
Polylogarithmic Private Approximations and Efficient Matching

Piotr Indyk
MIT

indyk@mit.edu

David Woodruff
MIT

dpwood@mit.edu

Abstract

In [12] a private approximation of a function f is defined to be another function F that approxi-
mates f in the usual sense, but does not reveal any information about x other than what can be deduced
from f(x). We give the first two-party private approximation of the l2 distance with polylogarithmic
communication. This, in particular, resolves the main open question of [12].

We then look at the private near neighbor problem in which Alice has a query point in {0, 1}d and
Bob a set of n points in {0, 1}d, and Alice should privately learn the point closest to her query. We
improve upon existing protocols, resolving open questions of [13, 10]. Then, we relax the problem
by defining the private approximate near neighbor problem, which requires introducing a notion of
secure computation of approximations for functions that return sets of points rather than values. For this
problem we give several protocols with sublinear communication.

1 Introduction

Recent years witnessed the explosive growth of the amount of available data. Large data sets, such as
transaction data, the web and web access logs, or network traffic data, are in abundance. Much of the data is
stored or made accessible in a distributed fashion. This neccessitates the development of efficient protocols
that compute or approximate functions over such data (e.g. see [2]).

At the same time, the availability of this data has raised significant privacy concerns. It became apparent
that one needs cryptographic techniques in order to control data access and prevent potential misuse. In
principle, this task can be achieved using the general results of secure function evaluation (SFE) [32, 18].
However, in most cases the resulting private protocols are much less efficient than their non-private coun-
terparts1 . Moreover, SFE applies only to algorithms that compute functions exactly, while for most massive
data sets problems, only efficient approximation algorithms are known or are possible. Indeed, while it is
true that SFE can be used to privately implement any efficient algorithm, it is of little use applying it to an
approximation algorithm when the approximation leaks more information about the input than the solution
itself.

In a pioneering paper [12], the authors introduced a framework for secure computation of approxima-
tions. They also proposed an Õ(

√
n)-communication2 two-party protocol for approximating the Hamming

distance between two binary vectors. This improves over the linear complexity of computing the distance
exactly via SFE, but still does not achieve the polylogarithmic efficiency of a non-private protocol of [24].
Improving the aforementioned bound was one of the main problems left open in [12].

1A rare exception is the result of [28], who show how to obtain private and communication-efficient versions of non-private
protocols, as long as the communication cost is logarithmic.

2We write f = Õ(g) if f(n, k) = O
(

g(n, k) logO(1)(n)poly(k)
)

, where k is a security parameter.

1

Electronic Colloquium on Computational Complexity, Report No. 117 (2005)

ISSN 1433-8092

In this paper we provide several new results for secure computation of approximations. Our first result is
an Õ(1)-communication protocol for approximating the Euclidean (`2) distance between two vectors. This,
in particular, solves the open problem of [12]. Since distance computation is a basic geometric primitive, we
believe that our result could lead to other algorithms for secure approximations. Indeed, in [1] the authors
show how to approximate the `2 distance using small space and/or short amount of communication, initiating
a rich body of work on streaming algorithms.

In the second part of the paper, we look at secure computation of a near neighbor for a query point q
(held by Alice) among n data points P (held by Bob) in {0, 1}d . We improve upon known results [10, 13]
for this problem under various distance metrics, including `2, set difference, and Hamming distance over
arbitrary alphabets. Our techniques also result in better communication for the all-near neighbors problem,
where Alice holds n different query points, resolving an open question of [13], and yield a binary inner
product protocol with communication d + O(k) in the common random string model.

Complexity Problem Prior work SFE
Õ(n + d) near neighbor under l2, Hamming over {0, 1}d, set difference [10] Õ(nd)

Õ(dU + n) near neighbor under distances f(a, b) =
∑d

i=1 fi(ai, bi), ai, bi ∈ [U] [10] Õ(nd log U)
dlog ded + O(k) Hamming distance [14] O(kd)

Õ(nd2 + n2) all-near neighbors [13] Õ(n2d)

However, all of our protocols for the near neighbor problem have the drawback of needing Ω(n) bits
of communication, though the dependence on d is often optimal. Thus, we focus on what we term the
approximate near neighbor problem. For this we introduce a new definition of secure computation of ap-
proximations for functions that return points (or sets of points) rather than values.

Approximate privacy. Let Pt(q) be the set of points in P within distance t from q. In the c-approximate
near neighbor problem, the protocol is required to report a point in Pcr(q), as long as Pr(q) is nonempty.
We say that a protocol solving this problem is c′-private (or just private if c′ = c) if Bob learns nothing,
while Alice learns nothing except what can be deduced from the set Pc′r(q). In our paper we always set
c′ = c.

We believe this to be a natural definition of privacy in the context of the approximate near neighbor
problem. First, observe that if we insist that Alice learns only the set Pr (as opposed to Pcr), then the
problem degenerates to the exact near neighbor problem. Indeed, even though the definition of correctness
allows the protocol to output a point p ∈ Pcr − Pr , in general Alice cannot simulate this protocol given
only the set Pr. Thus, in order to make use of the flexibility provided by the approximate definition of the
problem, it seems necessary to relax the definition of privacy as well.

Second, the above relaxation of privacy appears natural in the context of applications of near neighbor
algorithms. In most situations, the distance function is only a heuristic approximation of the dis-similarity
between objects, and there is no clear rationale for a sharp barrier between objects that can or cannot be
revealed (still, it is important that the information leak is limited). Our model formalizes this intuition, and
our algorithmic results shows that it is possible to exploit the model to obtain more efficient algorithms.

Specifically, within this framework, we give a c-approximate near neighbor protocol with communica-
tion Õ(n1/2 + d) for any constant c > 1. The protocol is based on dimensionality reduction technique of
[24]. We show how the dependence on d can be made polylogarithmic if Alice just wants a coordinate of a
point in Pcr. We also give a protocol based on locality-sensitive hashing (LSH) [23], with communication
Õ(n1/2+1/(2c) + d), but significantly less work (though still polynomial).

Finally, proceeding along the lines of [20], we say the protocol leaks b bits of information if it can be
simulated given b extra bits which may depend arbitrarily on the input. With this definition, we give a
protocol with Õ(n1/3 + d) communication leaking only k bits, where k is a security parameter.

2

General vs specific solutions. As described above, this paper offers solutions to specific computational
problems. In principle, a general “compiler-like” approach (as in [32, 18]) would be preferable. However, it
appears unlikely that a compiler approach can be developed in the context of approximate problems. Indeed,
there is no general method that, for a given problem, generates an efficient approximation algorithm (even
ignoring the privacy issue). This implies that a compiler would have to start from a particular approxima-
tion to a given function. Unfortunately, as mentioned earlier, such approximation itself can leak too much
information.

This argument leads us to believe that, in context of approximate algorithms, designing efficient private
solutions to specific problems is the only possible approach.

2 Preliminaries

Background on homomorphic encryption, oblivious transfer (OT), and secure function evaluation (SFE) can
be found in appendix A.

We assume both parties are computationally bounded and semi-honest, meaning they follow the protocol
but may keep message histories in an attempt to learn more than is prescribed. In [18, 7, 28], it is shown how
to transform a semi-honest protocol into a protocol secure in the malicious model. Further, [28] does this at
a communication blowup of at most a factor of poly(k). Therefore, we assume parties are semi-honest in
the remainder of the paper.

We briefly review the semi-honest model, referring the reader to [17, 25] for more details. Let f :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a function, the first element denoted f1(x1, x2) and the second
f2(x1, x2). Let π be a two-party protocol for computing f . The views of players P1 and P2 during an
execution of π(x1, x2), denoted Viewπ

1 (x1, x2) and Viewπ
2 (x1, x2) respectively, are:

Viewπ
1 (x1, x2) = (x1, r1,m1,1, . . . ,m1,t), View

π
2 (x1, x2) = (x2, r2,m2,1, . . . ,m2,t),

where ri is the random input and mi,j the messages received by player i respectively. The outputs of P1

and P2 during an execution of π(x1, x2) are denoted outputπ
1 (x1, x2) and outputπ

2 (x1, x2). We define
outputπ(x1, x2) to be (outputπ

1 (x1, x2), output
π
2 (x1, x2)). We say that π privately computes a function

f if there exist PPT algorithms S1, S2 for which for i ∈ {1, 2} we have the following indistinguishability

{Si(xi, fi(x1, x2)), f(x1, x2)}
c≡ {Viewπ

i (x1, x2), output
π(x1, x2)}.

