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Abstract

We resolve the question of the complexity of Nash equilibrium by showing that the problem
of computing a Nash equilibrium in a game with 4 or more players is complete for the complexity
class PPAD. Our proof uses ideas from the recently-established equivalence between polynomial-
time solvability of normal-form games and graphical games, and shows that these kinds of games
can implement arbitrary members of a PPAD-complete class of Brouwer functions.

1 Introduction

In 1951 Nash showed that every game has a Nash equilibrium (13). The computational problem
of finding such equilibria in polynomial time has remained open, and has come under increased
scrutiny during the past two decades, see Section 2.2. The 2-player case seems a little easier, since
linear programming-like techniques come into play and the solutions are guaranteed to be rational —
Nash showed in his original paper that there are 3-player games with only irrational equilibria. The
problem was known to belong to the class PPAD (17) of search problems with solutions guaranteed
to exist by dint of a directed graph-theoretic argument but, unlike the problem of finding a Brouwer
fixpoint, it was not known to be complete for that class.

In this paper we show that the problem of computing Nash equilibria in games with 4 players is
indeed PPAD-complete. Thus, a polynomial-time algorithm would imply a similar algorithm, e.g.,
for computing Brouwer fixpoints, a problem for which quite strong lower bounds for large classes
of algorithms are known (8), and would have to fail to relativize with respect to the oracles in (1),
for which PPAD has no polynomial-time algorithms.

Nash showed his result by reducing the existence of Nash equilibria to the existence of Brouwer
fixpoints. Given any game, he constructs a Brouwer function whose fixpoints are precisely the
equilibria of the game. In Nash’s reduction, as well as in subsequent ones (5), the constructed
Brouwer function is quite specialized, and this has led to speculation on whether the fixpoints of
such functions (and thus Nash equilibria) are easier to find than for general Brouwer functions.
We answer this question in the negative by presenting a reduction in the opposite direction: Any
(computationally presented) Brouwer function can be simulated by a game, so that Nash equilibria
correspond to fixpoints.
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In a recent precursor of this paper (7), we describe certain reductions between equilibrium
problems; in particular, finding a Nash equilibrium in an r-player game can be reduced to the
same problem with 4 players, and to that in a graphical game (see (10), a game in which players
are nodes on a graph and they affect the utilities of only their neighbors in the graph) with two
strategies per player and maximum degree three. Thus, all these problems and their generalizations
are PPAD-complete. Our present proof relies crucially on certain “arithmetical gadgets” invented
in (7): games that have the effect of adding, multiplying, and comparing real numbers.

The idea in our proof is this: Given a Brouwer function on the 3-dimensional cube (appropriately
stylized and presented as a circuit), we simulate the coordinates by three players; each player has
two strategies, so that a mixed strategy is essentially a real in [0, 1]. We construct a game in which
the best responses of these three players implement the Brouwer function. This is done by decoding
the coordinates into a bit vector, using the circuit to compute the value of the function, and then
inducing the three players to add the appropriate increments to their mixed strategy. All this is
done by a graphical game, ultimately relying on the reduction in (7) to get to a 4-player normal
form games.

There are many difficulties, of course. One has to do with brittle comparators. Our comparator
gadget sets a number z to 0 if x < y, to 1 if x > y, and to anything if x = y (it is not hard to see that
no “robust” comparator gadget is possible). This means that decoding is flakey at the boundaries,
and at these points the best response can be essentially arbitrary. We solve this by defining our
best response to be an average over a “microlattice” around the point of interest, thus smoothing
out any effects from boundaries of measure zero. Another problem is that the Brouwer problem,
as defined in (17), would be very cumbersome to use in this reduction; thus, a side-product of our
proof is a much cleaner canonical version of the computational problem associated with Brouwer’s
Fixpoint Theorem (actually, one that is, in a sense, half-way between that and Sperner’s Lemma).

