O U T]$ are of size at most $\log _{2} n$. A direct "brute force" approach using the union bound over all possible trees of size $\log _{2} n$ does not seem to work here because we don't have a good enough upper bound on the probability that a fixed tree T is in $O U T$. Notice that we can not simply claim that every vertex in $O U T$ has a low degree in G_{p} (if this were true then probably a simple argument would have sufficed). It may be the case that a vertex in $O U T$ has high degree in G_{p} but it is connected (directly or via other vertices) to vertices of low degree in G_{p}.

Following the work of Alon and Kahale [4] on coloring random 3-colorable graphs, several papers $[10,12,14,11]$ dealt with similar versions of this problem (proving that a set $O U T$ which is the outcome of some procedure applied to a random graph has no large connected components). Yet, the analysis they gave is rather complicated. The reason for the difficulty is that OUT is not a random set independent of G_{p}; its vertices are in fact correlated and depend on the edges of G_{p}. A new aspect of the current paper is simplifying the proof that OUT has only small connected components. This is done using a reduction which will be described shortly. The outcome of the reduction is that instead of having to prove that w.h.p. $G_{p}[O U T]$ has no large trees, we need only to prove that w.h.p. $G_{p}[O U T]$ has no large balanced trees. A balanced tree is a tree in which at least $\frac{1}{3}$ of its vertices are low degree vertices in G_{p}. Proving that $G_{p}[O U T]$ contains no balanced trees can be done directly by applying the union bound over all possible sets that may form large trees in G_{p}.

We will now explain the reduction. We show that w.h.p. any maximal connected component U in $G_{p}[O U T]$ is $\frac{1}{3}$-balanced i.e. at least $1 / 3$ of its vertices are from S_{0}. The argument is as follows: every vertex removed in iterations $1,2, . ., k$ has at least $\frac{p d}{5}$ edges to previously removed vertices. Thus, if at least $2 / 3$ of the vertices of U are added during the iterations then the average degree in $G[U]$ is at least $\frac{2}{3} 2 c \sqrt{d}$. On the other hand, since $|U|<e^{-\frac{1}{12} c \sqrt{d}} n$ by Corollary 1.3 the average degree in $G[U]$ is at most $c \sqrt{d}\left(1+e^{-c \sqrt{d} / 2}\right)$, which yields a contradiction. Having established that w.h.p. every maximal connected component in $G[O U T]$ is balanced, our problem (showing that w.h.p. there are no large connected components in $G[O U T]$) is reduced to showing that w.h.p. any maximal balanced connected component of $G[O U T]$ is of size $<\log _{2} n$. Since proving the claim on balanced trees is simpler (it is a private case) we translate the claim into a claim on trees. This is done by showing that any $\frac{1}{3}$-balanced connected component of $G[U]$ of size $\geq \log _{2} n$ contains a $\frac{1}{3}$-balanced tree whose size is in $\left[\log _{2} n, 2 \log _{2} n\right]$; this follows from following Lemma whose proof is deferred to Section 2.2.

Lemma 2.3. Let G be a connected graph whose vertices are partitioned into two sets: S and I. Let $\frac{1}{k}$ be a lower bound on the fraction of S vertices, where k is an integer. For any $1 \leq t \leq|V(G)| / 2$ there exists a tree whose size is in $[t, 2 t-1]$ and at least $\frac{1}{k}$ fraction of its vertices are from S.

To summarize, in order to show that $G_{p}[O U T]$ has no connected components of size $\log _{2} n$ we need only to prove the following Claim.

Claim 2.4. W.h.p. $G_{p}[O U T]$ has no balanced trees of size in $\left[\frac{1}{2} \log _{2} n, \log _{2} n\right]$.
Proof. We want to bound the probability that $G_{p}[O U T]$ contains any $\frac{1}{3}$-balanced tree of size in $[t / 2, t]$ (we fix the parameter t later). Such a tree is called "bad".

$$
\sum_{T \text { is a tree }} \operatorname{Pr}\left[T \subset O U T \wedge \mathrm{~T} \text { is } \frac{1}{3} \text {-balanced }\right]
$$

