
Sublinear Algorithms for Approximating String Compressibility and

the Distribution Support Size

Sofya Raskhodnikova∗ Dana Ron† Ronitt Rubinfeld‡ Amir Shpilka§

Adam Smith∗

November 2, 2005

Abstract

We raise the question of approximating compressibility of a string with respect to a fixed
compression scheme, in sublinear time. We study this question in detail for two popular lossless
compression schemes: run-length encoding (RLE) and Lempel-Ziv (LZ), and present algorithms
and lower bounds for approximating compressibility with respect to both schemes. While we
obtain much stronger results for RLE in terms of the efficiency of the algorithms, our investi-
gation of LZ yields results whose interest goes beyond the initial questions we set out to study.
In particular, we prove combinatorial structural lemmas that relate compressibility of a string
with respect to Lempel-Ziv to the number of distinct short substrings contained in it. We also
show that compressibility with respect to LZ is related to approximating the support size of
a distribution. This problem has been considered under different guises in the literature. We
prove a strong lower bound for it, at the heart of which is a construction of two positive integer
random variables, X1 and X2, with very different expectations and the following condition on
the moments up to k: E[X1]/ E[X2] = E[X2

1
]/ E[X2

2
] = . . . = E[Xk

1
]/ E[Xk

2
].

∗Weizmann Institute of Science, Rehovot, Israel. Email: <firstname>.<lastname>@weizmann.ac.il. A.S. is

supported by the Louis L. and Anita M. Perlman Postdoctoral Fellowship.
†Tel Aviv University, Ramat Aviv, Israel. Email: danar@eng.tau.ac.il. Supported by the Israel Science Foun-

dation.
‡MIT, Cambridge MA, USA. Email: ronitt@csail.mit.edu.
§Technion, Haifa, Israel. Email: shpilka@cs.technion.ac.il. Supported by the Koshland fellowship.

1

Electronic Colloquium on Computational Complexity, Report No. 125 (2005)

ISSN 1433-8092

Contents

1 Introduction 3

2 Preliminaries 6

3 Run-Length Encoding 7

3.1 An εn-Additive Estimate with Õ(1/ε3) Queries . 7

3.2 A (3, ε)-Estimate with Õ(1/ε) Queries . 8

3.3 A 4-Multiplicative Estimate with Õ(n/Crle(w)) Queries 10

3.4 Lower Bounds . 12

4 Lempel Ziv Compression 13

4.1 Structural Lemmas . 13

4.1.1 Tightness of Lemma 4.2 . 15

4.2 An Algorithm for LZ77 . 16

4.3 Reducing Colors to LZ77 . 17

5 The Colors and the Distribution Support Size Problems 20

5.1 Algorithms with Uniform Samples, and the Distribution Support Problem 20

5.2 A Simple Algorithm for Distribution Support and Colors 22

5.3 A ”Needle in a Haystack” Lower Bound for Colors 22

6 The Main Lower Bound for Colors 23

6.1 Main Building Blocks for the Proof of Theorem 6.1 23

6.2 Proof of Theorem 6.1 . 25

6.3 Constructing the Distributions: Proof of Theorem 6.4 27

6.4 Indistinguishability by Uniform Algorithms: Proof of Lemma 6.5 30

6.4.1 Analyzing the Distributions on Histograms 30

References 34

A A Lower Bound for Approximating the Entropy 35

B Properties of the Poisson Distribution and Proof of Lemma 6.16 37

2

1 Introduction

Imagine having to choose between a few compression schemes to compress a very long file. Before
deciding on the scheme, you might want to obtain a rough estimate on how well each scheme
performs on your file. We raise the question of approximating compressibility of a string with
respect to a fixed compression scheme, in sublinear time.

We study this question in detail for two popular lossless compression schemes: run-length
encoding (RLE) and Lempel-Ziv (LZ) [ZL77]. In the RLE scheme, each run, or a sequence of
consecutive occurrences of the same character, is stored as the character and the length of the run.
Run-length encoding is used to compress black and white images, faxes, and other simple graphic
images, such as icons and line drawings, where long runs are likely. In the variant of LZ that we
study, a left-to-right pass of the input string is performed and each sequence of characters that has
already appeared in the previous portion of the string is replaced with the pointer to the previous
location and the length of the sequence. Many popular archivers, such as zip, use variations on
LZ scheme. We present sublinear algorithms and corresponding lower bounds for approximating
compressibility with respect to both schemes. While we obtain much stronger results for RLE in
terms of the efficiency of the algorithms, our investigation of LZ yields results whose interest goes
beyond the initial questions we set out to study.

We consider three approximation notions: additive, multiplicative and the combination of ad-
ditive and multiplicative. An additive approximation algorithm is allowed an additive error of εn,
where n is the length of the input and ε ∈ (0, 1) is a parameter. The output of a multiplicative
approximation algorithm is within a factor A > 1 of the correct answer. In the combined no-
tion we allow both types of errors: the algorithm should output an estimate Ĉ of C such that
C
A − εn ≤ Ĉ ≤ A · C + εn. Our algorithms are randomized, and for all inputs the approximation
guarantee holds with probability at least 2

3 .

Results for Run-Length Encoding

For RLE, we give sublinear algorithms for all three approximation notions defined above, providing
a trade-off between the quality of approximation and the running time. The algorithms that allow
an additive approximation are fast. Specifically, an εn-additive estimate can be obtained in time
Õ(1/ε3), and a combined estimate, with a multiplicative error of 3 and an additive error of εn,
can be obtained in time Õ(1/ε). A 4-multiplicative approximation algorithm has running time
reversely proportional to the compressibility of the input string.1 Specifically, its running time is
Õ(n/Crle(w)) where Crle(w) denotes the compression cost of the string w. Thus, it is more efficient
when the string is less compressible, and less efficient when the string is more compressible. One
of our lower bounds justifies such a behavior and, in particular, shows that a constant factor
approximation requires linear time for strings that are very compressible. We also give a lower
bound of Ω(1/ε2) for εn-additive approximation.

Needle-in-a-haystack lower bounds. Our first lower bound mentioned above, for multiplica-
tive approximation of RLE, is based on the difficulty of the following task: Distinguishing between

1The aforementioned constants, 3 and 4, can be improved to any constant greater than 1. For simplicity of the

presentation, we give the full analysis for these particular constants.

3

the string 1n, which consists of a single run, and strings that differ form 1n in only few (randomly
selected) positions, which have a few runs. Namely, the strings in question are very compressible,
and the difficulty of the distinguishing task is solely based on finding the few “hidden” 0s. We refer
to such a hardness result as a needle-in-a-haystack lower bound.

While such a lower bound seems discouraging, we claim it is not a significant obstacle for giving
a meaningful solution to the problem we raise. The “bad” strings in the lower bound proof are
highly compressible, while most strings are not. Also, the user in the scenario in the beginning of
the paper probably does not care exactly how compressible his very compressible files are. Only
in the case of not very compressible files he is interested in learning the compression cost more
precisely. Therefore, it is worth trying to circumvent a needle-in-a-haystack lower bound when
possible by giving approximation algorithms with an additive error or running time that depends
on the compression cost. As noted above, for RLE we indeed obtain very efficient approximation
algorithms that are allowed an additive error, and a multiplicative approximation algorithm that
is very efficient when executed on strings that are not too compressible. As we explain next, for
LZ such efficient algorithms do not exist.

Results for Lempel-Ziv

For the LZ compression scheme, we give an approximation algorithm with both multiplicative and
additive error and a strong lower bound to justify that for this compression scheme we do not
obtain very efficient algorithms even for strings that are not very compressible. The main tool in
the algorithm is two combinatorial structural lemmas that relate compressibility of the string to
the number of distinct short substrings contained in it. Roughly, they say that a string is well
compressible with respect to LZ if and only if it has few distinct substrings of length ` for all small
`. The lemmas were inspired by a structural lemma for grammars by Lehman and Shelat [LS02].
Our lower bound implies that constant factor approximation for the LZ cost requires an almost
linear number of queries, even for only slightly compressible strings. The same lower bound applies
to additive approximation, and the bound generalizes to larger factors of approximation.

Colors and Distribution Support Size

Both for the algorithm and for the lower bound, we show that approximating compressibility with
respect to LZ is closely related to the following problem, which we call Colors:

Definition 1.1 (Colors Problem) Given access to a string τ over some alphabet Ψ, estimate the
number of distinct symbols (“colors”) in τ .

We show that one may assume without loss of generality that an algorithm for Colors only takes
uniform random samples with replacement from the string. This is a strengthening of a result
from [Bar02] for the specific case of Colors. Hence, we view the problem as estimating the number
of different colors in a set of n “colored balls”, following a sequence of trials in each of which we get
to see the color of a uniformly selected ball.2 A closely related problem is that of approximating
the support size of a distribution: Given access to independent samples from a distribution where
each element appears with probability at least 1

n , approximate the distribution support size.

2The balls have no identity: the algorithm cannot distinguish two different balls of the same color.

4

Variants of this problem have been considered under various guises in the literature, different
fields competing for the best name for it: in databases it is referred to as approximating dis-
tinct values [CCMN00], in statistics as estimating the number of species in a population (see 829
references on www.stat.cornell.edu/∼bunge/bibliography.htm), in the old days as estimating the
dictionary size of a long text [Shl81] and recently in theoretical computer science as approximating
the frequency moment F0 [AMS99, BKS01].

Most of these works, however, consider models different from ours. For our model, there is
an A-multiplicative approximation algorithm of Charikar et al. [CCMN00], called the Guaranteed-
Error estimator, that runs in O

(
n
A2

)
, and a matching needle-in-a-haystack lower bound [CCMN00,

BKS01]. The lower bound boils down to the observation that every algorithm requires Ω
(

n
A2

)

queries to distinguish between the input with one color and the same input with A2 unique colors
inserted in random positions.

As discussed above, we are interested in bounds that apply to “slightly” compressible strings. In
our reductions, such strings correspond to inputs with many colors, and so the needle-in-a-haystack
lower bound of [CCMN00] leaves the following question: How fast can one distinguish an input
with n

d1
colors from an input with n

d2
colors, where d1 and d2 are different constants? We prove

that n1−o(1) queries are necessary; the same bound holds even when d1 is constant and d2 is no(1).

To prove this, we construct two distributions on input instances, with n
d1

and n
d2

colors, re-
spectively, that are hard to distinguish. Building on the ideas from [BDKR05], we prove that
any algorithm for Colors and Distribution Support Size can be simulated by an algorithm that is
only provided with the histogram of a uniformly selected sample. That is, the algorithm is only
given the number of colors in the sample that appear once, twice, thrice, etc. Thus, in the two
input instances we construct, we ensure that the induced distributions on these histograms are very
close. At the heart of the construction are two positive integer random variables, X1 and X2, that
correspond to the two input distributions. These random variables have very different expectations
(which translate to different numbers of colors) and the following condition on the moments up to
k (which translates to similar histograms):

E[X1]

E[X2]
=

E[X2
1]

E[X2
2]

= · · · =
E[Xk

1]

E[Xk
2]

.

Our lower bound technique can be extended to other problems where one needs to compute
quantities invariant under the permutation of the balls and the colors. In particular, our technique

gives a lower bound of Ω

(
n

2
6A2−3+o(1)

)
on approximating the entropy of a distribution over n

elements to within a multiplicative factor of A. When A is close to 1, this bound is close to n2/3. It

can be combined with the Ω
(
n

1
2A2

)
lower bound in [BDKR05] to give Ω

(
n

max
{

1
2A2 , 2

6A2−3+o(1)

})
.

Other compression schemes

It is interesting to approximate the compression cost for schemes other than RLE and LZ. One
observation is that for Huffman encoding the compression cost is equal to the entropy. Approximat-
ing entropy has been studied [BDKR05, BS05], and this immediately gives algorithms and lower
bounds for compressibility under Huffman encoding.

5

Also, there is no reason to restrict our attention only to lossless schemes, like RLE, LZ and
Huffman. It would be interesting to come up with approximation algorithms for schemes like
JPEG (based on the discrete cosine transform), MPEG and MP3. One lossy compression scheme
to which our results extend directly is Lossy RLE, where some characters, e.g., the ones that
represent similar colors, are treated as the same character.

Organization

We start with establishing common notation and defining our notions of approximation in Section 2.
Section 3 presents algorithms and lower bounds for RLE. The algorithmic results are summarized
in Theorem 3.1 and the lower bounds, in Theorems 3.2 and 3.4. Section 4 deals with the LZ scheme:
it starts with the structural lemmas, explains the approximation algorithm for compressibility with
respect to LZ and finishes with the reduction from Colors to LZ compressibility. Section 5 deals
with algorithms for Colors. In Section 6, we explain the lower bound for Colors, including the
construction of integer distributions with our moment conditions. In Appendix A we use our lower-
bound technique to obtain a lower bound for approximating the entropy of a discrete distribution.
Appendix B proves a couple of technical lemmas used in Section 6.

2 Preliminaries

We use [n] to denote {1, . . . , n}.
Two random variables X and Y over a domain S have statistical difference δ if maxS′⊂S |Pr[X ∈

S′] − Pr[Y ∈ S ′]| = δ. It directly follows that for every algorithm A,
∣∣∣Pr[A(X) = 1] − Pr[A(Y) =

1]
∣∣∣ ≤ δ. We write X ≈δ Y to indicate that X and Y have statistical difference at most δ.