This simplifies to {Si(xi, fi(x1, x2))}
c≡ {Viewπ

i (x1, x2)} if either f1(x1x2) = f2(x1, x2) or if f(x1, x2)
is deterministic or equals a specific value with probability 1 − negl(k, n), for k a security parameter.

We need a standard composition theorem [17] concerning private subprotocols. An oracle-aided pro-
tocol (see [25]) is a protocol augmented with a pair of oracle tapes for each party and oracle-call steps.
In an oracle-call step parties write to their oracle tape and the oracle responds to the requesting parties.
An oracle-aided protocol uses the oracle-functionality f = (f1, f2) if the oracle responds to query x, y
with (f1(x, y), f2(x, y)), where f1, f2 denote first and second party’s output respectively. An oracle-aided
protocol privately reduces g to f if it privately computes g when using oracle-functionality f .

Theorem 1 [17] If a function g is privately reducible to a function f , then the protocol g ′ derived from g by
replacing oracle calls to f with a protocol for privately computing f , privately computes g.

We now define the functional privacy of an approximation as in [12]. For our approximation protocols we
will have f1(x, y) = f2(x, y) = f(x, y).

3

Definition 2 Let f(x, y) be a function, and let f̂(x, y) be a randomized function. Then f̂(x, y) is function-

ally private for f if there is an efficient simulator S s.t. for every x, y, we have f̂(x, y)
c≡ S(f(x, y)).

A private approximation of f privately computes a randomized function f̂ that is functionally private for f .
Finally, we need the notion of a protocol for securely evaluating a circuit with ROM. In this setting, the

ith party has a table Ri ∈ ({0, 1}r)s defined by his inputs. The circuit, in addition to the usual gates, is
equipped with lookup gates which on inputs (i, j), output Ri[j].

Theorem 3 [28] If C is a circuit with ROM, then it can be securely computed with Õ(|C|T (r, s)) commu-
nication, where T (r, s) is the communication of 1-out-of-s OT on words of size r.

3 Private `2 Approximation

Here we give a private approximation of the `2 distance. Alice is given a vector a ∈ [M]n, and Bob a

vector b ∈ [M]n. Note that ‖a − b‖2 ≤ Tmax
def
= nM2. In addition, parameters ε, δ and k are specified.

For simplicity, we assume that k = Ω(log(nM)). The goal is for both parties to compute an estimate E

such that |E − ‖x‖2| ≤ ε‖x‖2 with probability at least 1 − δ, for x
def
= a − b. Further, we want E to be a

private approximation of ‖x‖, as defined in section 2. As discussed there, wlog we assume the parties are
semi-honest. We set the parameter B = Θ(k); this notation means B = ck for a large enough constant c
independent from k, n,M, δ, ε. In our protocol we make the following cryptographic assumptions.

1. There exists a PRG G stretching polylog(n) bits to n bits secure against poly(n)-sized circuits.

2. There exists an OT scheme for communicating 1 of n bits with communication polylog(n).

At the end of the section we discuss the necessity and plausibility of these assumptions. Our protocol relies
on the following fact and corollary.

Fact 4 [26] Let A be a random n × n orthonormal matrix (i.e., A is picked from a distribution defined by
the Haar measure). Then there is c > 0 such that for any x ∈ <n, any i = 1 . . . n, and any t > 1,

Pr[|(Ax)i| ≥
‖x‖√

n
t] ≤ e−ct2 .

Corollary 5 Suppose we sample A as in Fact 4 but instead generate our randomness from G, rounding its
entries to the nearest multiple of 2−Θ(B). Then,

∀x ∈ <n, Pr[(1 − 2−B)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 and ∀i(Ax)2i <
‖x‖2

n
B] > 1 − neg(k, n)

Proof: If there were an infinite sequence of x ∈ [M]n for which this did not hold, a circuit with x hardwired
would contradict the pseudorandomness of G.

Protocol Overview: Before describing our protocol, it is instructive to look at some natural approaches
and why they fail. We start with the easier case of approximating the Hamming distance, and suppose the
parties share a common random string. Consider the following non-private protocol of [24] discussed in
[12]: Alice and Bob agree upon a random O(log n) × n binary matrix R where the ith row consists of n
i.i.d. Bernoulli(βi) entries, where β is a constant depending on ε. Alice and Bob exchange Ra,Rb, and

4

compute R(a − b) = Rx. Then ‖x‖ can be approximated by observing that Pr[(Ra)i = (Rb)i] ≈ 1/2
if ‖x‖ � β−i, and Pr[(Ra)i = (Rb)i] ≈ 1 if ‖x‖ � β−i. Let the output be E. The communication is
O(log n), but it is not private since both parties learn Rx. Indeed, as mentioned in [12], if a = 0 and b = e i,
then Rx equals the ith column of R, which cannot be simulated without knowing i.

However, given only ‖x‖, it is possible to simulate E. Therefore, as pointed out in [12], one natural
approach to try to achieve privacy is to run an SFE with inputs Ra,Rb, and output E. But this also fails,
since knowing E together with the randomness R may reveal additional information about the inputs. If E
is a deterministic function of Ra,Rb, and if a = 0 and b = ei, Alice may be able to find i from a and R.

In [12], two private protocols which each have Ω(n) communication for a worst-case choice of inputs,
were cleverly combined to overcome these problems and to achieve Õ(

√
n) communication. The first

protocol, High-Distance Estimator, works when ‖x‖ >
√

n. The idea is for the parties to obliviously
sample random coordinates of x, and use these to estimate ‖x‖. Since the sampling is oblivious, the views
depend only on ‖x‖, and since it is random, the estimate is good provided we take Õ(

√
n) samples.

The second protocol, Low-Distance Estimator, works when ‖x‖ ≤ √
n. Roughly, the idea is for the

parties to perfectly hash their vectors into Õ(
√

n) buckets so that at most one coordinate j for which aj 6= bj

lies in any given bucket. The parties then run an SFE with their buckets as input, which can compute ‖x‖
exactly by counting the number of buckets which differ.

Our protocol breaks this O(
√

n) communication barrier as follows. First, Alice and Bob agree upon a
random orthonormal matrix A in R

n×n, and compute Aa and Ab. The point of this step is to uniformly
spread the mass of the difference vector x over the n coordinates, as per Fact 4, while preserving the length.
Since we plan to sample random coordinates of Ax to estimate ‖x‖, it is crucial to spread out the mass of
‖x‖, as otherwise we could not for instance, distinguish x = 0 from x = ei. The matrix multiplication can
be seen as an analogue to the perfect hashing in Low-Distance Estimator, and the coordinate sampling as
an analogue to that in High-Distance Estimator.

To estimate ‖x‖ from the samples, we need to be careful of a few things. First, the parties should
not learn the sampled values (Ax)j , since these can reveal too much information. Indeed, if a = 0, then
(Ax)j = (Ab)j , which is not private. To this end, the parties run a secure circuit with ROM (see section 2)
Aa and Ab, which privately obtains the samples.

Second, we need the circuit’s output distribution E to depend only on ‖x‖. It is not enough for E[E] =
‖x‖2, since a polynomial number of samples from E may reveal non-simulatable information about x based
on E’s higher moments. To this end, the circuit uses the (Ax)j to independently generate r.v.s zj from a
Bernoulli distribution with success probability depending only on ‖x‖. Hence, zj depends only on ‖x‖.

Third, we need to ensure that the zj contain enough information to approximate ‖x‖. We do this by
maintaining a loop variable T which at any point in time is guaranteed to be an upper bound on ‖x‖2 with

overwhelming probability. Using Corollary 5, for all j it holds that q
def
= n(Ax)2j/(TB) ≤ 1 for a parameter

B, so we can generate the zj from a Bernoulli(q) distribution. Since T is halved in each iteration, for some
iteration E[

∑

j zj] will be large enough to ensure that E is tightly concentrated.
We now describe the protocol in detail. Set ` = Θ(B)(1/ε2 log(nM) log(1/δ) + k). In the following,

if q > 1, then the distribution Bernoulli(q) means Bernoulli(1).