2 Definitions, Background, and Preliminaries

2.1 Games

A game in normal form has r ≥ 2 players (indexed by p) and for each player p a finite set Sp of
pure strategies. The set S of pure strategy profiles is the Cartesian products of the Sp’s. We denote
the set of all strategy profiles of players other than p by S−p. Finally, for each p ≤ r and s ∈ S we
have a payoff or utility up

s — also occasionally denoted up
js for j ∈ Sp and s ∈ S−p.

A mixed strategy for player p is a distribution on Sp, that is, real numbers xj ≥ 0 for each
strategy j ∈ Sp such that

∑
j∈Sp

xj = 1. A set of r mixed strategies xp
j , p = 1, . . . , r, j ∈ Sp are

called a (mixed) Nash equilibrium if, for each p,
∑

s∈S up
sxs is maximized over all mixed strategies

of p (where for a strategy profile s = (s1, . . . , sr) ∈ S, we denote by xs the product x1
s1
·x2

s2
· · ·xr

sr
).

That is, a Nash equilibrium is a set of mixed strategies from which no player has an incentive to
deviate. It is well-known (see, e.g., (15)) that the following is an equivalent condition for a set of
mixed strategies to be a Nash equilibrium:

∑

s∈S−p

up
jsxs >

∑

s∈S−p

up
j′sxs =⇒ xp

j′ = 0.

More generally, a set of mixed strategies is an ε-Nash equilibrium for some ε > 0 if the following
holds: ∑

s∈S−p

up
jsxs >

∑

s∈S−p

up
j′sxs + ε =⇒ xp

j′ = 0.
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A game in normal form requires r|S| numbers for its description. A graphical game (10) is
defined in terms of an undirected graph G = (V, E) together with a set of strategies Sv for each
v ∈ V . We denote by N (v) the set consisting of v and v’s neighbors in G, and by SN (v) the set of
all |N (v)|-tuples of strategies, one from each vertex in N (v). In a graphical game, the utilities to
v are given by {uv

s : s ∈ SN (v)}. In other words, a graphical game is a succinct representation of
a many-player game, when it so happens that for every p, up

s only depends on a few other players.

2.2 Background Work

Hitherto there are very few results either positive or negative, for the problem of computing unre-
stricted Nash equilibria in polynomial time. Lipton and Markakis (11) study the algebraic properties
of Nash equilibria, and point out that standard quantifier elimination algorithms can be used to
solve them, but these are not polynomial-time in general. The two-player case 2-Nash is the most
prominent open problem; the most popular algorithm for 2-Nash is the Lemke-Howson algorithm,
shown to be exponential-time in the worst case by Savani and von Stengel (19). For finding specific
Nash equilibria, for example the Nash equilibrium with best social cost, the problem is typically
NP-complete (6; 3).

In addition to (7), the papers (2; 18) have started to explore the computational complexity of
games, via reductions between alternative types of game.

3 PPAD

We now review several definitions and results from the complexity theory of total functions, see
(17) for a very similar, but not identical, formalism. A search problem S is a set of inputs IS ⊆ Σ∗

such that for each x ∈ IS there is an associated set of solutions Sx ⊆ Σ|x|k for some integer k, such
that for each x ∈ IS and y ∈ Σ|x|k whether y ∈ Sx is decidable in polynomial time (notice that this
is precisely NP with an added emphasis on finding a witness).

For example, r-Nash is the search problem S in which each x ∈ IS is an r-player game in
normal form together with a binary integer A (the accuracy specification), and Sx is the set of
1
A

-Nash equilibria of the game. Similarly, d-graphical Nash is the search problem with inputs
the set of all graphical games with degree at most d, plus an accuracy specification, and solutions
the corresponding approximate Nash equilibria.

A search problem is total if Sx 6= ∅ for all x ∈ IS . For example, Nash’s 1951 theorem (13)
implies that r-Nash is total. Obviously, the same is true of d-graphical Nash. The set of all
total search problems is denoted TFNP.

Since TFNP is a “semantic” class (i.e., it has no generic complete problem), we explore its
complexity via its important subclasses: PLS (9), PPP, PPA and PPAD (17). In particular, PPAD
is the class of all total search problems reducible to the following:

end of the line: Given two circuits S and P with n input bits and n output bits, such that
P (0n) = 0n 6= S(0n), find an input x ∈ {0, 1}n such that P (S(x)) 6= x or S(P (x)) 6= x 6= 0n.