The input to our algorithms is usually a string w of length n over a finite alphabet Σ. We
consider estimates to various quantities, such as compression cost of w under a specific algorithm,
that have both multiplicative and additive error. We call Ĉ an (A, ε)-estimate for C if

C

A
− εn ≤ Ĉ ≤ A · C + εn ,

and say an algorithm (A, ε)-estimates C (or is an (A, ε)-approximation algorithm for C) if for each
input it produces an (A, ε)-estimate for C with probability at least 2

3 .

When the error is purely additive or multiplicative, we use the following shorthand: εn-additive
estimate stands for (1, ε)-estimate and A-multiplicative estimate, or A-estimate, stands for (A, 0)-
estimate. An algorithm computing an εn-additive estimate with probability at least 2

3 is an εn-
additive approximation algorithm, and if it computes an A-multiplicative estimate then it is an
A-multiplicative approximation algorithm.

For some settings of parameters, obtaining a valid estimate is trivial. For a quantity in [1, n],
for example,

√
n is a

√
n-estimate and εn is an (A, ε)-estimate whenever A ≥ 1

2ε .

6

3 Run-Length Encoding

Every n-character string w over alphabet Σ can be partitioned into maximal runs of identical
characters of the form σ`, where σ is a symbol in Σ and ` is the length of the run, and consecutive
runs are composed of different symbols. In the Run-Length Encoding of w, each such run is
replaced by the pair (σ, `). The number of bits needed to represent such a pair is dlog(` + 1)e +
dlog |Σ|e plus the overhead which depends on how the separation between the characters and the
lengths is implemented. One way to implement it is to use prefix-free encoding for lengths. For
simplicity we ignore the overhead in the above expression, but our analysis can be adapted to any
implementation choice. The cost of the run-length encoding , denoted by Crle(w), is the sum over
all runs of dlog(` + 1)e + dlog |Σ|e.

We assume that the alphabet Σ has constant size. This is a natural assumption when using
run-length encoding, but the analysis of our algorithms can be extended in a straightforward
manner to alphabets whose size is a function of n. The complexity of the algorithms will grow
polylogarithmically with |Σ|.

We first present an algorithm that, given a parameter ε, outputs an εn-additive estimate to
Crle(w) with high probability and makes Õ(1/ε3) queries. We then reduce the query complexity
to Õ(1/ε) at the cost of incurring a multiplicative approximation error in addition to additive: the
new algorithm (3, ε)-estimates Crle(w). We later discuss how to use approximation schemes with
multiplicative and additive error to get a purely multiplicative approximation, at a cost on the
query complexity that depends on n/Crle(w). That is, the more compressible the string w is, the
higher the query complexity of the algorithm. These results are summarized in Theorem 3.1. We
close this section with lower bounds for approximating Crle(w) (Theorems 3.2 and 3.4).

3.1 An εn-Additive Estimate with Õ(1/ε3) Queries

Our first algorithm for approximating the cost of RLE is very simple: it samples a few positions
in the input string uniformly at random and bounds the lengths of the runs to which they belong
by looking at the positions to the left and to the right of each sample. If the corresponding run is
short, its length is established exactly; if it is long, we argue that it does not contribute much to
the encoding cost. For each index t ∈ [n], let `(t) be the length of the run to which wt belongs.
The cost contribution of index t is defined as

c(t) =
dlog(`(t) + 1)e + dlog |Σ|e

`(t)
. (1)

By definition,
Crle(w)

n
= E

t∈[n]
[c(t)]. The algorithm, presented below, estimates the encoding cost by

the average of the cost contributions of the sampled short runs, multiplied by n.

7

Algorithm I: An εn-additive Approximation for Crle(w)

1. Select q = Θ
(

1
ε2

)
indices t1, . . . , tq uniformly and independently at random.

2. For each i ∈ [q] :

(a) Query ti and up to `0 = 8 log(4|Σ|/ε)
ε positions in its vicinity to bound `(ti).

(b) Set ĉ(ti) = c(ti) if `(ti) < `0 and ĉ(ti) = 0 otherwise.

3. Output Ĉrle = n · E
i∈[q]

[ĉ(ti)].

Correctness. The error of the algorithm comes from two sources: from ignoring the contribution
of long runs and from sampling. The ignored indices t, for which `(t) ≥ `0, do not contribute much
to the cost. Since the cost assigned to the indices monotonically decreases with the length of the
run to which they belong, for each such index,

c(t) ≤ dlog(`0 + 1)e + dlog |Σ|e
`0

≤ ε

2
. (2)

Therefore,
Crle(w)

n
− ε

2
≤ 1

n
·
∑

t: `(t)<`0

c(t) ≤ Crle(w)

n
. (3)

Equivalently, Crle(w)
n − ε

2 ≤ Ei∈[n][ĉ(ti)] ≤ Crle(w)
n .

By an additive Chernoff bound, with high constant probability, the sampling error in estimating
E[ĉ(ti)] is at most ε/2. (Recall that |Σ| is a constant so that c(t) = O(1) for every t.) Therefore,
Ĉrle is an εn-additive estimate of Crle(w), as desired.

Query complexity. Since the number of queries performed for each selected ti is O(`0) =
O(log(1/ε)/ε), the total number of queries, as well as the running time is O(log(1/ε)/ε3).

3.2 A (3, ε)-Estimate with Õ(1/ε) Queries

If we are willing to allow a constant multiplicative approximation error in addition to εn-additive,
we can reduce the query and time complexity to Õ(1/ε). The idea is to partition the positions in
the string into buckets according to the length of the runs they belong to. Each bucket corresponds
to runs of the same length up to a small constant factor. For the sake of brevity of the analysis, we
take this constant to be 2. A smaller constant results in a better multiplicative factor. Given the
definition of the buckets, for every two positions t1 and t2 from the same bucket, c(t1) and c(t2)
differ by at most a factor of 2. Hence, good estimates of the sizes of all buckets would yield a good
estimate of the total cost of the run-length encoding.

The algorithm and its analysis build on two additional observations: (1) Since the cost, c(t),
monotonically decreases with the length of the run to which t belongs, we can allow a less precise
approximation of the size of the buckets that correspond to longer runs. (2) A bucket containing
relatively few positions contributes little to the run-length encoding cost. Details follow.

8

Let `0 be as defined in the previous subsection, and let h0 = dlog `0e. Thus, h0 = O(log(1/ε)).
For each h ∈ [h0], let Bh = {t : 2h−1 ≤ `(t) < 2h}. That is, the bucket Bh contains all indices t

that belong to runs of length approximately 2h. Let s
def
= dlog |Σ|e and

Crle(w, h)
def
=

∑

t∈Bh

c(t). (4)

Then

|Bh| ·
h + s + 1

2h
≤ Crle(w, h) ≤ |Bh| ·

h + s

2h−1
, (5)

which implies that

Crle(w, h) ≤ |Bh| ·
h + s

2h−1
≤ 2 · Crle(w, h) . (6)

Our goal is to obtain (with high probability), for every h, a relatively accurate estimate βh of |Bh|
n .

Specifically, let

Hbig =

{
h :

|Bh|
n

≥ 1

2
· ε

h0
· 2h−1

h + s

}
and Hsmall =

{
h :

|Bh|
n

<
1

2
· ε

h0
· 2h−1

h + s

}
. (7)

Then we would like βh to satisfy the following:

1

3
· |Bh|

n
≤ βh ≤ 3

2 · |Bh|
n if h ∈ Hbig;

0 ≤ βh ≤ ε
h0

· 2h−1

h+s otherwise (h ∈ Hsmall). (8)

Given such estimates β1, . . . , βh0 , approximate the encoding cost by Ĉrle =
∑h0

h=1 βh ·n · h+s
2h−1 . Then

Ĉrle =
∑

h∈Hbig

βh · n · h + s

2h−1
+

∑

h∈Hsmall

βh · n · h + s

2h−1
(9)

≤
∑

h∈Hbig

3

2
· |Bh| ·

h + s

2h−1
+ h0 ·

ε

h0
· 2h−1

h + s
· n · h + s

2h−1
(10)

≤
∑

h∈Hbig

3 · Crle(w, h) + εn < 3 · Crle(w) + εn. (11)

The last inequality uses the upper bound from Equation (6). Similarly,

Ĉrle ≥
∑

h∈Hbig

βh · n · h + s

2h−1
(12)

≥ 1

3
·
∑

h∈Hbig

Crle(w) (13)

=
1

3
·


Crle(w) −

∑

h∈Hsmall

Crle(w, h)


 (14)

>
1

3
· Crle(w) − εn (15)

Details of the algorithm and its analysis follow.

9

Algorithm II: A (3, ε)-Approximation for Crle(w)

1. Select q = Θ
(

log(1/ε)·log log(1/ε)
ε

)
indices t1, . . . , tq uniformly and independently at random.

2. For h = 1, . . . , h0 do:

(a) Consider the first qh = min
{
q, q · h+s

2h−1

}
indices t1, . . . , tqh

.

(b) For each i = 1, . . . , qh, set Xh,i = 1 if ti ∈ Bh and set Xh,i = 0 otherwise.

3. Output Ĉrle =

h0∑

h=1

(
n

qh
·

qh∑

i=1

Xh,i

)
· h + s

2h−1
.

The query complexity. For a given index ti, deciding whether ti ∈ Bh requires O(2h) queries.
(More precisely, we need at most 2h−1 queries in addition to the queries from the previous itera-
tions.) Hence, the total number of queries is

O

(
h0∑

h=1

qh · 2h

)
= O

(
q · h2

0

)
= O

(
log3(1/ε) · log log(1/ε)

ε

)
. (16)

Correctness. Let βh be a random variable equal to 1
qh

∑qh

i=1 Xh,i. We show that with high
probability, βh satisfies Equation (8) for every h ∈ [h0]. For each fixed h we have that Pr[Xh,i =

1] = |Bh|
n for every i ∈ [qh]. Hence, by a multiplicative Chernoff bound,

Pr

[∣∣∣∣βh − |Bh|
n

∣∣∣∣ ≥
1

2

|Bh|
n

]
< exp

(
−c · |Bh|

n
· qh

)
(17)

for some constant c ∈ (0, 1). Recall that h0 = O(log(1/ε)) and that qh = Θ(q · h+s
2h−1) = Ω

(
ε−1 · h0 ·

log(h0) · h+s
2h−1

)
. Hence, for h ∈ Hbig (and for a sufficiently large constant in the Θ(·) notation in the

definition of q), the probability in Equation (17) is at most 1
3 · 1

h0
, and so Equation (8) holds with

probability at least 1− 1
3 · 1

h0
. On the other hand, for h ∈ Hsmall, the probability that βh ≥ ε

h0
· 2h−1

h+s

is bounded above by the probability of this event when |Bh|
n = 1

2 · ε
h0

· 2h−1

h+s . By Equation (17) this

is at most 1
3 · 1

h0
, and so in this case too Equation (8) holds with probability at least 1− 1

3 · 1
h0

. By
taking a union bound over all h ∈ [h0] the analysis is completed.

3.3 A 4-Multiplicative Estimate with Õ(n/Crle(w)) Queries

In this subsection we “get-rid” of the εn additive error by introducing a dependence on the run-
length encoding cost (which is of course unknown to the algorithm). First, assume a lower bound
Crle(w) ≥ µn for some µ > 0. Then, by running Algorithm II (the (3, ε)-approximation algorithm)
with ε set to µ/2, and outputting Ĉrle + εn, we get a 4-multiplicative estimate with Õ(1/µ) queries.

We can search for such a lower bound µn, as follows. Suppose that Algorithm II receives, in
addition to the additive approximation parameter ε, a confidence parameter δ, and outputs a (3, ε)-
estimate with probability at least 1 − δ instead of 2/3. This can easily be achieved by increasing

10

the query complexity of the algorithm by a factor of log(1/δ). By performing calls to Algorithm II
with decreasing values of ε and δ, we can maintain a sequence of intervals of decreasing size, that
contain Crle(w) (with high probability). Once the ratio between the extreme points of the interval
is sufficiently small, the algorithm terminates. Details follow.

Algorithm III: A 4-Approximation for Crle(w)

1. Set j = 0, lb0 = 0 and ub0 = 1.

2. While
ubj

lbj
> 16 do:

(a) j = j + 1, εj = 2−j, δj = 1
3 · 2−j .

(b) Call Algorithm II with ε = εj and δ = δj, and let Ĉj
rle be its output.

(c) Let ubj = 3(Ĉj
rle + εjn) and lbj = 1

3 (Ĉj
rle − εjn).

3. Output
√

lbj · ubj.

Correctness. For any given j, Algorithm II outputs Ĉj
rle ∈ [13Crle(w) − εjn, 3Crle(w) + εjn],

with probability at least 1 − 1
3 · δj . Equivalently, lbj ≤ Crle(w) ≤ ubj. By the Union bound, with

probability at least 2/3, lbj ≤ Crle(w) ≤ ubj for all j. Assume this event in fact holds. Then, upon
termination (when ubj/lbj ≤ 16), the output is a 4-multiplicative estimate of Crle(w). It is not

hard to verify that once εj ≤ Crle(w)
24n , then the algorithm indeed terminates.

