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Abstract

We introduce the notion of a plain basis for a co-clone in Post’s lattice.
Such a basis is a set of relations B such that every constraint C over a
relation in the co-clone is logically equivalent to a conjunction of equali-
ties and constraints over B and the same variables as C; this differs from
the usual notion of a basis in that existential quantification of auxiliary
variables is not allowed. We give such a basis for every co-clone and in
particular for those in the infinite part of the lattice; it turns out that
most of these bases correspond to sets of propositional clauses, thus pro-
viding a strong link between classes of formulas defined for CSP and CNF
representations. We then show that a so-called preferred representation

of a relation over one of its bases can be computed efficiently, as well as
the minimal co-clone including a given relation, which solves some open
structure identification problem as well as the open expressibility problem
from database theory.
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1 Introduction

Constraints Satisfaction Problems (CSP) constitute a common and natural
framework for formalizing computational problems in various areas of computer
science: in particular Operational Research, Scheduling, Artificial Intelligence
(AI) and Database theory (DB). Informally, given a set of variables each one
with a set of allowed values, a CSP is a set of constraints, each one restricting
the combinations of values for a subset of the variables to those in some relation.
A solution for the CSP is an assignment of values to all the variables that re-
spects all the constraints. Unfortunately, deciding the existence of a solution for
a CSP is an NP-complete problem, and this motivated the study of restrictions
on the allowed constraints in order to gain tractability.

We are interested here in restrictions on the nature of the constraints, i.e.,
on the relations that constraints are built upon. We also restrict ourselves to
the Boolean case, where the domain of each variable is {0, 1}. A series of works
beginning with Post’s [Pos41] show that all the (finitary) Boolean relations can
be classified according to their polymorphisms, i.e., the Boolean functions that
close them in some precise sense, and that this classification is very helpful to
the study of the computational complexity of many problems (see [CKS01] for
a survey). According to this classification, Boolean relations are organized into
co-clones which are themselves organized into the so-called Post’s lattice.

Consequently, a deep understanding of Post’s lattice is of fundamental im-
portance from both the complexity-theoretic and the application points of view.
In particular, in order to apply complexity results derived from Post’s theory
to many domains, it is very important to study the links between relations that
satisfy some properties in Post’s lattice and other representations of CSPs. To
this aim, independently and simultaneously to our work, the notion of a basis
of a co-clone has been studied by Böhler et al. [BRSV05], who exhibited bases
of minimal arity for every co-clone. Informally, such a basis is a minimal set of
relations from which every relation in the co-clone can be built using cartesian
product, identification of variables and existential quantification of variables
(equivalently, projection).

We study here a stronger notion of a basis. We call plain basis of a co-clone
a minimal set of relations from which every relation in the co-clone can be built
using only cartesian product and identification of variables. Thus every relation
has what we call a preferred representation, as a conjunction of constraints
over the basis and equality relations between variables. What is important
here is that since existential quantification of variables is not allowed any more,
the preferred representation of a CSP is itself a CSP. Whereas existentially
quantified variables do not change the existence of a solution for a CSP, this is
not the case for other computational problems, e.g., counting of solutions (see
[CH96] and [BCCHV04]).

Our contribution is manifold. We exhibit a plain basis for every co-clone in
Post’s lattice; this is mainly done through the study of prime CNF representa-
tions of relations, and it turns out that most plain basis are sets of propositional
clauses. Most of these bases were already known, but we complete them by bases
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for the co-clones in the infinite part of Post’s lattice. We then give an efficient
algorithm for computing the preferred representation of a relation in a given
co-clone. More importantly, we give an efficient algorithm that decides the min-
imal co-clone of a relation, which is a new result and which does not seem to be
allowed by the classical notion of a basis. Finally, we give an application of our
results to a fundamental problem in database theory, namely that of deciding
whether a given relation can be expressed by a given set of relations.

Our results can be seen from different points of view. From the complexity-
theoretic one, they allow to study the complexity of problems according to
properties of CNFs or of relations equivalently (in particular, this remark applies
to complexity classification results in which the class of IHSB formulas plays a
role as in [CZ04], [CKS01, Theorem 6.5] and [KST97]). From the AI point
of view, they answer the structure identification [DP92], or inverse-SAT [KS98]
problem for IHSB formulas. Finally, from the DB point of view, they answer,
as previously evoked, the fundamental problem of expressivity of relations.

2 Preliminaries

2.1 Post’s lattice

A Boolean function is an application f : {0, 1}n 7→ {0, 1}. The integer n is called
the arity of f . If f is n-ary and g1, . . . , gn are all m-ary Boolean functions, then
the composition f(g1, . . . , gn) has arity m as well and its value on (a1, . . . , am)
is f(g1(a1, . . . , am), . . . , gn(a1, . . . , am)). For n ≥ m ≥ 1 the projection function
πn,m is defined by πn,m(x1, . . . , xn) = xm. A (Boolean) clone is a set of Boolean
functions closed under composition and containing all coordinate projections of
all arities. For classical references we refer the reader to [Pip97] and [PK79].

The clones form a lattice under set inclusion, which is now referred to as
Post’s lattice [Pos41]. The description of this lattice is facilitated by an impor-
tant property called duality. Informally, it reflects the fact that the entire theory
remains unchanged if we interchange the roles of 0 and 1. This process assigns
to each Boolean function f another function, called the dual of f and defined
by dual(f)(a1, . . . an) = f(a1, . . . , an). The now well-known Post’s lattice is
presented in Figure 1 1. Note that we use the notation of clones and co-clones
developed in [BCRV03, BCRV04].

