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Abstract

For circuit classes R, the fundamental computational problem Min-R asks for the the mini-
mum R-size of a Boolean function presented as a truth table. Prominent examples of this prob-
lem include Min-DNF , which asks whether a given boolean function presented as a truth table
has a k-term DNF, and Min-Circuit (also called MCSP) which asks whether a boolean function
presented as a truth table has a size & boolean circuit. We begin by presenting a new reduction
proving that Min-DNF is NP-complete. It is significantly simpler than the known reduction
of Masek [21], which is from Circuit-SAT. We then present a more complex, approximation-
preserving reduction, that yields new inapproximability results for Min-DNF . Finally, we ex-
tend known hardness results for Min-TCY to obtain new hardness results for Min-ACY , under
cryptographic assumptions.

1 Introduction

A fundamental computational problem is to determine the minimum size of a boolean function
in some representation class, given a truth table for that class. The following are two prominent
examples: (1) Min-DNF which asks whether a given boolean function presented as a truth table has
a k-term DNF and (2) Min-Circuit (also called MCSP, for Minimum Circuit Size Problem) which
asks whether a boolean function presented as a truth table has a size £ boolean circuit. By varying
the representation class, we can also obtain a hierarchy of natural problems between Min-DNF and
Min-Circuit , including problems such as Min-AC? , Min-TC® , and Min-NC* .

The main focus of this paper is the Min-DNF problem. Min-DNF is the decision version of
finding the smallest DNF formula consistent with a truth table, where the size of a DNF formula
is considered to be the number of terms in it. This is a classic problem in computer science and
circuit design. Heuristic approaches to solving this problem range from the Karnaugh maps of the
1960’s to sophisticated state-of-the-art software packages.
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In the 1970’s, Masek showed that Min-DNF is NP-complete [21]. Masek’s result was cited
by Garey and Johnson [12] and is widely known, but the proof was never published. Later, Czort
presented a modernized, more readable version of Masek’s proof [10]. Masek’s proof is by direct
reduction from Circuit-SAT, using gadget constructions, and even in Czort’s version it is long and
involved. We present a new, simple NP-completeness proof for Min-DNF , by reduction from
3-Partite Set Cover (or, more particularly, from 3-Dimensional Matching).

It is well-known that Min-DNF can be viewed as a special case of set cover, and that the greedy
set cover algorithm can be applied to Min-DNF to produce a DNF with O(log N) times as many
terms as the optimal, where N is the size (number of entries) of the truth table. This suggests the
question of whether a better approximation factor can be achieved. Czort considered this question,
but showed only that unless P = N P, the size of the smallest DNF cannot be approximated to
within an additive constant £ [10]. By building on our simple NP-completeness proof for Min-
DNF , we obtain a more complicated reduction (also from a restricted version of set cover) which
allows us to prove a new inapproximability results for Min-DNF . In particular, we prove that if
NP is not contained in quasipolynomial time, then Min-DNF cannot be approximated to within a
factor of c(log N)” for some constants ¢ > 1, 0 < v < 1 where N is the size of the input truth
table.

Although the general Min-DNF problem is NP-hard, for £ = O(1/logn) Min-DNF is tractable [13].
Using a simple padding argument, we show hardness results for Min-DNF where k£ = w(logn).
The question of whether Min-DNF is tractable for £ = logn remains open. This question was
posed in [13]; a negative result would imply that log n-term DNF cannot be learned with member-
ship and proper equivalence queries.

In addition to our results for Min-DNF , we also prove a result for Min-AC}, for all sufficiently
large d. Under cryptographic assumptions, it is known that Min-Circuit , Min-NC! and Min-TC}
are not polynomial-time solvable [2]. (Nothing is stated explicitly in [2] regarding Min-TCY , but
it is implicit.) We extend the hardness results for Min-TCY to obtain new hardness results for Min-
ACY as well, under cryptographic assumptions. This still leaves open the interesting question of
whether or not Min-Circuit (or the other problems) are NP-complete. Kabanets and Cai [16] give
evidence that such a reduction will not be straightforward.

The organization of this paper is as follows. In Section 2 we define the relevant minimization
problems and present necessary background. In Section 3 we present our new proof that Min-DNF
is NP-hard. In Sections 4 and 5 we present the more complicated reduction and the associated
non-approximability results. Section 6 concerns the fixed parameter versions of Min-DNF . Our
hardness results for Min-ACY appear in Section 7. Finally we conclude in Section 8 with open
problems and future directions.

2 Preiminaries

We consider a general family of computational problems of the form Min-R(S) where the input
is a boolean function with input representation from S, and the output should be a minimum
representation of the function from R. For example, Min-DNF (tt) is the problem of determining
a smallest DNF representation of a Boolean function f on n variables, if f is presented as a truth
table of size N = 2". We define the size of a DNF formula to be the number of terms in it, and



thus a smallest DNF is one with the minimum possible number of terms.

Our default input representation will be the truth table representation and when we write Min-
R, rather than Min-R(S), we will assume the default input representation.

We focus primarily on DNF minimization. We consider four variations, depending on the input
representation: (i) the A version, Min-DNF(A) ; (ii) the Min-DNF (tt) version; (iii) the (A, B)
version, Min-DNF(A,B) ; and (iv) the Min-DNF(*) version.

e A version: the input is a total boolean function, specified by explicitly listing all 1’s of the
function. Thatis, A C {0,1}" is the input, and we look for a minimum DNF that realizes
the total function f4, where fa(a) = 1fora € A, and fa(b) =0forb € {0,1}" — A.

e Min-DNF version: in the full-truth table version, the input is the entire truth table of f :
{0,1}"* — {0, 1}, and we look for a minimum DNF that realizes the function f.

e (A, B) version: A, B C {0,1}" is input, and we look for a minimum DNF that realizes a
function f : {0,1}"* — {0,1}, where f(a) = 1 fora € Aand f(b) = 0 for b € B. Note
that the input in this case specifies a partial function and we desire a minimum DNF that is
consistent with the partial function.

e Min-DNF(*) version: The input is a partial boolean function, specified by the entire truth
table of f : {0,1}" — {0,1, %}, where f(a) = * means that the value of f is not defined
on a. We look for a minimum DNF that realizes a function f’ : {0,1}" — {0,1}, where
f'(a) =1fora € f~'(1) and f'(b) = 0 for b € f~1(0). Note that as in the (A, B) version,
the input here also specifies a partial function, but now the partial function is specified by a
2" sized input, regardless of the size of the domain of the partial function.