Query complexity. The query complexity of the algorithm is dominated by the last iteration,
when, as shown above, εj = Θ(Crle(w)/n). Since the query complexity of Algorithm II is Õ(1/ε),
the query complexity of Algorithm III is Õ(n/Crle(w)).

Improving the multiplicative approximation factor. The 4-multiplicative estimate of
Crle(w) can be improved to a (1 + γ)-multiplicative estimate for any γ > 0. This is done by
refining the buckets defined in Subsection 3.2 so that Bh = {t : (1 + γ

2)h−1 ≤ `(t) < (1 + γ
2)h}

for h = 1, . . . , log1+ γ
2

`0 (=O(log(1/ε)/γ)), and setting ε = γ · µ/8. The query complexity remains

linear in 1/µ = n/Crle(w) (up to polylogarithmic factors), and is polynomial in 1/γ.

The next theorem summarizes our positive results.

Theorem 3.1 Let w ∈ Σn be a string to which we are given query access.

1. Algorithm I is an εn-additive approximation algorithm for Crle(w) whose query and time
complexity are Õ(1/ε3).

2. Algorithm II (3, ε)-estimates Crle(w) and has query and time complexity Õ(1/ε).

3. Algorithm III 4-estimates Crle(w) and has query and time complexity Õ
(

n
Crle(w)

)
.

4. A generalization of Algorithm III (1+γ)-estimates Crle(w) and has query and time complexity

Õ
(

n
Crle(w) · poly(1/γ)

)
.

11

3.4 Lower Bounds

We start by giving a “needle-in-a-haystack” lower bound.

Theorem 3.2 For every approximation factor A > 1, any A-approximation algorithm for the cost

of RLE must perform Ω
(

n
A2 log n

)
queries.

If A ≤ n
1
2
−α for some constant α, then Ω

(
n
A2

)
queries are necessary. In particular, for constant

A, Ω(n) queries are necessary in the worst case. More specifically, Ω
(

n
Crle(w)

)
queries are necessary

for a constant factor approximation of Crle(w).

By Theorem 3.2, the query complexity of our 4-approximation algorithm, Algorithm III, which is

Õ
(

n
Crle(w)

)
, is tight up to logarithmic factors. Theorem 3.2 directly follows from the next lemma

(by observing that Crle(1
n) = dlog(n + 1)e + 2).

Lemma 3.3 For every n ≥ 2 and every integer 1 ≤ k ≤ n/2, there exists a family of strings,
denoted Wk, for which the following holds: (1) Crle(w) ≥ k · log

(
n
2k + 1

)
for every w ∈ Wk; (2)

Distinguishing a uniformly selected string in Wk from the all-1 string 1n requires Ω
(

n
k

)
queries.

Proof: Let Σ = {0, 1} and assume for simplicity that n is divisible by 2k−1 (a slight modification
deals with the case that n is not divisible by 2k − 1). Every string in Wk consists of 2k − 1 blocks,
each of length n

2k−1 . Every odd block contains only 1s and every even block contains a single 0.
The strings in Wk differ in the locations of the 0s within the even blocks. Every w ∈ Wk contains

k runs of 1s, each of length at least n
2k−1 and therefore, Crle(w) ≥ k · log

(
n

2k−1 + 1
)
.

To distinguish 1n from a string uniformly selected from Wk, any algorithm must perform Ω
(

n
k

)

queries.

We now turn to εn-additive estimates, which are desirable when Crle(w) is relatively large (e.g.,
Ω(n)) and ε is significantly smaller than Crle(w)/n.

Theorem 3.4 For every ε > 0, any εn-additive approximation algorithm requires Ω(1/ε2) queries
for sufficiently large n.

Proof: For any p ∈ [0, 1] and sufficiently large n, let Dn,p be the following distribution over n-bit
strings. First consider n divisible by 3. The string is determined by n

3 independent coin flips, each
with bias p. Each “heads” extends the string by three runs of length 1, and each “tails”, by a run
of length 3. Given the sequence of run lengths, dictated by the coin flips, output the unique binary
string that starts with 0 and has this sequence of run lengths.3

Let w be a string generated according to Dn,1/2 and w′, a string generated according to Dn,1/2+ε.

It is well known that Ω(1/ε2) independent coin flips are necessary to distinguish a coin with bias 1
2

from a coin with bias 1
2 + ε. Therefore, Ω(1/ε2) queries are necessary to distinguish w from w′.

We next show that with very high probability the encoding costs of w and w ′ differ by Ω(εn).
Runs of length 1 contribute 1 to the encoding cost, and runs of length 3 cost dlog(3 + 1)e = 2.
Therefore, each “heads” contributes 3 · 1, while each “tails” contributes 2. Hence, if we got α · n

3

3Let bi be a boolean variable representing the outcome of the ith coin. Then the output is 0b101b210b301b41 . . .

12

“heads”, then the encoding cost of the resulting string is n
3 · (3α + 2(1 − α)) = n

3 · (2 + α). The
expected value of α is p. By an additive Chernoff bound, |α − p| ≤ ε/4 with probability at least
1 − 2 exp(−2(ε/4)2). With this probability, the encoding cost of the selected string is between
n
3 ·
(
2 + p − ε

4

)
and n

3 ·
(
2 + p + ε

4

)
. The theorem (for the case n mod 3 = 0) follows, since with

very high probability, Crle(w
′) − Crle(w) = Ω(εn).

If n mod 3 = b for some b > 0 then we make the following minor changes in the construction
and the analysis: (1) The first b bits in the string are always set to 0. (2) This adds b to the
encoding cost. (3) Every appearance of n

3 in the proof is replaced by
⌊

n
3

⌋
. It is easy to verify that

the lower bound holds for any sufficiently large n.

4 Lempel Ziv Compression

In this section we consider one of the variants of Lempel and Ziv’s compression algorithm [ZL77],
which we refer to as LZ77. Let w ∈ Σn be a string over an alphabet Σ. Each symbol of the
compressed representation of w, denoted LZ(w), is either a character σ ∈ Σ or a pair (p, `) where
p ∈ [n] is a pointer (index) to a location in the string w and ` is the length of the substring of w
that this symbol represents.

Specifically, in order to compress w, the algorithm works as follows. Starting from t = 1, at each
step the algorithm finds the longest substring wt . . . wt+`−1 for which there exists an index p < t,
such that wp, . . . , wp+`−1 = wt, . . . , wt+`−1. If there is no such substring (that is, the character wt

has not appeared before) then the next symbol in LZ(w) is wt, and t = t + 1. Otherwise, the next
symbol is (p, `) and t = t + `. We refer to the substring wt . . . wt+`−1 (or wt when wt is a new
character) as a compressed segment . We say that the symbol in LZ(w) (i.e., wt or (p, `)) represents
the compressed segment in w (i.e., wt or wt . . . wt+`−1, respectively). Clearly, compression takes
time O(n2), and decompression, time O(n). In what follows we let n`(w) denote the number of
compressed segments of length ` in w, not including the last compressed segment.

Let CLZ77(w) denote the number of symbols in the compressed string LZ(w). (We do not
distinguish between symbols that are characters in Σ, and symbols that are pairs (p, `).) Given
query access to a string w ∈ Σn, we are interested in computing an estimate, ĈLZ77 of CLZ77(w). As
we shall see, this problem reduces to estimating the number of distinct substrings in w of different
lengths, which in turn directly reduces to estimating the number of distinct characters (“colors”)
in a string. The actual length of the binary representation of the compressed substring is at most a
factor of 2 log n larger than CLZ77(w). This is relatively negligible given the quality of the estimates
that we can achieve in sublinear time.

4.1 Structural Lemmas

Here we state and prove two “structural” lemmas concerning the relation between CLZ77(w) and
the number of distinct substrings in w. We later use these lemmas to obtain an approximation
algorithm for CLZ77(w). Let d`(w) denote the number of distinct substrings of length ` in w. Unlike
compressed segments in w, which are disjoint, the substrings counted above may overlap.

Lemma 4.1 For every ` ∈ [n], d`(w) ≤ CLZ77(w) · `.

13

Lemma 4.2 Let `0 ∈ [n]. Suppose that for some integer m = m(`0) and for every ` ∈ [`0], d`(w) ≤
m · `. Then CLZ77(w) ≤ 4(m log `0 + n/`0).

Proof of Lemma 4.1. This proof is similar to the proof of a related lemma concerning grammars,
which appears in [LS02]. First note that the lemma holds for ` = 1, since each character wt in w
that has not appeared previously (that is, wt′ 6= wt for every t′ < t), is copied by the compression
algorithm to LZ(w). We turn to the general case of ` > 1.

Fix ` > 1. Recall that wt . . . wt+k−1 of w is a compressed segment if it is represented by
one symbol, wt or (p, k), in LZ(w). In particular, if the symbol is of the form (p, k) then
wt, . . . , wt+k−1 = wp, . . . , wp+k−1 for p < t. It follows that if a length-` substring is contained
within a compressed segment, then it has already appeared in w. Hence, the number of distinct
length-` substrings is bounded above by the number of length-` substrings that start inside one
compressed segment and end in another. Therefore, d`(w) ≤ (CLZ77(w) − 1)(` − 1) < CLZ77(w) · `
for every ` > 1.

Proof of Lemma 4.2. In what follows we use the shorthand n` for n`(w) and d` for d`(w). In
order to prove the lemma we show that for every 1 ≤ ` ≤ b`0/2c,

∑̀

k=1

nk ≤ 2(m + 1) ·
∑̀

k=1

1

k
. (18)

Since the compressed segments in w are disjoint, we have that for every ` ≥ 1,

n∑

k=`+1

nk ≤ n

` + 1
. (19)

If we substitute ` = b`0/2c in Equations (18) and (19), and sum the two equations, we get that:

n∑

k=1

nk ≤ 2(m + 1) ·
b`0/2c∑

k=1

1

k
+

2n

`0
≤ 2(m + 1)(ln `0 + 1) +

2n

`0
. (20)

Since CLZ77(w) =
∑n

k=1 nk + 1, the lemma follows.

We prove Equation (18) for every 1 ≤ ` ≤ b`0/2c by induction on ` after proving the following
claim.

Claim 4.3 For every 1 ≤ ` ≤ b`0/2c,

∑̀

k=1

k · nk ≤ 2`(m + 1) . (21)

Proof: We show that each character of w` . . . wn−` that appears in a compressed substring of
length at most ` can be mapped to a distinct length-2` substring of w. Since ` ≤ `0/2, by the
premise of the lemma, there are at most 2` · m distinct length-2` substrings. In addition, the first
` − 1 and the last ` characters of w contribute less than 2` symbols. The claim follows.

14

We call a substring new if it has not appeared in the previous portion of w. Namely, wt . . . wt+`−1

is new if there is no p < t such that wt . . . wt+`−1 = wp . . . wp+`−1. Consider a compressed substring
wt . . . wt+k−1 of length k ≤ `. Observe that by definition of LZ77, the substrings of length greater
than k that start at wt must be new (since LZ77 always finds the longest substring that appeared
before). Furthermore, every substring that contains such a new substring is also new. That is,
every substring wt′ . . . wt+k′ where t′ ≤ t and k′ ≥ k, is new.

Given the above, for each character wj in the compressed substrings wt . . . wt+k−1 such that
` ≤ j ≤ n − `, we map wj to the length-2` substring that ends at wj+`. Therefore, each character
in w` . . . wn−` that appears in a compressed substring of length at most ` is mapped to a distinct
length-2` substring, as desired. (Claim 4.3)

It remains to prove Equation (18) by induction on `. Equation (21) with ` set to 1 gives the
base case, i.e., n1 ≤ 2(m + 1). For the induction step, assume the induction hypothesis holds for
every j ∈ [` − 1]. To prove it for `, add Equation (21) to the sum of the induction hypothesis
inequalities (Equation (18)) for every j ∈ [` − 1]. The left hand side of the resulting inequality is

∑̀

k=1

k · nk +
`−1∑

j=1

j∑

k=1

nk =
∑̀

k=1

k · nk +
`−1∑

k=1

`−k∑

j=1

nk (22)

=
∑̀

k=1

k · nk +

`−1∑

k=1

(` − k) · nk (23)

= ` ·
∑̀

k=1

nk . (24)

The right hand side, divided by the factor 2(m + 1), which is common to all inequalities, is

` +
`−1∑

j=1

j∑

k=1

1

k
= ` +

`−1∑

k=1

`−k∑

j=1

1

k
(25)

= ` +
`−1∑

k=1

` − k

k
(26)

= ` + ` ·
`−1∑

k=1

1

k
− (` − 1) (27)

= ` ·
∑̀

k=1

1

k
. (28)

Dividing both sides by ` gives the inequality in Equation (18). (Lemma 4.2)

4.1.1 Tightness of Lemma 4.2

The following lemma shows that Lemma 4.2 is asymptotically tight.