It has been proved that a Galois correspondence can be established between
clones in Post’s lattice and maximal classes of relations that are closed under
the functions in the clone. More precisely, let R be an m-ary relation, that is a
set R ⊆ {0, 1}m, and let f be a Boolean function of arity n. Then f is said to be
a closure property of R if when f is applied coordinate-wise to m vectors in R

(not necessarily all different), the resulting vector is again in R. In this case, we
say that R is closed under f or that f is a polymorphism of R. We denote the
set of all polymorphisms of R by Pol(R), and for a set S of Boolean relations

1The authors are grateful to Steffen Reith who provided them with the figure.
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we define Pol(S) to be
⋂

R∈S Pol(R). Importantly, as is easily seen Pol(S) is a
clone.

Conversely, if T is a set of Boolean functions, then Inv(T ) is defined to
be the set of all relations which are preserved by every function from T . It
turns out that sets Inv(T ) have particular common properties: they contain
the equivalence relation, and each such set is closed under Cartesian product,
projection and identification of variables; thus they are co-clones. The functions
Pol and Inv induce an anti-isomorphism between the lattice of clones and the
lattice of co-clones ([Gei68, PK79, Pip97], see also [BCRV04] for a survey). The
co-clone corresponding to clone Cl is denoted by ICl (e.g., IE2 for the co-clone
corresponding to clone E2).

2.2 Bases and plain bases

A constraint over an n-ary relation R is the application of R to some sequence
V of n variables (maybe with repetitions), written R(V ). A solution for R(V )
is an assignment m of values to every variable in V such that when seen as
a Boolean vector, m is in R. These notions are straightforwardly extended to
conjunctions of constraints, and two conjunctions of constraints are said to be
logically equivalent if their sets of solutions are the same.

The classical definition of a basis for a co-clone is the following. Given a co-
clone ICl, a set of relations B ⊆ ICl is called a basis for ICl if every constraint
R(x1, . . . , xn) with R ∈ ICl is logically equivalent to ∃y1 . . . ymC for some set
of variables {y1, . . . , ym} disjoint from {x1, . . . , xn} and some conjunction of
constraints C over {x1, . . . , xn} ∪ {y1, . . . , ym} using only relations in B. Note
that since the equality relation is in every co-clone of Post’s lattice, this for-
mulation is equivalent to the usual one (R can be obtained from relations in B

using cartesian product, identification of variables and existential quantification
of variables).

We introduce a new, stronger notion of a basis.

Definition 1 (plain basis) Let ICl be a co-clone in Post’s lattice. A set of
relations B ⊆ ICl is called a plain basis for ICl if every constraint R(x1, . . . , xn)
with R ∈ ICl is logically equivalent to C for some conjunction of constraints C
using only relations in B and applied only to variables x1, . . . , xn.

2.3 Conjunctive Normal Form

A literal is either a variable x (positive literal) or the negation ¬x of one (negative
literal). A clause is a finite disjunction of literals of the form C = (`1 ∨ · · · ∨ `k)
(k ≥ 0). A propositional formula is said to be in Conjunctive Normal Form
(CNF) if it is written as a conjunction of clauses.

If V is a set of variables and ϕ is a CNF over a subset of V , a model of ϕ

over V is an assignment to the variables in V which satisfies ϕ with the usual
rules for the connectives. A formula is said to be satisfiable if it has at least
one model. If ϕ1 and ϕ2 are two propositional formulas over sets of variables
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V1 and V2, respectively, ϕ1 is said to (logically) entail ϕ2 if every model of ϕ1

over V1 ∪ V2 is a model of ϕ2, and ϕ1, ϕ2 are said to be (logically) equivalent,
written ϕ ≡ ϕ′, if their sets of models over V1 ∪ V2 are equal.

We will establish the correspondence between relations and formulas in
CNF in the following manner. Let R be a n-ary Boolean relation. We see
R as a set of assignments to variables x1, x2, . . . , xn, i.e., we see any vector
m = (m1, . . .mn) ∈ R as the assignment of value mi to variable xi for all
i ∈ {1, . . . , n}. Then a propositional formula ϕ over variables x1, . . . , xn is said
to represent R if R is its sets of models.

An important notion that we will use many times in the paper is that of a
prime implicate. Let ϕ be a propositional formula. A clause C = (`1∨· · ·∨`k) is
said to be a prime implicate of ϕ if ϕ entails C but entails no proper subclause
of C, i.e., if ϕ entails C but for no i ∈ {1, . . . , k}, ϕ entails the clause (`1 ∨ · · · ∨
`k−1 ∨ `k+1 ∨ · · · ∨ `k). A CNF ϕ is said to be prime if all its clauses are prime
implicates of it. We will often use the following remark:

Remark 2 C = (`1 ∨ · · · ∨ `k) is a prime implicate of ϕ if and only if there
is no model of ϕ that assigns 0 to every literal `i but for every i0 ∈ {1, . . . , n}
there is a model of ϕ that assigns 0 to every literal `i except for `i0 .

Roughly speaking, in the terms introduced here the aim of this paper is to
give a complete characterization of Boolean co-clones by syntactic properties of
prime CNF formulas representing the relations.