The definitions for the first three versions are from [10], who gives an excellent survey of
previous work on these problems.

The decision versions of the above problems ask, given the function, and a natural number £,
whether or not there is a DNF formula realizing the function that has at most k£ terms. All decision
versions are easily seen to lie in NP. It is also easy to see that Min-DNF is a special case of Min-
DNF(*) and therefore reduces to Min-DNF(*) , and Min-DNF(*) reduces to Min-DNF(A,B) . Also
Min-DNF reduces to Min-DNF(A) . Thus NP-hardness of Min-DNF implies NP-hardness of all
other versions.

However, it appears to be more difficult to prove hardness results for Min-DNF than for the
other versions. Because the input to Min-DNF is a truth table, “polynomial-time” for this version
means polynomial in 2", where n is the number of variables of the function defined by the truth
table. Also, because the input to Min-DNF is a total, rather than a partial, function, there is rela-
tively little flexibility available when mapping an instance of another problem into an instance of
Min-DNF .

As explained by Czort [10], there is a hodgepodge of interesting but incomparable hardness
results that are known for versions of DNF minimization, dating back to the 1960’s. The simplest
of these is the NP-hardness of the (A, B) version due to Pitt and Valiant [24]. There is also a clean
NP-hardness proof of the A version due to Gimpel (cf. [10]). Subsequently, Masek [21] proved
the NP-completeness of Min-DNF . In terms of inapproximability, Pitt and Valiant’s proof of the



(A, B) hardness result preserves solution values and thus shows the NP-hardness of achieving a
ratio n¢. Unfortunately, neither of the other two NP-hardness proofs (for the A version or for
Min-DNF ) give much in the way of inapproximability results.

A starting point for this paper is the well-known observation that Min-DNF easily reduces to
set cover, and in fact can be viewed as a special case of set cover. Given the truth table of a
boolean function f over n variables, all prime implicants of f can be generated in time 20,
Each prime implicant can then be viewed as a subset of {0, 1}" (corresponding to those inputs that
are covered by the prime implicant). Thus given all of the prime implicants, finding a smallest
DNF is equivalent to finding a smallest cover for these prime implicant sets. Thus, as mentioned
above, Min-DNF can be viewed as a special “hypercube” case of set cover, where the sets to be
covered have a special form; namely they correspond to mini-cubes in the n-dimensional boolean
cube. Applying the greedy algorithm for set cover it follows that Min-DNF can be approximated
to within a factor of n, where n is the number of variables of the underlying function. Because of
this close relationship between set cover and Min-DNF , we were motivated to try and uncover the
underlying complexity and approximability of Min-DNF , and to unify previous known results on
DNF minimization by viewing Min-DNF as a set cover problem.

In what follows, we deal not only with the standard set cover problem, but also with two
restricted versions of it, 7-Uniform Set Cover and r-Partite Set Cover.

Uniform Set Cover problem: On input (n, m,r, S) where n, m and r are positive integers and S
is an r-uniform collection over [n], is there a subcollection C of size at most m whose union is [n]?

Partite Set Cover problem: On input (n, m,r,I1, S) where n, m and r are positive integers, IT is
an r-partition of [n], and S is an r-partite set collection over II, is there a subcollection C of size at
most m whose union is [n]?

The version of 3-Uniform Set Cover where m is fixed to be n/3 is called Exact Cover by 3-Sets
(XC3). The version of 3-Partite Set Cover where m is fixed to be n/3 is called 3D-Matching. XC3
and 3D-Matching are NP-complete, as are r-uniform and r-partite set cover for any » > 3 [12].

3 Simpleproof that Min-DNF is NP-complete

Our new proof that Min-DNF is NP-complete is a modification of an early proof of Gimpel that
was used to show the NP-completeness of the A version of DNF minimization.

We start by briefly describing Gimpel’s reduction. It can be viewed as consisting of two phases.
In the first phase we map an instance of X3C, or more generally, an instance of 3-Uniform Set
Cover, to a partial function f as follows. Given input instance S of 3-Uniform Set Cover over
n ground elements, we map both the sets as well as the ground elements to truth assignments
overaset V, |[V| = n, such that a set covers a ground element in S if and only if the assignment
corresponding to the ground element is below (in the boolean lattice) the assignment corresponding
to the set. Each ground element z;, i < n is mapped to the truth assignment that is all zero except
for bit ¢ which is 1. Each set maps to the truth assignment corresponding to the characteristic
function of the set. The 1’s of f are those truth assignments corresponding to ground elements;
the stars of f are those truth assignments « such that o« < /5 for some S corresponding to a set;
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and the remaining truth assignments are zeroes of f. It can be shown that the size of the minimum
DNF consistent with the partial function f is equal to the minimum size of the cover for the input
instance of 3-Uniform Set Cover.

In the second phase of Gimpel’s reduction, we map the partial function f to a total function,
g. The variables underlying g are V' (the variables of f) plus two additional variables, y; and ys,.
We give the details of g below in Section 3.2. Since g is a function over n + 2 variables, its truth
table size is exponential in the size of the 3-Uniform Set Cover instance from the first phase. Thus
Gimpel’s reduction does not give a hardness result for Min-DNF . It does, however, give a hardness
result for the A version of DNF minimization, because the number of 1’s of ¢ is polynomial in the
size of the input 3-Uniform Set Cover instance (this would not necessarily be the case if the input
were an arbitrary set cover instance, rather than an r-uniform set cover instance).

Our proof that Min-DNF is NP-complete also has two phases. The first phase is similar to that
of Gimpel. The main difference is that we need a much more compact mapping from the sets and
ground elements of the set cover instance onto truth assignments, to ensure that the size of the truth
table for the resulting function is only polynomial in the size of the input set cover instance. To
do such a compact mapping in a simple way, we start with an instance of 3D-Matching, or more
generally, with any instance of 3-Partite Set Cover, rather than from an instance of 3-Uniform Set
Cover. The second phase of our reduction is identical to Gimpel’s (except that we use truth table
representations of f and g, and Gimpel does not).

3.1 First phase of the Min-DNF NP-completeness reduction

In the first phase of our reduction, we reduce 3-Partite Set Cover to Min-DNF(*) . The reduction
is described by the following lemma.

