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Abstract

Producing a small DNF expression consistent with given data is a classical problem
in computer science that occurs in a number of forms and has numerous applications.
We consider two standard variants of this problem. The first one is two-level logic
minimization or finding a minimal DNF formula consistent with a given complete truth
table (TT-MinDNF). This problem was formulated by Quine in 1952 and has been since
one of the key problems in logic design. It was proved NP-complete by Masek in 1979.
The best known polynomial approximation algorithm is based on a reduction to the
SET-COVER problem and produces a DNF formula of size O(d ·OPT), where d is the
number of variables. We prove that TT-MinDNF is NP-hard to approximate within dγ

for some constant γ > 0, establishing the first inapproximability result for the problem.
The other DNF minimization problem we consider is PAC learning of DNF expres-

sions when the learning algorithm must output a DNF expression as its hypothesis
(referred to as proper learning). We prove that DNF expressions are NP-hard to PAC
learn properly even when the learner has access to membership queries, thereby an-
swering a long-standing open question due to Valiant [39]. Finally, we observe that
inapproximability of TT-MinDNF implies hardness results for restricted proper learn-
ing of DNF expressions with membership queries even when learning with respect to
the uniform distribution only.
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1 Introduction

The problem of finding a minimal-size disjunctive normal form expression consistent with
a given truth table (TT-MinDNF) is one of the oldest problems in computer science. It
was formulated by the famous logician and philosopher Willard Van Quine in his work on
mathematical logic [31, 32]. His algorithm for simplifying logical steps was also discovered
in 1956 by Edward McCluskey in the context of circuit design [26]. Besides its important
role in circuit design (in particular, VLSI design, Programmable Logic Array synthesis,
and multi-level logic synthesis [9]) the problem has more recently appeared in reliability
analysis [8], IP routing table compaction [23], and high-dimensional data representation [1].
This array of application has lead to an ongoing effort by many researchers to seek efficient
heuristic and exact minimization procedures. We direct the interested reader to [9] for an
overview of a large number of publications and some software tools. In the original Quine-
McCluskey algorithm and in most of the later approaches, after a number of simplification
steps the problem is reduced to an instance of the classical SET-COVER problem. Then,
either an exact solution is found via the brute-force search, or an approximate solution
is found using a certain heuristic. In the former case the size of the search space is not
theoretically analyzed and in the latter no guarantees on the quality (i.e. size) of the output
are given (both are usually measured empirically).

Far less work has been done on the theoretical side of this problem. Gimpel [15] and Paul
[29] showed that Quine-McCluskey method can produce instances of SET-COVER that are
NP-hard to solve. Then, in 1979, the full truth table version was proven NP-complete by
Masek [25] (his manuscript was not published but the proof can be found in surveys by Czort
[10] and Umans et al. [37]). Inapproximability results are only known for a generalization
of TT-MinDNF that allows “don’t care” values in the truth table (i.e. , the truth table is
partial). Allender et al. prove that this problem (we denote it by PTT-MinDNF) is NP-
hard to approximate within any constant factor and cannot be approximated within log d
factor unless NP ⊆ RTIME(npolylog(n)), where d is the number of variables [3]. They also
produced a simpler proof (than Masek’s) for NP-hardness of TT-MinDNF.

On the approximation side the only known efficient approximating algorithm is the one
resulting from using the greedy algorithm to solve the SET-COVER instance obtained in
Quine-McCluskey algorithm. It results in ln 2d = O(d) approximation factor.

In this paper we present the first result on hardness of approximating TT-MinDNF.
More specifically, we prove the following theorem.

Theorem 1 There exists a constant γ > 0 such that it is NP-hard to approximate TT-
MinDNF to within a factor dγ, where d is the number of variables of the TT-MinDNF
instance.

This result implies that the approximation factor achieved by the greedy algorithm is at
most polynomially larger than the best possible.