Intuitively, end of the line creates a directed graph with vertex set {0, 1}n and an edge
from x to y whenever both y = S(x) and x = P (y) (S and P stand for “successor candidate”
and “predecessor candidate”). This graph has indegree and outdegree at most one, and at least
one source, namely 0n, so it must have a sink. We seek either a sink, or a source other than 0n.
Thus, PPAD is the class of all total functions whose totality is proven via the simple combinatorial
argument outlined above (PPAD stands for “polynomial parity argument, directed version”).

The following is shown in (17) by a reduction to end of the line via Brouwer’s Theorem and
Sperner’s Lemma:
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Proposition 1 r-Nash is in PPAD.

A polynomially computable function f is a polynomial-time reduction from total search problem
S to total search problem T if for every input x of S f(x) is an input of T , and furthermore there
is another polynomial function g such that for every y ∈ Tf(x), g(y) ∈ Sx. In (7) the following is
shown:

Theorem 1 There are polynomial-time reductions from r-Nash and d-graphical Nash, for any
r, d ≥ 2, to both 4-Nash and 3-graphical Nash.

A search problem S in PPAD is called PPAD-complete if all problems in PPAD reduce to it.
Obviously, end of the line is PPAD-complete; our main result in this paper (Theorem 3) states
that so are 4-Nash and 3-graphical Nash.

In our proof we use a problem we call 3-dimensional Brouwer, which is a very simplified
version of a problem shown PPAD-complete in (17). We are given a stylized Brouwer function φ
on the 3-dimensional unit cube, defined in terms of its values at the centers of 23n cubelets with
side 2−n. At the center cijk of the cubelet Kijk defined as

Kijk = {(x, y, z) : i2−n ≤ x ≤ (i + 1)2−n, j2−n ≤ y ≤ (j + 1)2−n, k2−n ≤ z ≤ (k + 1)2−n},

where i, j, k are integers in [2n], the value of φ(cijk) is cijk + δijk, where δijk is one of the following
four vectors:

• δ1 = (α, 0, 0)

• δ2 = (0, α, 0)

• δ3 = (0, 0, α)

• δ0 = (−α,−α,−α)

Here α > 0 is much smaller than the cubelet side, say 2−2n. In the actual (continuous) Brouwer
function given by circuit C (described below), the value of φ near the boundaries of the cubelets
would be determined by interpolation — there are many simple ways to do this, and the precise
method is of no importance to our discussion. Thus, to compute φ at the centers of the cubelet
Kijk we only need to know which of the four displacements to add. This is computed by a circuit
C (which is the only input to the problem) with 3n input bits and 2 output bits; C(i, j, k) is the
index r such that, if c is the center of cubelet Kijk, φ(c) = c + δr. C is such that C(0, j, k) = 1,
C(i, 0, k) = 2, C(i, j, 0) = 3 (with conflicts resolved arbitrarily) and C(2n−1, j, k) = C(i, 2n−1, k) =
C(i, j, 2k − 1) = 0, so that the function φ maps the boundary to the interior of the cube. A vertex
of a cubelet is called panchromatic if among the eight cubelets adjacent to it there are four that
have all four increments δ0, δ1, δ2, δ3.

3-dimensional Brouwer is thus the following problem: Given a circuit C as described above,
find a panchromatic vertex. The relationship with Brouwer fixpoints (as promised by Brouwer’s
theorem) is that any natural interpolation rule ensures that fixpoints only ever occur in the vicinity
of a panchromatic vertex; elsewhere the displacements cannot cancel each other out.

Theorem 2 3-dimensional Brouwer is PPAD-complete.
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Proof. The reduction is from end of the line. Given circuits S and P with n inputs and
outputs, as prescribed in this problem, we shall construct an equivalent instance of 3-dimensional

Brouwer, that is, another circuit C with 3m = 3(n + 3) inputs and two outputs that computes
the color of each cubelet of side 2−m, that is to say, the index i such that δi is the correct increment
of the Brouwer function at the center of the cubelet encoded into the 3m bits of the input. We
shall first describe the Brouwer function φ explicitly, and then argue that it can be computed by a
circuit.

