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Abstract. In this paper we compare hardness of two well known problems: the Diffie-Hellman problem

and the root finding problem. We prove that in any cyclic group computing Diffie-Hellman is not

weaker than root finding if certain circumstances are met. As will be discussed in the paper this theorem

can affect many branches of public-key cryptography especially on proving the security of

cryptographic protocols in hidden-order groups. For examples of such effects we discuss effects of the

new theorem on:

1. Proving the security of cryptosystems based on class groups of imaginary quadratic orders (IQ-
cryptosystems),

2. Proving the hardness of the Composite Diffie-Hellman problem and security of its related
cryptosystems.

In the concept of 1Q-cryptography, root finding is supposed to be a hard problem, but there is no

significant argument about the hardness of Diffie-Hellman. By applying the new theorem we prove the
hardness of computing Diffie-Hellman in class groups of imaginary quadratic orders, and then we
construct a new [1Q-cryptosystem and prove that it is hard to break.
There are two significant theorems about intractability of the composite Diffie-Hellman. One of them
was proved by Shmuely in 1985 and the other, which is stronger, by Azimian, Mohajeri, and
Salmasizadeh in 2005. As will be shown in this paper, both of theorems can be driven by applying the
new theorem. We also construct a new public-key scheme based on the composite Diffie-Hellman and
prove that it is provably secure based on intractability of factoring.
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1 Introduction

In 1976 Diffie and Hellman proposed the first public key cryptosystem [DH76]. After that several public
key schemes were introduced. The security of each of them is based on intractability of a well-known
computational problem [MOV96], [G95], [AM95]. The security of commonly used cryptographic schemes
is essentially based on a version of one of these three classes of problems:

1. Computing a certain root of a given element of any group, RSA problem or factoring problem.
There are many reductions between these three problems. RSA problem is a special case of root
finding. We know that root finding and factoring is computationally equivalent if certain
circumstances are met [AM95].

2. Computing the well-known problem Diffie-Hellman or Discrete Logarithm in certain groups.
These two problems are supposed to be equivalent in many groups [M94], [MW99], moreover it is
clear that discrete logarithm problem is no weaker than Diffie-Hellman in any group.

3. Computing Diffie-Hellman or Discrete Logarithm in Elliptic Curve groups [KMOV91]. This class
of problems is different from the second class but they appear to have many similar properties
[MOV93].

The set of schemes using the first problem includes RSA and Rabin [RSA78], [R79], while the set of
schemes using the second problem includes Diffie-Hellman key agreement and EIGammal [DH76], [E85].
There are also many cryptosystems based on the third class of problems.

In many cases the third class can be seen as a version of the second class. Therefore comparing the
hardness of the first two problems plays an important role in proving security of public key schemes. In this
paper we prove a basic theorem which compares hardness of those these problems.

In section 2 we firstly define these two problems precisely then we prove the main theorem: if certain
circumstances are met the second problem is not weaker than the first one in any abelian group. In section 3
we study applications of the new theorem in IQ-cryptography and show how to prove hardness of
computing Diffie-Hellman in class groups. As a result we design a new [Q-related public-key scheme in
3.2 and prove the security of it. In section 4 we discuss influences of the new theorem on the concept of the
composite Diffie-Hellman. We first show that the both theorems of Shmuely and the author [AMSO05],
[Sh85] can be driven by applying the new theorem, then propose a new scheme and prove that it is secure
based on intractability of factoring problem.

2 The Main Theorem

In this section, we state the main theorem. In the remainder of this paper, we use the following notations:

e p|x denotes x is not divisible by p.

e p|'x denotes X is not divisible by p .

e p||x denotes x is divisible by p butnotby p>.

e gcd(x, y) denotes the greatest common divisor of x and y.

o lcm(x, y) denotes the least common multiple of x and y.

e ord(x) denotes the order of a given element x in a group G.

e 0rd(G) denotes the order of a given group G .

e U(Z/NZ) denotes the multiplicative group of units in Z/ NZ .
. < g> denotes the cyclic subgroup generated by g .

o ord, (x) denotes the smallest positive integer d such that x* =1 (mod N).
e ] denotes the Carmichael Function (also called the least universal exponent function) [R94]. For

any integer N, A(N)) is defined as the smallest integer such that x**") =1 (mod N) for all
X relatively prime



Definition 2.1 (The R function) Let G be an additive abelian group, P € G and e be an integer. Define
the function RG’L, (P) such that,

eR;,(P)=P

Definition 2.2 (The DH function) Let G be an additive abelian group, P be an element of G. Define the
function DH , ,(xP, yP) for some integers X and y , with domain D = <P> X <P> such that,

DH ,(xP, yP) = xyP

Main theorem. Let G be an additive abelian group, Q € Gand ebe an integer such that
ged(e,ord(Q)) =1, and let P =eQ. If there exists a polytime oracle machine which computes the

function DH G.p » then we can construct a polytime algorithm which can compute the RG,E (0).

