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We shall prove a lower bound on the number of edges in some bounded depth graphs. This
theorem is stronger than lower bounds proved on bounded depth superconcentrators ! and enables
us to prove a lower bound on certain bounded depth circuits for which we cannot use superconcen-
trators: we prove that conjunction cannot be computed by bounded depth circuits with modular
gates that have linear number of wires. The proof of the theorem is based on the same ideas as the
proof for bounded depth superconcentrators in [2]. It should be noted that another combinatorial
lemma related to superconcentrators was proved by Raz and Shpilka [3] (also using the approach
of [2]) in order to show nonlinear lower bounds on the number of edges in bounded depth arithmetic
circuits computing matrix multiplication and some other functions. Some related results appeared
recently also in [1].

Let G be a finite directed acyclic graph with a distinguished set of indegree zero vertices 1,
which will be called input vertices. Let X be a subset of input vertices. We shall say that a subset
of vertices S separates X, if for every two different input vertices z,y € X, every vertex v and every
pair of directed paths p, g starting in z and y respectively and ending in v, at least one of the paths
must contain a vertex from S. S may contain input vertices.

We shall say that X is e-separable, if there exists an S such that S separates X and |S| < ¢ X]|.

We shall say that G is e-inseparable, if for every subset of input vertices X, if | X| > 2, then X
is not e-separable. (¢ < 1, as X separates itself.)

Define, for d = 1,2, ...,

Ai(n) = [logy n],

Aa+1(n) = minfi €N A (n) <1},

where the superscript i denotes the i-times iterated function.?

Theorem 1 For every € > 0 and every integer d > 1, there exists § > 0 such that for all n, if G
has depth d, n inputs and it is e-inseparable, then it has at least dnAg(n) edges.

We shall prove a stronger version of this theorem. For a set of inputs X of G, define

$(X) = min{|S|; S separates X}.
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Let n be the number of input vertices, let 2 < ¢t < n, and € > 0. We shall say that G is weakly
t, e-inseparable, if for all k, t < k < n,

LB (5(50) > ek

The greater generality (in particular, the bound on the expectation, instead of an absolute bound)
is needed for the proof.

Theorem 2 For every € > 0 and every integer d > 1, there exists § > 0 such that for every
2 <t < n, every weakly t,e-inseparable G of depth d with n input vertices has at least énAq(%})
edges.

This theorem is proved by induction on the depth d. We shall assume w.l.o.g. that G is stratified
into levels Vg, V1, --- , V4 and edges are only between consecutive levels. The following two lemmas
formalize the induction base and the induction step.

Lemma 3 For every ¢ > 0, there exists § > 0 such that if G has depth 1, has n input vertices and
it is weakly t, e-inseparable, where 2 <t < n, then it has more than dnlog 7} edges.

Proof. Suppose G is weakly t, e-inseparable. Let v1,vs,... be all vertices on the level 1 (the level
0 being the input vertices) ordered by the decreasing indegrees di > do > .... For t < g < %
consider the undirected graph H, with the set of vertices being the input vertices of G and edges
(z,y) such that £ — v;,y — v; in G for some 7 > ¢. Thus Hy has m <}, (dzz) edges. Let X be
a random subset of inputs of cardinality k = |_26—q'| (thus t < k < n). The expected number of edges
on X is %(g)

Obser\QIe that if there are £ edges of H, on X, then s(X) < £+ ¢ (take the vertices vy, -+ , v,
and one vertex from each edge). Thus we have

m

(—)(’;) 4> B(s(@)) > ek.

()%

Substituting for m and simplifying we get

e

i>q \2

Since g < €k/2, we have

(%)
(3)

d? € € g2
Z_2>k—1: 2 22_'

2
< %’5. Thus we get

Since d; < n, we can estimate

N

By Lemma 4 of [2], this implies




for some §; > 0 depending only on ¢. Hence if t = o(n), we get
Z d; > énlog %
i
Otherwise use the trivial lower bound et on the number of edges. [

Lemma 4 For every integer d > 1, reals € > 0, and v > 0, there exists § > 0 such that for every
n, if

(i) for every 2 <t < n, every weakly t, 5-inseparable G of depth d with n input vertices
has at least ynAq(%) edges,

then

(i) for every 2 < t < n, every weakly t,c-inseparable G of depth d + 1 with n input
vertices has at least dn)g41(7) edges.

Proof. Suppose (i) holds true. Let G be weakly t,e-inseparable directed graph with depth d + 1
and n input vertices.

Let me briefly sketch the idea of the proof before doing detailed computations. We would like
to distinguish two cases: either there are a lot of vertices of high degree on the first level, or not.
In the first case there are, clearly, many edges. In the second case we can delete the vertices on the
first level that have large degrees, connect inputs directly to the second level and then we can apply
(i) to the resulting depth d graph. However, this does not quite work, as after deleting the vertices
with high degree, the degrees of the remaining vertices on level 1 are still too large. Therefore we
have to consider also vertices with intermediate degrees. If the number of those vertices would be
small, then a random set of inputs would meet only a few edges connected to them.

Let deg(v) denote the indegree of a vertex v. Let ¢ be given, 2 <t <n. Putr = %,

Ao = {v € Vi; deg(v) > Ag(r)},

A; = {v e Vi )\((iH_I) (r) < deg(v) < )\((ii) (r)}, fori > 1.

Let E denote the set of edges of G.