5

`2-Approx (a, b):

1. Alice, Bob exchange a seed of G and generate a random A as in Corollary 5

2. Set T = Tmax

3. Repeat:

(a) {Assertion: ‖x‖2 ≤ T }
(b) A secure circuit with ROM Aa,Ab computes the following

• Generate random coordinates i1, . . . , i` and compute (Ax)2i1 , . . . (Ax)2i`

• For j ∈ [`], independently generate zj from a Bernoulli
(

n(Ax)2ij /(TB)
)

distribution

(c) T = T/2

4. Until
∑

i zi ≥ `
4B or T < 1

5. Output E = 2TB
l

∑

i zi as an estimate of ‖x‖2

Note that the protocol can be implemented in O(1) rounds by parallelizing the secure circuit invocations.

Analysis: To show the correctness and privacy of our protocol, we start with the following lemma.

Lemma 6 The probability that assertion 3a holds in every iteration of step 3 is 1 − neg(k, n). Moreover,
when the algorithm exits, with probability 1 − neg(k, n) it holds that E[

∑

j zj] ≥ `/(3B).

Proof: By Corollary 5, PrA[(1−2−B)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 and ∀i(Ax)2i < ‖x‖2

n B] = 1−neg(k, n), so
we may condition on this occurring. If ‖x‖2 = 0, then Pr[Ax = 0] = 1− neg(k, n), and thus Pr[E = 0] =
1 − neg(k, n). Otherwise, ‖x‖2 ≥ 1. Consider the smallest j for which Tmax/2j < ||x||2. We show for
T = Tmax/2j−1 ≥ ‖x‖2 ≥ 1 that Pr[

∑

j zj < `/(4B)] = neg(k, n). The assertion holds at the beginning
of the jth iteration by our choice of T . Thus, n(Ax)2

i ≤ TB for all i ∈ [n]. So for all j, Pr[zj = 1] =
‖Ax‖2

TB ≥ (1 − 2−B)/(2B), and thus E[
∑

j zj] ≥ `/(3B). By a Chernoff bound, Pr[
∑

j zj < `/(4B)] =

neg(k, n), so if ever T = Tmax/2j−1, then this is the last iteration with overwhelming probability.

Correctness: We show Pr[|E−‖x‖2| ≤ ε] ≥ 1−δ. By Lemma 6, when the algorithm exits, with probability
1 − neg(k, n), E [

∑

i zi] > `
3B , so we assume this event occurs. By a Chernoff bound,

Pr

[
∣

∣

∣

∣

∣

∑

i

zi − E

[

∑

i

zi

]
∣

∣

∣

∣

∣

≥ ε

2
E

[

∑

i

zi

]

|
∑

i

zi ≥
`

4B

]

≤ e−Θ(ε2 `
B) <

δ

2

By Lemma 6, assertion 3a holds, so that

`(1 − 2−B)‖x‖2 ≤ TB · E[
∑

i

zi] ≤ ` ‖x‖2

Setting E = 2TB
`

∑

i zi (recall that T is halved in step 3c) shows that Pr[|E − ‖x‖2 ≥ ε‖x‖2] ≤ δ.

Privacy: We replace the secure circuit with ROM in step 3b of `2-Approx with an oracle (see section

2). We construct a single simulator Sim, which given ∆
def
= ‖x‖2, satisfies Sim(∆)

c≡ Viewπ
A
(a, b) and

6

Sim(∆)
c≡ Viewπ

B
(a, b), where Viewπ

A
(a, b), Viewπ

B
(a, b) are Alice, Bob’s real views respectively. This, in

particular, implies functional privacy. It will follow that `2-Approx is a private approximation of ∆.

Sim (∆):

1. Generate a random seed of G

2. Set T = Tmax

3. Repeat:

(a) For j ∈ [`], independently generate zj from a Bernoulli(∆/(TB)) distribution

(b) T = T/2

4. Until
∑

i zi ≥ `
4B or T < 1

5. Output E = 2TB
l

∑

i zi

With probability 1 − neg(k, n), the matrix A satisfies the property in Corollary 5, so we assume this event
occurs. In each iteration, the random variables zj are independent in both the simulation and the protocol.
Further, the probabilities that zj = 1 in the simulated and real views differ only by a multiplicative factor of
(1 − 2−B) as long as T ≥ ∆. But the probability that, in either view, we encounter T < ∆ is neg(k, n).

Complexity. Given our cryptographic assumptions, we use Õ(1) communication and O(1) rounds.

Remark 7 Our cryptographic assumptions are fairly standard, and similar to the ones in [12]. There the
authors make the weaker assumptions that PRGs stretching nγ bits to n bits and OT with nγ communication
exist for any constant γ. In fact, the latter implies the former [21, 15]. If we were to instead use these
assumptions, our communication would be O(nγ), still greatly improving upon the O(n1/2+γ) communica-
tion of [12]. A candidate OT scheme satisfying our assumptions can be based on the Φ-Hiding Assumption
[6], and can be derived by applying the PIR to OT transformation of [29] to the scheme in that paper.

Remark 8 For the special case of Hamming distance, we have an alternative protocol based on the follow-
ing idea. Roughly, both parties apply the perfect hashing of the Low-Distance Estimator protocol of [12]
for a logarithmic number of levels j, where the jth level contains Õ(2j) buckets. To overcome the Õ(

√
n)

barrier of [12], instead of exchanging the buckets, the set of buckets is randomly and obliviously sampled.
From the samples, an estimate of ∆(a, b) is output. For some j, 2j ≈ ∆(a, b), so the estimate will be tightly
concentrated, and for reasons similar to `2-Approx, will be simulatable. We omit the details, but note that
two advantages of this alternative protocol are that the time complexity will be Õ(n) instead of Õ(n2), and
that we don’t need the PRG G, as we may use k-wise independence for the hashing.

4 Private near neighbor and c-approximate near neighbor problems

Here we consider the setting in which Alice has a point q, and Bob a set of n points P .

4.1 Private near neighbor problem

Suppose for some integer U , Alice has q ∈ [U]d, Bob has P = p1, . . . , pn ∈ [U]d, and Alice should learn
mini f(q, pi), where f is some distance function. In [10] protocols for `1, `2, Hamming distance over U -ary

7

alphabets, set difference, and arbitrary distance functions f(a, b) =
∑d

i=1 fi(ai, bi) were proposed, using
an untrusted third party. We improve the communication of these protocols and remove the third party using
homomorphic encryption to implement polynomial evaluation as in [13], and various hashing tricks.

In [13], the authors consider the private all-near neighbors problem in which Alice has n queries
q1, . . . , qn ∈ [U]d and wants all pi for which ∆(pi, qj) ≤ t < d for some j and parameter t. Our tech-
niques improve the Õ(n2d) communication of a generic SFE and the Õ(n

(d
t

)

) communication of [13] for
this problem to Õ(nd2 +n2). Finally, in the common random string model we achieve dlog de+O(k) com-
munication for the (exact) Hamming distance, and an inner product protocol with d+O(k) communication.

For the details of our schemes, see appendix B. We do not focus on them since they still suffer from an
Ω(n) communication cost. We instead focus on how to privately approximate these problems.

4.2 Private c-approximate near neighbor problem

Suppose q ∈ {0, 1}d and pi ∈ {0, 1}d for all i. Let Pt = {p ∈ P | ∆(p, q) ≤ t}, and c > 1 be a constant.

Definition 9 A c-approximate NN protocol is correct if when Pr 6= ∅, Alice outputs a point f(q, P) ∈ Pcr

with probability 1 − 2−Ω(k). It is private if in the computational sense, Bob learns nothing, while Alice
learns nothing except what follows from Pcr. Formally, Alice’s privacy is implied by an efficient simulator
Sim for which 〈q, P, f(q, P)〉 c≡ 〈q, P, Sim(1n, Pcr, q)〉 for poly(d, n, k)-time machines.

Following [20], we say the protocol leaks b bits of information if there is a deterministic “hint” function
h : {0, 1}(n+1)d → {0, 1}b such that the distributions 〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q, h(P, q))〉
are indistinguishable. As motivated in section 1, we believe these to be natural extensions of private approx-
imations in [12, 20] from values to sets of values.