Lemma 1. There is an algorithm that takes as input an instance (n,m, 3,11, S) of 3-Partite Set
Cover, and outputs an instance of Min-DNF(*) . The instance of Min-DNF(*) defines a partial
function f on O(logn) variables, such that the size of the smallest DNF consistent with f is equal
to the size of the smallest cover for the input 3-Partite Set Cover instance. The algorithm runs in
time polynomial in n.

Proof. Given an input instance (n,m, 3,11, S) of 3-Partite Set Cover, the algorithm produces an
indexed set of vectors V = {v* : i € [n]} and W = {w* : A € S} all of the same (small) length ¢
satisfying:

(*)Forall A€ Sandi € [n],i € Aifand only if v* < w?,

where the ordering on vectors is bitwise.

We will specify V and then define W according to the rule that for A € S, w* is the bitwise
OR of {v* : 1+ € A}. This guarantees the forward implication in (*) for any choice of V/; it is the
backward implication that requires some care in choosing V.

Let ¢ = [log,n]. For i € [n] write II(¢) for the index of the block of II that contains i and
let b(:) be the 2¢-bit string consisting of the ¢-bit binary expansion of i followed by its bitwise
complement. Let ¢ = 6[log, n|. We will consider the the ¢-bit strings in V and W as being divided
into 3 blocks of size 2[log, n]. For i € [n], let v* be equal to 0 on all blocks but block T1(4) and
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on block IT it is b(z). To see the backward implication of (*), let A € S and i € [n] and assume
v? < wA. A contains one element ' with TI(i') = TI(¢) and so we must have b(7) < b(:') which
implies i = 7'
Thus V' and W can be generated in time n®"). The partial function f will have domain {0, 1}*.
We need a few definitions. For u € {0, 1}

e D(u)={w:w<u}
e 7(u) denotes the DNF term [, _, —zi.

Note that D(u) is exactly the set of satisfying assignments of 7(u). For a set U of vectors
D(U) = U,ey D(u). Note that, by (*), V- C D(W).

We define f by f(z) = 1forv € V, f(z) = xifx € D(W) —V, and f(z) = 0 otherwise.
We claim that S has a cover of size m if and only if there is an m-term DNF consistent with f.
Constructing the truth table for f takes time 2°®) which is polynomial in n.

Given a cover C C S of size m, the m-term DNF whose terms are {7(w®) : C € C} is easily
seen to be consistent with f.

Conversely, suppose ¢ is an m-term DNF consistent with f. For 7 € ¢, let u(7) be the maximal
vector satisfying 7. Since ¢ is consistent with f, u(7) € D(W), so there must be a set S(7) € S
for which u(7) < w®. We claim that {S(7) : 7 € ¢} is a cover of S. Let j € [n] we must show
that j is covered. By the consistency of ¢, v is accepted by some term 7; € ¢. This implies
v? < wu(ry). Thus v/ < S(7;) which by (*) implies j € S(7;).

O

3.2 Second phase of the Min-DNF NP-completeness reduction

As mentioned above, the second phase of our reduction is taken from Gimpel. We describe his
reduction in detail here, with a correctness proof. We do this for two reasons — first, so that
this paper will contain a self-contained simple proof that Min-DNF is NP-complete, and second,
because we will build on the reduction later in order to prove non-approximability results.

The second phase of Gimpel’s reduction maps a partial function f to a total function, g. The
variables underlying g are V' (the variables of f) plus two additional variables, y; and y». The total
function g is defined as follows:

1, iff(f)=1andy; =y, =1

1, iff(Z)=xandy; =y, =1

L, if f(Z) =+, 1 = p(), and yo = —p(7)
0, otherwise

g(f y1y2) =

7

where p(Z) denotes the parity of Z (p(Z) is O if the parity is even, and 1 if it is odd). Let
s = |f7!(*)|. The key observation is that every DNF for g requires s distinct terms to cover the
inputs of the third type above; these terms can simultaneously cover all inputs of the second type,
but not those of the first type. The remaining terms of the DNF must therefore cover the terms
of the first type; they thus constitute a solution to the Min-DNF(*) problem for f. It follows that
DNF-SIZE(g) = DNF-SIZE(f) + s. We now prove this formally.
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Lemma2. DNF-SIZE(g) = DNF-SIZE(f) + s

Proof. We first show that DNF-SIZE(g) < DNF-SIZE(f) + s. Suppose that ¢ is a minimum-size
DNF consistent with f.
Define a DNF ) with terms of two types: first, for every input Z € f~'(x), ¢ contains the term

( /\ $z) N ( /\ _'ﬂUz) N Yop(@)
%=1 7:24;=0

These terms cover all inputs of the second and third types in the definition of ¢g. Second, for
every term T" of ¢, 1 contains the term

T ANyr ANyo

These terms cover all inputs of the first type in the definition of g. Finally, suppose that Zyy-
satisfies 1. Then one of the following conditions holds:

1. Ze f~'(x), y1 = p(Z), and y, = —p(Z)
2. 7€ f(*),andy; =y, =1

3. Fsatisfies p (andthus £ € f~1(1)U f~1(x))and y; =y = 1

In all three cases we have g(Zy;y2) = 1, and thus ¢ is consistent with g. The number of terms
inis [f~'(x)| + |¢| = DNF-SIZE(f) + s.

We next show that DNF-SIZE(g) > DNF-SIZE(f) + s. Suppose that 1) is a smallest DNF for g.
We assume without loss of generality that each term of ¢ is a prime implicant of g.

Claim 3. Forevery 7 € f~1(x), v contains the term

t(7) = ( /\ xz> A < /\ ﬁxi> N Ya_p(z)
=1 i:d;=0

Proof of claim 3. Let # € f~'(x), and suppose that the parity of 7 is odd: the case of even parity
is symmetric. Let 7" be a term of ¢ that is satisfied by 210 (where 10 are the values of y; and ¥,
respectively). If, for some index ¢, 7" does not contain the variable x;, let ' be obtained by flipping
the 4-th bit of #. Then 10 falsifies g (since Z' has even parity), but satisfies 7', contradicting
the assumption that ¢ is consistent with g. Thus 7" contains each of the variables z1,...,z,. In
addition, 7" contains the variable ¥, as otherwise 00 would satisfy 7". Finally, since 7" is a prime
implicant of g, we have that T = ¢(%). O



Claim 4. There exist a subformula + of 1y and a DNF ¢’ over the 7 variables that is consistent
with f, such that

b=\ (TApAy)

Tey!