The number of trees of size t in a d-regular graph G is at most $n d^{2 t}$, since each tree can be uniquely mapped into a closed path of length $2 t$. For each tree of size t there are at most 2^{t} ways of choosing a subset of size $\geq t / 3$. Any fixed set of size $\geq t / 3$ is in S_{0} with probability of at most $e^{-\frac{1}{2} \frac{1}{25} p d t / 3 \text {. Thus the probability }}$ that there is a balanced bad tree in $O U T$ is at most:

$$
\begin{array}{r}
t n d^{2 t} 2^{t} e^{-\frac{1}{300} p d t} \leq \exp \left(\log t+\log n+2 t \log d+t-\frac{1}{300} p d t\right) \underbrace{p d \geq 5 c \sqrt{d}}_{\leq} \\
\exp \left(\log n+3 t \log d-\frac{c \sqrt{d} t}{60}\right)=o(1) \tag{1}
\end{array}
$$

for $t \geq \frac{61 \log n}{c \sqrt{d}}$ (for fixed d and large enough n it holds that $c>1$, see [1]).
Remark: Notice that in the last inequality we used $\frac{c \sqrt{d}}{60}>3 \log d$. This holds also when d is a function of n, if n is large enough and $d=o(n)$ (it is known that $\left.c \sqrt{d}=\lambda \geq \sqrt{d-\frac{d^{2}}{n-1}}\right)$.

Since all connected components of $G[O U T]$ are of size at most $\frac{61 \log _{2} n}{c \sqrt{d}}$, sets from $O U T$ that belong to the giant component have expansion of at least $\frac{c \sqrt{d}}{61 \log _{2} n}$. It remains to handle sets of the giant component that intersects both $V\left(G_{p}^{k}\right)$ and $O U T$.

Lemma 2.5. W.h.p. any set S that belongs to the giant component and whose size is at most $n / 2$ has edge expansion of at least $\frac{c \sqrt{d}}{61 \log _{2} n}$.

Proof. We already handled sets which are completely in $O U T$ or completely in $V\left(G_{p}^{k}\right)$. Let S be a set of the g.c. (giant component) that intersects both OUT and $V\left(G_{p}^{k}\right)$. Denote by \bar{S} the complement of S in the giant component. Denote by S_{1}, S_{2} the intersection of S with $O U T, V\left(G_{p}^{k}\right)$ respectively. We further partition S_{1} into S_{11}, S_{12} as follows: S_{11} contains all the connected components of $G_{p}\left[S_{1}\right]$ that have at least one edge into \bar{S} and S_{12} contains all the connected components of $G_{p}[O U T]$ that have only edges to S_{2}. It is enough to show that:

$$
\left|E\left(S_{11}, \bar{S}\right)\right| \geq \frac{\left|S_{11}\right| c \sqrt{d}}{61 \log _{2} n}, \quad\left|E\left(S_{12} \cup S_{2}, \bar{S}\right)\right| \geq \frac{\left|S_{12} \cup S_{2}\right|}{18}
$$

The first inequality follows immediately from the definition of S_{11}. The second inequality is derived as follows: $\left|E\left(S_{12} \cup S_{2}, \bar{S}\right)\right| \geq\left|E\left(S_{2}, \bar{S}\right)\right| \geq\left|S_{2}\right| p d / 13$. Thus

$$
\frac{\left|E\left(S_{12} \cup S_{2}, \bar{S}\right)\right|}{\left|S_{12}\right|+\left|S_{2}\right|} \geq \frac{\left|S_{2}\right| p d / 13}{\left|S_{12}\right|+\left|S_{2}\right|} \geq \frac{1}{\frac{13}{p d}\left(\left|S_{12}\right| /\left|S_{2}\right|+1\right)} \geq \frac{1}{18}
$$

where the last inequality holds because every vertex of G_{p}^{k} has at most $\frac{6 p d}{5}$ neighbors in OUT.