Learning is another context where finding a small DNF formula consistent (or almost)
with the given data is a fundamental problem. The problem was formulated by Leslie Valiant
in his seminal paper introducing the PAC model of learning [39] and has been the subject
of numerous subsequent works. A number of questions related to PAC learning of DNF
expressions were posed by Valiant [39, 40]. Specifically, he asked whether DNF expressions
are learnable from random examples with or without the use of the membership query (MQ)
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oracle. Valiant’s original definition required that the learning algorithm output a DNF
expression but this restriction was later relaxed to any efficiently-computable hypothesis
with the stricter version being referred to as proper learning. All these variants of the
DNF learning question remained open until a recent result by Alekhnovich et al. that
established NP-hardness of the hardest variant: proper learning from random examples
only [2]. Building on their proof, we resolve one more of Valiant’s questions:

Theorem 2 (informal) If NP 6= RP then there is no polynomial-time PAC learning
algorithm for DNF expressions that outputs a DNF expression even when the learning al-
gorithm has access to the membership oracle.

Besides, we observe that hardness of TT-MinDNF implies hardness of strongly proper
learning of DNF expressions with MQs even with respect to the uniform distribution, where
strongly proper means that the size (number of terms) of a hypothesis has to be upper-
bounded by the DNF-size of the target function. Our inapproximability result then trans-
lates to hardness even when the size of a hypothesis is O(logγ n) times larger than the size of
the target. We note that, as proved by Jackson, unrestricted DNF expressions are learnable
non-properly in this strong model [19], and hence our result highlights the importance of
knowledge representation in this model.

Access to membership queries plays an instrumental role in numerous learning algorithms
(many of which are proper), but hardness results for learning with MQs are still very scarce.
These results are the first to show that PAC learning can be NP-hard even when MQs are
available.

1.1 Relation to Other Work

Besides the results that we have already mentioned, one of the most significant results in
DNF minimization is Umans’ proof that finding a minimal DNF formula for a function given
by a DNF formula (also called finding a minimal equivalent DNF and denoted MinEquDNF)
is Σp2-hard to approximate within N γ for some constant γ > 0, where N is the size of the
given DNF formula [36]. Despite the same goal in both problems the difference in input
makes the nature of the problem (and, eventually, the proof techniques) very different. In
particular, the gaps differ exponentially in terms of the size of hard instances.

Our hardness results for learning DNF expressions are contrasted by the fact that mono-
tone DNF expressions are known to be strongly properly PAC learnable with MQs[39]. In
addition to that, DNF expressions with k terms are known to be learnable by DNF expres-
sions with 2k terms when MQs are available [6]. It is also interesting to note that known

non-trivial algorithms for learning unrestricted DNF formulae (running in time 2Õ(n
1
3 ) [22]

and in time 2Õ(
√
n) with DNF hypotheses [2]) use only random examples and it is unknown

whether they could be sped-up by using MQs.
Initial hardness results for properly learning DNF formulae due to Pitt and Valiant [30]

show that unless RP = NP, k-term DNF formulae over n variables are not learnable by 2k-
term DNF. These results were strengthened by Nock et al. [28] who proved similar hardness
even when learning by formulas of size kαnβ (where α ≤ 2 and β is any constant). Finally,
Alekhnovich et al. removed any bounds on the size of the hypothesis (other than those
naturally imposed by the polynomial running time of the learning algorithm) [2]. Angluin
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and Kharitonov prove that if non-uniform one-way functions exist then MQs do not help
predicting DNF formulae [4]. However, their reduction does not preserve the representation
of a hypothesis and therefore cannot be combined with the result by Alekhnovich et al. to
obtain hardness of proper learning with MQs.

Hardness results for learning of DNF expressions with MQs are only known for the
exact model of learning (which is weaker than PAC learning) and only for strong proper
learning (or slight relaxations similar to the one we prove for PAC learning with respect to
the uniform distribution). The strongest results in this model are due to Hellerstein and
Raghavan [18] and are based on information-theoretic hardness.

For proper PAC learning without MQs a number of hardness results are known for
several other representations [7, 16, 21, 2]. Hardness results for some other variants of DNF
minimization can be found in a survey by Umans et al. [37].

1.2 Outline and Organization

The proof of the TT-MinDNF hardness result is based on first reducing TT-MinDNF to
a more general problem of covering a subset of the Boolean hypercube with a given set of
subcubes (we denote it by PHC-COVER), a problem that can be seen as a geometric version
of the general SET-COVER problem. This reduction substantially simplifies the second
step of the proof, which is a reduction from a multi-prover proof system with certain simple
properties to PHC-COVER. This reduction follows the key ideas of the inapproximability
result for SET-COVER by Lund and Yannakakis [24]. Finally, a low-error PCP by Raz and
Safra [33] is used to obtain a multi-prover proof system with the desired properties, yielding
the inapproximability result for TT-MinDNF.