Proof of claim 4. Let 1) be the subformula of ¢ consisting of those terms which are satisfied by
#11 for some Z € f~'(1). Each term of + contains y; A s, since flipping either y; or y, produces
an input that falsifies g. It follows that

b=\ (TApAp)

Tey

where 7' is a DNF. It remains to show that «’ is consistent with f. For every € f~1(1), there is a
term of ¢ which is satisfied by #11, and thus there is a corresponding term of )" which is satisfied
by #. On the other hand, every & € f~'(0) must falsify ¢, as otherwise Z11 would satisfy «». [

By Claims 3 and 4, + consists of the terms ¢(Z), for each & € f~!(x), together with the
subformula . These components are pairwise disjoint, as every term of ¢ contains y; and s,
while each ¢(Z) contains only one of these. Since ¢’ is consistent with f it follows that v contains
at least DNF-SIZE( f) terms, and thus the size of ¢ is at least DNF-SIZE(f) + s. O

Note that this second phase is, in fact, a reduction from Min-DNF(*) to Min-DNF .
Putting both phases together, we get a polynomial-time reduction from 3-Uniform Set Cover
to Min-DNF , thus proving the NP-completeness of Min-DNF .

4 On the Approximability of Min-DNF

Although the above gives us a simple proof of the NP-completeness of Min-DNF , it does not give
us inapproximability results for Min-DNF . There are two problems. First, the reduction begins
with an instance of 3-Partite set cover, a problem that is easy to approximate to within a factor of
In 3 [14, 20] (since the size of the largest subset is 3); we want to reduce from a problem that is
difficult to approximate. Also, the second phase of the reduction is not approximation preserving.

We modify the first phase of the reduction so that instead of reducing from 3-Partite Set Cover,
we reduce from r-Uniform Set Cover, for a non-constant value of r. This allows us to use known
inapproximability results for r-Uniform Set Cover. However, because we are no longer reducing
from a partite set cover problem, this requires a new way to construct the partial function f from
the input set cover instance.

We modify the construction in the second phase of the reduction to make it approximation
preserving.



4.1 Modified first phase

Our modified first phase uses the algorithm in the following lemma to convert an instance of r-
Uniform Set Cover (we specify r later) into an instance of Min-DNF(*) .

Lemma 5. There is an algorithm takes as input an -uniform collection of subsets S over [n], and
produces the truth table of a partial boolean function f such that the minimum size of a cover of
[n] with S is equal to the minimum number of terms in a DNF consistent with f. The algorithm
runs in time (n|S|)° and the number of variables of f is O(rlog(n|S|)).

Proof. Let the r-uniform collection S over [n] be given.

As in the proof of Lemma 1, we produce two indexed sets of vectors V = {v* : i € [n]} and
W = {w? : A € S} of length ¢ satisfying the property (*) that forall A € Sandi € [n],i € A if
and only if v* < w?. Again, we specify V and then define 1 according to the rule that for A € S,
w? is the bitwise OR of {v¢ : i € A}. The construction of partial function f, given V and W, is
then the same as in the proof of Lemma 1, and again it follows that the size of the minimum DNF
consistent with f is equal to the size of the minimum cover of [n] by S.

We now describe the construction of V. Let P be the set of pairs (j, A) with A € S and
j € [n] — A. The desired conditions on V' can be restated as specifying that for all (5, A) € P:

C(j, A): There is a bit position « € [t] such that vJ = 1 and v}, = 0 for all i € A.

If we choose v, . .., v™ of length ¢ at random where each bit is 1 independently with probability
1/r, then for each (j, A) € P the probability that C(j, A) does not hold is (1—2(1—1)")* < e */3r,
so the probability that v', ..., v" fails to meet the requirements is at most | P|e /3" < |S|ne /3.
Thus if ¢ > 3r(1 4 In(|S|n)) this random choice succeeds with probability more than 1/2. This
is enough for a randomized reduction. To make it deterministic, we derandomize this construction
using the method of conditional probabilities (see, e.g., [4].) This is routine but technical so we
provide only a sketch. Let X (j, A) be the random variable which is 1 if C'(j, A) fails. We want to
choose v!,...,v" sothat X = Z(j,A)EP X (4, A) = 0. The above argument says that under random
choice Exp[X] < 1/2. The key point for derandomizing is that if we fix any subset of the bits in
vl ..., v" then it is straightforward to compute the conditional expectation of X given this fixing
in time (|S|n)°™). We can then use the method of conditional probabilities to fix these bits one at
a time always choosing the value of the bit which does not increase the expectation. Once all bits
are fixed we must have a good choice for V.

Clearly V and W can be constructed in time in time (n|S|)°® with t = O(rlog(n|S|)). Since
the truth table has size 2¢, outputting it takes time (n|S|)°(). O

4.2 Modified Second Phase

We modify the reduction from Min-DNF(*) to Min-DNF to make it approximation preserving. Let
f be a partial function over variables z,,...,z,. Lets = |f~!(x)|. We construct a new total
function ¢’ such that

DNF-SIZE(¢') = s - DNF-SIZE(f) + s = s - (DNF-SIZE(f) + 1)



Let¢ = 2logs, and let S C {0, 1} be a collection of s vectors, each containing an odd number
of 1’s. We add ¢ new variables zi, ..., z;, and define

, iff(@)y=1landy, =y =1and 7€ S

, iff(f)=xandy; =y, =1and 7€ {0,1}¢

, if f(Z) = %, 41 = p(T), and y» = —p(Z) and 7 € {0, 1}
, otherwise

gl(f Y1Y2 Z) =

e I

Lemma6. DNF-SIZE(g') = s - DNF-SIZE(f) + s

Proof. We first show that DNF-SIZE(g') < s- DNF-SIZE(f) + s. Suppose that ¢ is a smallest DNF
consistent with f. Define a DNF ¢ with terms of two types: first, for every input € f='(x), ¥

contains the term
( /\ l“z) A ( /\ —'xz) N Yop(&)
12, =1 1:T;=0

These terms cover all inputs of the second and third types in the definition of ¢’. Second, for
every term 1" of ¢ and every vector z' € S, 1 contains the term

T Ay ANya A ( A zz> A ( A ﬁzi)
1:2;=1 4:2;=0

These terms cover all inputs of the first type in the definition of ¢'. Finally, suppose that Zy, v,
satisfies ¢. Then one of the following conditions holds:

1. 7€ f7'(x), y1 = p(Z), and yo = —p(Z)
2. ¥ € fﬁl(*), and Y1 =y =1
3. Tsatisfies p (andthusZ € f (1)U f (%), ;1 =y =1,andZ€ S

In all three cases we have ¢'(Zy1y2Z) = 1, and thus ¢ is consistent with ¢’. The number of
termsinis [f (%) + |¢| - |S| = s |o| + s = s - DNF-SIZE(f) + s.