2.2 Proofs of lemmas 2.1, 2.2, 2.3

The proofs of Lemmas 2.2 and 2.1 are rather standard and are based on the fact that every small enough set $S\left(\ll \frac{c n}{\sqrt{d}}\right)$ contains at most $|S| c \sqrt{d}(1+o(1)) / 2$ internal edges.
Proof of Lemma 2.1. A fixed vertex v belongs to S_{0} with probability $<e^{-\frac{1}{2}\left(\frac{1}{5}\right)^{2} p d} \leq$ $e^{-\frac{c \sqrt{d}}{10}}$. Thus, the expected size of S_{0} is $e^{-\frac{1}{10} c \sqrt{d}} n$. With probability of $1-o(1)$ the cardinality of S_{0} is at most $e^{-\frac{1}{12} c \sqrt{d}} n$. We briefly sketch the proof. We use the edge exposure martingale to prove that S_{0} is concentrated around its expectation. We fix some order on the $m=n d / 2$ edges of G. Let $X_{0}, X_{1}, \ldots, X_{m}$ be the martingale sequence, where X_{i} is the expectation of S_{0} after exposing the first i edges of G_{p}. Notice that $X_{0}=\mathbb{E}_{G_{p}}\left[S_{0}\right]$. The value of X_{m} is the value of the random variable S_{0} where the probability measure is induced by G_{p}. To use the Azuma inequality we need to upper bound the martingale difference $\left|X_{i+1}-X_{i}\right|$ (for $i=0, . ., m-1$). It is known that if S_{0} satisfies the edge Lipschitz condition with a constant Δ, then also the martingale difference is bounded by Δ (see [6]). It is clear that for a fixed graph G^{\prime}, adding/removing a single edge can change the value of S_{0} by at most 2 . By Azuma's inequality:

$$
\operatorname{Pr}\left[X_{m}>X_{0}+\lambda\right] \leq e^{-\lambda^{2} /\left(2 m \Delta^{2}\right)}
$$

Substituting $\lambda=e^{-\frac{1}{10} c \sqrt{d}} n, \Delta=2, m=n d / 2$ we derive that w.h.p. $\left|S_{0}\right|$ is at most $e^{-\frac{1}{12} c \sqrt{d}} n$.

We next show that the number of vertices removed after removing S_{0} (that is k) is at most $\left|2 S_{0}\right|$. Every vertex that is removed in the iterative process has at least $\frac{p d}{5} \geq c \sqrt{d}$ edges which goto previously removed vertices, because its degree drops from at least $\frac{4 p d}{5}$ (as it does not belong to S_{0}) down to at most $\frac{3 p d}{5}$ (at the point it was removed). By contradiction, assume that $k \geq 2\left|S_{0}\right|$. Consider the situation immediately after iteration $i=2\left|S_{0}\right|$. Denote by U the set of vertices not in G_{p}^{i}. The average degree in $G_{p}[U]$ is at least $\frac{2}{3} 2 c \sqrt{d}$. At this point $|U| \leq 3 e^{-\frac{1}{12} c \sqrt{d}} n$. We derive a contradiction as by Corollary 1.3 the average degree in $G[U]$ is at most $c \sqrt{d}\left(1+e^{-\frac{c \sqrt{d}}{15}}\right)$.

Proof of Lemma 2.2. The proof is divided into two parts. First consider sets of cardinality $\leq \frac{c n}{\sqrt{d}}$. Fix a set $S \subset V$. The edge expansion of S (in G_{p}^{k}) is at least:

$$
\sum_{v \in S} \operatorname{deg}(v)-e(S, S)
$$

(remember that $e(S, S)$ is twice the number of edges inside S). Every vertex v of G_{p}^{k} has degree of at least $\frac{3 p d}{5} \geq 3 c \sqrt{d}$ in G_{p}^{k}. By Corollary $1.3 e(S, S)$ in G is
at most $|S| c \sqrt{d}(1+1)=2|S| c \sqrt{d}$. It follows that the edge expansion of S is at least $\frac{3 p d}{5}-2 c \sqrt{d} \geq \frac{p d}{5}$.