Lemma 4.4 For all positive integers `0 and m, there is a string w of length n (n ≈ m(`0 + ln `0))
with O(`m) distinct substrings of length ` for each ` ∈ [`0], such that CLZ77(w) = Ω(m log `0+n/`0).

15

Proof: We construct such bad strings over the alphabet [m]. A bad string is constructed in `0

phases, where in each new phase, `, we add a substring of length between m and 2m that might
repeat substrings of length up to ` that appeared in the previous phases, but does not repeat
longer substrings. Phase 1 contributes the string ‘1 . . . m’. In phase ` > 1, we list characters 1 to
m in the increasing order, repeating all characters divisible by ` − 1 twice. For example, phase 2
contributes the string ‘11 22 33 . . . mm’, phase 3 the string ‘122 344 566 . . . m’, phase 4 the string
‘1233 4566 7899 . . . m’, etc. The spaces in the strings are introduced for clarity.

First observe that the length of the string, n, is at most 2m`0. Next, let us calculate the number
of distinct substrings of various sizes. Since the alphabet size is m, there are m length-1 substrings.
There are at most 2m length-2 substrings: ‘i i’ and ‘i (i+1)’ for every i in [m−1], as well as ‘m m’
and ‘m 1’. We claim that for 1 < ` ≤ `0, there are at most 3`m length-` substrings. Specifically,
for every i in [m], there are at most 3` length-` substrings that start with i. This is because each
of the first ` phases contributes at most 2 such substrings: one that starts with ‘i (i + 1)’, and one
that starts with ‘i i’. In the remaining phases a length-` substring can have at most one repeated
character, and so there are ` such substrings that start with i. Thus, there are at most ` · 3m
distinct length-` substrings in the constructed string.

Finally, let us look at the cost of LZ77 compression. It is not hard to see that `th phase substring
compresses by at most a factor of `. Since each phase introduces a substring of length at least m, the
total compressed length is at least m(1+1/2+1/3+ ...+1/`0) = Ω(m log `0) = Ω(m log `0 +n/`0).
The last equality holds because n ≤ 2m`0 and, consequently, n

`0
= o(m log `0).

In the proof of Lemma 4.4 the alphabet size is large. It can be verified that by replacing each
symbol from the large alphabet [m] with its binary representation, we obtain a binary string of
length Θ(m2 log m) with the properties stated in the lemma.

4.2 An Algorithm for LZ77

This subsection describes an algorithm for approximating the compressibility of an input string
with respect to LZ77, which uses an approximation algorithm for Colors (Definition 1.1) as a
subroutine. The main tool in the reduction from Colors to LZ77 is the structural lemmas 4.1
and 4.2, summarized in the following corollary.

Corollary 4.5 For any `0 ≥ 1, let m = m(`0) = max`0
`=1

d`(w)
` . Then

m ≤ CLZ77(w) ≤ 4 ·
(

m log `0 +
n

`0

)
.

The corollary allows us to approximate CLZ77 from estimates for d` for all ` ∈ [`0]. To obtain
these estimates, we use the algorithm for Colors from Lemma 5.6, described later in the paper, as a
subroutine. Recall that an algorithm for Colors is required to approximate the number of distinct
colors in an input string, where the ith character represents the ith color. We denote the number
of colors in an input string τ by CCOL(τ). To approximate d`, the number of distinct length-`
substrings in w, using an algorithm for Colors, view each length-` substring as a separate color.
Each query of the algorithm for Colors can be implemented by ` queries to w.

Let Estimate(`,B, δ) be a procedure that, given access to w, an index ` ∈ [n], an approximation
parameter B = B(n, `) > 1 and a confidence parameter δ ∈ [0, 1], computes a B-estimate for d`

16

with probability at least 1 − δ. It can be implemented using an algorithm for Colors, as described
above, and employing standard amplification techniques to boost success probability from 2

3 to 1−δ:
running the basic algorithm Θ(log δ−1) times and outputting the median. By Lemma 5.6, the query
complexity of Estimate(`,B, δ) is O

(
n

B2 ` log δ−1
)
. Using Estimate(`,B, δ) as a subroutine, we

get the following approximation algorithm for the cost of LZ77.

Algorithm IV: An (A, ε)-approximation for CLZ77(w)

1. Set `0 =
⌈

2
Aε

⌉
and B = A

2
√

log(2/(Aε))
.

2. For all ` in [`0], let d̂` = Estimate(`,B, 1
3`0

).

3. Combine the estimates to get an approximation of m from Corollary 4.5:

set m̂ = max
`

d̂`

`
.

4. Output ĈLZ77 = m̂ · A
B + εn.

Theorem 4.6 Algorithm IV (A, ε)-estimates CLZ77(w). With a proper implementation that reuses
queries and an appropriate data structure, its query and time complexity are Õ

(
n

A3ε

)
.

Proof: By the Union Bound, with probability ≥ 2
3 , all values d̂` computed by the algorithm are

B-estimates for the corresponding d`. When this holds, m̂ is a B-estimate for m from Corollary 4.5,
which implies that

m̂

B
≤ CLZ77(w) ≤ 4 ·

(
m̂B log `0 +

n

`0

)
.

Equivalently,
CLZ77 − 4(n/`0)

4B log `0
≤ m̂ ≤ B · CLZ77. Multiplying all three terms by A

B and adding εn

to them, and then substituting parameter settings for `0 and B, specified in the algorithm, shows
that ĈLZ77 is indeed an (A, ε)-estimate for CLZ77.

As we explained before presenting the algorithm, each call to Estimate(`,B, 1
3`0

) costs

O
(

n
B2 ` log `0

)
queries. Since the subroutine is called for all ` ∈ [`0], the straightforward imple-

mentation of the algorithm would result in O
(

n
B2 `2

0 log `0

)
queries. Our analysis of the algorithm,

however, does not rely on independence of queries used in different calls to the subroutine, since
we employ the Union Bound to calculate the error probability. It will still apply if we first run
Estimate to approximate d`0 and then reuse its queries for the remaining calls to the subroutine,
as though it requested to query only the length-` prefixes of the length-`0 substrings queried in the
first call. With this implementation, the query complexity is O

(
n

B2 `0 log `0

)
= O

(
n

A3ε2
log2 1

Aε

)
.

To get the same running time, one can maintain counters for all ` ∈ [`0] for the number of distinct
length-` substrings seen so far and use a trie to keep the information about the queried substrings.
Every time a new node at some depth ` is added to the trie, the `th counter is incremented.

4.3 Reducing Colors to LZ77

The previous subsection demonstrates that estimating the LZ77 compressibility of a string reduces
to Colors. As we show later, the Colors problem is quite hard, and it is not possible to improve much

17

on the simple approximation algorithm in Section 5, on which we base the LZ77 approximation
algorithm in the previous subsection. A natural question is whether there is a better algorithm for
the LZ77 estimation problem. That is, is the LZ77 estimation strictly easier than Colors? As we
shall see, it is not much easier in general.

Lemma 4.7 (Reduction from Colors to LZ77) Suppose there is an algorithm ALZ that, given
access to a string w of length n over an alphabet Σ, performs q = q(n, |Σ|, α, β) queries and
with probability at least 5/6 distinguishes between the case that CLZ77(w) ≤ αn and the case that
CLZ77(w) > βn, for some α < β.

Then there is an algorithm for Colors taking inputs of length n′ = Θ(αn) that performs q queries
and, with probability at least 2/3, distinguishes inputs with at most α′n′ colors from those with at

least β′n′ colors, for α′ = α/2 and β ′ = β · 2 · max
{
1, 4 log n′

log |Σ|

}
.

Two notes are in place regarding the reduction. The first is that the gap between the parameters
α′ and β′ that is required by the Colors algorithm obtained in Lemma 4.7, is larger than the gap
between the parameters α and β for which the LZ-compressibility algorithm works, by a factor

of 4 · max
{
1, 4 log n′

log |Σ|

}
. In particular, for binary strings β′

α′ = O
(
log n′ · β

α

)
, while if the alphabet

is large, say, of size at least n′, then β′

α′ = O
(

β
α

)
. In general, the gap increases by at most

O(log n′). The second note is that the number of queries, q, is a function of the parameters of the
LZ-compressibility problem and, in particular, of the length of the input strings, n. Hence, when
writing q as a function of the parameters of the Colors problem and, in particular, as a function of
n′ = Θ(αn), the complexity may be somewhat larger. It is an open question whether a reduction
without such increase is possible.

Before giving the proof of the lemma, we discuss its implications. Theorem 6.1 gives a strong
lower bound on the sample complexity of approximation algorithms for Colors. An interesting
special case is that a subpolynomial-factor approximation for Colors requires many queries even
with a promise that the strings are only slightly compressible: for any B = no(1), there exists a
constant β ∈ (0, 1) such that distinguishing inputs with βn colors from those with βn/B colors
requires n1−o(1) queries. The lemma above extends that bound to estimating LZ compressibility:
The lemma above extends that bound to estimating compressibility via Lempel-Ziv:

For any B = no(1), and any alphabet Σ, distinguishing strings with LZ compression cost
Ω̃(n) from strings with cost Õ(n/B) requires n1−o(1) queries.

Theorem 6.1 applies to a broad range of parameters, and yields the following general statement
when combined with Lemma 4.7:

Corollary 4.8 (LZ is Hard to Approximate with Few Samples, General Statement)
For sufficiently large n, for all alphabets Σ and for every B ∈ (1, n1/4/(4 log n3/2)), there exist

α, β ∈ (0, 1) where β = Ω
(
min

{
1, log |Σ|

4 log n

})
and α = O

(
β
B

)
, such that every algorithm that distin-

guishes between the case that CLZ77(w) ≤ αn and the case that CLZ77(w) > βn for w ∈ Σn, must

perform Ω
((

n
B′

)1− 2
k

)
queries for B ′ = Θ

(
B · max

{
1, 4 log n

log |Σ|

})
and k = Θ

(√
log n

log B′+ 1
2

log log n

)
.

18

Proof of Reduction from Colors (Lemma 4.7). Suppose we have an algorithm ALZ for LZ-
compressibility as specified in the premise of Lemma 4.7. In what follows we show how to transform
a Colors instance τ into an input for ALZ, and use the output of ALZ in order to distinguish between
the case that τ contains at most α′n′ colors, and the case that τ contains more than β ′n′ colors,
where β′/α′ are as specified in the lemma. We shall assume that β ′n′ is bounded below by some
sufficiently large constant. Recall that in the reduction from LZ77 to Colors, we transformed
substrings into colors. Here we perform the reverse operation.

Given a Colors instance τ of length n′, we transform it into a string of length n = n′ · k over
Σ, where k = d 1

αe. We then run ALZ on w to obtain information about τ . We begin by replacing
each color in τ with a uniformly selected substring in Σk. The string w is the concatenation of the
corresponding substrings (which we call blocks). We show that:

1. If τ has at most α′n′ colors, then CLZ77(w) ≤ 2α′n;

2. If τ has β ′n′ or more colors, then CLZ77(w) ≥ 1
2 ·min

{
1, log |Σ|

4 log n′

}
·β′n with probability at least

7
8 over the choice of w.

That is, in the first case we get an input w for Colors such that CLZ77(w) ≤ αn for α = 2α′, and in

the second case, with probability at least 7/8, CLZ77(w) ≥ βn for β = 1
2 ·min

{
1, log |Σ|

4 log n′

}
·β′. Recall

that the gap between α′ and β′ is assumed to be sufficiently large so that α < β. To distinguish
between the case that CCOL(τ) ≤ α′n′ and the case that CCOL(τ) > β′n′, we can run ALZ on w and
output its answer. Taking into account the failure probability of ALZ and the failure probability in
Item 2 above, the Lemma follows.

We prove these two claims momentarily, but first observe that in order to run the algorithm
ALZ, there is no need to generate the whole string w. Rather, upon each query of ALZ to w, if
the index of the query belongs to a block that has already been generated, the answer to ALZ is
determined. Otherwise, we query the element (color) in τ that corresponds to the block. If this
color was not yet observed, then we set the block to a uniformly selected substring in Σk. If this
color was already observed in τ , then we set the block according to the substring that was already
selected for the color. In either case, the query to w can now be answered. Thus, each query to w
is answered by performing at most one query to τ .

It remains to prove the two items concerning the relation between the number of colors in τ
and CLZ77(w). If τ has at most α′n′ colors then w contains at most α′n′ distinct blocks. Since
each block is of length k, at most k compressed segments start in each new block. By definition of
LZ77, at most one compressed segment starts in each repeated block. Hence,

CLZ77(w) ≤ α′n′ · k + (1 − α′)n′ ≤ αn + n′ ≤ 2α′n.

If τ contains β ′n′ or more colors, then w is generated using at least β ′n′ · log(|Σ|k) = β′n log |Σ|
random bits. Hence, with high probability (e.g., at least 7/8) over the choice of these random
bits, any lossless compression algorithm (and in particular LZ77) must use at least β ′n log |Σ| − 3
bits to compress w. Each symbol of the compressed version of w can be represented by
max{dlog |Σ|e, 2dlog ne} + 1 bits, since it is either an alphabet symbol or a pointer-length pair.
Since n = n′d1/α′e, and α′ > 1/n′, each symbol takes at most max{4 log n′, log |Σ|} + 2 bits to

19

represent. This means the number of symbols in the compressed version of w is

CLZ77(w) ≥ β′n log |Σ| − 3

max {4 log n′, log |Σ|}) + 2
≥ 1

2
· β′n · min

{
1, log |Σ|

4 log n′

}

where we have used the fact that β ′n′, and hence β ′n, is at least some sufficiently large constant.