We next show that DNF-SIZE(g') > s- DNF-SIZE(f) + s. Suppose that ¢ is a smallest DNF for
g'. The proof of the following claim is almost identical to the proof of Claim 3.

Claim 7. For every Z € f~'(x), ¢ contains the term
t(7) = ( /\ xl) A ( /\ —mvi) A Yo p(@)
i@ =1 7:%;=0
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Claim 8. For each z' € S there exist a subformula ¢z of ¢/, and a DNF 1%, over the Z variables and
consistent with f, such that

Yz = \/ (T Ay Aya AE(2))

Teyl,

#(2) = (/\ z,-) A (/\ w)

Proof of claim 8. LetZ € S, and let 17 be the subformula of v consisting of those terms which are
satisfied by £112 for some 7 € f~'(1). Each term of v contains y; A y» A £(2), as flipping either
1 Of ¥, OF any bit of 2, produces an input that falsifies ¢’. It follows that

where

Yz = \/ (T Ay Aya AE(2))

Teyl

where ¢ is @ DNF. It remains to show that ¢ is consistent with f. For every Z € f~!(1), there
is a term of ¢ which is satisfied by £11Z, and thus there is a corresponding term of % which is
satisfied by Z. On the other hand, every € f~'(0) must falsify ¢, as otherwise z11Z would
satisfy .

By Claims 7 and 8, ¢ consists of the terms ¢(Z), for each Z € f~!(x); and of the subformulae
Yz, for each z € S. These components are pairwise disjoint, as every term of ¢z contains ¢(2),
and ¢(Z) contains no z-variables. Since . is consistent with f it follows that > contains at least
DNF-SIZE(f) terms, and thus the size of 1) is at least s - DNF-SIZE(f) + s. O

Combining the above two phases, we get a reduction from r-Uniform Set Cover to Min-DNF ,
which yields the following inapproximability result for Min-DNF .

Theorem 9. For sufficiently large n and for any » = Q(logn), if NP is notin BPTIME(n°™),
then there is no polynomial-time c(log ) approximation algorithm for Min-DNF , for some con-
stant c.

Proof. Suppose that A is a polynomial-time ¢’ log log N-approximation algorithm for Min-DNF ,
for some constant ¢/. We show how to use A to approximate r-uniform set cover.

Given an instance S of 7-Uniform Set Cover over the ground elements [n], by the reductions in
the previous section we can obtain the truth table of a partial boolean function f over ¢ variables,
where ¢ = O(rlog(n|S]), such that the minimum size of a cover for S is equal to the minimum
number of terms in a DNF consistent with f. This reduction takes time poly(n)2°®. We can then
obtain the truth table of a (total) boolean function ¢’ over ¢’ variables, where ¢’ = O(rlog(n|S])),
such that the set cover instance has a cover of size ¢ iff ¢’ can be represented as a DNF of size
s(q + 1), where s is the number of *’sin f.

Let V be the number of entries in the truth table of ¢’. Running A on the truth table of ¢’
will produce a DNF ¢ of size at most ¢’s(q¢ + 1) loglog N < ¢'sqd(logr + loglog(n|S]), for
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some constant d. If |S| is bounded by a fixed polynomial in n, then this quantity is at most
d'd'sq(logr + loglogn), for some constant d’. For r = Q(logn), by setting ¢’ small enough, we
get that this quantity is at most sgclogr.

Thus (size of ¢)/s is upper bounded by gclogr. The value of s can be computed efficiently
during the reduction, as can the size of ¢. By computing (size of )/s, one thus obtains a value
which is at most clogr larger than the size of the smallest cover for the original r-uniform set
cover instance (and by the proofs of Lemmas 6 and 5, a set cover of size equal to that value can
be generated in polynomial time from o). It follows that r-uniform set cover can be approximated
to within a factor of clogr. But by [11], there is a constant ¢ such that -uniform set cover is not
approximable to within a factor of clogr in time n°) unless NP € BPTIM E(n°). O

Note that when r» = log n we have the following corollary:

Corollary 10. There exists a constant ¢ such that if NP is not in probabilistic quasipolynomial-
time, then there is no polynomial-time, c¢(log log IV)-approximation algorithm for Min-DNF . (Here,
N is the input size for Min-DNF )

5 Improvingthe I napproximability Factor

In this section we will improve our inapproximability factor to c(log V)?, by exploiting the par-
ticular properties of the set cover instance obtained by the Lund/Yannakakis PCP-based reduction.
We briefly review the Lund/Yannakakis reduction, as presented by Khot.

An instance of Label Cover (LC) isdenoted by £ = (G(V, W, E), Ly, Lo, {Tyw } (v,w)c ) Where:
(1) G(V,W, E) is a regular bipartite graph; (2) L, and L, are sets of labels where V and W get
labels from L, and L, respectively; and (3) {7y }(v,w)cr denote the constraints on each edge. For
every edge (v, w) € F we have amap m,y, : L1 — Lo.

A labelling !l : V. — L;, W — L, satisfies the constraint on an edge (v, w) if 7y, ({(w)) =
I(v). Given an instance £, the output should be a labelling which satisfies the maximum fraction,
OPT(L), of edges.

Theorem 11. It is NP-hard to solve the following gap version of Label Cover. The input is an
instance of Label Cover, £ = (G(V, W, E), [7], [2], {Tvw } (v,w)e ). The degree of each vertex in V/
is 5, and the degree of each vertex in W is 3. Also the size of V and W are n. (Note: The reduction
is from Gap-Max3SAT, so V will correspond to the n underlying variables, and W will correspond
to the m clauses.) The instance should be accepted if OPT'(L£) = 1, and the instance should be
rejected if OPT'(L) is at most ¢ for some fixed constant ¢’ < 1.