Our description of φ proceeds as follows: We shall first describe a 1-dimensional subset L of the
3-dimensional unit cube, intuitively an embedding of the path-like directed graph GS,P implicitly
given by S and P . Then we shall describe the 4-coloring of the 23m cubelets based on the description
of L. Finally, we shall argue that colors are easy to compute locally, and that fixpoints correspond
to endpoints other than 0n of the line.

We assume that the graph GS,P is such that for each edge (u, v), one of the vertices is even
(ends in 0) and the other is odd; this is easy to guarantee (we could add a dummy input and output
bit to S and P that is always flipped.)

L will be orthonormal, that is, each of its segments will be parallel to one of the axes. Let
u ∈ {0, 1}n be a vertex of GS,P . By [u] we denote the integer between 0 and 2n − 1 whose binary
representation is u; all coordinates of endpoints of segments are integer multiples of 2−m, a factor
that we omit. Associated with u there are two line segments of length 4 of L. The first, called
the principal segment of u, has endpoints u1 = (8[u] + 2, 2, 2) and u′

1 = (8[u] + 6, 2, 2). The other
auxiliary segment has endpoints u2 = (2, 8[u]+2, 2m − 3) and u′

2 = (2, 8[u]+6, 2m − 3). Informally,
these segments form two dashed lines that run along two edges of the cube and slightly in its interior
(see Figure 1).

Now, for every vertex u of GS,P , we connect u′
1 to u2 by a line with three straight segments,

with joints u3 = (8[u]+6, 8[u]+2, 2) and u4 = (8[u]+6, 8[u]+2, 2m−3). Finally, if there is an edge
(u, v) in GS,P , we connect u′

2 to v1 by a broken line with breakpoints u5 = (8[v]+2, 8[u]+6, 2m−3)
and u6 = (8[v] + 2, 8[u] + 6, 2). This completes the description of the line L. It is easy to see that
L traverses the interior of the cube without ever “nearly crossing itself”; that is, two points p, p′ of
L are closer than 4 · 2−m in Euclidean distance only if they are connected by a part of L that has
length 8 · 2−m or less. (This is important in order for the coloring described below of the cubelets
surrounding L to be well-defined.) To check this, just notice that segments of different types (e.g.,
[u3, u4] and [v′2, v5]) come close only if they share an endpoint; segments on the z = 2 plane are
parallel and at least 4 apart; and segments parallel to the z axis differ by at least 4 in either their
x or y coordinates.

We now describe the coloring of the 23m cubelets by four colors corresponding to the four
increments. As required for a 3-dimensional Brouwer circuit, the coloring of any cubelet Kijk

where any one of i, j, k is 2m − 1 is 0. Given that, any other cubelet with i = 0 gets color 1; with
this fixed, any other cubelet with j = 0 gets color 2, while the remaining cubelets with k = 0 get
color 3. Having colored the boundaries, we now have to color the interior cubelets. An interior
cubelet is always colored 0 unless one of its vertices is a point of the interior of line L, in which
case it is colored by one of the three other colors in a manner to be explained shortly. Intuitively,
at each point of the line L, starting from (2, 2, 2) (the beginning of the principle segment of the
string u = 0n) the line L is “protected” from color 0 from all 4 sides. As a result, the only place
where the four colors can meet is vertex u′

2 or u1, u 6= 0n, where u is an end of the line. . .
In particular, near the beginning of L at (2, 2, 2) the 27 cubelets Kijk with i, j, k ≤ 2 are colored

as shown in Figure 2. From then on, for any length-1 segment of L of the form [(x, y, z), (x′, y′, z′)]
consider the four cubelets containing this edge. Two of these cubelets are colored 3, and the other
two are colored 1 and 2, in this order clockwise (from the point of view of an observer at (x, y, z))
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Figure 1: The orthonormal path connecting nodes (u,v); the arrows indicate the orientation of
colors surrounding the path.

as L proceeds from (2, 2, 2) on. The remaining cubelets touching L are the ones at the joints where
L turns. Each of these cubelets, a total of two per turn, takes the color of the two other cubelets
adjacent to L with which it shares a face.