5 The Colors and the Distribution Support Size Problems

This section deals with algorithms for Colors. Recall that in that problem, given random access
to n colored balls, we would like to approximate the number of distinct colors. In Subsection 5.1
we explain why it is enough to consider algorithms for Colors that sample uniformly at random
with replacement, define the Distribution Support Size Problem and point out how it is related
to Colors. Subsection 5.2 describes a simple algorithm for Colors and Distribution Support Size.
The Guaranteed-Error estimator of Charikar et al. has the same guarantees as our approximation
algorithm. But since our algorithm is so simple, we present it here for completeness. Also for
completeness, in Subsection 5.3 we give the needle-in-a-haystack lower bound for Colors due to
Charikar et al. and Bar-Yossef et al.

5.1 Algorithms with Uniform Samples, and the Distribution Support Problem

In general, an algorithm for Colors is allowed to make arbitrary (adaptive) queries to the input.
In this subsection, we show that restricted algorithms that take samples uniformly at random with
replacement are essentially as good for Colors as general algorithms. Then we define the Distribu-
tion Support Problem, which is a slight generalization of Colors when algorithms are restricted to
uniform samples with replacement.

First, consider algorithms that take their samples uniformly at random without replacement
from [n]. The following lemma, appearing in Bar-Yossef’s thesis [Bar02, Page 88], shows that such
algorithms are essentially as good for solving Colors as general algorithms.

Lemma 5.1 ([Bar02]) For any function invariant under permutations of input elements (ball
positions), any algorithm that makes s queries can be simulated by an algorithm that takes s samples
uniformly at random without replacement and has the same guarantees on the output as the original
algorithm.

The main idea in the proof of the lemma is that the new algorithm, given input w, can simulate
the old algorithm on π(w), where π is a random permutation of the input, dictated by the random
samples chosen by the new algorithm. Since the value of the function (in our case, the number of
colors) is the same for w and π(w), the guarantees on the old algorithm hold for the new one.

Next, we would like to go from the algorithms that sample uniformly without replacement to the
ones that sample uniformly with replacement and find out the corresponding color, but not the input
position that was queried. Bar-Yossef proved that for all functions invariant under permutations,
algorithms that take O(

√
n) uniform samples without replacement can be simulated by algorithms

that take the same number of samples with replacement . The idea is that with so few samples, an

20

algorithm sampling with replacement is likely to never look at the same input position twice. To
prove a statement along the same lines for algorithms that take more samples, Bar-Yossef allows
them to see not only the color of each sample, but also which input position was queried. It is
possible to avoid giving this extra information to an algorithm for Colors, with a slight loss in the
approximation factor.

Definition 5.2 We call an algorithm uniform if it takes independent samples with replacement and
only gets to see the colors of the samples, but not the input positions corresponding to them.

Lemma 5.3 Let B = B(n), such that
√

0.1 ·B ≥ 1. For every (
√

0.1 ·B)-approximation algorithm
A for Colors that makes s queries and works with probability ≥ 11

12 , there is a B-approximation
uniform algorithm A′ that takes s samples and works with probability ≥ 2

3 .

Proof: Conduct the following mental experiment: let algorithm A′ generate an instance of Colors
by taking n uniform samples from its input and recording their colors. If there are C = C(n) colors
in the input of A′, the generated instance will have at most C colors. However, some of the colors
might be missing. We will show later (see Claim 5.4 with s set to n) that with probability ≥ 3

4 at
least 0.1 ·C colors appear in the instance. That is, with probability ≥ 3

4 , the instance generated in
our mental experiment will have between 0.1 · C and C colors. When A is run on that instance,
with probability ≥ 11

12 , it will output an answer between 0.1·C√
0.1·B =

√
0.1 · C

B and
√

0.1 · B · C.

Thus, if A′ runs A on this instance and multiplies its answer by
√

10, it will get a B-multiplicative
approximation to C with probability ≥ 1 − 1

4 − 1
12 ≥ 2

3 , as promised. The final observation is
that since each color in the instance is generated independently, A′ can run A on that instance,
generating colors on demand, resulting in s samples instead of n.

The next claim is more general than required for the proof of the preceding lemma because it
will be also used in the analysis of our algorithm for Colors. The constants in the lemma can be
improved with a more elaborate argument.

Claim 5.4 Let s = s(n) ≤ n. Then s independent samples from a distribution with C = C(n) ele-
ments, where each element has probability ≥ 1

n , yield at least Cs
10n distinct elements, with probability

≥ 3
4 .

Proof: For i ∈ [C], let Xi be the indicator variable for the event that color i is selected in s
samples. Then X =

∑C
i=1 Xi is a random variable for the number of distinct colors. Since each

color is selected with probability at least 1
n for each sample,

E[X] =

C∑

i=1

E[Xi] ≥ C

(
1 −

(
1 − 1

n

)s)
≥ C

(
1 − e−(s/n)

)
≥ (1 − e−1)

Cs

n
. (29)

The last inequality holds because 1 − e−x ≥ (1 − e−1) · x for all x ∈ [0, 1].

We now use Chebyshev’s inequality to bound the probability that X is far from its expectation.
Since X is the sum of Bernoulli variables, Var[X] ≤ E[X]. For any fixed δ,

Pr [X ≤ δ E[X]] ≤ Pr [|X − E[X]| ≥ (1 − δ)E[X]] ≤ Var[X]

((1 − δ)E[X])2
≤ 1

(1 − δ)2 E[X]
. (30)

21

Set δ = 3−
√

8. If E[X] ≥ 4
(1−δ)2

, then by Equations (30) and (29), with probability ≥ 3
4 , variable

X ≥ δ E[X] ≥ δ(1 − e−1)Cs
n > Cs

10n , as stated in the claim. Otherwise, that is, if E[X] < 4
(1−δ)2

,

Equation (29) implies that 4δ
(1−δ)2

> δ(1− e−1)Cs
n . Substituting 3−

√
8 for δ gives 1 > Cs

10n . In other

words, the claim for this case is that at least one color appears among the samples, which, clearly,
always holds.

Now we define the Distribution Support Problem, which is a slight generalization of Colors with
uniform algorithms.

Definition 5.5 (Distribution Support Problem) Given access to independent samples from a
distribution where each element appears with probability at least 1

n , determine (or approximate) the
size of the distribution support.

Clearly, Colors Problem with uniform algorithms (with replacement) is a special case of the
Distribution Support: each color can be viewed as an element in the support of the distribution. A
color that appears a times in the input will be generated with probability a

n under uniform sampling
with replacement. Since a has to be integer in the Colors Problem, while it can be any number
greater or equal to 1 in the Distribution Support Problem, the latter problem is more general. We
state our algorithms for Distribution Support and our lower bound for Colors, so that they apply
to both problems.

5.2 A Simple Algorithm for Distribution Support and Colors

In this subsection, we give a simple algorithm for Distribution Support and Colors. Recall that
we proved that without loss of generality we can consider only uniform algorithms for Colors, and
that Colors with uniform algorithms is a special case of Distribution Support.

Algorithm V: An A-approximation for Distribution Support

1. Take 10n
A2 samples from the distribution.

2. Let Ĉ be the number of distinct elements in the sample; output Ĉ · A.

Lemma 5.6 Let A = A(n). Algorithm V is an A-approximation algorithm for Distribution Support
whose query complexity and running time are O

(
n
A2

)
.

Proof: Let C be the number of elements in the support of the distribution. We need to show
that C

A ≤ Ĉ · A ≤ C · A, or equivalently, C
A2 ≤ Ĉ ≤ C, with probability at least 2

3 . The sample

always contains at most as many elements as are in the support: Ĉ ≤ C. And Claim 5.4, applied
with s = 10n

A2 , shows that Ĉ ≥ C
A2 with probability ≥ 2

3 . To get the running time O
(

n
A2

)
one can

use a random 2-universal hash function.

5.3 A ”Needle in a Haystack” Lower Bound for Colors

Lemma 5.7 ([BKS01, CCMN00]) Any A-approximation algorithm for Colors has to make
Ω
(

n
A2

)
queries.

22

Proof: Any deterministic algorithm needs Ω
(

n
A2

)
queries to distinguish between a string with

one color and the same string with A2 unique colors inserted in random positions. The lemma
follows by Yao’s Principle [Yao77].

6 The Main Lower Bound for Colors

This section is devoted to the lower bound for Colors, that applies to inputs with many colors, and
is formalized in the following theorem:

Theorem 6.1 For every sufficiently large n and for every B ∈ (1, n1/4/
√

log n), there exist d1 =

Θ(1) and d2 ≥ B · d1 such that the following holds for k = k(n,B) =

⌊√
log n

log B+ 1
2

log log n

⌋
. Every

algorithm for Colors needs to perform Ω
(
n1− 2

k

)
queries to distinguish between inputs with at least

n
d1

colors and inputs with at most n
d2

colors.

To illustrate the lower bound in Theorem 6.1 as a function of the multiplicative factor B, we look at
two cases. If B = no(1) then the lower bound is n1−η(n) for η(n) = o(1). In particular, for constant

B we get η(n) = Θ
(√

log log n
log n

)
. If B = nβ for constant β, then the lower bound is n1−2

√
β(1+o(1)).

Unlike in the “needle-in-a-haystack” lower bound in Lemma 5.7 which is based on the difficulty of
distinguishing strings with B = A2 colors from strings with a single color, this bound is based on
the difficulty of distinguishing strings with at least n

d colors, for constant d, from strings with less
than n

B·d colors.

6.1 Main Building Blocks for the Proof of Theorem 6.1

We prove Theorem 6.1 by constructing, for each B, two inputs as specified by the theorem (or,

more precisely, two distributions on inputs), such that any algorithm making o
(
n1− 2

k

)
queries gets

statistically indistinguishable answers. Recall that we may assume without loss of generality that
the algorithm is uniform. The next definition is central to our analysis.

Definition 6.2 (Collisions and Histograms) Consider s samples taken by a uniform algo-
rithm. An `-way collision occurs if a color appears exactly ` times in the sample. We denote
by F`, for ` = 0, 1, · · · , s, the number of `-way collisions in the sample. The histogram F of the
sample is the vector (F1, · · · , Fs), indicating for each non-zero ` how many colors appear exactly `
times in the sample.

Intuitively, the histogram is the only piece of information that an algorithm can use when trying to
estimate the number of colors. We will formalize this in Subsection 6.4. Our goal is to define two
instances of the Colors problem (or, more precisely, two distributions on instances) that contain a
significantly different number of colors, but for which the corresponding distributions on histograms
that a uniform algorithm sees are close. For this we would like to ensure that, for all `, the expected
number of `-way collisions is very similar under both distributions on samples. A priori it is not
clear why making all expectations very similar will ensure that the distributions on histograms are
close in statistical difference. We establish this later.

23

Instead of working directly with `-way collisions, we consider the following related notion. A
monochromatic `-tuple is a set of ` samples that have the same color. Observe that the number
of `-way collisions can be calculated by the Inclusion-Exclusion Principle from the number of
monochromatic `′-tuples for `′ ≥ `. To ensure that the expected number of `-way collisions is the
same when sampling from two different Colors instances, it is enough to make the expected number
of monochromatic `-tuples the same, for all `. Further below, we translate this requirement into
conditions on the moments of a pair of integer distributions.

The next definition relates distributions on integers and distributions on strings (instances of
Colors). We later show the connection between the moments of the former and the expected number
of monochromatic tuples in a sample from the latter.

Given a distribution X on integers, we will produce distribution DX over strings with roughly
n

E[X] distinct colors. Suppose X takes on k distinct integer values a0, ..., ak−1 with probabilities
p0, ..., pk−1, respectively. The colors in each string in DX are partitioned into types 0 through k− 1.
Each color of type i appears ai times and, for each i, there are roughly npi

E[X] colors of type i. If
npi

E[X] is always an integer, then this accounts for all n symbols in the string. In general, we need to
account for rounding errors. This leads to the following, more exact, definition:

Definition 6.3 (The Distribution DX) Let a0 < a1 < . . . < ak−1 be k > 1 integers, and let
X be a random variable defined over these integers where Pr[X = ai] = pi, so that in particular
E[X] =

∑k−1
i=0 pi · ai. Based on X, we define a distribution DX over strings in [n]n that contain MX

colors, where MX =
∑k−1

i=0

⌊
npi

E[X]

⌋
+ n −∑k−1

i=0

⌊
npi

E[X]

⌋
· ai. (Note that if npi

E[X] is an integer for every

i then MX = n
E[X] .) For i = 0, . . . , k − 1, every string in the support of DX contains

⌊
npi

E[X]

⌋
colors

of type i, where each color of type i appears ai times. In addition, there are n −∑k−1
i=0

⌊
npi

E[X]

⌋
· ai

colors that appear once each.