Using Raz’s parallel repetition theorem, we can amplify the gap to get the following NP-
hardness result for Label Cover.

Theorem 12. For all £, it is NP-hard to solve the following gap version of Label Cover. The
input is an instance of Label Cover £' = (G(V',W', E'), [7*], [2*], {n},,} ww)er), Where: (1)
V' =Vk(so|V'| = n*)and W' = Wk; 2) L, = L¥ and L, = L%; 3) (v',w') € E'if and
only if (v;,w;) € Eforall1 <i < k, where v = (vq,...,v;) and w’ = (wy, ..., wy); and (4)
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Ty (015 -+ k) = Typpawy (b1), - - -, Ty, (b)) The input should be accepted if OPT(L') = 1, and
the input should be rejected if OPT(L') is at most 2~7* for some absolute constant y > 0.

Note that |V’| and |[W'| are n°®), where n is the size of the SAT instance. Also, the degree of
each node in V' is 5* and the degree of each node in W is 3%. Also, the number of possible labels
on the left side is 7% and on the right side is 2*. We will choose k¥ = log log n.

Defi nition 13. A Partition System P (U, m, h, t) consists of: (1) a universe U of m elements; (2) ¢
pairs of disjoint sets (A1, A1), ... (4;, 4;), with A; C [m]. Furthermore it has the property that no
collection of A sets, with at most one set from any pair, can cover the whole universe.

Lemma 14. Given h, t, there is a partition system with m = O(2"hlogt).

We now review the reduction from Label Cover instance, £’ to Set Cover, SC,. It has been
proven that if OPT (L") = 1 then our set cover instance has a cover of size |[V'| 4+ |W’'|. On the
other hand, if OPT (L") < 277, then our set cover instance requires a cover larger than ph|W'|
where h is a parameter in our construction and p is an absolute constant. Thus we get an Q(h)
inapproximability result for set cover.

We assume without loss of generality that |V'| = [IW’|. (Make copies of every vertex in V' so
that this is the case. This will preserve the value of OPT(L’).) First, the universe U of SC: is as
follows. For each edge e = (v, w) we associate a subuniverse of 2" elements, U,,, = {(e,7),i <
2011 The entire universe is the disjoint union of these | E/| subuniverses. Associated with each
edge (v, w) will be a partition system over U, witﬂv one partition a_sggciated with each of the

possible labels. Call the partitions over U,,,: (A", A, ),...,(A}", A, ). Thus the size of the
entire universe is n@%)20(),

We now define the sets. The sets will be the union of two collections of sets, S(v, ), for each
vertex v € V and each possible label i € L,, and sets S(w, j), for each w € W and label j € L,.
In particular,

S(U, Z) = Uw:(v,w)eEA;-}w.

S(w, §) = Vo e i, i)
The following two claims are implicit in Lund/YYannakakis as well as in later improvements.
Claim 15. If OPT(L) = 1 then SC/ has a cover of size |V| + |[W| = n®®),
Claim 16. Setting h = O(27%/2), if OPT (L) < 277*, then SC/; requires a cover of size h|W|/8.

By setting £ = O(loglogn), the above claims imply that we cannot approximate set cover to
within an O(logn) factor unless N P is contained in quasipolynomial time.

It is left to show how to reduce instances of set cover of the above form, SC; to Min-DNF(*) .
We assume that (S, ) has the property that there are no two elements (e, i), (¢’,4') € U such that
(e,i) € S < (€,i") € Sforall S € S. If there exist such elements, they can easily be
identified and all but one of them removed without changing the size of an optimum set cover. We
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now describe how to encode (S,) as an instance of MinDNF*. By the results of section 3.1 it
suffices to define vectors

{ue,i | (e,2) € U}
{tva|veEV, ae L}
{twp |w €W, be Ly}

such that the following conditions hold.

Uei < tya < (e,1) € S(v,a) V(e,i) eU, v eV, a € Ly
Uei < twp <= (e,1) € S(w,b) Vie,i) eU, we W,be Ly

Letm € O(log [V']) be such that (,7,) > [V|, [W|. Our function will have variables

m/2
{21, am b UL, 2} U{ya | a € L} Uy | b€ Lo}
Thus the number of variables is
O(log [V| + |Li| + Ls|) = O(klogn + 7 + 2F)

We assign to each v € V a unique set S, C {1,...,m} of size m/2; and similarly each w € W
is assigned a unique set S,, C {1,...,m} of size m/2. Foreachv € V and a € L;, we define a
boolean vector ¢, , as follows. The vector ¢, , has zeroes corresponding to those variables z; such
that: € S,; and it has a zero corresponding to y,. The remaining bits of ¢, , are ones. We similarly
define, for each w € W and b € L., a boolean vector ¢,,; having zeroes corresponding to those
variables z such that i € S,,, and a zero corresponding to y;, and whose remaining bits are ones.

We now describe, for each (e, i) € U, a boolean vector v, ;. Suppose that e = (v, w), and let

S(v,a1),...,S(v,a)
S(w,b),...,S(w,by)

be all of the sets in S containing (e, 7). Then u.; has zeroes in the positions corresponding to the
following variables.

e Variables z;, where i € S,
e Variables z, where ¢ € S,
e Variables y,,, where 1 <7 <k
e Variables y; , where 1 <4 </
The remaining bits of . ; are ones.
Claim 17. For all (e,i) e U, v € V,w € W,a € L,,and b € Lo, the following conditions hold.

Uei <ty <= (e,1) € S(v,a)
Uei < typ <= (e,i) € S(w,D)
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Proof. Suppose first that (e,i) € S(v,a), wherev € V and a € Ly. Then e = (v, w) for some
vertex w € W. Now the zeroes of ¢, , are in positions corresponding to variables z;, where ¢ € S,,,
and in the position corresponding to y,. Since e = (v, w), the vector . ; has zeroes in the positions
corresponding to variables x;, where i € S,, and since (e, i) € S(v, a) the vector u,., also has a
zero in the position corresponding to y,. Thus u.; < t,,. The case where (e, i) € S(w,b), where
w € Wand b € Ly, is symmetric.