Now it only remains to describe, for each line segment [a, b] of L, the direction d in which the
two cubelets that are colored 3 lie. The rules are these (in Figure 1 the directions d are shown as
arrows):

• If [a, b] = [u1, u
′
1] then d = (0, 0,−1) if u is even and d = (0, 0, 1) if u is odd.

• If [a, b] = [u′
1, u3] then d = (0, 0,−1) if u is even and d = (0, 0, 1) if u is odd.

• If [a, b] = [u3, u4] then d = (0, 1, 0) if u is even and d = (0,−1, 0) if u is odd.

• If [a, b] = [u4, u2] then d = (0, 1, 0) if u is even and d = (0,−1, 0) if u is odd.

• If [a, b] = [u2, u
′
2] then d = (1, 0, 0) if u is even and d = (−1, 0, 0) if u is odd.

• If [a, b] = [u′
2, u5] then d = (0,−1, 0) if u is even and d = (0, 1, 0) if u is odd.

• If [a, b] = [u5, u6] then d = (0,−1, 0) if u is even and d = (0, 1, 0) if u is odd.

• If [a, b] = [u6, v1] then d = (0, 0, 1) if u is even and d = (0, 0,−1) if u is odd.
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Figure 2: The 27 cubelets around the beginning of line L

This completes the description of the construction. Notice that, for this to work, we need
our assumption that edges in GS,P go between odd and even nodes. Regarding the alternating
orientation of colored cubelets around L, note that we could not simply introduce “twists” to
make them always point in (say) direction d = (0, 0,−1) for all (u1, u

′
1). That would create a

panchromatic cubelet at the location of a twist.
The result now follows from the following two claims:

1. A point in the cube is panchromatic in the described coloring if and only if it is

(a) an endpoint u′
2 of a sink vertex, or

(b) u1 of a source vertex u 6= 0n of GS,P

2. A circuit C can be constructed in time polynomial in |S| + |P |, which computes, for each
triple of binary integers i, j, k < 2m, the color of cubelet Kijk.

4 The Reduction

We now prove our main result:

Theorem 3 4-Nash is PPAD-complete.

7



Proof. The reduction is from 3-dimensional Brouwer. Given a circuit C with 3n input bits
describing a Brouwer function as in the definition of 3-dimensional Brouwer, we shall construct
a graphical game G, with maximum degree three, that simulates it. Since we know (Theorem 1)
that graphical games reduce to 4-Nash, this completes the proof.

The graphical game G is binary in that each vertex v in it has two strategies, and thus, at
equilibrium, it represents a real number in [0, 1] denoted p[v]. (Letting 0 and 1 denote the strategies,
p[v] is the probability that v plays 1.) There are three distinguished nodes vx, vy, and vz representing
the coordinates of the Brouwer problem. We next define certain useful gadgets which allow us to
make arithmetic operations, variants of the ones described in (7).

Notation: By x = y ± ε we mean y − ε ≤ x ≤ y + ε.

Lemma 1 There are binary graphical games Gζ , where ζ is any real in [0, 1], G=,G+,G−,G∗,G<

with four players a, b, c, d such that in all games, the payoffs of a and b do not depend on the choices
of the other vertices c, d, and

1. at any ε-Nash equilibrium in Gζ we have p[d] = ζ ± ε;

2. at any ε-Nash equilibrium in G= we have p[d] = p[a] ± ε;

3. at any ε-Nash equilibrium in G+ we have p[d] = min{1,p[a] + p[b]} ± ε;

4. at any ε-Nash equilibrium in G− in which p[a] ≥ p[b], we have p[d] = p[a] − p[b] ± ε;

5. at any ε-Nash equilibrium in G∗ we have p[d] = p[a] · p[b] ± ε;

6. at any ε-Nash equilibrium in G< we have p[d] = 1 if p[a] < p[b] − ε and p[d] = 0 if p[a] >
p[b] + ε.