To select a string according to DX, uniformly select MX colors in [n], partition the colors into
types as defined above (which determines how many times each color appears), and then randomly
permute all colors (symbols) in the string.

Suppose that an algorithm takes s uniform samples with replacement from an instance in the
support of DX. Assume for simplicity that npi

E[X] is an integer for every i (so MX = n
E[X]). Since

there are pi
n

E[X] colors of type i and each has probability mass ai

n , the probability that a particular

`-tuple is monochromatic is
∑

i pi
n

E[X]

(
ai

n

)`
. The expected number of monochromatic `-tuples in s

samples is

(
s

`

)
·
∑

i

pi
n

E[X]
·
(ai

n

)`
=

(
s

`

)
· 1

n`−1
· 1

E[X]
·
∑

i

pia
`
i =

(
s

`

)
· 1

n`−1
· E[X`]

E[X]
. (31)

The last equality follows from the definition of X. We would like to make this expression the
same for two different distributions that contain a different number of colors. Consider a (uniform)

algorithm that takes s = o
(
n1− 1

k /ak−1

)
samples, where ak−1 comes from the definition of DX. For

such an algorithm, whenever ` ≥ k, the expected number of monochromatic `-tuples is o(1). For
the remaining ` < k, we would like to make the expected number of monochromatic `-tuples the
same for two distributions on instances, D

X̂
and D

X̃
, that differ by a factor of at least B in the

24

number of colors they contain. This leads to the following conditions on pairs of distributions over
integers, which are the core of our lower bound.

Theorem 6.4 (Moments conditions) For all integers k > 1 and B > 1, there exist two random
variables X̂ and X̃ over positive integers a0 < a1 < · · · < ak−1 satisfying

E[X̃]

E[X̂]
≥ B and

E[X̃`]

E[X̂`]
=

E[X̃]

E[X̂]
for ` = 2, . . . , k − 1 . (32)

In particular, such random variables exist for a0, . . . , ak−1 that satisfy ai = (Bk)i.

In order to reduce notation, all variables pertaining to the first distribution are marked by a
hat (̂) and those pertaining to the second, by a tilde (̃). Whenever we make definitions or prove
statements relevant to both distributions, the corresponding variables without hat or tilde are used.
We prove Theorem 6.4 in Subsection 6.3. Our next main building block in the proof of Theorem 6.1,
is the lemma stated below. It shows (roughly) that if two distributions X̂, X̃ over integers obey the
conditions from Theorem 6.4 then the corresponding distributions on strings, D

X̂
and D

X̃
, cannot

be distinguished by a uniform algorithm using, roughly, o(n1− 1
k /ak−1) samples. In fact, the bound

is a bit more complicated, since it depends on how the maximum value, ak−1, in the support of X̂

and X̃ varies as n increases.

Lemma 6.5 (Distinguishability by Uniform Algorithms) For any uniform algorithm A that
takes s ≤ n

4·ak−1
samples,

∣∣∣Pr[A(D
X̂
) = 1] − Pr[A(D

X̃
) = 1]

∣∣∣ = O

(
k2
(ak−1

n
· s
)2/3

+
k⌊

k
2

⌋
! ·
⌈

k
2

⌉
!
·
(ak−1

n

)k−1
· (2s)k

)
.

The proof of Lemma 6.5 appears in Subsection 6.4. We are now ready to prove the main lower
bound (Theorem 6.1).

6.2 Proof of Theorem 6.1

In this section we prove the main lower bound (Theorem 6.1) by combining the construction of
distributions satisfying the moments condition (Theorem 6.4) with the bound on distinguishability
by uniform algorithms (Lemma 6.5).

Let X̂ and X̃ obey the conditions in Theorem 6.4, and let D
X̂

and D
X̃

be as determined in

Definition 6.3 based on X̂ and X̃, respectively. Consider any uniform algorithm A that takes s
2

samples (where the choice of s
2 rather than s samples is made for the convenience of the analysis).

According to Lemma 6.5,

∣∣∣Pr[A(D
X̂
) = 1] − Pr[A(D

X̃
) = 1]

∣∣∣ = O

(
k2
(ak−1

n
· s
)2/3

+
k⌊

k
2

⌋
! ·
⌈

k
2

⌉
!
·
(ak−1

n

)k−1
· sk

)
. (33)

Recall that Theorem 6.4 stated that there exist X̂ and X̃ such that ak−1 = (Bk)k−1 < (BK)k,
so we may assume that this is in fact the case. Therefore,

25

∣∣∣Pr[A(D
X̂
) = 1] − Pr[A(D

X̃
) = 1]

∣∣∣ = O

(
k2

(
(Bk)k · s

n

)2/3

+
k⌊

k
2

⌋
! ·
⌈

k
2

⌉
!
· (Bk)k(k−1) · sk

nk−1

)
. (34)

We set k and s as functions of B so that the error term in Equation (34) is bounded from above

by o(1). Given B, we define q = q(n,B) by the equality B = log(n)q. Set k =

⌊√
log(n)

(q+ 1
2
) log log(n)

⌋
,

and s =
⌊
n1− 2

k

⌋
. To ensure s ≥ 1, we need k > 2, so we restrict q to be 0 < q < log n

4 log log n − 1
2 . In

particular, B is bounded from above by n
1
4 /
√

log n. To make the calculations easier assume that
n > 16, so that k <

√
log n. We handle the two summands in Equation(34) separately. We begin

with the first summand.

k2

(
(Bk)ks

n

)2/3

< log(n)




(
log(n)q+ 1

2

)k
n1− 2

k

n




2/3

(35)

= log(n)




(
log(n)q+ 1

2

)k

n
2
k




2/3

(36)

≤ log(n)


 2

√
(q+ 1

2
) log log(n) log(n)

2
2
√

(q+ 1
2
) log log(n) log(n)




2/3

(37)

< 2−
1
3

√
log log(n) log(n). (38)

Equation (38) follows since q > 0. We estimate the second summand in a similar fashion.

k⌊
k
2

⌋
! ·
⌈

k
2

⌉
!
· (Bk)k(k−1)sk

nk−1
=

k

(Bk)k
⌊

k
2

⌋
! ·
⌈

k
2

⌉
!
· (Bk)k2

sk

nk−1
(39)

<
2

(Bk)k
· (log(n)q+ 1

2)k
2
nk−2

nk−1
(40)

=
2

(Bk)k
·

(
log(n)q+ 1

2

) log n

(q+1
2) log log n

n
(41)

=
2

(Bk)k
(42)

< 2−
1
2

√
log log(n) log(n). (43)

The last inequality follows by a careful analysis that is omitted here. Combining Equa-
tions (34), (38) and (43) we get that

∣∣∣Pr[A(D
X̂
) = 1] − Pr[A(D

X̃
) = 1]

∣∣∣ = O
(
2−

1
3

√
log log(n) log(n)

)
. (44)

This completes the proof of Theorem 6.1.

26

6.3 Constructing the Distributions: Proof of Theorem 6.4

We first give the intuition behind our construction. Recall that the support of X̂ and X̃ is contained
in the set {a0, . . . , ak−1}. Let p̂i = Pr[X̂ = ai] and p̃i = Pr[X̃ = ai]. Denote with V the (k − 1) × k
Vandermonde matrix satisfying Vi,j = (aj)

i. Then the theorem can be restated in the following way:

For every k and B there exists such a matrix V , two probability distributions ~̂p, ~̃p on {a0, . . . , ak−1}
and some C ≥ B such that V (C · ~̂p − ~̃p) = ~0. Thus, to prove the theorem, we find a Vandermonde
matrix V and a vector ~u such that V ~u = ~0, and from u we extract two vectors of distributions ~̂p
and ~̃p.

In our construction we take V to be the Vandermonde matrix corresponding to the points
aj = aj for j = 0, . . . , k − 1 and some a that we later define. Our vector ~u corresponds to
the coefficients of the (unique) non-zero monic polynomial f of degree k − 1 that vanishes on
a, a2, . . . , ak−1. Notice that V ~u = ~0. The vector ~̂p is constructed from the positive coefficients
of f (after normalization), and ~̃p comes from the negative coefficients of f (after normalization).
Because the set of zeros of f is a geometric sequence, it turns out that the coefficients of f also
grow rapidly, and this property enables us to bound the ratio between E[X̃] and E[X̂] from below.
We now go to the actual construction.

Proof of Theorem 6.4. Following the intuition above, the distributions will be based on the
evaluations of certain multivariate polynomials at a particular point. Specifically, for every 0 ≤ i ≤
k − 1 let si(y1, . . . , yk−1) be the ith symmetric function

si(y1, . . . , yk−1) =
∑

T⊂[k−1]

|T |=i

∏

j∈T

yj . (45)

For example, if k = 4 and i = 2 then s2(y1, . . . , yk−1) = y1y2 + y1y3 + y2y3. In general, s0 = 1 and
sk−1(y1, ..., yk−1) = y1 · . . . · yk−1.

Let a be some integer that we fix later, and define

si(a)
def
= si(a, a2, . . . , ak−1) . (46)

Following our previous example, s2(a) = a3 + a4 + a5, while s3(a) = a6. In general, as we later
prove in detail, si(a) is larger than si−1(a) for sufficiently large a.

Consider the polynomial f(t) =
∏k−1

i=1 (t − ai). It is easy to see that

f(t) = (−1)k−1 ·
k−1∑

i=0

(−1)i · sk−1−i(a) · ti. (47)

As in the overview above, we construct two distributions out of the coefficients of f . The supports
of the distributions are contained in the set {1, a, a2, . . . , ak−1}. We define

∀i, 0 ≤ i ≤ k − 1 Pr[X̂ = ai] =

{
sk−1−i(a)

N̂(a)
for even i

0 for odd i
(48)

∀i, 0 ≤ i ≤ k − 1 Pr[X̃ = ai] =

{
0 for even i
sk−1−i(a)

N̂(a)
for odd i

(49)

27

where

N̂(a)
def
=

b(k−1)/2c∑

j=0

sk−1−2j(a) and Ñ(a)
def
=

b(k−2)/2c∑

j=0

sk−2−2j(a) (50)

are normalizing factors.

We now show that for an appropriate choice of the parameter a, the distributions X̂ and X̃

satisfy the requirements of Theorem 6.4. Let C
def
= N̂(a)

Ñ(a)
.

Lemma 6.6
C · E[X̂`] = E[X̃`] for ` = 1, . . . , k − 1.

Proof: We have

C · E[X̂`] − E[X̃`] = C ·
∑

0≤i≤k−1
i even

(ai)` · sk−1−i(a)

N̂(a)
−

∑

0≤i≤k−1
i odd

(ai)` · sk−1−i(a)

Ñ(a)

=
1

Ñ(a)
·

k−1∑

i=0

(−1)i · sk−1−i(a) · (a`)i =
(−1)k−1

Ñ(a)
· f(a`) = 0.

(51)

Notice that for the case ` = 1, Lemma 6.6 implies that C = E[X̃]/E[X̂]. Next we show that for
any B ≥ 1 we can find a such that E[X̃]/E[X̂] ≥ B. For this the following upper bound on the value
of si(a) is needed.

Lemma 6.7 For every 1 ≤ i ≤ k − 1 it holds that

si−1(a)

si(a)
≤ i

ak−i
.

Proof: Recall that
si(a) = si(a, a2, . . . , ak−1) =

∑

T⊂[k−1]

|T |=i

∏

j∈T

aj ,

and
si−1(a) = si−1(a, a2, . . . , ak−1) =

∑

T⊂[k−1]

|T |=i−1

∏

j∈T

aj .

We prove the lemma by mapping each term in si−1 to a term in si. Given a product of i−1 elements,
ae1 ·ae2 · . . . ·aei−1 , map it to a product of i elements in the following way: let e ≤ k−1 be the largest
integer not in the set {e1, . . . , ei−1}. Note that e ≥ k − i. Then the product ae1 · ae2 · . . . · aei−1 is
mapped to the product ae1 · ae2 · . . . · aei−1 · ae. By definition, we map at most i products of i − 1
elements to each product of i elements. Thus, ak−i · si−1(a) ≤ i · si(a), and the lemma follows.

As an immediate corollary we get

28

Corollary 6.8 For every 1 ≤ i ≤ k − 1 it holds that

sk−i(a)

sk−1(a)
≤ (k − 1)i−1

a(i
2)

.

Proof: By Lemma 6.7 we get

sk−i(a)

sk−1(a)
=

k−1∏

j=k−i+1

sj−1(a)

sj(a)
≤

k−1∏

j=k−i+1

j

ak−j
≤ (k − 1)i−1

a(i
2)

. (52)

We also need the following estimate on Ñ(a).

Lemma 6.9 For a ≥ max(k, 2), we have that Ñ(a) < sk−1(a) · k

a
.