Now suppose that (e, i) & S(v,a), where v € V and a € L;. Suppose that e = (v, w'). If v' # v
then there exists an index j € S, \ S,/; and u.; has a one in the position corresponding to z;, while
ty,o has a zero in the same position, and thus u.; £ ¢,,. So assume that v = v. By definition
of ¢, ., we know that ¢, , has a zero in the position corresponding to y,. But since e = (v, w’),
ue; has a zero in this position iff (e, ) € S(v, a); and as we have supposed that (e, i) ¢ S(v, a) it
follows that the position in u. ; corresponding to y, is set to one. Thus u.; £ t,,. The case where
(e,7) & S(w,b), where w € W and b € Lo, is symmetric. O

By the results of section 3.1, the vectors u., t, 4, and t,,;, yield an instance of MinDNF* on
O(klogn + 7% + 2F) variables whose optimum is equal to the optimum for the instance (S, /) of
SET-COVER. We have therefore nearly proven the following theorem.

Theorem 18. If NP ¢ QP then there exists an absolute constant 0 < § < 1 such that there is
no polynomial-time, (log V)°-approximation algorithm for MinDNF*, where N is the size of the
truth table.

Proof. Let f be the partial function specified by our reduction. The reduction of Lund and Yan-
nakakis, together with the results of section 3.1, implies that our MinDNF* instance has the fol-
lowing properties:

e IfOPT(G, Ly, Ly, IT) = 1 then DNF-SIZE(f) < 2- |V].

o IfOPT(G, Ly, Ly, IT) < 277% then DNF-SIZE(f) > h - [V|/8

where h = O(2%/?). Let us take k = loglogn, and thus A = O((logn)?/?). The number of
variables of f is

O(klogn + 7% + 2%) = O(lognloglogn + (logn)'8 " 4+ logn)
= O((logn)"*®")
=log N

Thus a polynomial-time, (h/16)-approximation for MinDNF* would imply a quasi-polynomial-
time solution to the LABEL-COVER instance. In terms of IV, the size of the truth table, this lower
bound translates to

h/16 = c(log n)”’/2 =0 ((log N)v/(210g7))
The theorem follows by taking § = /(2 log 7). 0

The results of section 3.2, together with theorem 18, yield the following hardness result for
MinDNF.

Theorem 19. If NP ¢ QP then there exists an absolute constant 0 < e < 1 such that there is no
polynomial-time, (log NV)¢-approximation algorithm for MinDNF, where N is the size of the truth
table.
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6 Fixed Parameter Complexity of Min-DNF

It is known that the decision problem “Given a truth table of a Boolean function f, and a number £,
does f have a DNF with at most k terms?” can be solved in time p(N, 2¥*), for some polynomial
p, Where N is the size of the truth table [13]. (This follows easily from the fact that if f is a
Boolean formula that can be represented by a k-term DNF formula, then there exist at most 2*
prime implicants of f [9].) Thus, Min-DNF is fixed parameter tractable. Moreover, because the
size of the input truth table is N = 2", where n is the number of variables of f, it follows that
Min-DNF is solvable in polynomial time for any & = O(y/n).

It is an open question whether Min-DNF can be solved in polynomial time for £ = n. But by
applying a simple padding argument, we obtain the following corollary to the NP-completeness
result for Min-DNF :

Corollary 20. If there exists some constant e > 0 such that NP is not contained in DT'TM E(2°)),
then for some constant ¢ > 1, Min-DNF for £ = n¢ is not solvable in polynomial time (where n is
the number of input variables of the Boolean function defined by the Min-DNF instance).

Proof. Because Min-DNF is NP-complete, there exists a polynomial-time reduction from prob-
lems IT in NP to Min — DNF. |If the input to II is of size n, then the input to the resulting
Min-DNF problem will be of size s = O(n®) for some constant b > 1. The parameter k in the
derived Min-DNF instance is no more than s, since for any truth table, there is always a consistent
DNF of size at most the size of the truth table. Let ¢ > 1. Let m = sc. Take the Min-DNF
instance and form a new Min-DNF instance by padding the function in the truth table with m — n
new dummy variables. Suppose Min-DNF is solvable in polynomial time when & = n°. Then the
padded instance of Min-DNF can be solved in time polynomial in 2%, and II can be solved in time

.1 . ; .
20(™<) For e > % this is less than 29("°), Contradiction. m

Our interest in the parametrized version of Min-DNF is motivated in part by connections to
computational learning theory. One of the major problems in learning theory is to determine
whether DNF formulas can be learned in polynomial time. Since this problem is difficult and
remains open for many learning models, there has been a significant amount of research on learn-
ing k-term DNF formulas for small values of & (see e.g. [5, 7, 19, 13]). The connection between
learning k-term DNF formulas and Min-DNF for £ is strongest for “proper” learning models: in
such models, any hypotheses used in learning the class of £-term DNF formulas must themselves
be k-term DNF formulas.

Pitt and Valiant showed that in the proper PAC model, unless RP=NP you cannot properly learn
k-term DNF formulas in polynomial time (for constant k). Their proof was based on showing that
finding a k-term DNF consistent with a sample is NP-hard. This consistency problem is related to
the Min-DNF(*) problem, the difference being that in the consistency problem the sample consists
only of the elements in f=1(1) J f='(0), for formula f, whereas in Min-DNF(*) the whole truth
table is given as input. Their NP-hardness proof can be easily extended to k-term DNF for larger
values of k, yielding non-learnability results for larger values of & in the PAC model. We note that
our reduction to Min-DNF(*) in fact implies that the k-term DNF consistency problem is NP-hard
for £k = n, even when the underlying function depends on only logn of the n input variables (a
log n “junta”); this in turn implies that proper PAC learning of n-term DNF formulas depending
on log n of the n input variables cannot be accomplished in polynomial time unless RP=NP.
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Pillaipakkamnatt and Raghavan showed that for some ¢ < 1 and some ¢ > 1, log®n-term
DNF cannot be learned in the membership and proper equivalence query model unless NP C
DTIME(2°)). Subsequently, Hellerstein and Raghavan proved that Q(log®*¢n)-term DNF
formulas cannot be learned in the same model; their proof involves a structural property of DNF
formulas and the result is without any assumptions. (It can be improved to ©(log®*.) It is open,
however, whether log n-term DNF formulas can be learned in polynomial time in this model;
v/log n-term DNF can be so learned [7]. A polynomial-time algorithm for learning log n-term DNF
formulas in this model would imply a polynomial-time algorithm for Min-DNF for & = n [13].
The same proof shows that for constant ¢, a polynomial-time algorithm for learning log® n-term
DNF formulas would imply a polynomial-time algorithm for Min-DNF for £ = n°. Thus the result
of Pillaipakkamnatt and Raghavan mentioned above can also be derived from Corollary 20.