We give a private c-approximate NN protocol with communication Õ(
√

n+d) and a c-approximate NN
protocol with communication Õ(n1/3 + d) which leaks k bits of information. Both protocols are based on
dimensionality reduction in the hypercube [24]. There it is shown that for an O(log n) × d matrix A with
entries i.i.d. Bernoulli(1/d), there is an τ = τ(r, cr) such that for all p, q ∈ {0, 1}d, the following event
holds with probability at least 1 − 1/poly(n)

If ∆(p, q) ≤ r, then ∆(Ap,Aq) ≤ τ, and if ∆(p, q) ≥ cr, then ∆(Ap,Aq) > τ.

Here, arithmetic occurs in Z2. We use this idea in the following helper protocol DimReduce(τ,B, q, P).
Let A be a random matrix as described above. Let S = {p ∈ P | ∆(Ap,Aq) ≤ τ}. If |S| > B, replace S
with the lexicographically first B elements of S. DimReduce outputs random shares of S.

DimReduce (τ,B, q, P):

1. Bob performs the following computation

• Generate a matrix A as above, and initialize L to an empty list.

• For each v ∈ {0, 1}O(log n), let L(v) be the first B pi for which ∆(Api, v) ≤ τ .

2. A secure circuit with ROM L performs the following computation on input (q,A),

• Compute Aq.

• Lookup Aq in L to obtain S. If |S| < B, pad S so that all S have the same length.

• Output random shares (S1, S2) of S so that S = S1 ⊕ S2.

8

It is an easy exercise to show the correctness and privacy of DimReduce.

Remark 10 As stated, the communication is Õ(dB). The dependence on d can be improved to Õ(d + B)
using homomorphic encryption. Roughly, Alice sends E(q1), . . . , E(qd) to Bob, who sets L(v) to be the
first B different E(∆(pi, q)) for which ∆(Api, v) ≤ τ . Note that E(∆(pi, q)) is efficiently computable,
and has size Õ(1) � d.

It will be useful to define the following event H(r1, r2, P) with r1 < r2. Suppose we run DimReduce
independently k times with matrices Ai. Then H(r1, r2, P) is the event that at least k/2 different i satisfy

∀p ∈ Pr1 , ∆(Aip,Aiq) ≤ τ(r1, r2) and ∀p ∈ P \ Pr2 , ∆(Aip,Aiq) > τ(r1, r2).

The next lemma follows from the properties of the Ai and standard Chernoff bounds:

Lemma 11 Pr[H(r1, r2, P)] = 1 − 2−Ω(k).

4.3 c-approximate NN protocol

Protocol Overview: Our protocol is based on the following intuition. When |Pcr| is large, a simple solution
is to run a secure function evaluation with Alice’s point q as input, together with a random sample P ′ of
roughly a k/|Pcr| fraction of Bob’s points P . The circuit returns a random point of P ′ ∩ Pcr, which is
non-empty with overwhelming probability. The communication is Õ(n/|Pcr|).

On the other hand, when |Pcr| is small, if Alice and Bob run DimReduce(τ(r, cr), |Pcr|, q, P) indepen-
dently k times, then with overwhelming probability Pr ⊆ ∪iSi, where Si denotes the (randomly shared)
output in the ith execution. A secure function evaluation can then take in the random shares of the S i and
output a random point of Pr. The communication of this scheme is Õ(|Pcr|).

Our protocol combines these two protocols to achieve Õ(
√

n) communication, by sampling roughly
an n−1/2 fraction of Bob’s points in the first protocol, and by invoking DimReduce with parameter B =
Õ(

√
n) in the second protocol. This approach is similar in spirit to the “high distance / low distance”

approach used to privately approximate the Hamming distance in [12].

c-Approx (q, P):

1. Set B = Õ(
√

n).

2. Independently run DimReduce(τ(r, cr), B, q, P) k times, generating shares (S 1
i , S2

i).

3. Bob finds a random subset P′ of P of size B.

4. A secure circuit performs the following computation on inputs q, S1
i , S2

i , P ′.

• Compute Si = S1
i ⊕ S2

i for all i.

• Let f(q, P) be a random point from Pcr ∩ P ′ 6= ∅ if it is non-empty,

• Else let f(q, P) be a random point from Pr ∩ ∪iSi if it is non-empty, else set f(q, P) = ∅.

• Output (f(q, P), null).

Using the ideas in Remark 10, the communication is Õ(d + B), since the SFE has size Õ(B). Let F be the
event that P ′ ∩ Pcr 6= ∅, and put H = H(r, cr, P).

9

Correctness: Suppose Pr is nonempty. The probability s of correctness is just the probability we don’t
output ∅. Thus s ≥ Pr[F] + Pr[¬F] Pr[f(q, P) 6= ∅ | ¬F].

Case |Pcr| ≥
√

n: For sufficiently large B, we have s ≥ Pr[F] = 1 − 2−Ω(k).

Case |Pcr| <
√

n: It suffices to show Pr[f(q, P) 6= ∅ | ¬F] = 1 − 2−Ω(k). But this probability is at least
Pr[f(q, P) 6= ∅ | H,¬F] Pr[H], and if H occurs, then f(q, P) 6= ∅. By Lemma 11, Pr[H] = 1 − 2−Ω(k).

Privacy Note that Bob gets no output, so Alice’s privacy follows from the composition of of DimRe-
duce and the secure circuit protocol of step 5. Similarly, if we can construct a simulator Sim with inputs
1n, Pcr, q so that the distributions 〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q)〉 are statistically close, Bob’s
privacy will follow by that of DimReduce and the secure circuit protocol of step 5.

Sim (1n, Pcr, q):

1. Set B = Õ(n1/2).

2. With probability 1 −
(n−|Pcr|

B

)(n
B

)−1
, output a random element of Pcr,

3. Else output a random element of Pr.

Let X denote the output of Sim(1n, Pcr, q). It suffices to show that for each p ∈ P , |Pr[f(q, P) =
p] − Pr[X = p]| = 2−Ω(k), since this also implies |Pr[f(q, P) = ∅] − Pr[X = ∅]| = 2−Ω(k). We have

Pr [f(q, P) = p] = Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F]

= Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F | H] ± 2−Ω(k)

= Pr [F] |Pcr|−1 + Pr[¬F] Pr[f(q, P) = p | H,¬F] ± 2−Ω(k),

where we have used Lemma 11. Since Pr[F] = 1 −
(n−|Pcr|

B

)(n
B

)−1
, we have

|Pr[f(q, P) = p] − Pr[X = p]| ≤ Pr[¬F]
∣

∣Pr[f(q, P) = p | H,¬F] − δ(p ∈ Pr)|Pr|−1
∣

∣ + 2−Ω(k).

If |Pcr| ≥
√

n, then Pr[¬F] = 2−Ω(k). If |Pcr| <
√

n, then Pr[f(q, P) = p | H,¬F] = δ(p ∈ Pr)|Pr|−1.

Extensions: The way the current problem is stated, there is an Ω(d) lower bound. In appendix C we
sketch how, if Alice just wants to learn some coordinate of an element of Pcr, this dependence can be made
polylogarithmic. We also have a similar protocol based on locality-sensitive hashing (LSH), which only
achieves Õ(n1/2+1/(2c) + d) communication, but has much smaller time complexity (though still polyno-
mial). More precisely, the work of the LSH scheme is nO(1), whereas the work of c-Approx is nO(1/(c−1)2),
which is polynomial only for constant c. See Appendix D for the details.

4.4 c-approximate NN protocol leaking k bits

Protocol Overview: We consider three balls Pr ⊆ Pbr ⊆ Pcr, where c − b, b − 1 ∈ Θ(1). We start by
trying to use dimensionality reduction to separate Pr from P \ Pbr , and to output a random point of Pr . If

10

this fails, we try to sample and output a random point of Pcr. If this also fails, then it will likely hold that
n1/3 ≤ |Pbr| ≤ |Pcr| ≤ n2/3. We then sample down the pointset P by a factor of n−1/3, obtaining P̃ with
survivors P̃br, P̃cr of Pbr, Pcr respectively. It will now likely hold that we can use dimensionality reduction
to separate P̃br from P̃ \ P̃cr to obtain and output a random point of P̃br. The hint function will encode
the probability, to the nearest multiple of 2−k, that the first dimensionality reduction fails, which may be a
non-negligible function of P \ Pcr. This hint will be enough to simulate the entire protocol.

c-ApproxWithHelp (q, P):

1. Set B = Õ(n1/3).

2. Independently run DimReduce(τ(r, br), B, q, P) k times, generating shares (S 1
i , S2

i).