3 Infinite part of Post’s lattice

As evoked in the introduction, plain bases for most co-clones were already exhib-
ited, mainly when studying the structure identification problem [DP92, KS98,
ZH02]. Nevertheless, there was no plain basis exhibited yet for an important
class of co-clones, namely the co-clones ISn

10, ISn
11 . . . and the dual ones. These

clones constitute the (countably) infinite part of Post’s lattice.
These co-clones are presented in Table 1 together with bases of the corre-

sponding clones, i.e., sets of functions from which every function in the clone
can be obtained by composition. Throughout the paper, for n ≥ 1, hn denotes
the n + 1-ary function defined by hn(x1, . . . , xn+1) =

∨n+1

i=1
x1 ∧ · · · ∧ xi−1 ∧

xi+1 ∧ · · · ∧ xn+1, c0 (resp. c1) denotes the 0-ary constant function 0 (resp. 1)
and imp denotes binary implication, defined by imp(x, y) = x → y.

What we show in this section is that these co-clones correspond to classes of
IHSB CNF formulas, which were introduced as a special class of Horn formu-
las for which satisfiability is in the parallel complexity class NC (see [GHR95]
and [CKS01, Theorem 6.5]) and that have rather good approximability proper-
ties (see [KST97]). Thus these characterizations yield plain bases for the cor-
responding co-clones since every clause can be seen as a relation. We rephrase
the results of this section into terms of plain bases in Section 4, but we let
them stated in terms of CNF formulas here because they answer the structure
identification problem for classes of IHSB formulas.
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Co-clone Base of clone Co-clone Base of clone

ISn
0 {imp, dual(hn)} ISn

1 {x ∧ y, hn}
IS0 {imp} IS1 {x ∧ y}
ISn

02 {x ∨ (y ∧ z), dual(hn)} ISn
12 {x ∧ (y ∨ z), hn}

IS02 {x ∨ (y ∧ z)} IS12 {x ∧ (y ∨ z}
ISn

01 {dual(hn), c1} ISn
11 {hn, c0}

IS01 {x ∨ (y ∧ z), c1} IS11 {x ∧ (y ∨ z), c0}
ISn

00 {x ∨ (y ∧ z), dual(hn)} ISn
10 {x ∧ (y ∨ z), hn}

IS00 {x ∨ (y ∧ z)} IS10 {x ∧ (y ∨ z)}

Table 1: Co-clones in the infinite part of Post’s lattice and bases of corresponding
clones (where, e.g., x ∨ (y ∧ z) denotes the function (x, y, z) 7→ x ∨ (y ∧ z))

Taking advantage of duality in Post’s lattice, we focus our attention to the
right-side of the lattice. Consequently, we define IHSB− formulas (IHSB+ for-
mulas are defined dually):

Definition 3 (IHSB−, IHSB−n) A clause is said to be IHSB− (for Implica-
tive Hitting Set-Bounded−) if it is of one of the following types: (xi), (¬xi1 ∨
xi2), or (¬xi1 ∨ · · · ∨¬xik

) for some k ≥ 0. For n ≥ 2, an IHSB− clause is said
to be of width n (written IHSB−n) if it involves at most n literals. A formula
in CNF is said to be IHSB− (resp. IHSB−n) if all its clauses are IHSB− (resp.
IHSB−n).

We can now establish the desired correspondences. The following proposition
is the main one, since the other ones will use it and its proof.

Proposition 4 (IHSB−n vs. ISn
10) A relation is in ISn

10 if and only if every
prime CNF representing it is IHSB−n.

Proof

[ISn
10 ⇒ IHSB−n] Let R be a relation in ISn

10 and let ϕ be a prime CNF
representing it. Since in Post’s lattice E2 ⊂ Sn

10 holds we know that ϕ is Horn,
thus each one of its clauses contains either zero or one positive literal (resp.
called negative and definite Horn clauses). We show that all these clauses are
IHSB−n.

[Negative clauses] First assume for sake of contradiction that ϕ contains a
negative clause that is “too wide”, i.e., a clause C of the form (¬xi1 ∨· · ·∨¬xim

)
with m > n. Since C is a prime implicate of ϕ and ϕ represents R, by Remark 2
there are n+1 vectors m1, . . . , mn+1 ∈ R whose projections onto {xi1 , . . . , xim

}
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are:

xi1 xi2 xi3 . . . xin−1
xin

xin+1
xin+2

. . . xim

m1 = 0 1 1 . . . 1 1 1 1 . . . 1
m2 = 1 0 1 . . . 1 1 1 1 . . . 1

· · ·
mn = 1 1 1 . . . 1 0 1 1 . . . 1

mn+1 = 1 1 1 . . . 1 1 0 1 . . . 1

Then it is easily seen that hn applied coordinate-wise to these n + 1 vectors
yields the vector 1 . . . 1, which is not in R because it falsifies C; thus R is not
closed under hn, which contradicts the hypothesis.

[Definite Horn clauses] Now assume, still for sake of contradiction, that ϕ

contains a clause of the form C = (x1 ∨ ¬x2 ∨ · · · ∨ ¬xm) with m > 2. Once
again, since C is prime there are at least three vectors in R as below:

xi1 xi2 xi3 xi4 . . . xim

m1 = 1 1 1 1 . . . 1
m2 = 0 0 1 1 . . . 1
m3 = 0 1 0 1 . . . 1

Applying the function (x, y, z) 7→ x ∧ (y ∨ z) to these three vectors coordinate-
wise yields the vector 01 . . .1, which does not satisfy C, which contradicts the
hypothesis again. Finally, every clause in ϕ is either negative with at most n

literals or definite Horn with at most 2 literals, which shows that ϕ is IHSB−n.