7 Hardnessof Min-ACY

In [2] it was shown that neither Min-Circuit nor Min-NC! can be approximated to within a factor
of n'~¢ in polynomial time unless Blum Integers can be factored efficiently. In this section, we
strengthen their result to hold for Min-AC? as well. More precisely, let Min-ACY be the problem of
estimating the size of depth d AC? circuit size. For large enough values of d, Min-ACY is difficult
to estimate, unless factoring Blum integers can be performed in time 2™ where the value of d
depends on the value of 6. We have not yet computed the relationship between d and 4, but we
anticipate that this yields a meaningful inapproximability result for d as small as 10.

Lemma 21. For every language £ in N L, and for every e, there exists a d such that there are AC?
circuits of size 2" that recognize L.

Proof. (Proof sketch) Consider NL machines running in time m = n°. To find an accepting path,
guess y/m “checkpoints” and verify that, for every 2 adjacent “"checkpoints” there is a path of /m
connecting them. This gives rise to a DNF formula of size roughly 2V™. Iterating this idea gives
depth d ACP circuits of size 2"°. This is basically a strengthening of Nepomnascii’s Theorem
[3, 23] O

Defi nition 22. A 2n-bit integer is called a Blum Integer if N = PQ, where P and @ are two
primes such that P = Q = 3mod4. The Blum Integer Factorization problem is as follows. Given
a Blum Integer N find the primes P and @ suchthat1 < P < @ and N = PQ.

Theorem 23. For every ¢ > 0 there is a depth d such that Blum Integer Factorization is in
BPTime(2™)5, where B is any function that approximates Min-ACY to within a factor of n'~°
(forany 6 > 0).

Proof. We follow the proof given in [2]. In [22] a pseudo-random function emsemble { fx ,(z) :
{0,1}* — {0,1}}n, is constructed with the following two properties:

e There isa T'C? circuit computing fx(z), given a 2n bit integer N, a 4n? + 2n-bit string r,
and an n-bit string x.
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e For every probabilistic Turing machine M running in time ¢(n) with oracle access to fy , of
query length n, there exists a probabilistic Turing machine .4 running in time ¢(n)n°" such
that for every N = PQ, |N| = 2n, if |PrM/¥+(N) = 1] — PriM®=(N) = 1]| > 1/2,
where R, is a uniformly distributed random function ensemble, and the probability is taken
over random r, and random bits of M then Pr[A(N) € {P,Q}] > 1/2. In other words,
if M can distinguish the pseudorandom function ensemble from a truly random function
“efficiently”, then Blum Integers can be factored in “efficiently” on a probabilistic machine.

Now let fy, be computable by a TC? circuit of size n¢. Let 71, xy, - . ., To» denote the strings
in {0,1}™ in lexicographic order. Let m be a power of two of size approximately 2"°. For all
large enough n, all 2n-bit integers n and all 4n? + 2n-bit strings r, consider the function ~ whose
truth table is given by fy.(z1), fyr(22), ..., fns(zm). This function has TC? circuits of size
polynomial in n and hence by Lemma 21, there is some d such that this function has depth d AC°
circuits of size 2" for some v < e.

Now consider the following oracle Turing machine M with with oracle access to g and B:
On input N, M queries g on the lexicographically first m inputs, z1,...,z,,, t0 get answers
Y1, - - -, Ym; let h denote the function whose truth table is given by v, ..., v,. Then M accepts
N if and only if B, on input h, with & = m!'~%/2 rejects. (That is, M accepts if and only if the
oracle B is estimating that 4 requires large ACY circuits.) We are assuming that B approximates
Min-ACY within a factor of m!?, i.e., that 1 < B(h)/Min-ACY (k) < m'~°. Now for sufficiently
large n, if g € {fn,(z)}n, then M will always reject, since as argued above, in this case &
has ACY circuits of size at most 2", and 2""m!'~% < m!~%/2, On the other hand, if g is taken
uniformly at random from R,,, then ¥, ...y, is a random string and since almost all functions
require ACY circuits of size m/logm > m!'~%/2, on all such inputs it follows that M will accept,
and hence |PrM/N+@)(N) = 1] — Pr[MPB=(N) = 1]| > 1/2, for sufficiently large n. Thus,
M can distinguish the pseudorandom function ensemble from a truly random one with probability
greater than 1/2, and thus Blum Integers can be efficiently factored probabilistically.

O

As a corollary to the above theorem we have:

Theorem 24. For all € > 0 there exists a d such that for all § > 0, Min-ACY cannot be approxi-
mated to within a factor n'=% in BP P unless Blum Integer Factorization is in BPTime(2").

8 Discussion

There are close connections between the hardness of function minimization problems and related
learnability results. In addition to the connections discussed above in Section 6, we mention two
others: the complexity of Min-DNF (DNF) and approximating Min-DNF (DNF) has been shown to
be related to the problem of learning DNF with proper membership and equivalence queries [8, 13,
1], and results on learning circuits [6] yield positive results for approximating circuit minimization
(cf. [28]). At a basic level, learning a formula or circuit involves gathering information about
it, and then synthesizing or compressing that information to produce a compact hypothesis. The
need for compactness provides the connection to minimization. In many learning problems one
can distinguish between informational complexity (the number of queries or sample size needed),
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and computational complexity (the amount of computation needed to process the information).
Information about a formula or circuit typically consists just of input/output pairs. Truth table
minimization problems are relevant to the computational hardness of learning; even if you have all
input/output pairs, the question is whether you can compact that information in polynomial time.

NP-hardness of proper PAC learning DNF, and Min-DNF are known. On the other hand, very
strong inapproximability results are known for both proper PAC learning and the function min-
imization problem for complexity classes starting at AC°. However, these latter results rely on
cryptographic assumptions, and are not known to hold under NP-hardness assumptions. This an
important open question is to resolve the NP-hardness of both learnability results as well as func-
tion minimization results above for classes that are stronger than DNF.

Finally, an open problem is to close the approximability gap for Min-DNF .
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