Proof. Having such oracle machine, we do the following for computing R ,(Q) :

1. Select two integers a, b randomly.

2. Let S=DH;,(aP+Q,bP+Q). Since ged(e,ord(Q))=1, Qe&(P), thus both
aP+Qand aP + Q are admissible inputs for DH ; ,
3. SetT =8—(eab+a+b)Q

Weknow Q =(1/e)P so S=(a+1/e)(b+1/e)P. Therefore el = Q.

Roughly speaking we can say that computing the well-known function DH is not weaker than finding root
in any abelian group. This is a computational result, but as will be discussed in the later sections, if it is
applied to cryptography, it helps us to prove the security of many cryptography schemes.

3 Applications of the New Theorem in 1Q-cryptography

As an example of applications of the new theorem in cryptography, we discuss security of IQ-
cryptographic schemes [BW88], [H04], [HDO05], [SBW94] in this section.

We first study 1Q-cryptography and its related problem briefly in 3.1, then in 3.2 we introduce a new 1Q-
related public-key scheme and we prove security of it.

3.1 Security of 1Q-related Schemes

The term 1Q cryptography (IQC) refers to cryptography based on class groups of imaginary quadratic
orders. IQC has been invented in 1988 [BW88]. Many public-key schemes were developed concerning the
concept of IQC [BW88], [SBW94], [BHO1], [HMO00], [JSWO01], [HO5]. In the paper we ignore the details
of class groups of imaginary quadratic orders and IQ-cryptography. We only discuss hardness of the related
problems briefly.

There are four basic computational problems which security of all IQ-cryptosystems relies on them.

These computational problems were addressed in HDO5 explicitly. Let CI(A)be a class group of
imaginary quadratic orders, we define:

Discrete logarithm problem (IQ-DLP): given a,b € C[(A), find the smallest positive integer X , if any,

suchthat b=a”.

Order problem (IQ-OP): given a € CI(A), compute the order Ka)‘ of ain CI(A).

Root problem (IQ-RP): given a € CI(A) and an integer x > 1, compute b , if any, such that b* = a .



Diffie-Hellman problem (IQ-DHP): given a,b,g € CI(A) with a=g%and b=g” for some

unknown integers @ and /3, compute g% .
We know from JSWO01, BHO3 and HOS that

I0-RP<,10-0OP<,10-DLP (1)
Factoring <, 10— OP (1)

1Q-DLP, 1Q-OP and IQ-RP all appear to be hard problems [HO5], [BHO03], [JSW01] but we do not know
significant fact about hardness of IQ-DHP. We only know the trivial fact /Q — DHP <, IQ — DLP and

it is clear that it can not help us to show hardness of IQ-DHP. Beside the security of many IQC-related
cryptosystems is based on intractability of IQ-DHP.

The new theorem can ensure the security of those systems in some ways. We introduce a new scheme
based on IQ-DHP in 3.2 and prove breaking that system is not weaker than solving IQ-RP.

3.2 A New IQ-related Cryptosystem

We want to design a new scheme based on IQ-DHP and prove breaking that
system is not weaker than solving IQ-RP but if we use pure version of Diffie-Hellman in class groups of
imaginary quadratic orders we can not use the main theorem directly. So we use a modified version of the
Diffie-Hellman problem to construct this scheme. For generating keys for the new scheme we do the
following:

1. Select a small prime s.

2. Construct a class group CI(A) such that gcd(s®, 0rd (CI(A))) = s . We know from Y70, U70,

HOS and Y86 that this can be done in polynomial time. We ignore the details of constructing such
group in this paper.
3. Select u € CI(A) such thats | ord(u). From CL84 and C95 we know that we can find such

u efficiently and also we know that with high probability <u> is a very large subgroup.
4. Setw=u".
Now the public key is the triple(C/(A),w,s), while u is private. Two parties 4 and B can
compute ¢ = W', select two secret keys x and y respectively and communicate each other using the
secret g™ . Tt is clear that computing g™ is simple for both 4 and B.

Note that gcd(ord (u),s*) = s, soged(ord(w),s) =1. So according to the main theorem if one can
break the scheme (Compute the function DH ; , ) she can compute R, (W) .

4 The New Theorem and the Composite Diffie-Hellman

The main idea of the composite Diffie-Hellman was first proposed by Shmuely. This concept has been used
in many cryptographic applications. In 1988 Kevin S. McCurley proposed a key distribution system
equivalent to factoring based on the Composite Diffie-Hellman. After that in 1997, Boneh, Biham, and
Reingold proved that Generalized Diffie-Hellman modulo a composite (Composite Diffie-Hellman for
more than two parties) is secure, based on intractability of factoring. Their theorem for two parties is a
special case of Shmuely’s theorem. A stronger reduction than that of Shmuely was proved in 2005 by the
author, Mohajeri and Salmasizadeh.

4.1 Already Proven Theorems

In the following section we briefly show that the Shmuely’s theorem can be driven simply from our new
theorem. We ignore the details in the following proof.