[IHSB−n ⇒ ISn
10] We now show that if R is a relation and ϕ is an IHSB−n

prime CNF representing R, then R is in ISn
10. This will imply the claim since

there is always at least one prime CNF representing a relation. Since co-clones
are closed under conjunction and ISn

10 is defined to be Inv(Sn
10), we only have

to show that any IHSB−n clause is closed under the functions in a basis of Sn
10;

we use the base in Table 1, i.e., {(x, y, z) 7→ x ∧ (y ∨ z), hn}. This obviously
holds for the clauses containing zero or one literal, thus we consider clauses of
size at least 2.

[Definite Horn clauses] The only definite Horn clauses to consider are clauses
of the form (¬xi1 ∨ xi2). Let C be such a clause; the set of models of C is
{00, 01, 11}. Assume if it not closed under (x, y, z) 7→ x ∧ (y ∨ z); then this
operation yields 10 (the only missing vector) on some m1, m2, m3; because of x

we thus have m1[x1] = 1 and thus m1 = 11, but because of y and z we also have
m2[x1] = 1 (without loss of generality). Thus m2 = 11 and m1∧(m2∨m3) = 11,
which contradicts our hypothesis. Similarly, if the set of models of C is not closed
under hn for some n, then it would contain n + 1 vectors m1, . . . , mn+1 such
that hn(m1, . . . , mn+1) = 10; thus at least n of these vectors would assign 1 to
xi1 , i.e., would be 11; thus hn(m1, . . . , mn+1) would be 10, again contradicting
our hypothesis.

[Negative clauses] Finally, let C = (¬xi1 ∨ · · · ∨ ¬xik
) with k ≤ n. The set of

models of C is {0, 1}k\11 . . .1. We first show that m1 ∧ (m2 ∨ m3) is always

8



different from 11 . . .1, which will show closure under (x, y, z) 7→ x ∧ (y ∨ z);
indeed, as remarked above, x∧ (y∨z) = 1 implies x = 1, thus m1∧ (m2∨m3) =
11 . . .1 implies m1 = 11 . . . 1, which is not a model of C. Finally, let us consider
hn. If the set of models of C is not closed under it then we must have n + 1
vectors such that hn(m1, . . . , mn+1) = 11 . . . 1; thus among them at least n must
assign 1 to xi1 , n (maybe different) must assign 1 to xi2 and so on. Since we
only have k ≤ n < n + 1 variables, it follows from the pigeonhole principle that
at least one mi is 11 . . . 1, which is not a model of C. �

Proposition 5 (IHSB− vs. IS10) A relation is in IS10 if and only if every
prime CNF representing it is IHSB−.

Proof Since a formula is finite, every IHSB− CNF formula is IHSB−n for
some n; thus if there is an IHSB− (prime) CNF formula representing a relation
R, then R is in ISn

10 for some n, and from S10 ⊂ Sn
10 it follows that R is in

IS10. As for the converse, if R is a relation in IS10 and ϕ is a prime CNF
representing it, closure of R under (x, y, z) 7→ x ∧ (y ∨ z) is enough to conclude
that every definite Horn clause of ϕ contains at most 2 literals (see the proof of
Proposition 4), and thus ϕ is IHSB−. �

Proposition 6 (ISn
11, IS11) A relation is in ISn

11 (resp. IS11) if and only if ev-
ery prime CNF representing it is IHSB−n (resp. IHSB−) and does not contain
any clause of the form (xi1 ).

Proof From Sn
10 ⊂ Sn

11 it follows that every prime CNF representing a rela-
tion in ISn

11 is IHSB−n, and because ISn
11 has a basis containing c0 no CNF

representing such a relation can contain a unary positive clause. The converse
follows from the fact that (i) the set of models of every IHSB−n clause is closed
under hn (Proposition 4), (ii) the only IHSB−n clauses whose set of models is
not closed under c0 are those of the form (xi1 ) and finally (iii) {hn,c0} is a basis
of Sn

11.
The proof is similar for IS11. �

Proposition 7 (ISn
12, IS12) A relation is in ISn

12 (resp. IS12) if and only if
for every prime CNF ϕ representing it, ϕ is IHSB−n (resp. IHSB−) and for
every two variables xi1 , xi2 , if ϕ contains the clause (¬xi1 ∨ xi2) then it entails
the clause (xi1 ∨ ¬xi2 ).

Proof Since Sn
10 ⊂ Sn

12 holds, every prime CNF ϕ representing a relation R in
ISn

12 is IHSB−n. For sake of contradiction, assume that ϕ contains the clause
C = (x1 ∨¬x2) but does not entail the clause C ′ = (¬x1 ∨ x2). Then since ϕ is
prime, by Remark 2 there are two models m1, m2 of ϕ such that m1 assigns 1
to x1 and 1 to x2, and m2 assigns 0 to x1 and 0 to x2. On the other hand, since
ϕ does not entail C ′, there is a model m′ of ϕ that does not satisfy C’, i.e., that
assigns 1 to x1 and 0 to x2. Now applying the function (x, y, z) 7→ x ∧ (y ∨ z)
to (m1, m2, m

′) yields a vector which assigns 0 to x1 and 1 to x2; thus this
vector is not a model of C, which contradicts the fact that R is closed under
(x, y, z) 7→ x ∧ (y ∨ z).
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The converse is easily shown as usual by (i) showing closure of clauses of the
form (x1) and (¬xi1∨· · ·∨¬xik