Proof. This is a simple extension of Propositions 1-3 of (7). Player c is needed for G=, G+, G−

and G∗; its role is to mediate between a, b and d.
The constructions are straightforward, for example for item 2, the payoffs in G= are

Payoffs to d :

c plays 0 c plays 1

d plays 0 0 1
d plays 1 1 0

Payoffs to c:

c plays 0

d plays 0 d plays 1

a plays 0 0 0
a plays 1 1 1

c plays 1

d plays 0 d plays 1

a plays 0 0 1
a plays 1 0 1

If c plays 1, then the expected payoff to c is p[d], and if c plays 0 then the expected payoff to c
is p[a]. Therefore, in a ε-Nash equilibrium of G=, if p[d] > p[a] + ε then p[c] = 1.

However, note also that if p[c] = 1 then p[d] = 0. (Payoffs to d make it prefer to disagree with
c.) Consequently, p[d] cannot be strictly larger than p[a] + ε.

Similarly, if p[d] < p[a] − ε then p[c] = 0, which implies that p[d] = 1 (again since d has the
biggest payoff by disagreeing with c). Hence p[d] cannot be less than p[a] − ε.

For Item 3, the payoffs in G+ are
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Payoffs to d :

c plays 0 c plays 1

d plays 0 0 1
d plays 1 1 0

Payoffs to c : c plays 0

b plays 0 b plays 1

a plays 0 0 1
a plays 1 1 2

c plays 1 d plays 0 0
d plays 1 1

If c plays 1, then the expected payoff to c is p[d], and if c plays 0 then the expected payoff to c
is p[a] + p[b]. Therefore, in a ε-Nash equilibrium of G+, if p[d] > p[a] + p[b] + ε then p[c] = 1.

However, note from the payoffs to d that if p[c] = 1 then p[d] = 0. Consequently, p[d] cannot
be strictly larger than p[a] + p[b] + ε.

Similarly, if p[d] < p[a] + p[b] − ε then due to the payoffs to c we have p[c] = 0. This in turn
implies that p[d] = 1 (since d has the biggest payoff by disagreeing with c). Hence p[d] cannot be
less than min(1,p[a] + p[b] − ε).

G< is as follows: player d receives a payoff of 1 if d plays 0 and a plays 1, and d receives a payoff
of 1 if d plays 1 and b plays 1, otherwise d received a payoff of 0.

Equivalently, d receives an expected payoff of p[a] if d plays 0, and receives p[b] of d plays 1. It
can be verified that this implements G<.

Notice that, in G<, p[d] is arbitrary if p[a] is close to p[b], hence we called it the brittle com-
parator. As an aside, it is not hard to see that a robust comparator, one in which d is guaranteed
at a precise Nash equilibrium to be, say, 0 if p[a] = p[b], cannot exist, since it could be used to
produce a simple graphical game with no Nash equilibrium, contradicting Nash’s theorem.

To continue the reduction, the graphical game G will contain the following vertices.

• the three coordinate vertices vx, vy, vz,

• for i ∈ [n], vertices vbi(x), vbi(y) and vbi(z), whose p-values represent the i-th bit of p[vx], p[vy],
p[vz],

• vxi
, vyi

and vzi
(for i ∈ [n]), vertices whose p-values represent the first i bits of p[vx], p[vy],

p[vz].

We can extract these values by computing the binary representation of bp[vx]2nc and similarly
for vy and vz — that is, the binary representations of the integers i, j, k such that (x, y, z) =
(p[vx],p[vy],p[vz]) lies in the cubelet Kijk. This is done by a graphical game that simulates, using
the arithmetical gadgets of Lemma 1, the following algorithm (by < (a, b) we mean the brittle
comparator of a and b):

x1 = x (short for p[x1] = p[vx]);
for i = 1, . . . , n do:
{bi(x) :=< (2−i, xi); xi+1 := xi − bi(x) · 2−i}
Similarly for y and z.