Consider now a set $S \subset V$ of size αn such that $\frac{c}{\sqrt{d}}<\alpha \leq \frac{1}{2}$. By the expander mixing lemma, the number of edges between S and $V \backslash S$ in G is at least:

$$
\begin{aligned}
\alpha(1-\alpha) d n-c \sqrt{d} \sqrt{\alpha(1-\alpha)} n & =\alpha(1-\alpha) d n\left(1-\frac{c}{\sqrt{d \alpha(1-\alpha)}}\right) \\
& \geq \alpha(1-\alpha) d n / 3
\end{aligned}
$$

The last inequality follows from $\frac{c}{\sqrt{d}} \leq \alpha \leq \frac{1}{2}$ and $c \leq \frac{\sqrt{d}}{5}$. The number of edges between S and $V \backslash S$ in G_{p} is at least $p \alpha(1-\alpha) d n / 6$ with probability of $e^{-\frac{1}{8} p \alpha(1-\alpha) d n / 3}$ (follows from the Chernoff bound). The number of subsets of size αn is at most $\left(\frac{n e}{\alpha n}\right)^{\alpha n} \leq e^{\alpha n\left(1+\log \frac{1}{\alpha}\right)}$. Thus the probability for a "bad" set of size αn is at most:

$$
\begin{aligned}
\exp \left(\alpha n\left(1+\log \frac{1}{\alpha}\right)-\frac{1}{8} p \alpha(1-\alpha) d n / 3\right) & \leq \exp \left(\alpha n\left(1+\log \frac{1}{\alpha}-\frac{5 c \sqrt{d}(1-\alpha)}{24}\right)\right) \\
& \leq \exp (-\alpha c n \sqrt{d} / 10)
\end{aligned}
$$

The last inequality holds for large enough d (and $\frac{1}{\alpha}<\sqrt{d}$). Summing over all values of αn gives that w.h.p. there is no bad set. In other words, every set of size in $\left[\frac{c n}{\sqrt{d}}, \frac{n}{2}\right]$ has an edges expansion of at least $\frac{p d}{12}$ in G_{p}. Since the number of edges that contain at least one vertex from OUT is bounded by $d e^{-\frac{c \sqrt{d}}{12}} n$, we conclude that any subset U of $V\left(G_{p}^{k}\right)$ with size $\geq \frac{c n}{\sqrt{d}}$ has edge expansion of at least

$$
\left(\frac{p d}{12}|U|-d e^{-c \sqrt{d} / 12} n\right) /|U| \geq \frac{p d}{13}
$$

Proof of lemma 2.3. We use the following well know fact: any tree T contains a center vertex v such that each subtree hanged on v contains strictly less than half of the vertices of T.

Let T be an arbitrary spanning tree of G, with center v. We proceed by induction on the size of T. Consider the subtrees T_{1}, \ldots, T_{k} hanged on v. If there exists a subtree T_{j} with at least t vertices then also $T \backslash T_{j}$ has at least t vertices. In at least one of $T_{j}, T \backslash T_{j}$ the fraction of S vertices is at least $\frac{1}{k}$ and the lemma follows by induction on it. Consider now the case in which all the trees have less than t vertices. If in some subtree T_{j} the fraction of S vertices is at most $\frac{1}{k}$, then we remove it and apply induction to $T \backslash T_{j}$. The remaining case is that in all the subtrees the fraction of S vertices is strictly more than $\frac{1}{k}$. In this case we start adding subtrees to the root v until for the first time the number of vertices is at least t. At this point we have a tree with at most $2 t-1$ vertices and the fraction of S vertices is at least $\frac{1}{k}$. To see that the fraction of S vertices is at least $\frac{1}{k}$, we only need to prove that the tree formed by v and the first subtree has $\frac{1}{k}$ fraction of S vertices. Let r be the number of S vertices
in the first subtree and let b be the number of vertices in it. Since k is integer we have: $\frac{r}{b}>\frac{1}{k} \Longrightarrow \frac{r}{b+1} \geq \frac{1}{k}$.

3 Open problems

We were able to show that a percolation applied to a family of d-regular expander graphs with eigenvalue gap retains some expansion properties of the original graphs, even when p is close to 0 . There are still many open problems, we list here two of them:

1. Find other classes of expander families that retain expansion properties after percolated with values of p close to 0 . For example, a family of expanders with girth that goes to infinity (for such a family some result is given at [2] for p close to 1).
2. Is Theorem 1.1 is tight ? If we drop the requirement that d is a constant and allow it to be a function of n, then the current proof of Claim 2.4 breaks done (when d is proportional to n). However it is plausible that a different counting argument may work; one example where a modified argument works is K_{n} (we have a proof for this case). If this is the case then Theorem 1.1 is tight (up to constant factors) because for the complete graph K_{n} it holds that $d=n-1, c=\frac{1}{\sqrt{n-1}}$ and for $p \ll \frac{c}{\sqrt{d}}$ the percolated graph is not likely to contain a giant component. Anyway, for constant d the question is interesting: there is a gap between the critical probability $\frac{1}{d}$ for which there is a giant component and the probability $\frac{5 c}{\sqrt{d}}$ for which there is $\frac{1}{\log _{2} n}$ edge expansion.