Besides the main reduction in Appendix B we show a simple reduction from hypergraph
vertex cover problem to PHC-COVER. The reduction is based on families of sets in which
none of the sets is covered by k others. This reduction together with a recent result by Dinur
et al. [11] implies analogous hardness of approximation for TT-MinDNF under a stronger
assumption NP 6⊆ DTIME(nlog(n)).

The hardness of learning DNF expressions result is based on the proof by Alekhnovich
et al. [2] that is, in turn, based on hardness of approximating the chromatic number of
a graph by Feige and Kilian [14]. In essence, we augment the reduction from coloring to
finding a small consistent DNF by providing a way to efficiently define the value of the
target function on the whole hypercube without revealing any additional information about
coloring and without changing the DNF-size of the target function substantially. This allows
for simulation of the membership oracle in the DNF hardness reduction.

The rest of the paper is organized as follows. In Section 3 we show that TT-MinDNF
and two other covering problems on athe hypercube can be reduced (in an approximation-
preserving way) to PHC-COVER. Then, in Section 4, PHC-COVER is reduced to the
low-error PCP by Raz and Safra [33] giving the desired hardness of approximation result.
In Section 5 we prove the above-mentioned hardness results for proper learning with MQs.

2 Preliminaries

A Boolean partial function is a function f : {0, 1}d → {0, 1, ∗}. We say that a Boolean
function g is consistent with a partial function f , if for every a ∈ {0, 1}d such that f(a) 6= ∗,
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g(a) = f(a). A subcube of a Boolean hypercube is a set I1 × I2 × · · · × Id where for each j,
Ij ⊆ {0, 1}. We identify each subcube with a term whose satisfying assignments are exactly
the elements of the subcube.

The size of a DNF formula is the number of terms in it. The DNF-size of a function
is the size of a minimal DNF formula equal to the function. Given the truth table of a
function f the problem of finding the DNF-size of f is denoted TT-MinDNF. When f is
a partial function the problem of finding the size of a minimal DNF consistent with f is
referred to as PTT-MinDNF.

The problem of finding the size of a minimal cover of the d-dimensional Boolean hyper-
cube with subcubes represented by the terms in T = {Ti}

m
i=1 is referred to as HC-COVER.

We also consider the following generalization of HC-COVER. Given a set of terms as above
and a set of points S ⊆ {0, 1}d find the size of a minimal cover of S by terms in T .
We refer to this generalized version as PHC-COVER. We say that PTT-MinDNF(f) = C
(HC-COVER(T ) = C, or PHC-COVER(S, T ) = C) if the size of a minimal DNF formula
consistent with f (or respective cover for an instance T or (S, T )) equals C.

In all the above problems, we assume that the input is of size poly(2d) (it cannot be
larger as there are 3d different terms). For PHC-COVER and HC-COVER the input can,
in certain situations, be represented more concisely. However, for consistency with the
definition of the usual set cover problem, we assume that all the 2d points of the cube are
given explicitly as part of the input.

We use a dot ‘·’ to denote concatenation of bits and bit vectors. Let par() denote the
parity function defined for any bit vector. For any Boolean variable v and b ∈ {0, 1}, let
`v(b) = v, if b = 1 and `v(b) = v̄, if b = 0. Similarly, for a vector of variables w ∈ V l and
a vector a ∈ {0, 1}l, we define eq(w, a) = ∧i≤r`wi(ai), or simply the term that checks if
variables of w are set to a.

Besides the usual disjunctions and conjunctions we consider threshold or halfspace gates
equal to sign(

∑

iwixi − θ) for some real-valued w1, . . . , wn, θ. AND-of-thresholds (OR-of-
thresholds) formula is a two-level formula with an AND (respectively OR) gate at the top
(output) level and thresholds at the bottom level. The size of such a formula is the number
of thresholds gates in it.