) under (x, y, z) 7→ x∧(y∨z) and under hn (k ≤ n)
(ii) remarking that since the presence of (¬xi1 ∨ xi2 ) implies that ϕ entails
(xi1 ∨¬xi2 ), ϕ is logically equivalent to a conjunction of clauses of the previous
forms and of equality constraints, because (¬xi1∨xi2 )∧(xi1∨¬xi2 ) ≡ (xi1 = xi2 ).
�

Proposition 8 (ISn
1 , IS1) A relation is in ISn

1 (resp. IS1) if and only if for
every prime CNF ϕ representing it, ϕ is IHSB−n (resp. IHSB−), ϕ does not
contain any clause of the form (xi1 ), and for every two variables xi1 , xi2 , if ϕ

contains the clause (¬xi1 ∨ xi2 ) then it entails the clause (xi1 ∨ ¬xi2 ).

Proof If R is in ISn
1 (resp. IS1), then the result follows from Propositions 6

and 7 and the inclusion Sn
11

⋂
Sn

12 ⊆ Sn
1 (resp. S11

⋂
S12 ⊆ S1) in Post’s lattice.

The converse is shown as usual, with the same remark for clauses of the form
(¬xi1 ∨ xi2 ) as in the proof of Proposition 7. �

4 Complete list of plain bases and algorithms

In this section, we summarize our results and those obtained in the literature
in order to give a plain basis for every co-clone in Post’s lattice, then introduce
the notion of a preferred representation of a relation with respect to a co-clone,
and finally give efficient algorithms for computing this representation and for
deciding the minimal co-clone of a relation.

4.1 Plain bases

Table 2 gives a plain basis for every co-clone. In this table, when possible we
denote relations by clauses that represent them; e.g., (¬x∨y) denotes the binary
relation {00, 01, 11}. The positive clause of width k, (x1∨· · ·∨xk), is denoted by
Pk, and similarly the negative clause of width k is denoted Nk. We use the same
kind of notation for relations that correspond to linear equations, and finally
use two special notations: Eq denotes the binary equality relation {00, 11} and
Complk,` denotes the (k + `)-ary relation represented by the conjunction of
clauses (x1 ∨ · · ·∨xk ∨¬y1 ∨ · · · ∨¬y`)∧ (¬x1 ∨ · · · ∨¬xk ∨ y1 ∨ · · · ∨ y`), i.e., the
complementive relation {0, 1}k+` \ {0 . . . 01 . . .1, 1 . . . 10 . . .0}. The last column
gives the usual name given to the property satisfied by each clause, equation or
relation in the basis.

We summarize the proofs and relevant references in the following proposition.
The proofs are given as consequences of the bases of each clone (see [BCRV03,
Figure 1]).

Proposition 9 (plain bases) Each line in Table 2 gives a plain basis for the
corresponding co-clone.
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Plain basis Property

IBF {Eq} only equalities
IR0 {Eq, (¬x)} neg1

IR1 {Eq, (x)} pos1

IR2 {Eq, (¬x), (x)} unary

IM {(¬x ∨ y)} implicative
IM0 {(¬x), (¬x ∨ y)} implicative or pos1

IM1 {(x), (¬x ∨ y)} implicative or neg1

IM2 {(x), (¬x), (¬x ∨ y)} implicative or unary

ISn
0 {Eq} ∪ {Pk | k ≤ n} posn

IS0 {Eq} ∪ {Pk | k ∈ N} pos.
ISn

1 {Eq} ∪ {Nk | k ≤ n} negn

IS1 {Eq} ∪ {Nk | k ∈ N} neg.

ISn
02 {Eq, (¬x)} ∪ {Pk | k ≤ n} neg1 or posn

IS02 {Eq, (¬x)} ∪ {Pk | k ∈ N} neg1 or positive
ISn

12 {Eq, (x)} ∪ {Nk | k ≤ n} pos1 or negn

IS12 {Eq, (x)} ∪ {Nk | k ∈ N} pos1 or negative

ISn
01 {(¬x ∨ y)} ∪ {Pk | k ≤ n} implicative or posn

IS01 {(¬x ∨ y)} ∪ {Pk | k ∈ N} implicative or positive
ISn

11 {(¬x ∨ y)} ∪ {Nk | k ≤ n} implicative or negn

IS11 {(¬x ∨ y)} ∪ {Nk | k ∈ N} implicative or negative

ISn
00 {(¬x), (¬x ∨ y)} ∪ {Pk | k ≤ n} IHSB+n

IS00 {(¬x), (¬x ∨ y)} ∪ {Pk | k ∈ N} IHSB+
ISn

10 {(x), (¬x ∨ y)} ∪ {Nk | k ≤ n} IHSB−n

IS10 {(x), (¬x ∨ y)} ∪ {Nk | k ∈ N} IHSB−

ID {(x ⊕ y = c) | c ∈ {0, 1}} affine of width exactly 2
ID1 {(x = c) | c ∈ {0, 1}} ∪ {(x ⊕ y = c) | c ∈ {0, 1}} affine of width 2
ID2 {(x), (¬x), (x ∨ y), (¬x ∨ y), (¬x ∨ ¬y)} bijunctive