3. Bob finds random subsets P′, P̃ of P of respective sizes B and n2/3.

4. Independently run DimReduce(τ(br, cr), B, q, P̃) k times, generating shares (S̃1
i , S̃2

i).

5. A secure circuit performs the following computation on inputs q, S1
i , S2

i , P ′, S̃1
i , S̃2

i .

• Compute Si = S1
i ⊕ S2

i and S̃i = S̃1
i ⊕ S̃2

i for all i.

• If for most i, |Si| < B, let f(q, P) be a random point in Pr ∩ ∪iSi, or ∅ if it is empty.

• Else if Pcr ∩ P ′ 6= ∅, let f(q, P) be a random point in Pcr ∩ P ′.

• Else let f(q, P) be a random point in Pbr ∩ ∪iS̃i if it is non-empty, otherwise set f(q, P) = ∅.

• Output (f(q, P), null).

The protocol can be implemented in polynomial time with communication Õ(B + d) = Õ(n1/3 + d).
To prove correctness and privacy, we introduce some notation. Let E1 be the event that the majority of

the |Si| are less than B, and E2 the event that Pr ⊆ ∪iSi. Let F be the event that P ′ ∩ Pcr 6= ∅. Let G1 be
the event that 1 ≤ P̃br ≤ P̃cr ≤ B and G2 the event that P̃br ⊆ ∪iS̃i. Finally, let H1 = H(r, br, P) and
H2 = H(br, cr, P̃). Note that Pr[H1],Pr[H2] are 1 − 2−Ω(k) by Lemma 11. We need two lemmas:

Lemma 12 Pr[E2 | E1] = 1 − 2−Ω(k).

Proof: If H1 and E1 occur, then there is an i for which Pr ⊆ Si, so E2 occurs.

Lemma 13 Pr[G2 | G1] = 1 − 2−Ω(k).

Proof: If H2 and E2 occur, then the majority of the S̃i contain P̃br, so G2 occurs.

Correctness: We may assume Pr 6= ∅. The probability s of correctness is just the probability the algorithm
doesn’t return ∅. Since F , E1, and G1 are independent,

s ≥ Pr[E1] Pr[E2 | E1] + Pr[¬E1](Pr[F] + Pr[¬F] Pr[G1] Pr[G2 | G1]).

Case |Pbr| < B: H1 implies E1 since |Pbr| < B, and using Lemma 12, s ≥ Pr[E1] Pr[E2 | E1] = 1−2−Ω(k).

Case |Pbr| ≥ B: Since Pr[E2 | E1] = 1 − 2−Ω(k) by Lemma 12, we just need to show that Pr[F] +
Pr[¬F] Pr[G1] Pr[G2 | G1] = 1−2−Ω(k). If |Pcr| > n2/3, it suffices to show Pr[F] = 1−2−Ω(k). This holds

11

for large enough B = Õ(n1/3). Otherwise, if |Pcr| ≤ n2/3, then it suffices to show Pr[G1] Pr[G2 | G1] =
1−2−Ω(k). By assumption, B ≤ |Pbr| ≤ |Pcr| ≤ n2/3. Therefore, for large enough B, Pr[G1] = 1−2−Ω(k),
and thus by Lemma 13, Pr[G1] Pr[G2 | G1] = 1 − 2−Ω(k).

Privacy: Note that Bob gets no output, so Alice’s privacy follows from the composition of DimReduce
and the secure circuit protocol of step 5. Similarly, if we can construct a simulator Sim with inputs
1n, Pcr, q, h(Pcr, q) so that the distributions 〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q, h(Pcr, q))〉 are sta-
tistically close, Bob’s privacy will follow by that of DimReduce and the secure circuit of step 5.

We define the hint function h(Pcr, q) to output the nearest multiple of 2−k to Pr[E1]. In the analysis
we may assume that Sim knows Pr[E1] exactly, since its output distribution in this case will be statistically
close to its real output distribution.

Sim (1n, Pcr, q,Pr[E1]):

1. Set B = Õ(n1/3).

2. With probabiity Pr[E1], output a random element of Pr, or output ∅ if Pr = ∅.

3. Else with probability 1 −
(n−|Pcr|

B

)(n
B

)−1
, output a random element of Pcr,

4. Else output a random element of Pbr .

Let X denote the output of Sim(1n, Pcr, q,Pr[E1]). It suffices to show that for each p ∈ P ,

|Pr[f(q, P) = p] − Pr[X = p]| = 2−Ω(k),

since then we have |Pr[f(q, P) = ∅] − Pr[X = ∅]| = 2−Ω(k). Using the independence of F , E1,G1, and
Lemmas 12, 13, we bound Pr[f(q, P) = p] as follows

Pr[f(q, P) = p] = Pr[E1, f(q, P) = p] + Pr[¬E1, f(q, P) = p]

= Pr[E1] Pr[f(q, P) = p | E2E1] ± 2−Ω(k) + Pr[¬E1] Pr[F] Pr[f(q, P) = p | F,¬E1]

+ Pr[¬E1] Pr[¬F] Pr[f(q, P) = p | ¬F,¬E1]

= Pr[E1]|Pr|−1δ(p ∈ Pr) ± 2−Ω(k) + Pr[¬E1] Pr[F]|Pcr|−1

+ Pr[¬E1] Pr[¬F] Pr[G1] Pr[f(q, P) = p | G1G2¬F¬E1] ± 2−Ω(k)

+ Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬G1¬F¬E1]

= Pr[E1]|Pr|−1δ(p ∈ Pr) + Pr[¬E1] Pr[F]|Pcr|−1 + Pr[¬E1] Pr[¬F] Pr[G1]|Pbr|−1δ(p ∈ Pbr)

+ Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬E1¬F¬G1] ± 2−Ω(k).

On the other hand, since Pr[F] = 1 −
(n−|Pcr|

B

)(n
B

)−1
, we have

Pr[X = p] = Pr[E1]|Pr|−1δ(p ∈ Pr) + Pr[¬E1] Pr[F]|Pcr|−1 + Pr[¬E1] Pr[¬F]|Pbr |−1δ(p ∈ Pbr),

so that

|Pr[f(q, P) = p] − Pr[X = p]| ≤ Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬E1¬F¬G1] + 2−Ω(k).

If |Pbr| < B, Pr[¬E1] = 2−Ω(k). If |Pcr| ≥ n2/3, Pr[¬F] = 2−Ω(k). Otherwise B ≤ |Pbr| ≤ |Pcr| ≤ n2/3,
and as shown for correctness, Pr[¬G1] = 2−Ω(k), which shows |Pr[f(q, P) = p] − Pr[X = p]| = 2−Ω(k).

12

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
In Proceedings of the 28th Annual ACM Symposum on the Theory of Computing, p. 20-29, 1996.

[2] K. Bharat and A. Broder. Estimating the Relative Size and Overlap of Public Web Search Engines.
Proc. WWW 7, 1998.

[3] A. Beimel, Y. Ishai, T. Malkin. Reducing the Servers Computation in Private Information Retrieval:
PIR with Preprocessing. Proc. of the 20th Annual IACR Crypto conference (CRYPTO ’00).

[4] J. D. C. Benaloh, Verifiable Secret-Ballot Elections. PhD thesis, Yale University, 1987.

[5] C. Cachin, J. Camenisch, J. Kilian and J. Müller. One-round secure computation and secure au-
tonomous mobile agents. In Ugo Montanari, Jos P. Rolim, and Emo Welzl, editors, Proc. 27th In-
ternational Colloquium on Automata, Languages and Programming (ICALP), volume 1853 of Lecture
Notes in Computer Science, pages 512-523. Springer, 2000.

[6] C. Cachin, S. Micali and M. Stadler. Computationally private information retrieval with polylogarith-
mic communication. In Advances in Cryptology – Eurocrypt ‘99.