Acknowledgments

I thank Itai Benjamini for suggesting the problem and for useful discussions.

References

[1] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96, 1986.
[2] N. Alon, I. Benjamini and A. Stacey. Percolation on finite graphs and isoperimetric inequalities. Ann. Probab. 32(3):1727-1745, 2004.
[3] N. Alon and F. R. K. Chung. Explicit construction of linear sized tolerant networks. Discrete Math., 72(1-3):15-19, 1988.
[4] N. Alon and N. Kahale. A spectral technique for coloring random 3colorable graphs. SIAM Journal on Computing, 26(6):1733-1748, 1997.
[5] N. Alon and V.D. Milman. λ_{1}, isoperimetric inequalities for graphs and superconcentrators. J. of Combinatorial Theory, Ser. B, 38:73-88,1985.
[6] N. Alon and J. Spencer. The Probabilistic Method. John Wiley and Sons, 2002.
[7] A. Bagchi, A. Bhargava, A. Chaudhary, D. Eppstein and C. Scheideler. The effect of faults on network expansion. SPAA 2004, 286-293.
[8] I. Benjamini and O. Schramm. Percolation beyond \mathbb{Z}^{d}, many questions and a few answers. Electr. Comm. Probab, 1:71-82, 1996.
[9] Y. Bilu and N. Linial. Lifts, discrepancy and nearly optimal spectral gaps. FOCS 2004, 404-412.
[10] H. Chen and A. Frieze. Coloring bipartite hypergraphs. IPCO 1996, 345358.
[11] A. Coja-Oghlan. A spectral heuristic for bisecting random graphs. SODA 2005, 850-859.
[12] A. Flaxman. A spectral technique for random satisfiable 3cnf formulas. SODA 2003, 357-363.
[13] A. Frieze, M. Krivelevich and R. Martin. Emergence of a giant component in random subgraphs of pseudo-random graphs. Random Structures and Algorithms, 24(1):42-50, 2004.
[14] A. Goerdt and A. Lanka. On the hardness and easiness of random 4-sat formulas. ISAAC 2004, 470-483.
[15] R. Impagliazzo, N. Nisan and A. Wigderson. Pseudorandomness for network algorithms. STOC 1994, 356-364.
[16] N. Kahale. Eigenvalues and expansion of regular grpahs. J. of the ACM, 42(5):1091-1106,1995.
[17] A. Lubotzky, R. Phillips and P. Sarnak. Ramanujan Graphs, Combinatorica, 8:261-277, 1988.
[18] G.A. Margulis. Explicit constructions of concentrators. Problemy Peredači Informacii, 9(4):71-80,1973; English transl. in Problems of Information Transmission, 325-332, 1975.
[19] I. Pak and T. Smirnova-Nagnibeda. Uniqueness of percolation on nonamenable Cayley graphs. Comptes Rendus Acad. Sci. Paris, Ser. I Math, vol. 330(6): 495-500, 2000.
[20] O. Reingold. Undirected ST-Connectivity in Logspace. STOC 2005, 376385.
[21] O. Reingold, S. Vadhan and A. Wigderson. Entropy Waves, the Zig-Zag graph product and new constant-degree expanders. Annals of Mathematics, 155:157-187, 2002.
[22] M. Sipser and D.A. Spielman. Expander codes. IEEE Transactions on Information Theory 42(6): 1710-1722, 1996.
[23] R.M. Tanner. Explicit construction of concentrators from generalized ngons. J. Algebraic Discrete Methods, 5:287-294, 1984.
[24] E. Upfal. Tolerating linear number of faults in networks of bounded degree. PODC 1992, pages 83-89.