IL {(x1 ⊕ · · · ⊕ xk = 0) | k even} even homogeneous linear equation
IL0 {(x1 ⊕ · · · ⊕ xk = 0) | k ∈ N} homogeneous linear equation
IL1 {(x1 ⊕ · · · ⊕ xk = c) | k ∈ N, c = k mod 2} 1-valid linear equation
IL2 {(x1 ⊕ · · · ⊕ xk = c) | k ∈ N, c ∈ {0, 1}} linear equation
IL3 {(x1 ⊕ · · · ⊕ xk = c) | k even, c ∈ {0, 1}} even linear equation

IV {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ≥ 1} definite dual Horn and not neg1

IV0 {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ∈ N} definite dual Horn
IV1 {Pk | k ∈ N} ∪ {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ≥ 1} dual Horn and not neg1

IV2 {Pk | k ∈ N} ∪ {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ∈ N} dual Horn

IE {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ≥ 1} definite Horn and not pos1

IE0 {Nk | k ∈ N} ∪ {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ≥ 1} Horn and not pos1

IE1 {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ∈ N} definite Horn
IE2 {Nk | k ∈ N} ∪ {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ∈ N} Horn

IN {Complk,` | k, ` ≥ 1} complementive, 0- and 1-valid
IN2 {Complk,` | k, ` ∈ N} complementive

II {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y`) | k, ` ≥ 1} 0- and 1-valid
II0 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y`) | k ∈ N, ` ≥ 1} 0-valid
II1 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y`) | k ≥ 1, ` ∈ N} 1-valid
II2 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y`) | k, ` ∈ N} any clause

Table 2: CNF properties corresponding to co-clones: “negn” means “negative
and containing at most n literals”, and similarly for “posn”
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Proof We proceed from the largest co-clone to the smallest one. Since the
proofs for co-clones ICl, ICl0, ICl1 follow straightforwardly from the proofs for
co-clone ICl2, we only consider the latter.

[II, IIc] Obviously, any relation can be represented by a CNF formula and
conversely, any relation is stable under identity.

[IN, IN2] Obviously again, any complementive relation can be represented by
a CNF containing the clause (¬x1∨· · ·∨¬xk∨y1∨· · ·∨y`) as soon as it contains
(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y`); grouping these clauses two by two in the CNF
yields a conjunction of Complk,` relations, and conversely the set of models of
such a conjunction is complementive.

[IE, IEc, IV, IVc, IL, ILc, ID, IDc] We refer the reader to [Sch78] and to [ZH02]
for the proofs for co-clones IE2, IV2, IL2, ID2.

[IScd, ISc] The proofs follow immediately from our results in Section 3; for
plain bases containing Eq, the result follows by grouping clauses (¬x ∨ y) and
(x ∨ ¬y) two by two.

[IM, IMc] The proof for IM2 follows from the inclusions IM2 ⊆ IS2
00, IS2

10 in
one direction, and from stability of the clauses in the plain basis under and and
or in the other direction.

[IRc, IBF ] The result for IR2 follows in one direction from the inclusions
IR2 ⊆ IM2, ID1, because clauses (¬x ∨ y) of the plain basis of IM2 are not in
ID1 while unary clauses are (equation (x = 1) is equivalent to clause (x), and
equation (x = 0) is equivalent to clause (¬x)). The proof in the other direction
follows from stability of unary clauses under both or and (x, y, z) 7→ x∧(y⊕z⊕1).
�

4.2 Preferred representations

As we pointed out in the introduction, the main advantage of our approach as
compared to Böhler et al.’s [BRSV05] is that our notion of plain basis allows
to derive efficient algorithms for two algorithmical purposes: given a relation,
(i) compute a representation of it in a given plain basis, and (ii) find out the
minimal co-clone containing it.

Definition 10 (preferred representation) Let ICl be a co-clone, B a plain
basis for it, and let R be a relation in ICl. Then a conjunction of constraints
ϕ is called a preferred representation for R with respect to ICl and B if ϕ is
logically equivalent to R and every constraint in ϕ is built upon a relation in B.

Consider for instance the ternary relation R = {000, 111}. It is easily seen
that this relation is closed under all polymorphisms, and thus R is in every
co-clone. Then a preferred representation for it with respect to co-clone IBF

and its plain basis of Table 2 is the conjunction of binary equalities Eq(x1, x2)∧
Eq(x2, x3). Note that the conjunction Eq(x1, x2) ∧ Eq(x2, x3) ∧ Eq(x1, x3) is
also a preferred representation for R with respect to IBF . Since R is also in

12



IL2, it also has a preferred representation with respect to it, e.g., (x1 ⊕ x2 =
0)∧(x1⊕x3 = 0). As for co-clone IN2, R has Compl1,1(x1, x2)∧Compl1,1(x1, x3)
as a preferred representation, and as for co-clone ID2 it has (¬x1 ∨x2)∧ (¬x2 ∨
x3) ∧ (¬x3 ∨ x1).

The notion of preferred representation is very important for structure iden-
tification purposes. Structure identification [DP92] is the problem of deciding,
for a fixed class of formulas C, whether a given relation R can be represented by
a formula in C, and to compute such a formula if the answer is affirmative. As
Dechter and Pearl discuss it, this problem is a fundamental one for knowledge
acquisition processes, where the aim is in general to compute a formula-based
representation for some knowledge described by a set of examples, themselves
given as assignments to descriptors (variables). Structure identification has also
been studied in [KS98], where the problem is called Inverse Satisfiability, and
in [ZH02].

The following proposition shows that our approach allows to solve efficiently
and in an unified manner the structure identification problem for many classes
of formula. Importantly, the preferred representations with respect to the plain
bases given in Table 2 have polynomial algorithms for deciding satisfiability as
soon as satisfiability is polynomial for the corresponding co-clone; i.e., these
representations preserve the algorithmical properties of the initial relations.