[7] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-party Computation.
In STOC, 2002.

[8] B. Chor, N. Gilboa and M. Naor, Private Information Retrieval by Keywords, TR CS0917, Department
of Computer Science, Technion, 1997.

[9] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private information retrieval. In proceedings of
FOCS ‘95.

[10] W. Du and M. J. Attalah. Protocols for Secure Remote Database Access with Approximate Matching.
In the 7th ACM CCS, The First Workshop on Security and Privacy in E-commerce, 2000.

[11] S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing contracts. In Communica-
tions of the ACM, 1985.

[12] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright. Secure Multiparty Com-
putation of Approximations. Proc. of the 28th International Colloquium on Automata, Languages and
Programming (ICALP ’01).

[13] M. Freedman, K. Nissim and B. Pinkas. Efficient Private Matching and Set Intersection. In Advances
in Cryptology – Eurocrypt ’2004 Proceedings, LNCS 3027, Springer-Verlag, pp. 1-19, May 2004.

[14] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On Secure Scalar Product Computation for
Privacy-Preserving Data Mining. In proceedings of ICISC, 2004.

[15] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of a pseudo-random generator from
any one-way function. Technical Report TR-91-068, International Computer Science Institute, 1991.

[16] Y. Gertner, Y. Ishai, E. Kushilevitz and T. Malkin. Protecting data privacy in private information
retrieval schemes. In proceedings of STOC ‘98.

13

[17] O. Goldreich. Secure Multi-Party Computation, 1998. Available at http://philby.ucsd.edu/

[18] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game. In proceedings of 19th
STOC, pp. 218-229, 1987.

[19] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, pp.270-299, 1984.

[20] S. Halevi, R. Krauthgamer, E. Kushilevitz, and K. Nissim. Private approximation of NP-hard functions.
Proc of STOC ’01.

[21] R. Impagliazzo and M. Luby. One-way functions are essential for complexity-based cryptography.

[22] P. Indyk. High-dimensional computational geometry. PhD Thesis, Stanford University, 2000.

[23] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimen-
sionality, In proceedings of STOC ’98.

[24] E. Kushilevitz, R. Ostrovsky and Y. Rabani. Efficient search for approximate nearest neighbor in high
dimensional spaces, In proceedings of STOC’98.

[25] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. In Advances in Cryptology – Crypto ’2000
Proceedings, LNCS 1880, Springer-Verlag, pp. 20-34, August 2000.

[26] V.D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaced, Lecture
Notes in Mathematics, 1200, Springer Verlag, 1986.

[27] D. Naccache and J. Stern. A new public key cryptosystem. In Advances in Cryptology – Eurocrypt
1997, pp.27-36.

[28] M. Naor and K. Nissim. Communication Complexity and Secure Function Evaluation. In proceedings
of STOC 2001.

[29] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In proceedings of STOC 1999.

[30] P. Paillier. Public-key cryptosystems based on composite degree residuaosity classes. In Advances in
Cryptology – Eucrocrypt 1999, pp. 223-238.

[31] M. Rabin. How to exchange secrets by oblivious transfer. Tech report TR 81, Aiken Computation Lab,
1981.

[32] A. C. Yao. Protocols for secure computations. In proc. of 23rd FOCS, 1982, pp. 160-164. 16.

A Cryptographic Tools

We write negl(k, n) to denote an arbitrary negligible function of k, n, that is a function which shrinks faster
than any inverse polynomial in n, k.

14

A.1 Homomorphic Encryption

An encryption scheme, E : (G1,+) → (G2, ·) is homomorphic if for all a, b ∈ G1, E(a+b) = E(a) ·E(b).
For more background on this primitive see, for example, [19, 27].

We make use of the Paillier homomorphic encryption scheme [30] in some of our protocols and so we
briefly repeat it here:

1. Initialize: Choose two primes, p and q and set N = p · q. Let λ = lcm(p − 1, q − 1). Let the public
key PK = (N, g) where the order of g is a multiple of N . Let the secret key, SK = λ.

2. Encrypt: Given a message M ∈ ZN , choose a random value x ∈ Z∗
N . The encryption of M is,

E(M) = gMxNmodN2.

3. Decrypt: Let L(u) = (u−1)
N , where u is congruent to 1 modulo N .To recover M from E(M) calcu-

late, L(E(M)λmod N2)
L(gλmod N2)

modN .

In [30] it’s shown that the Paillier encryption scheme’s semantic security is equivalent to the Decisional
Composite Residuosity Assumption. The following shows homomorphy:

E(M1) · E(M2) = (gM1x1
N modN2) · (gM2x2

N modN2) = gM1+M2(x1x2)
N modN2 = E(M1 + M2).

A.2 Oblivious Transfer and SPIR

Oblivious transfer is equivalent to the notion of symmetrically-private information retrieval (SPIR), where
the latter usually refers to communication-efficient implementations of the former. SPIR was introduced
in [16]. With each invocation of a SPIR protocol a user learns exactly one bit of a binary database while
giving the server no information about which bit was learned. We rely on single-server SPIR schemes in our
protocols. Such schemes necessarily offer computational, rather than unconditional, security [9]. Applying
the transformation of [29] to the PIR scheme of [6] give SPIR constructions with Õ(n) server work and
Õ(1) communication.

One issue is that in some of our schemes, we actually perform OT on records rather than on bits. It is a
simple matter to convert a binary OT scheme into an OT scheme on records by running r invocations of the
binary scheme in parallel, where r is the record size. This gives us a 1-round, Õ(r) communication, Õ(nr)
server work OT protocol on records of size r. The dependence on r can be improved using techniques of
[8].

A.3 Secure Function Evaluation

In [18, 32] it is shown how two parties holdings inputs x and y can privately evaluate any circuit C with
communication O(k(|C| + |x| + |y|)), where k is a security parameter. In [5] it is shown how to do this in
one round for the semi-honest case we consider. The time complexity is the same as the communication.
We use such protocols as black boxes in our protocols.

B Private Near Neighbor and All-Near Neighbors

B.1 Private near neighbor for `2 and Hamming distance

Alice has q ∈ [U]d, and Bob a set of points P = p1, . . . , pn in [U]d. Alice should output argmini

∑

j |pi,j −
qj|2. The protocol is easily modified to return the pi realizing the minimum. We assume a semantically

15

secure homomorphic encryption scheme E such as Paillier encryption (see appendix A), that the message
domain is isomorphic to Zm for some m, and that m is large enough so that arithmetic is actually over Z.

Exact-`2(q, P):

1. Alice generates (PK,SK) for E and sends PK , E(q1), . . . , E(qd) to Bob

2. For all i, Bob computes (by himself) zi = E(〈q, pi〉) and vi = ‖pi‖2

3. A secure circuit with inputs q, SK, {zi}i, and {vi}i computes

• 〈q, pi〉 = DSK(zi) for all i

• Return argmini(vi − 2〈q, pi〉)

Using the homomorphy of E and the Õ(n)-sized circuit in step 3, we make the communication Õ(n + d)
rather than the Õ(nd) of a generic SFE. The correctness is easy to verify. Using theorem 1 and the semantic
security of E, privacy is just as easy to show. We note a natural extension to `p distances: Alice sends

{E(qi1)}, {E(qi1qi2)}, . . . , {E(qi1 · · · qip−1)},

where i1, . . . , ip−1 range over all of [d]. The communication is Õ(n + dp−1), which is interesting for
d = O(n1/(p−2)).

B.2 Private near neighbor for generic distance functions

Now Alice wants mini f(q, pi) for an arbitrary f(a, b) =
∑d

i=1 fi(ai, bi). We use homomorphic encryption
to implement polynomial evaluation as in [13].

Exact-Generic(q, P):

1. Alice creates d degree-(U −1) polynomials sj by interpolating from sj(u) = fj(pj , u) for all u ∈ [U]

2. Alice generates (PK,SK) for E and sends the encrypted coefficients of the sj and PK to Bob

3. Bob computes (by himself) zi = E(
∑

j sj(pi,j)) = E(f(q, pi)) for all i

4. A secure circuit with inputs SK, {zi}i outputs argminiDSK(zi)

The proofs are similar to those of the previous section and are omitted. The communication here is Õ(dU +
n), improving the O(ndU) communication of [10]. A special case of the result in section B.4 improves this
to Õ(d2 + n) in case f(a, b) is Hamming distance and U > d.