This is accomplished in G by connecting these nodes as prescribed by Lemma 1, so that
p[vxi

],p[vbi(x)], etc. approximate the value of xi, bi(x) etc. as computed by the above algorithm.
The following lemma (when applied with m = n) shows that this device properly decodes the first
n bits of the binary expansion of x = p[vx], as long as x is not too close to a multiple of 2−n.
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Lemma 2 For m ≤ n, if
∑m

i=1 bi(x)2−i + 2mε < x <
∑m

i=1 bi(x)2−i + 2−m − 2mε for some
b1, . . . , bm ∈ {0, 1}, then at any ε-Nash equilibrium of G, p[vbm(x)] = bm, and p[vxm+1

] = x −∑m
i=1 bi(x)2−i ± 2mε.

Proof. Induction on m. It is trivial for m = 0, so suppose it holds up to m. Then we know that
p[vxm ] is not within ε of a multiple of 2−m, and therefore p[vbm+1(x)] will hold the correct value
of the next bit. Finally, the multiplication and subtraction needed to compute xm+1 will each
introduce an additional error of ε, concluding the induction.

The above is repeated for y and z to obtain i, j, k, that is, 3n vertices of the graph of G whose
p values correspond to the bits of i, j, k (assuming that x, y, z are all at least 2nε away from any
multiple of 2−n). Once we have the binary representations of i, j, k, we can feed them into another
part of G that simulates the circuit C. We could simulate the circuit by having nodes that represent
gates, using addition (with ceiling 1) to simulate or, multiplication for and, and 1−x for negation.
However, there is a simpler way, one that avoids the complications related to accuracy, to simulate
Boolean functions under the assumption that the inputs are 0 or 1:

Lemma 3 There are binary graphical games G∨,G∧,G¬ with two input players a, b (one input player
a for G¬) and an output player c such that the payoffs of a and b do not depend on the choices of
c, and, at any ε-Nash equilibrium with ε < 1/4 in which p[a],p[b] ∈ {0, 1}, p[c] is also in {0, 1},
and is in fact the result of applying the corresponding Boolean function to the inputs.

Proof. These games are in the same spirit as G<. In G∨, for example, the payoff to c is 1/2 if
it plays 0; if c plays 1 its payoff is 1 if at least one of a, b plays 1, and it is 0 if they both play 0.
Similarly for G∧ and G¬

Thus in addition to the part of G that computes the bits p[vbi(x)] etc. of i, j, k we have a part
that simulates C, containing one player for each gate of C, and such that, in any ε-approximate
equilibrium in which all the p[vbi(x)]’s are 0− 1, the players corresponding to the outputs of C also
play pure strategies, and furthermore these strategies correspond correctly to the outputs of C.

In fact, it is convenient to assume that the output of C is a little more explicit: C computes
six bits ∆x+, ∆x−, ∆y+, ∆y−, ∆z+, ∆z− such that at most one of ∆x+, ∆x− is 1, and at most one
of ∆y+, ∆y− is 1, and similarly for z, and the increment of the Brouwer function at the center of
Kijk is α · (∆x+ − ∆x−, ∆y+ − ∆y−, ∆z+ − ∆z−), one of δ0, δ1, δ2, δ3 as defined above. It would
seem that all we have to do now is close the loop by incentivizing (using the G+ device of Lemma
1) the vx, vy and vz vertices to increment their p values by the appropriate amounts.

But, as we mentioned above, there is a problem: Because of the brittle comparators, at the
boundaries of the cubelets the vertices that should represent the values of the bits of i, j, k hold in
fact arbitrary reals, and therefore so do the output vertices of C, the ∆x+ etc, and this noise in
the calculation can create spurious Nash equilibria. Suppose for example that (x, y, z) lies on the
boundary between two cubelets that have color 1. Then there ought not to be a Nash equilibrium
with p[vx] = x, p[vy] = y, p[vz] = z. We want that if p[vx] = x, p[vy] = y, p[vz] = z, then
p[vx],p[vy],p[vz] should have the incentive to move in direction δ1, so that vx prefers to increase
p[vx]. However, on a boundary between two cubelets, some of the “bit values” that get loaded into
vbi(x), could be other than 0 and 1, and then there is nothing we can say about the output of the
circuit that processes these values.