Proof: By Corollary 6.8 and the assumption that a ≥ max(k, 2),

Ñ(a) =

b(k−2)/2c∑

j=0

sk−2−2j(a)

= sk−1(a) ·
b(k−2)/2c∑

j=0

sk−2−2j(a)

sk−1(a)
(53)

≤ sk−1(a) ·
b(k−2)/2c∑

j=0

(k − 1)2j+1

a(2j+2
2)

(54)

≤ sk−1(a) ·


k − 1

a
+

b(k−2)/2c∑

j=1

1

a(2j+1
2)


 (55)

< sk−1(a) ·
(

k − 1

a
+

1

a3 − a

)
(56)

< sk−1(a) · k

a
. (57)

It remains to find, for every B > 1, an a such that E[X̃]/E[X̂] ≥ B. By Lemmas 6.6 and 6.9,

E[X̃]

E[X̂]
= C =

N̂(a)

Ñ(a)
>

N̂(a)

sk−1(a) · k
a

≥ sk−1(a)

sk−1(a) · k
a

=
a

k
. (58)

Thus, if we take a = B · k then E[X̃]/E[X̂] > B. This completes the construction and the proof of
Theorem 6.4.

29

6.4 Indistinguishability by Uniform Algorithms: Proof of Lemma 6.5

Lemma 6.5 gives a bound on how well a uniform algorithm can distinguish the pairs of distributions
constructed in the previous section. Recall that we showed (see Lemma 5.3) that we can restrict
our attention to such algorithms without loss of generality. Even though uniform algorithms are
much simpler than general algorithms, they still might be tricky to analyze because of dependencies
between the numbers of balls of various colors that appear in the sample. Batu et al. [BDKR05]
showed that such dependencies are avoided when an algorithm takes a random number of samples
according to a Poisson distribution. The Poisson distribution Po(λ) takes on the value k ∈ N with
probability eλλk/k!. In Appendix B we state some useful properties of the Poisson distribution,
which we use throughout the rest of the section.

Definition 6.10 We call a uniform algorithm Poisson-s if the number of samples it takes is a
random variable, distributed as Po(s).

Batu et al. [BDKR05] proved a variant of the following lemma in the context of entropy estimation of
distributions. However, the statements and the proofs also apply to estimating symmetric functions
over strings and, in particular, to Colors.

Lemma 6.11 ([BDKR05])

(a) Poisson algorithms can simulate uniform algorithms. Specifically, for every uniform algorithm
A that uses at most s

2 samples, there is a Poisson-s algorithm A′ such that for every input
w, the statistical difference between the distributions A(w) and A′(w) is o(1/s).

(b) If the number of balls of a particular color in the input to Colors is b, then the number of
balls of that color seen by a Poisson-s algorithm is distributed as Po(b·s

n). Moreover, it is

independent of the number of balls of all other colors in the sample.

(c) For any function invariant under permutations of the alphabet symbols (color names), any
Poisson algorithm can be simulated by an algorithm that gets only the histogram of the sample
as its input. The simulation has the same approximation guarantees as the original algorithm.

The independence of the number of occurrences of different colors in the sample (Property (b)
above) will be very useful in analyzing the distributions seen by the algorithm.

6.4.1 Analyzing the Distributions on Histograms

Recall that X ≈δ Y denotes that the statistical difference between random variables X and Y is
at most δ.

Consider a particular Poisson-s algorithm. For ` = 0, 1, . . . , s, let F` be a random variable
representing the number of `-way collisions the Poisson algorithm sees, and F = (F1,F2,F3 . . .) be
the corresponding histogram. We can restate Lemma 6.5 in terms of histograms:

Lemma 6.12 (Main Lemma, Restated) For s ≤ n
2·ak−1

, the statistical difference between the

histograms (F̂1, F̂2, F̂3, . . .) and (F̃1, F̃2, F̃3, . . .) is at most

O

(
k2
(ak−1

n
· s
)2/3

+
k⌊

k
2

⌋
! ·
⌈

k
2

⌉
!
·
(ak−1

n

)k−1
· sk

)
.

30

For the remainder of this section, we assume that s ≤ n
2·ak−1

. The next lemma states that `-way

collisions are very unlikely for ` ≥ k, when s is sufficiently small.

Lemma 6.13 The probability that there is a collision involving k > 1 or more balls is at most

δ1 = O

(
1

k!
·
(ak−1

n

)k−1
· sk

)
.

The proof of Lemma 6.13 is given later. To complete the proof of Lemma 6.12, we need two
additional lemmas that show that certain pairs of distributions are close when s is sufficiently small.

Lemma 6.14 F̂` ≈δ2 F̃` for ` ∈ [k−1], where δ2 = O

(
k · ak−1 · s

n
+

1⌊
k
2

⌋
! ·
⌈

k
2

⌉
!
·
(ak−1

n

)k−1
· sk

)
.

Lemma 6.15 For both distributions, F1, . . . ,Fk−1 are close to independent, that is,
(F1, . . . ,Fk−1) ≈δ3 (F′

1, . . . ,F
′
k−1), where the variables F′

` are independent, for each ` the

distributions of F` and F′
` are identical, and δ3 = O

(
k2 · (ak−1·s

n)2/3
)
.

The main claim (Lemma 6.12) follows by a standard hybrid argument. Consider a chain of
distributions “between” the two histograms of Lemma 6.12. Starting from the “hat” histogram,
we first replace all counts of collisions greater than k by 0, and then replace each count F̂` with an
independent copy F̂′

` for ` ∈ [k − 1], as in Lemma 6.15. Next, change each F̂′
` with a corresponding

F̃′
`. Finally, replace these independent F̃′

`s with the real, dependent variables F̃` and add back in
the counts of the collisions involving more than k variables to obtain the “tilde” histogram. The
resulting chain has k + 3 steps. By the triangle inequality, we can sum these differences to obtain
a bound on the difference between the two histograms. In symbols, the chain of distribution looks
as follows (where δ1, δ2 and δ3 are as defined in Lemmas 6.13, 6.14 and 6.15, respectively:

(F̂1, . . . , F̂k−1, F̂k, F̂k+1, . . .)

≈δ1 (F̂1, . . . , F̂k−1, 0, 0, . . .)

≈δ3 (F̂′
1, . . . , F̂′

k−1, 0, 0, . . .)

≈δ2 (F̃′
1, . . . , F̂′

k−1, 0, 0, . . .)
...

≈δ2 (F̃′
1, . . . , F̃′

k−1, 0, 0, . . .)

≈δ3 (F̃1, . . . , F̃k−1, 0, 0, . . .)

≈δ1 (F̃1, . . . , F̃k−1, F̃k, F̃k+1, . . .)

The total statistical difference is at most

2 · δ1 + 2 · δ3 + (k − 1) · δ2 (59)

= O

(
1

k!
·
(ak−1

n

)k−1
· sk + k2 ·

(ak−1 · s
n

)2/3
+ k · k · ak−1 · s

n
+

k⌊
k
2

⌋
! ·
⌈

k
2

⌉
!
·
(ak−1

n

)k−1
· sk

)
.

The first and third terms are negligible given the others. Removing them yields the claimed
bound. This completes the proof of Lemma 6.12. We now prove the three intermediate lemmas
used in the proof of Lemma 6.12.

31

Recall that we consider inputs with Ci =
⌊

pin
E[X]

⌋
colors of type i, for i = 0, . . . , k − 1, where

each color of type i appears ai times, and with Ck = n −∑k−1
i=0

⌊
pin
E[X]

⌋
· ai additional colors that

appear once each. We say that the Ck “left-over” colors are of type k, and define ak = 1. Note
that Ck <

∑k−1
i=0 ai (since E[X] =

∑k−1
i=0 pi · ai and so n =

∑k−1
i=0

pin
E[X] · ai).

The independence of the number of different colors (see Lemma 6.11(b)) makes it easy to
understand the distribution on the number of `-way collisions. For a color that appears ai times in
the input, the number of balls of that color in the sample is distributed according to Po (λi), where

λi = ais
n . The probability that this color appears exactly ` times in the sample is

λ`
i

`! e
−λi .

Proof of Lemma 6.13. Consider any particular color of type i. The probability that the

algorithm sees k or more balls of that color is Pr[Po(λi) ≥ k] ≤ λk
i

k! . Summing over all colors
(according to types), we can bound the probability that some color appears k or more times by:

k∑

i=0

Ci ·
λk

i

k!
=

k∑

i=0

Ci ·
1

k!

(ais

n

)k
(60)

<
sk

k! · E[X] · nk−1
·

k−1∑

i=0

pia
k
i +

ak−1 · sk

nk
(61)

=
sk

k! · nk−1
·
(

E[Xk]

E[X]
+

ak−1

n

)
. (62)

Finally, we can bound the ratio E[Xk]
E[X] by (ak−1)

k−1. This yields the desired bound.

Proof of Lemma 6.14. Observe that F`, the number of `-way collisions, is a sum of independent

Bernoulli random variables, one for each color, with probability 1
`! · e−

as
n ·
(

as
n

)`
of being 1 if the

color appeared a times in the input. Hence, the number of `-way collisions is a sum of independent
binomial random variables, one for each type. That is,

F` ∼
k∑

i=0

Bin

(
Ci ,

e−λiλ`
i

`!

)
, (63)

where Bin(m, p) is the number of heads in a sequence of m independent coin flips, each of which
has probability p of heads.

When p is small, the Poisson distribution Po(λ = pm) is a good approximation to Bin(m, p);
the statistical difference between the two is at most p (see Lemma B.1, Item (3)). Since the sum
of independent Poisson variables is also a Poisson variable (see Lemma B.1, Item (2)),

F` ≈γ`
Po

(
λ(`) =

k∑

i=0

Ci ·
λ`

i

`!
e−λi

)
(64)

where

γ` ≤
k∑

i=0

e−λiλ`
i

`!
≤

k∑

i=0

λi ≤
k · ak−1 · s

n
. (65)

32

In the last equality we have used the fact that ak = 1 and ai < ak−1 for every i < k − 1.

To bound the statistical difference between F̂` and F̃` from above, it is enough to bound the
difference between λ̂(`) and λ̃(`), since the statistical difference between Po(λ̂(`)) and Po(λ̃(`)) is at
most |λ̂(`) − λ̃(`)| (see Lemma B.1, Item (5)).

Substituting ai

n ·s for λi and using the fact that e−λi =
∑k−`−1

j=0 (−1)j · λj
i

j! +(−1)k−` ·O
(

λk−`
i

(k−`)!

)
,

(where we define 0! = 1) we get that

λ(`) =
1

`!
·

k−∑̀

j=0

T
(`)
j (66)

where

T
(`)
j = (−1)j · 1

j!
· s`+j

n`+j
·

k∑

i=0

Ci · a`+j
i (67)

for 0 ≤ j ≤ k − ` − 1, and

T
(`)
k−` = (−1)k−` · O

(
1

(k − `)!
· sk

nk
·

k∑

i=0

Ci · ak
i

)
(68)

For each j, 0 ≤ j ≤ k − `, we have that

s`+j

n`+j
·

k∑

i=0

Ci · a`+j
i =

s`+j

n`+j
·
(

k−1∑

i=0

⌊
pin

E[X]

⌋
· a`+j

i + Ck

)
(69)

≤ s`+j

n`+j−1
· 1

E[X]
·

k−1∑

i=0

pi · a`+j
i +

s`+j

n`+j
·

k−1∑

i=0

ai (70)

=
s`+j

n`+j−1
· E[X`+j]

E[X]
+

s`+j

n`+j
·

k−1∑

i=0

ai (71)

and similarly

s`+j

n`+j
·

k∑

i=0

Ci · a`+j
i =

s`+j

n`+j
·
(

k−1∑

i=0

⌊
pin

E[X]

⌋
· a`+j

i + Ck

)
(72)

≥ s`+j

n`+j−1
· 1

E[X]
·

k−1∑

i=0

pi · a`+j
i − s`+j

n`+j
·

k−1∑

i=0

a`+j
i (73)

=
s`+j

n`+j−1
· E[X`+j]

E[X]
− s`+j

n`+j
·

k−1∑

i=0

a`+j
i (74)

The moment condition on X̂ and X̃ states that E[X̂`+j]

E[X̂]
= E[X̃`+j]

E[X̃]
for j = 0, . . . , k − ` − 1. Thus,

∣∣∣λ̂(`) − λ̃(`)
∣∣∣ = O


 1

`!
·

k−∑̀

j=0

s`+j

n`+j
· 2

k−1∑

i=0

a`+j
i +

1

`!(k − `)!
· sk

nk−1
· max

{
E[X̂k]

E[X̂]
,
E[X̃k]

E[X̃]

}
 (75)

33

The ratio E[Xk]
E[X] is at most (ak−1)

k−1, the expression 1
`!(k−`)! is maximized for ` =

⌊
k
2

⌋
, and

1

`!
·

k−∑̀

j=0

s`+j

n`+j
· 2

k−1∑

i=0

a`+j
i ≤ 1

`!
·
(s · ak−1

n

)`
· 2k ·

k−∑̀

j=0

(s · ak−1

n

)j
= O

(
k · ak−1 · s

n

)
(76)

where the last equality uses the fact that
s·ak−1

n ≤ 1
2 . Therefore,

∣∣∣λ̂(`) − λ̃(`)
∣∣∣ = O

(
1⌊

k
2

⌋
! ·
⌈

k
2

⌉
!
·
(ak−1

n

)k−1
· sk +

k · ak−1 · s
n

)
(77)

Summing this together with the error, denoted γ`, introduced by approximating a sum of binomials
with a Poisson variable, proves the lemma.