Proposition 11 Given a relation R of arity n and containing m vectors and
a co-clone ICl to which R belongs, a preferred representation of R with respect
to ICl and its plain basis of Table 2 can be found in time O(m2n2).

Proof Zanuttini and Hébrard [ZH02] show that a prime CNF formula ϕ rep-
resenting R can be computed in time O(m2n2), and that ϕ contains O(mn)
clauses. Therefore a polynomial-time algorithm follows from Table 2 and the
case study below (where ϕ denotes a prime CNF representing R). Notice indeed
that the additional operations performed on ϕ are always linear in its size.

[ICl ⊆ IS10 (or dually ICl ⊆ IS00)] According to Propositions 4–8 ϕ is a
preferred representation, up to replacing every implicative clause (¬x1 ∨ x2)
with the equality constraint Eq(x1, x2) when ICl ⊆ IS12.

[ IE ⊆ ICl ⊆ IE2 (or dually IV ⊆ ICl ⊆ IV2) ] In this case ϕ is a Horn (or
dually a dual Horn) formula, and thus a preferred representation [ZH02].

[If IN ⊆ ICl ⊆ IN2] In this case ϕ is a preferred representation up to replacing
every one of its clauses of the form (¬x1 ∨ · · · ∨ ¬xk ∨ y1 ∨ · · · ∨ y`) (or the dual
one) with the constraint Complk,`(x1, . . . , xk, y1, . . . , y`).

[If IL ⊆ ICl ⊆ IL2] By using the results in [ZH02] one can get a preferred
representation by replacing ∨ with ⊕ and ¬x with x ⊕ 1 in each clause of ϕ,
setting each obtained sum equal to 1 and simplifying constants.

[If ID ⊆ ICl ⊆ ID2] In this case ϕ is in 2CNF [ZH02], and thus is a convenient
preferred representation of R. �
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4.3 Computing the minimal co-clone of a relation

We now show that our notion of plain basis yields an efficient algorithm for
deciding the minimal co-clone which contains a given relation. As far as we
know this result is new and, as discussed below, could not be taken for granted.

We first wish to point out that there is a straightforward, efficient algorithm
for this problem if we forget the infinite part of Post’s lattice, since every other
clone has a finite basis in which every function is of arity at most 3. Thus
one can test a relation for stability under a basis in cubic time and deduce the
minimal co-clone containing the relation.

This approach, however, cannot be applied to the infinite part of Post’s
lattice. Indeed, though each basis is finite (and, in fact, contains at most two
functions –see Table 1), the arity of the functions in these bases is unbounded,
which implies that testing a relation for stability under one of those bases cannot
be done in polynomial time using the naive approach.

This problem, however, is easily circumvented by our approach, as we show
now.

Lemma 12 Given a relation R ∈ IS10 of arity n and containing m vectors,
the minimal co-clone in {ISn

1 , ISn
10, ISn

12, ISn
11 | n ∈ N} that contains R can be

found in time O(m2n2). The dual result holds for R ∈ IS00.

Proof As already mentionned Zanuttini and Hébrard [ZH02] showed that a
prime CNF formula ϕ representing R can be computed in time O(m2n2), and
that ϕ contains O(mn) clauses. By scanning ϕ once, in time O(mn2), one
can find the maximum size of its clauses and deduce n, and at the same time
decide whether ϕ contains unary positive clauses. Finally, for every clause of
the form (¬x∨y) in ϕ one can decide whether ϕ entails (x∨¬y) in time O(mn)
by deciding whether every vector in R satisfies it; since ϕ contains O(mn)
clauses, this requires O(m2n2) operations. Once these informations collected
one can find the minimal co-clone containing R by referring to our Table 2,
which concludes the proof. �

We are finally able to show that computing the minimal co-clone that con-
tains a given relation can be done in quadratic time.

Proposition 13 Given a relation R of arity n and containing m vectors, the
minimal co-clone of Post’s lattice that contains R can be found in time O(m2n2).

Proof The algorithm is as follows. First compute a prime CNF ϕ representing
R in time O(m2n2) with Zanuttini and Hébrard’s algorithm; ϕ contains O(mn)
clauses. By reading ϕ once, by the results of [ZH02] and a reasoning similar to
that of Proposition 11 and Lemma 12 one can decide which co-clones contain
R among IBF, IRc, IM, IMc, ID2, IV, IVc, IE, IEc, II, IIc (c ∈ {0, 1, 2}); this
requires O(mn2) operations.

Now, still using the results in [ZH02] one can handle the affine co-clones by
essentially replacing ∨ with ⊕ in ϕ and testing whether each vector in R satisfies
the resulting affine formula; if the answer is affirmative, then R is affine and thus
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in ID, ID1, IL or ILc (c ∈ {0, 1, 2, 3}); the exact co-clones among these ones
can then be found in linear time by reading the formula once and counting the
variables in each equation. Now membership of R in IN or IN2 can be decided
by testing whether the componentwise complement of each vector of R is still
in R, in time O(mn + n2) by first sorting R into a trie. Finally, concerning the
infinite part of the lattice, one can decide by reading ϕ which co-clones contain
R among {IS1, IS10, IS12, IS11} and the dual ones, and then apply our Lemma
12.