B.3 Private near neighbor for n = 1

We now show how Alice, holding q ∈ {0, 1}d , and Bob, holding p ∈ {0, 1}d for some prime d, can
privately compute ∆(q, p) with communication ddlog de + O(k). This extends to solve the private near
neighbor problem for n = 1 with communication 2ddlog de + Õ(k). The communication outperforms the
Θ(dk) communication of SFE.

16

We assume both parties have access to the same uniformly random string. We need a homomorphic en-
cryption whose message domain can be decoupled from its security parameter. Recall in Paillier encryption
that if encryptions are k bits long, messages are about k/2 bits long. For low communication we want the
domain to be very small, that is, roughly d elements instead of 2k/2. To do this, we use a Benaloh encryption
scheme E [4], which is homomorphic and semantically secure assuming the prime residuousity assumption.
The message domain is Zd while encryptions are of size k.

Exact-1(q, p):

1. Alice generate (PK,SK) for E, and sends PK to Bob

2. Both parties interpret 3 the common random string R as d encryptions E(zi)

3. Alice obtains the zi by decrypting, and sends Bob si = qi − zi mod d for all i

4. Bob computes (by himself) E(zi + qi) = E(qi) and E(
∑d

i=1(pi + (−1)piqi)) = E(∆(p, q))

5. Bob rerandomizes the E(∆(p, q))

6. Alice outputs DSK(E(∆(p, q))) = ∆(x, y)

The correctness of the protocol is straightforward. The key property for security is that if R is uniformly
random, then for any PK,SK , the E(z1), . . . , E(zd) are independent uniformly random encryptions of
random elements z1, . . . , zd ∈ [d].

To see complexity ddlog de+o(d), the list of si’s that Alice sends has length ddlog de. Also, E(∆(q, p))
has length k, the security parameter, which can be set to dε for any ε > 0. Similar techniques give d + O(k)
communication for private inner product, using GM-encryption [19].

B.4 Private All-Near Neighbors

We consider the setting of [13], in which Alice and Bob have Q = q1, . . . , qn ∈ [U]d and P = p1, . . . , pn ∈
[U]d respectively, and Alice wants all pj for which ∆(qi, pj) ≤ t < d for some i ∈ [n] and parameter t. We
assume a semantically secure homomorphic encryption scheme E and OT with polylog(n) communication.

17

All-Near(Q,P):

1. The parties randomly permute their points

2. Alice generates parameters (PK,SK) of E and sends Bob PK

3. For l = 1, . . . , k,

• The parties choose a pairwise independent hash function h : [U] → [2d]

• For i ∈ [n], Alice computes x̃i = h(xi), where h is applied coordinate-wise

• Replace each entry j of each x̃i with a length 2d unit vector with rth bit 1 iff x̃i,j = r

• Bob forms ŷi similarly

• Alice sends the coordinate-wise encryption of each vector for each coordinate of each x̃i

• Bob computes (by himself) Zi,j,l = E(∆(x̃i, ỹj)) for all i, j ∈ [n]

4. A secure circuit with inputs SK,Zi,j,l computes

• Zi,j = minl DSK(Zi,j,l)

• Output Z = {j | ∃i s.t. Zi,j ≥ d − t} to Alice

5. Perform OT on records of size d for Alice to retrieve Y = {yj | j ∈ Z}

Theorem 14 The above is a private all-near neighbors protocol with communication Õ(nd2 + n2).

Proof: We first argue correctness, which means showing Pr[Y = {yj | ∃i s.t. ∆(qi, pj) ≤ t}] = 1−2−Ω(k).
We show for i, j ∈ [n], Pr[∆(qi, pj) = n − Zi,j] = 1 − 2−Ω(k). By a union bound, for any h,

Pr[D(Zi,j) = n − ∆(qi, pj)] ≥ T/2T = 1/2.

But D(Zi,j) ≥ n−∆(qi, pj) since hashing only increases the number of agreements. Thus, Pr[minl D(Zi,j,l) >
n − ∆(qi, pj)] < 2−Ω(k), so that Zi,j = n − ∆(qi, pj) with the required probability.

For privacy, since the output assumes a specific value with probability 1− 2−Ω(k), we just need to show
each party’s view is simulatable. As usual, we replace the SFE and OT by oracles. Alice’s output from the
SFE is a list of random indices, and her output from the OT is her protocol output. Hence, her simulator
just outputs a list of |Y | random indices. Bob’s simulator chooses k random hash functions and 2d2nk
encryptions of 0 under E. By the semantic security of E and theorem 1, the protocol is secure.

To see that the communication is Õ(nd2+n2), in each of k executions, Alice sends O(nd2) encryptions.
Bob then inputs O(n2) encryptions to the SFE, which can be implemented with a circuit of size Õ(n2). Step
5 of the protocol can be done with Õ(nd) communication using the best OT schemes (see [8, 6]).

Remark 15 A simple modification of the protocol gives the promised Õ(d2 + n) communication for Ham-
ming distance in the setting of [10] for any U .

Remark 16 The protocol can be adapted to give Õ(d + n) communication for set difference. In this case
Alice has a single vector q. The idea is that Alice, Bob can hash their entries down to 2d values using
h as in the protocol, and now Alice can homomorphically encrypt and send the coefficients of a degree-
(2d − 1) polynomial pol, where pol is such that pol(t) = 0 if t ∈ {r | ∃i s.t. r = h(qi)} and pol(t) = 1

18

otherwise. Bob can evaluate pol on each (hashed) coordinate of each pi and use E’s homomorphy to
compute E(f(q̃, p̃i)), f denoting set difference. We then repeat this k times over different h and take a
maximum in the SFE. Since coordinate order is immaterial for set difference, we achieve Õ(n + d) instead
of Õ(n + d2) communication.

Although we have improved the communication of [13], one may worry about the work the parties need to
perform. We have the following optimization:

Theorem 17 The protocol can be implemented with total work Õ(n2d2c−4), where c ≈ 2.376 is the expo-
nent of matrix multiplication.

Proof: The work is dominated by step 3, in which Bob needs to compute encryptions of all pairwise
Hamming distances. To reduce the work, we think of what Alice sends as an encrypted n×d2 matrix M1, and
that Bob has a d2 ×n matrix M2 and needs an encrypted M1M2. It is shown in [3] that even the best known
matrix multiplication algorithm still works if one of the matrices is homomorphically encrypted. Thus Bob
can perform (n/d2)2 fast multiplications of d2 × d2 matrices, requiring Õ((n/d2)2(d2)r) = Õ(n2d2r−4)
work, which improves upon the Õ(n2d2) work of a naive implementation.

C Reducing the dependence on d for private c-approximate NN

Here we sketch how the communication of the protocol of section 4.3 can be reduced to Õ(n1/2+polylog(d))
if Alice just wants to privately learn some coordinate of some element of Pcr.

Proof Sketch: The idea is to perform an approximation to the Hamming distance instead of using the
E(∆(pi, q)) in the current protocol (see, e.g., DimReduce, and the following remark). The approximation
we use is that given in [24], namely, the parties will agree upon random matrices Ai for some subset of i
in [n], and from the Aipi and Aiq will determine (1 ± ε) approximations to the ∆(pi, q) with probability
1 − 2−k. We don’t need private approximations since the parties will not learn these values, but rather, they
will input the Aipi, Aiq into a secure circuit which makes decisions based on these approximations.

More precisely, Bob samples B of his vectors pi, and in parallel agrees upon B matrices Ai and feeds
the Aipi into a secure circuit. Alice feeds in the Aiq. Let c ≥ 1+8ε. The circuit looks for an approximation
of at most r(1 + 6ε). If such a value exists, the circuit gives Alice the corresponding index. Observe that
if |Pr(1+4ε)| >

√
n, then with probability 1 − 2−k an index is returned to an element in Pcr, and that this

distribution is simulatable. So assume |Pr(1+4ε)| ≤
√

n.
The parties proceed by performing a variant of DimReduce(τ(r, r(1+4ε)), B, q, P), with the important

difference being that the output no longer consists of shares of the E(∆(pi, q)). Instead, for each entry L(v),
Bob pretends he is running the approximation of [24] with Alice’s point q. That is, the parties agree on B
different matrices Ai and Bob computes Aip for each p ∈ L(v). A secure circuit obtains these products,
and computes the approximations. It outputs an index to a random element with approximation at most
r(1 + 2ε). If Pr is nonempty, such an index will exist with probability 1 − 2−k. Also, the probability that
an index to an element outside of Pr(1+4ε) is returned is less than 2−k, and so the distribution of the index
returned is simulatable.