Shmuely’s Theorem: Let N be an RSA-number, G =U(Z/ NZ) and g be an odd-order element in
G . Then if there exists a probabilistic polytime oracle machine which can compute DHG’g, we can
construct a probabilistic algorithm which can factor the module in polytime [Sh85].
Proof. Having an algorithm for computing DH we do the following for factoring the module:

1. Select u € G randomly.

2. Let v=u’and g=u4,

3. Extract w= R ,(v). Note that according to Sh85 with high probability v is an odd-order

element [See Sh85: corollary 4]. Suppose that Vis an odd-order element. Now since

ged(2,0rd(v)) =1, according to the main theorem if one can compute DH ; , she can extract
w=R;,(v)

4. Compute gcd(w—u,N).
If gcd(w—u,N) isequalto 1 or N, return back to the step 1.

It is easy to see that for each odd-order vV we can factor the module by computing gcd(w —u, N) with

probability1/2 . In addition according to Sh85 the probability that V is an odd-order element is high, so the
algorithm can extract a non-trivial factor of the module in polynomial time.

In 2005 the author, Mohajeri and Salmasizadeh proved a stronger reduction about intractability of
composite Diffie-Hellman [AMSO05]. They showed that even if we can compute the DH function only for
even-order elements we still can factor the module for more than 98% of RSA-numbers. As will be
discussed in the appendix A their theorem also can be derived from our main theorem.

4.2 A New Key Agreement Scheme Equivalent to Factoring

In this section we introduce a new key agreement protocol like that of McCurley [Mc88]. We use the idea
which had been used in 3.2 for constructing this scheme. By applying the main theorem we directly prove
that our scheme is provably secure based on intractability of factoring problem. For generating keys for the
new scheme we do the following:
1. Select a small prime s.
2. Select an RSA-number N = pq, such that ged(s”, p—1) = s and ged(s,g —1)=1.
Select a maximum-order element u € U(Z/ NZ). Note that ord(u) =Icm(p—1,q—1)
[C95], [MOV96].

4. Compute g = ut.

2
Now the public key is the triple (N,u,s). Two parties 4 and B can compute g =u" (mod N), select
two secret keys x and y respectively and communicate each other using the secret gxy (mod N). It is clear

that computing g™ (mod N) is simple for both 4 and B. Notice that even if we use (NN, g) instead of

(N,u,s) as public key still the system works but selecting (IV,u,5) as public key help us to prove the
security of the scheme more easily.

Note that gcd(ord(u),s*) = s, so ged(ord(u*),s)=1. Thus according to the main theorem if
one can break the scheme she can compute X = R (). It is clear that x # u (mod N) because u is
a maximum-order element while X € < g> so it can not be a maximum-order. Therefore according to

[AM95] she can factor the module N with computing gcd(x —u, N) .



5 Conclusion and Future Works

In this paper we proved that the well-known problem Diffie-Hellman is not weaker than root finding
problem in certain criteria. In the paper we showed that this theorem could be applied in many branches of
cryptography.

In section 3 and 4 we discussed IC-cryptography and Composite Diffie-Hellman and studied
applications of the new theorem in them. In section 3, we showed that the well-known problem Diffie-
Hellman in class groups of imaginary quadratic orders is hard and proposed a new secure key agreement
scheme using it. We proved the security of the scheme by applying our new theorem. In section 4, we
showed that all already proven theorems about intractability of the Composite Diffie-Hellman can be
driven from our new theorem simply. We also introduced a new key agreement based on Composite Diffie-
Hellman in 4.2 and by applying the new theorem; we showed it is provably secure based on intractability of
factoring.

As a future work we can extend the scheme proposed in section 3 and increase the efficiency and
security of it. The possible ways for efficient key generation for that scheme also can be discussed.

Another possible line for further research is the study of the theorem’s applications in the other hidden
order groups and their usage in zero knowledge [BCMO05] or digital signature protocols. Also applications
of the new theorem in Elliptic Curve cryptography can be discussed.
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Appendix A

In this part we show that the theorem proved by the author, Mohajeri and Salmasizadeh about hardness of
the composite Diffie-Hellman can be driven from our main theorem.

Theorem (AMSO05) If there exists a probabilistic polynomial-time oracle machine which & -solves the DH-
Problem module N for even-order bases and there exist a prime p <10g(N), such that p || A(N) then

there exist a poly-time algorithm which & -factors the module N .

As discussed in AMS05, such p can be detected effectively, so we suppose that we know a prime p such

that p || A(N) . We can do the following for factoring the module V :

1.

2.
3.

Sample ¢ uniformly at random in Z ;:,

Compute g = 5%, ando = 57 . Note that Pl A(N), so gcd(p,ord(c))=1.

Invoke A tosolve DH  ,

Extract w = RZ;”p (o). According to the main theorem, since
gcd(p,ord(o))=1and g = c?, we can compute Rz;,,p (o) by invoking 4 .

Compute gcd(w— 0, N), according to [AM95] it yields a nontrivial factor of N with
probability more than 1—(1/ p).