Finally, membership in each co-clone has been decided in time at most
quadratic, which concludes since obviously the minimal co-clone among the
ones found can then be computed in constant time with Post’s lattice. �

5 The expressibility problem

In this section, we apply our characterization to a fundamental problem in
database theory, namely that of deciding whether a given relation R can be
expressed by a given set S of relations. We first define what we mean by
“expressibility”.

Definition 14 (expressible) Let S be a set of relations and R a relation, and
write n for the arity of R. Then R is said to be expressible by S if there are a set
of variables {y1, . . . , ym} and a conjunction of constraints C over {x1, . . . , xn}∪
{y1, . . . , ym} such that the constraint R(x1, . . . , xn) is logically equivalent to the
formula ∃y1 . . .∃ymC. In other words R is expressible by S if R is in the minimal
co-clone containing every relation in S.

We are thus interested in the following decision problem:

Definition 15 (Expressibility)
Input: A finite set of relations S and a relation R

Output: Is R expressible by S? i.e. does R belongs to the minimal co-clone
containing every relation in S?

Note that by definition, this problem could be reformulated into that of
deciding whether S is a basis for R (in Böhler et al.’s sense). However, it seems
that this notion of a basis is of no help in solving it, whereas our stronger notion
gives an efficient and simple algorithmic solution to it.

Indeed, since R is expressible by S if and only if the minimal co-clone (wrt
set inclusion) containing R is included in the minimal co-clone containing every
relation in S, our Proposition 13 gives an efficient algorithm.

Proposition 16 Problem Expressibility is polynomial-time solvable.

Proof Given S and R the algorithm is as follows. For every relation R′ ∈ S

find the minimal co-clone containing R′ by using our Proposition 13. Then
compute the union CS of the co-clones found for all relations, which can be
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done in linear time with Post’s lattice. Finally, compute in the same manner
the minimal co-clone CR that contains R, and conclude that R is expressible
by S if and only if CR ⊆ CS , which again can be decided in constant time with
Post’s lattice. �

6 Conclusion

We have introduced the notion of a plain basis for co-clones in Post’s lattice,
which is stronger than the classical notion of a basis. We have then given a plain
basis for every co-clone in Post’s lattice, mainly using the prime CNF represen-
tation of relations. In particular, we have shown that relations in the infinite
part of Post’s lattice are those that can be represented by IHSB CNF formulas,
which is a new result, though a similar one has been obtained independently
and simultaneously for classical bases by Böhler et al. [BRSV05].

Based on this notion of a plain basis, we have defined preferred represen-
tations of relations and shown that these representations can be computed in
quadratic time given a relation with respect to our plain bases. This problem
is of great importance for the structure identification problem of AI, since our
preferred representations preserve the algorithmic properties of relations for the
satisfiability problem.

We have also shown that our approach yields a quadratic algorithm for
deciding the minimal co-clone of Post’s lattice that contains a given relation.
This closes an important fundamental open question. We have finally shown
that in particular, this allows to derive an efficient solution to the expressibility
problem of Database theory, which was also an important fundamental open
problem.

Our approach also exhibits strong links between co-clones and CNF repre-
sentations. Such links are very useful when considering complexity questions
and especially, complexity classifications. For instance, two of the authors stud-
ied the complexity of the abduction problem for conjunctions of constraints over
fixed sets of relations S, and obtained a trichotomic classification involving the
IHSB classes [CZ04]. While they observed that the complexity of the abduc-
tion problem for some S is also determined by the expressive power of S, thus
suggesting that the algebraic approach can also be applied for this problem,
their proof was Schaefer’s like. The result presented here sheds some light on
this classification, since IHSB classes now correspond to identified co-clones and
thus the trichotomy result can now also be visualized on Post’s lattice. We also
hope that this complete characterization of co-clones by means of plain bases
will be of help in identifying computational goals for which the complexity for
constraints can be studied through the algebraic approach, which constitutes
an intriguing fundamental problem.
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[BRSV05] E. Böhler, S. Reith, H. Schnoor and H. Vollmer. Bases for Boolean
co-clones. Information Processing Letters 96:59–66, 2005

[CH96] N. Creignou and M. Hermann. Complexity of generalized satisfia-
bility counting problems. Information and Computation, 125(1):1-
12, 1996.

[CKS01] N. Creignou, S. Khanna and M. Sudan. Complexity classifications
of Boolean constraint satisfaction problems. SIAM Monographs
on Discrete Mathematics and Applications, 2001.

[CZ04] N. Creignou and B. Zanuttini. A complete classification of the
complexity of propositional abduction. Submitted for publication,
October 2004.

[DP92] R. Dechter and J. Pearl. Structure identification in relational data.
Artificial Intelligence, 58:237–270, 1992.

[Gei68] D. Geiger. Closed systems of functions and predicates. Pac. J.
Math, 27(2):228–250, 1968.

[GHR95] R. Greenlaw, H. J. Hoover and W. L. Ruzzo. Limits to paral-
lel computation: P-completeness theory. Oxford University Press,
1995.

[KS98] D. Kavvadias and M. Sideri. The inverse satisfiability problem.
SIAM Journal on Computing, 28(1):152–163, 1998.

[KST97] S. Khanna, M. Sudan and L. Trevisan. Constraint satisfaction: the
approximability of minimization problems. In Proc. 12th Computa-
tional Complexity Conference,IEEE Computer Society Press pages
282–296, 1997.

17



[KV00] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive queries contain-
ment and constraint satisfaction Journal of Computer and System
Sciences, 61(2):302–332, 2000.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University
Press, Cambridge, 1997.
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