In order to prove Lemma 6.15 we need the following lemma concerning multinomial variables,
whose proof is provided in Appendix B.

Lemma 6.16 Consider a k-sided die, whose sides are numbered 0, . . . , k − 1, where side ` has
probability q` and q0 ≥ 1/2. Let Z0, . . . , Zk−1 be random variables that count the number
of occurrences of each side in a sequence of independent rolls. Let Z ′

1, . . . , Z
′
k−1 be indepen-

dent random variables, where for each `, the variable Z ′
` is distributed identically to Z`. Then

(Z1, ..., Zk−1) ≈δ4 (Z ′
1, . . . , Z

′
k−1) for δ4 = O(k(1 − q0)

2/3).

Proof of Lemma 6.15. We can write F` as a sum F` = F
(1)
` + · · ·+F

(k)
` , where F

(i)
` is the number

of `-way collisions among colors of type i. Since the types are independent, it is sufficient to show

that for each i, the variables F
(i)
1 , . . . ,F

(i)
k−1 are close to being independent. We can then sum the

distances over the types to prove the lemma.

Let F
(i)
0 denote the number of colors of type i that occur either 0 times, or k or more times, in the

sample. The vector F
(i)
0 ,F

(i)
1 , . . . ,F

(i)
k−1 follows a multinomial distribution. It counts the outcomes of

an experiment in which Ci independent, identical dice are rolled, and each one produces outcome `
with probability e−λiλ`

i/`!, for ` ∈ [k − 1], and outcome 0 with the remaining probability. On each
roll, outcome 0 occurs with probability at least e−λi ≥ 1 − λi ≥ 1/2 (recall that λi = ai·s

n ≤ 1/2).

Lemma 6.16 shows that when one outcome occupies almost all the mass in such an experiment,

the counts of the remaining outcomes are close to independent — within distance O(k · λ
2/3
i).

Summing over all types, the distance of F1, . . . ,Fk−1 from independent is O
(
k ·
∑

i λ
2/3
i

)
=

O
(
k2 ·

(ak−1s
n

)2/3
)
.

References

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[Bar02] Ziv Bar-Yossef. The complexity of Massive Data Set Computations. PhD thesis, Com-
puter Science Division, U.C. Berkeley, 2002.

34

[BDKR05] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity
of approximating the entropy. SIAM Journal on Computing, 35(1):132–150, 2005.

[BKS01] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: lower bounds
and applications. In STOC ’01: Proceedings of the thirty-third annual ACM symposium
on Theory of computing, pages 266–275, New York, NY, USA, 2001. ACM Press.

[BS05] Mickey Brautbar and Alex Samorodnitsky. Approximating the entropy of large alpha-
bets. Manuscript, 2005.

[CCMN00] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. Towards
estimation error guarantees for distinct values. In PODS, pages 268–279. ACM, 2000.

[CT91] T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,
New York, 1991.

[LS02] Eric Lehman and Abhi Shelat. Approximation algorithms for grammer-based com-
pression. In Proceedings of the Thirteenth annual ACM–SIAM symposium on Discrete
Algorithms, pages 205–212, 2002.

[Pro53] Yu. V. Prohorov. Asymptotic behavior of the binomial distribution (Russian). Uspekhii
Matematicheskiikh Nauk, 8(3):135–142, 1953. Moscow.

[Shl81] A. Shlosser. On estimation of the size of the dictionary of a long text on the basis of a
sample. Engineering Cybernetics, 19:97–102, 1981.

[Web99] Michael Weba. Bounds for the total variation distance between the binomial and the
poisson distribution in case of medium-sized success probabilities. J. Appl. Probab.,
36(1):97–104, 1999.

[Yao77] A. C. Yao. Probabilistic computation, towards a unified measure of complexity. In
Proceedings of the Eighteenth Annual Symposium on Foundations of Computer Science,
pages 222–227, 1977.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23:337–343, 1977.

A A Lower Bound for Approximating the Entropy

The following problem was introduced by Batu et al. [BDKR05]. Let p = 〈p1, . . . , pn〉 be a discrete
distribution over n elements, where pi is the probability of the ith element. Given access to
independent samples generated according to the distribution p, we would like to approximate
its entropy: H(p) = −

∑n
i=1 pi log pi. Batu et al. showed how to obtain an A-estimate in time

Õ
(
n

1+η

A2

)
, provided that H(p) = Ω

(
A
η

)
. They also proved a lower bound of Ω

(
n

1
2A2

)
that holds

even when H(p) = Ω
(

log n
A2

)
. (Without a lower bound on H(p), the time complexity is unbounded.)

35

Here we use our technique to obtain a lower bound of Ω

(
n

2
6A2−3+o(1)

)
, improving on the

Ω
(
n

1
2A2

)
lower bound for relatively small A. When A is close to 1, the bound is close to n2/3

(rather than n1/2).

Moments conditions. We first provide a different construction of random variables that satisfy
the conditions of Theorem 6.4 for the special case of k = 3 and B = B(n), which we set momentarily.
Specifically, let a0 = 1, a1 = 2B, and a2 = 4B − 2, and set

Pr[X̂ = a0] = 1 − 1

4B − 3
, Pr[X̂ = a1] = 0, Pr[X̂ = a2] =

1

4B − 3
, (78)

and
Pr[X̃ = a0] = 0, Pr[X̃ = a1] = 1, Pr[X̃ = a2] = 0 . (79)

By definition of X̂ and X̃,

E[X̂] =

(
1 − 1

4B − 3

)
· 1 +

1

4B − 3
· (4B − 2) =

4B − 4 + 4B − 2

4B − 3
= 2 (80)

and

E[X̂2] =

(
1 − 1

4B − 3

)
· 12 +

1

4B − 3
· (4B − 2)2 =

4B − 4 + 16B2 − 16B + 4

4B − 3
= 4B (81)

while
E[X̃] = 1 · 2B = 2B and E[X̃2] = 4B2 (82)

so that
E[X̃]

E[X̂]
= B, and

E[X̂2]

E[X̂]
=

E[X̃2]

E[X̃]
(83)

as required.

The two distributions and their entropies. Similarly to what was shown in Subsection 6.4.1,
given the two random variables X̂ and X̃, define two distributions over n elements (or, more precisely,
two families of distributions). One distribution, denoted p

X̂
, has support on n

2 · 4B−4
4B−3 elements of

weight 1
n each and n

2 · 1
4B−3 elements of weight 4B−2

n each. The second distribution, denoted p
X̃
,

has support on n
2B elements of weight 2B

n each. As stated above, we can define two families of
distributions, F

X̂
and F

X̃
, respectively, where we allow all permutations over the names (colors)

of the elements. Let D′
X̂

denote the uniform distribution over F
X̂
, and let D′

X̃
denote the uniform

distribution over F
X̃
.

Let B = B(n) be of the form B = 1
2n1−β for β < 1. Then the entropy of each distribution in

36

F
X̃

is β log n, and the entropy of each distribution in F
X̂

is:

2B − 2

4B − 3
· log n +

2B − 1

4B − 3
· log n

4B − 2

=
1

2
·
(

log n + log
n

4B − 2

)
− 1

8B − 6
·
(

log n − log
n

4B − 2

)
(84)

≥ 1

2
·
(
log n + log nβ − 1

)
− log(2n1−β)

4n1−β − 6
(85)

≥ 1 + β

2
log n − 1 (86)

where the last inequality holds for sufficiently large n. Therefore, the ratio between the entropies
is 1+β

2β − o(1).

While Lemma 6.5 was stated for the distributions on strings, D
X̂

and D
X̃
, and any algorithm

that takes uniform samples from an input string of length n, it is not hard to verify that it also holds
for the distributions D′

X̂
and D′

X̃
and any algorithm that is provided with samples from distributions

over n elements. Since k = 3 and a2 = 2n1−β , in order to distinguish the two distributions it is nec-

essary to observe Ω

((
n
a2

)2/3
)

= Ω
(
n2β/3

)
samples. In other words, Ω

(
n2β/3

)
= Ω

(
n

2
6A2−3+o(1)

)

samples are required for A =
(√

1+β
2β − o(1)

)
-estimating the entropy.

B Properties of the Poisson Distribution and Proof of Lemma 6.16

We start with some useful properties of the Poisson distribution:

Lemma B.1 1. If X ∼ Po(λ), then E[X] = Var[X] = λ.

2. If X ∼ Po(λ), Y ∼ Po(λ′) and X,Y are independent, then X + Y ∼ Po(λ + λ′).

3. The statistical difference between Bin(m, p) and Po(mp) is at most p.

4. For λ > 0, the statistical difference between Po(λ) and Po(λ + ε
√

λ) is O(ε).

5. The statistical difference between Po(λ) and Po(λ′) is at most |λ − λ′|.

Note: Item (5) provides a good bound when λ is near or equal to 0. In most settings, Item (4)
is more useful.

Proof: Items (1) and (2) can be found in any standard probability text. For Item (3) (and other
bounds on the Poisson approximation to the binomial), see [Pro53] or [Web99, Bound b1]. To prove
item (4), first compute the relative entropy (also called Kullback-Liebler divergence) between Po(λ ′)

and Po(λ). For probability distributions p, q, the relative entropy is D(p‖q) =
∑

x p(x) ln p(x)
q(x) . The

statistical difference between p and q is at most
√

2 ln(2)D(p‖q) (see, e.g., [CT91, Lemma 12.6.1]).
If X ∼ Po(λ + ∆), then the relative entropy in our case is

D(Po(λ + ε)‖Po(λ)) = E
X

[ln(e−λ−∆(λ+∆)X/X!
e−λλX/X!

)] = −∆ + (λ + ∆) ln(λ+∆
λ).

37

Since ln(1 + x) ≤ x, the relative entropy is at most ∆2/λ, and the statistical difference is at most

∆

√
2 ln(2)

λ . Setting ∆ = ε
√

λ, we obtain the desired bound.

Finally, to prove Item (5) write Po(λ+∆) as a sum of two independent Poisson variables Xλ, X∆

with parameters λ and ∆ respectively. Conditioned on the event X∆ = 0, the sum is distributed as
Po(λ). This event occurs with probability e−∆ ≥ 1 − ∆. The statistical difference between Po(λ)
and Po(λ + ∆) is thus at most ∆, as desired.

We next repeat and prove Lemma 6.16.

Lemma 6.16 Consider a k-sided die, whose sides are numbered 0, . . . , k − 1, where side `
has probability q` and q0 ≥ 1/2. Let Z0, . . . , Zk−1 be random variables that count the num-
ber of occurrences of each side in a sequence of independent rolls. Let Z ′

1, . . . , Z
′
k−1 be indepen-

dent random variables, where for each `, the variable Z ′
` is distributed identically to Z`. Then

(Z1, ..., Zk−1) ≈δ4 (Z ′
1, . . . , Z

′
k−1) for δ4 = O(k(1 − q0)

2/3).

Proof: Suppose the die is rolled m times. For each ` > 1, the number of occurrences of side `
is a binomial: Z` ∼ Bin(m, q`). By Item (3) in Lemma B.1, the difference between Bin(m, q`) and
Po(λ = mq`) is at most q`.

Consider Z`, conditioned on the values of Z1, . . . , Z`−1. The distribution of Z` is still binomial

but has different parameters: Z` ∼ Bin
(
m − S`,

q`

1−Q`

)
, where S` =

∑`−1
i=1 Zi and Q` =

∑`−1
i=1 qi. We

can approximate this by a Poisson variable with parameter λ′ = (m−S`)
q`

1−Q`
. This approximation

introduces an error (statistical difference) of at most q`.

Now the sum S` is also binomial, with parameters m,Q`. It has expectation mQ` and variance

mQ`(1−Q`). By Chebyshev’s inequality, S` ∈ mQ` ±
√

mQ`(1−Q`)
γ with probability at least 1− γ.

When this occurs,

λ′ = (m − S`)
q`

1−Q`
= mq`

1−Q`

(
1 − Q` ±

√
Q`(1−Q`)

mγ

)
= mq` ±

√
mq` ·

√
q`Q`

γ(1−Q`)
.

Thus, λ′ = λ +
√

q`Q`

γ(1−Q`)

√
λ with probability at least 1 − γ. The statistical difference between

Po(λ) and Po(λ′) is O
(√ q`Q`

γ(1−Q`)

)
, by Lemma B.1, Item (4).

Putting these approximations together: we can replace Z` by an independent copy of itself, Z ′
`,

and change the distribution on the vector (Z1, ..., Z`) by at most γ + 2q` + O(
√

q`Q`

γ(1−Q`)
). This is

minimized when γ = 3

√
q`Q`

1−Q`
. In symbols:

(Z1, . . . , Z`−1, Z`) ≈
O

(
3

√
q`Q`
1−Q`

) (Z1, ..., Z`−1, Z
′
`) .

Now replace the Z`s with Z ′
`s one at a time. By the triangle inequality, the distance between

(Z1, . . . , Zk−1) and (Z ′
1, ..., Z

′
k−1) is at most the sum of the errors introduced at each step. This

sum is O(k 3

√
q`Q`

1−Q`
). Since q0 ≥ 1

2 , the total distance is O
(
k · (1 − q0)

2/3
)
.

38

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