Finally, given the index of some element in Pcr, the parties perform OT and Alice obtains the desired
coordinate, The communication is now Õ(

√
n). �

19

D Private c-approximate NN based on locality sensitive hashing

We give an alternative private c-approximate NN protocol, with slightly more communication than that in
section 4.2, but less work (though still polynomial). It is based on locality sensitive hashing (LSH) [23].
The fact we need is that there is a family of functions G : {0, 1}d → {0, 1}Õ(1) such that each g ∈ G has
description size Õ(1), and G is such that for all p, q ∈ {0, 1}d,

Pr
g∈G

[g(p) = g(q)] = Θ
(

n−∆(p,q)/cr
)

Recall that Alice has a point q ∈ {0, 1}d and Bob has n points P ⊆ {0, 1}d. For correctness, Alice
should learn a point of Pcr provided Pr 6= ∅. For privacy, her view should be simulatable given only Pcr.

Our protocol is similar to that in section 4.2. When |Pcr| is large, one can run a secure function evaluation
with Alice’s point q as input, together with a random sample P ′ of roughly a k/|Pcr| fraction of Bob’s points
P . The circuit returns a random point of P ′ ∩ Pcr which is non-empty with probabiity 1 − 2−Ω(k). The
communication is Õ(n/|Pcr|).

On the other hand, when |Pcr| is small, if Alice and Bob exchange functions gi independently Õ(n1/c)
times, then with overwhelming probability Pr ⊆ ∪iSi, where Si denotes the subset of Bob’s points p with
gi(p) = gi(q). Using a secure ciruit with ROM, we can obtain these sets Si, and output a random point of
Pr. The communication is Õ(n1/c|Pcr|).

Our protocol balances these approaches to achieve Õ(n1/2+1/(2c)) communication.
There are a few technicalities dodged by this intuition. First, even though the parties exchange Õ(n1/c)

different gi, and can thus guarantee that each p is in some Si with probability 1 − 2−Ω(k), it may be that
whenever p ∈ Si, many points from P \ Pcr also land in Si, so that Si is very large. Even though we only
expect |P \ Pcr|O(1/n) = O(1) points from P \ Pcr in Si, since Pr[p ∈ Si] = Θ(n−1/c) is small, p may
only be in Si when Si is large. Because the size of the Si affects the communication of our protocol, we
cannot always afford for the ROM to receive the whole Si (sometimes we will truncate it). However, in the
analysis, we show that the average Si is small, and this will be enough to get by with low communication.

Second, we need to extend the notion of a lookup gate given in section 2. Instead of just mapping inputs
(i, j) to output Ri[j], the jth entry in the ith party’s ROM, we also allow j to be a key, so that the output is
the record in Ri keyed by j. This can be done efficiently using [8], and Theorem 3 is unchanged, assuming
the length of the keys is Õ(1).

20

LSH (q, P):

1. Set B = Õ(n1/2+1/(2c)) and C = Õ(n1/c).

2. Bob finds a random subset P′ of P of size B .

3. For i = 1 to k,

(a) Alice and Bob agree upon C random gi,j ∈ G.

(b) Bob creates a ROM L with entries L(v) containing the points p for which g(p) = v.

(c) A secure circuit with ROM L performs the following computation on input (q, {gi,j}),
• Compute vi,j = gi,j(q) for each j.

• Lookup the L(vi,j) one by one for the different vi,j until the communication ex-
ceeds dB. If it is less, make dummy queries so that it is exactly dB.

• Output shares S1
i , S2

i so that S1
i ⊕ S2

i is the (possibly truncated) set of sets L(vj).

4. A secure circuit with inputs P ′, S1
i , S2

i ,

• Compute the set Si = S1
i ⊕ S2

i = ∪jL(vj) for all i.

• Let f(q, P) be random in Pcr ∩ P ′ if it is non-empty.

• Else let f(q, P) be random in Pr ∩ ∪iSi if it is non-empty, else set f(q, P) = ∅.

• Output (f(q, P), null).

The communication is Õ(dB). By using homomorphic encryption, one can reduce the dependence on d, as
per remark 10. Let E be the event that Pr ⊆ ∪iSi, and let F be the event that Pcr ∩ P ′ is non-empty.

Correctness: Suppose Pr 6= ∅. The probability s of correctness is just the probability we don’t output
∅. Thus s ≥ Pr[F] + Pr[¬F] Pr[f(q, P) 6= ∅ | ¬F].

Case |Pcr| ≥ n1/2−1/(2c): For sufficiently large B, we have s ≥ Pr[F] = 1 − 2−Ω(k).

Case |Pcr| < n1/2−1/(2c): It is enough to show Pr[f(q, P) 6= ∅ | ¬F] = 1 − 2−Ω(k). Fix i. Put
Y =

∑

j |L(vi,j)|, where |L(vi,j)| denotes the number of points in L(vi,j). The expected number of points

in P \ Pcr that are in L(vi,j) is at most n · O(1/n) = O(1). Since |Pcr| < n1/2−1/(2c), E[L(vi,j)] <
n1/2−1/(2c) + O(1). Thus E[Y] ≤ B/3 for large enough B, so Pr[Y > B] ≤ 1/3 by Markov’s inequality.
Thus, with probability 1−2−Ω(k), for at least half of the i, Si is not truncated in step 3c. Moreover, for large
enough B, any i, and any p ∈ Pr , Pr[p ∈ Si] = 1 − 2−Ω(k) for large enough C . By a few union bounds
then, Pr[Pr ⊆ ∪iSi] = Pr[E] = 1 − 2−Ω(k). Thus,

Pr[f(q, P) 6= ∅ | ¬F] ≥ Pr[f(q, P) 6= ∅, E | ¬F] = Pr[f(q, P) 6= ∅ | E , ¬F] Pr[E] ≥ 1 − 2−Ω(k).

Privacy: Note that Bob gets no output, so Alice’s privacy follows from that of the secure circuit protocol. We
construct a simulator Sim(1n, Pcr, q) so that the distributions 〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q)〉 are
statistically close. Bob’s privacy then follows by the composition with the secure circuit protocol.

21

Sim (1n, Pcr, q):

1. Set B = Õ(n1/2+1/(2c)).

2. With probabiity 1 −
(n−|Pcr|

B

)(n
B

)−1
, output a random element of Pcr.

3. Else output a random element of Pr.

Let X denote the output of Sim(1n, Pcr, q). It suffices to show that for each p ∈ P , |Pr[f(q, P) =
p] − Pr[X = p]| = 2−Ω(k), since this also implies |Pr[f(q, P) = ∅] − Pr[X = ∅]| = 2−Ω(k). We have

Pr [f(q, P) = p] = Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F]

= Pr [F] |Pcr|−1 + Pr [f(q, P) = p,¬F]

Note that Pr[F] = 1 −
(n−|Pcr|

B

)(n
B

)−1
. Therefore,

|Pr[f(q, P) = p] − Pr[X = p]| = Pr[¬F]|Pr [f(q, P) = p | ¬F] − δ(p ∈ Pr)|Pr|−1|.

If |Pcr| ≥ n1/2−1/(2c), this is 2−Ω(k), since then Pr[¬F] = 2−Ω(k). Otherwise, |Pcr| < n1/2−1/(2c), and as
shown in the proof of correctness, we have Pr[E] = Pr[Pr ⊆ ∪iSi] = 1 − 2−Ω(k). Thus

Pr[f(q, P) = p | ¬F] = Pr[f(q, P) = p | E , ¬F] Pr[E] ± 2−Ω(k) = δ(p ∈ Pr)|Pr|−1 ± 2−Ω(k),

which completes the proof.

22

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