Claim. For every i, 1 < i < Ag11(r)/2 — 3, at least one of the following three inequalities is
satisfied:

L. |[AgU---UA; 1| > EW;
2. [{(u,v) € E; ue Vo,v€ A UAjp1UAi0}| > In;

)\((ii+2) (T)

3. [{(u,v) € E; uy,v € AgU---U Ajyo} > fyn)\(i%)(r).
d

Proof of Claim. Let i be given and suppose that conditions (1) and (2) are false. Let
n/)\gﬂ)(r) < k < n. Observe that n//\((jzﬂ)(r) = n/)\((;ﬂ)(n/t) > t, since A\g(z) < z for all z.
Let X C Vi be a random subset of size k. We shall show that if we remove from G all edges
incident with AgU--- U A;49, then

E(s'(X)) > gk



where s'(X) denotes s(X) in the modified graph, which we shall denote by G’.
Indeed, let a = |Ag U--- U A;j—1], b(X) = |[{(u,v) € E; u € X,v € A; U Aj+1 UA;j12}|- Then

s(X) <a+b(X) + §'(X).
Hence
E(s'(X)) > E(s(X) — b(X) — a) = E(s(X)) — E(b(X)) - a.

By non-1, a < i/\(l+) < £k. By non-2, we have E(b(X)) < £k, (each edge from {(u,v) € E; u €
d

,
Vo,v € AjUA; 1 U A;L)g} is chosen with probability k/n; use the linearity of expectation).

Thus G’ is weakly n/ )\,(;H) (), 5-inseparable.

We shall further modify G’ by removing all edges between V; and V5 and adding, for every path
(u,v,w) in G' with u € Vj,v € Vi,w € Vs, the edge (u,w). The resulting graph will be denoted
by G”. It has depth d (the first level being V; U V3, the second level being V3 etc.) and at most

/\g+3) (r)-times more edges.

Furthermore, G” is also weakly n/ /\((;H) (r), 5-inseparable. To see that, observe that if X is a
set of inputs (in G’ and G”) and S is a separating set for X in G”, then S is a separating set for X
also in G'. Indeed, let S be a separating set for X in G and let (vg, -+ ,v;) and (uo, -+ ,u;) be two
paths in G’, vy, up € X, vg # up and v; = u;j. Then if j = 1, these paths are also paths in G”, and
if j > 1, (vo,v2,- -+ ,vj) and (ug,u2,- - - ,u;) are paths in G”. In both cases they contain an element
from S, whence the original pair of paths also contains an element from S. Thus separating sets
are at least as large in G” as in G'. . .

By the assumption (i), G” must have at least 'yn)\d(/\((izﬂ) (r)) = 'yn)\l(;H) (r) edges. Hence G’

has at least yn/\((j”) (r)/ )\l(ii+3) (r) edges, which proves 3. This finishes the proof of the Claim.

To finish the proof of Lemma 4, we shall use the inequality
M)
— > 5 Aay1(r),

M)

for every i < Ag41(r)/2 — 1, which was proved in [2] as Lemma 5. By the Claim it suffices to
consider the following three cases.
1. Suppose for some i < Agy1(r)/2 — 3 the condition (i) of Claim is satisfied. Then, since every

v € AgU---U A;_1 has degree > /\l(;) (r), the number of edges in G is at least

E_ 1O £

2. Suppose for all i < Agy1(r)/2 — 3 the condition (ii) of Claim is satisfied. Then the number
of edges of G is at least

01 (r)/2 = 3)2n = QnAga ().

3. Suppose for some i < Ag11(r)/2— 3 the condition (iii) of Claim is satisfied. Then the number
of edges of G is at least

)‘,(ji+2) (T)

X ()

N > %7”)\,1.}.1(7‘).



Corollary 5 For every q and d, there exists § > 0 such that every circuit computing x1 A--- A xy
that has depth d+1 and uses only MOD, (with arbitrary coefficients), has at least dnhq(n) edges.

Proof. By Theorem 2.1 of Thérien [4] and a theorem of Euler about primes (stated therein), for a
given g there exists a v > 0 such that for every m and s and every linear mapping © : Zg* — Zg, if
s < ym, then the kernel of © contains a nonzero element of {0,1}™.

W.Lo.g. suppose that a circuit C' with M OD, gates computes ~z1 A+-+ A —zy,. Let 0 < e <y,
let § > 0 be given by Theorem 1 for these € and d. Suppose that the circuit has < dnig4(n) edges.
Then, by Theorem 1, there exists a set of inputs X which is e-separated in the depth d graph
obtained by removing the output gate from the circuit. Let S be the separating set augmented
with the output gate. Then S is a separating set in the whole circuit and |S| < ¢|X| + 1. We may
moreover require that |X| > logn, thus if n is sufficiently large, |S| < v|X]|.

Fix all inputs that are not in X to 0. Furthermore, for every v € S, disconnect v from its inputs
and set it to be the constant equal to the boolean value computed at v when all inputs are 0. Let
C' be the resulting circuit. Let v € S and let w be an input gate of v in C. Then in C’, the gate
w only depends on at most one input from X, because S is a separating set. Thus if we put back
the original M OD, gate on v, the function computed at v will be some M OD, function f,.

Thus in order to get a contradiction with the assumption that C computes —z1 A--- A ~zp, we
need only to find an assignment a, a # 0, such that for every v € S, f,(a) = f,(0), because then C
will compute the same output on the all-zero input as on the input with zeros on variables outside
of X and @ on X. Since every f, is a M OD, function, the set of these equations is equivalent to
a set of linear equations over Z, plus the condition that @ is a 0-1 vector. Hence the existence of
such a vector follows from Thérien’s theorem. [
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