To overcome this difficulty, we resort to the following averaging maneuver: We repeat the
above computation not just for the point (x, y, z), but for all M = (2m + 1)3 points of the form
(x + p · α, y + q · α, z + s · α) for −m ≤ p, q, s ≤ m, where m is a large enough constant to be fixed
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later (we show below that m = 20 is sufficient). This is done by M copies of the device described
above, yielding 6M output bits ∆x+

1 , . . . , ∆z−M . A final part of G calculates the vector

(δx, δy, δz) =
α

M

M∑

t=1

(∆x+
t − ∆x−

t , ∆y+
t − ∆y−t , ∆z+

t − ∆z−t ), (1)

the average increment of all M points (this is done using the arithmetic gadgets of Lemma 1).
We can now close the loop by inserting addition gadgets that force, at equilibrium, p[vx] to be

x + δx, where by x we mean the value of a vertex that is a copy of vx, and similarly for vy and vz.
This concludes the reduction; it is clear that it can be carried out in polynomial time.

Our proof is concluded by the following claim. For the following lemma we choose ε = α2.
Recall from our definition of 3-dimensional Brouwer that we chose α = 2−2n.

Lemma 4 In any ε-Nash equilibrium of the game G, one of the vertices of the cubelet that contains
(p[vx],p[vy,p[vz]) is panchromatic.

Proof. We start by pointing out a simple property of the increments δ0, . . . , δ3:

Lemma 5 Suppose that for nonnegative integers k0, . . . , k3 all three coordinates of
∑3

i=0 kiδi are
smaller in absolute value than αK

5 where K =
∑3

i=0 ki. Then all four ki are positive.

Proof. For the sake of contradiction, suppose that k1 = 0. It follows that k0 < K/5 (otherwise
the negative x component would be too large), and thus one of k2, k3 is larger than 2K/5, which
makes the corresponding component too large, a contradiction. Similarly if k2 = 0 or k3 = 0.
Finally, if k0 = 0 then one of k1, k2, k3, and the associated component, is at least K/3, again a
contradiction.

The small value of ε relative to α first implies that, for direction x, at most one of the values
x + p · α can be 2nε-close to a multiple of 2−n, and similarly for y and z. Hence, from among
the M = (2m + 1)3 evaluations, all but at most 3(2m + 1)2, or at least K = (2m − 2)(2m + 1)2,
compute legitimate ∆x+ etc. values. These K terms add up to 1

M

∑3
i=0 kiδi for some nonnegative

integers k0, . . . , k3 adding up to K (recall that from lemma 3 these K evaluations of the circuit
will produce binary outputs). The remaining terms can add up to a vector with each coordinate
bounded from above in absolute value by α

M
6(2m + 1)2. Thus,

∑3
i=0 kiδi must add up to a vector

with each coordinate bounded in absolute value by α6(2m + 1)2 + 2Mε. By choosing m = 20,
the bound becomes less than αK/5, and so Lemma 5 applies. It follows that among the results of
the K computations of the increments, all four δ0, . . . , δ3 appeared. This implies that among the
corners of the cubelets containing (x, y, z) there must be one panchromatic corner, completing the
proof of Lemma 4.

To conclude the proof of Theorem 3, if we find any ε-Nash equilibrium of G, Lemma 4 has shown
that by reading off the first n binary digits of p[vx], p[vy] and p[vz] we obtain a solution to the
corresponding instance of 3-dimensional Brouwer.

5 Open Problems

Our work leaves open the cases with 2 and 3 players. We conjecture that the 3-player case is also
PPAD-complete (even though considerable more work and new ideas may be required to prove
this). In contrast, we believe that there is a polynomial-time algorithm for solving 2-player games.
Similarly, we believe that graphical games with maximum degree two should also be solvable.
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Finally, the important problem of computing approximate Nash equilibria with less than expo-
nential accuracy is also left wide open.
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