2.1 Learning Model

Our learning model is Valiant’s well-known Probably Approximately Correct (PAC) learning
model [39]. In this model, for a concept c and a distribution D over domain X an example
oracle EXD(c) is an oracle that upon request returns an example (x, c(x)), where x is chosen
randomly with respect to D independently of any previous examples. The membership
oracle MEM(c) is the oracle that given any point x ∈ X returns the value c(x). For
ε ≥ 0 we say that function g ε-approximates function f with respect to distribution D if
PrD[f(x) = g(x)] ≥ 1 − ε. We say that an algorithm A efficiently learns concept class C
if for every ε > 0, δ > 0, n, c ∈ C, and distribution D over X, A(n, ε, δ), runs in time
polynomial in n, 1/δ, 1/ε, |c| and, with probability at least 1 − δ, outputs an efficiently
computable hypothesis h that ε-approximates c. In the basic PAC model A is allowed to
use only random example oracle EXD(c). We denote the model in which the learner also
has access to MEM(c) by PAC+MQ.

When the hypothesis is in the same representation as C the algorithm A is called proper.
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If, in addition, h has size at most |c|, then the learning algorithm is called strongly proper.
The distribution specific version of this model requires the learning algorithm to succeed only
with respect to some specific distribution (in our case it will be the uniform distribution).

3 Hypercube Reductions

Below we show that the covering problems defined in the previous section have similar
approximation complexity by describing efficient reductions from PHC-COVER to PTT-
MinDNF, from PTT-MinDNF to TT-MinDNF, and from TT-MinDNF to HC-COVER (in
Appendix A.1). Our reductions preserve the approximation ratio and increase the number of
variables by a small constant factor. By the recent result of Allender et al. for PTT-MinDNF
[3], we immediately get that all the discussed problems are NP-hard to approximate to
within any constant (or within factor log d assuming NP ⊆ RTIME(npolylog(n)).

It can be easily seen that PTT-MinDNF is an instance of PHC-COVER. For the other
direction our reduction converts an instance of PHC-COVER given by a set S ⊆ {0, 1}d

and a set of terms T , to an instance of PTT-MinDNF given by a function f where each
element of T corresponds to a prime implicant of f .

Theorem 3 There exists an algorithm that given an instance (S, T ) of PHC-COVER over
d variables produces the truth table of partial function g over 2d variables such that (S, T )
has a cover of size C if and only if there exists a C-term DNF formula consistent with g.
The algorithm runs in time 2O(d).

Proof: For a point x ∈ {0, 1}d, let p[x] denote a point in {0, 1}2d equal to x · x̄ (that is, x
on first d coordinates and the bit complement of x on coordinates from d+ 1 to 2d). For a
term T over d variables, let p[T ] denote a term over 2d variables in which all the positive
literals are the same as in T while each negative literal x̄i is replaced by literal xd+i. Let
g(y) =

∨

T∈T p[T ](y). Then we define

f(y) =







0 if g(y) = 0
1 if y = p[x] and x ∈ S
∗ otherwise

Let S ⊆ T be a set of C terms such that S ⊆ ∪T∈ST . We claim that h(y) =
∨

T∈S p[T ](y) is
consistent with f . Let y be a point in {0, 1}2d. If f(y) = 0, then g(y) = 0 and so h(y) = 0.
If f(y) = 1 then there exists x such that y = p[x] and x ∈ S. Therefore, there exists T ∈ S
such that T (x) = 1, which is equivalent to p[T ](p[x]) = 1. In particular, h(y) = 1, which
completes the proof of the claim.

For the other direction, let h =
∨

T∈S T be a C-term DNF formula consistent with f .
For T ∈ S, let y be the point with the minimal number of 1’s accepted by T . By the
consistency with f , we get that f(y) 6= 0 and hence g(y) 6= 0. Therefore let m[T ] be the
term of g that covers y. We note that m[T ] covers all the points covered by T and denote
the term T ′ ∈ T such that p[T ′] = m[T ] by p−1[m[T ]]. Define S ′ = {p−1[m[T ]] | T ∈ S}. If
x ∈ S, then f(p[x]) = 1 and therefore, there exists T ∈ S such that T (p[x]) = 1. This, in
turn, implies that p−1[m[T ]](x) = 1, that is, S ′ is a set of C subsets from T that covers S.
2
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The next step is reducing from a partially-specified truth table to a fully-specified one.
A part of this reduction is based on Gimpel’s reduction from partially to fully specified
truth-table [15].

Theorem 4 There exists an algorithm that given the truth table of a partial function f on
d variables and an integer r ≥ 1 produces the truth table of partial function g over d+ r+2
variables such that there exists a C-term DNF consistent with f if and only if there exists
(2r−1C + |f−1(∗)|)-term DNF formula equal to g. The algorithm runs in time 2O(r+d).

Proof: The reduction has two components. First component introduces a term for each
point x where f equals ∗ in a way that forces any consistent DNF to include all the intro-
duced terms. The introduction of new terms skews the original approximation ratio and
therefore the second component replicates f 2r−1 times to ensure that the size of the cover
is still dominated by the original problem (for large enough r).

For a vector in {0, 1}d+r+2, we refer to its first d variables as x1, . . . , xd; its next r
variables as y1, . . . , yr; and its last two variables as z1, z2. We define Boolean function g
over {0, 1}d+r+2 as follows:

g(xyz) =







par(y) if f(x) = 1 and z = 11
1 if f(x) = ∗ and (z = par(x) · ¬par(x) or z = 11)
0 otherwise

Let S = f−1(∗). We claim that there exists a C-term DNF consistent with f if and only
if there exists a (2r−1C + |S|)-term DNF equal to g. For the simpler direction, let S ⊆ T
be a set of C terms such that h(x) =

∨

T∈S T (x) is consistent with f . Let Z(1) ≡ z1 and
Z(0) ≡ z2. By the consistency of h and f , and the definition of g, it is easy to verify that

g(xyz) = (z1 ∧ z2 ∧ h(x) ∧ par(x))
∨

(

∨

a∈S
eq(x, a) ∧ Z(par(a))

)

.

This expression is not in DNF. To convert it we note that par(x) =
∨

a∈{0,1}r ,par(a)=1 eq(x, a)
and therefore

g(xyz) =





∨

T∈S,a∈{0,1}r ,par(a)=1

z1 ∧ z2 ∧ T ∧ eq(x, a)





∨

(

∨

a∈S
eq(x, a) ∧ Z(par(a))

)

,

that is, g has a DNF expression with C2r−1 + |S| terms.
For the other direction, let T be a set of C2r−1 + |S| terms such that g(xyz) =

∨

T∈T T (xyz). For each a ∈ S, let τa ∈ T be a term that accepts point p(a) = a · 0r ·
par(a) · ¬par(a). We first prove that τa contains all the literals of eq(x, a). If τa does not
contain literal `xi(ai), then let ai be the point a with the i-th bit negated. Clearly τa will
also accept the point ai · 0r · par(a) · ¬par(a). But this contradicts the consistency with g,
since par(a) = ¬par(ai). It follows that for each a ∈ S, there is a distinct term in S that
can only accept points with x part in S. We denote this set of terms by T ∗.

Now let D = {p | p ∈ {0, 1}r, par(p) = 1}, p be any point in D and a be any point
such that f(a) = 1. Then, by definition of g, there exists a term τp,a that accepts the point
a ·p ·11. We claim that τp,a contains all the literals of eq(y, p). If τp,a does not contain literal
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`yi(pi), then let pi be the point d with the i-th bit negated. Clearly τp,a will also accept the
point a ·pi ·11. But this contradicts the consistency with g, since g(a ·pi ·11) = par(pi) = 0.
Now let Tp = {τp,a | f(a) = 1} and let hp(x) =

∨

T∈Tp T (x · p · 11). We claim that hp(x) is

consistent with f . This is true since if f(a) = 1 then τp,a ∈ Tp and τp,a(a · p · 11) = 1. If
f(a) = 0 then g(a ·p ·11) = 0 and since Tp ⊆ T then no term in Tp can accept point a ·p ·11.
As we have shown, all the Tp’s for p ∈ D are disjoint and they are clearly disjoint from T ∗

(since 0r 6∈ D). Therefore |T | ≥ |S|+
∑

p∈D |Tp|. As |D| = 2r−1 we get that there exists p
such that |Tp| ≤ C and hence hp is a C-term DNF formula consistent with f . 2

By suitable choice of r in Theorem 3 one obtains the following corollary:

Corollary 5 If TT-MinDNF can be approximated within h(d) in time t(d) then PTT-
MinDNF can be approximated within h(2d+ log d) + 1 in time t(2d+ log d) + 2O(d).

Proof: We note that the claim is trivial for h(d) ≥ d since both problems are instances
of SET-COVER with the greedy algorithm giving ln 2d < d approximation. Therefore, for
simplicity, we restrict our attention to cases when h(d) ≤ d/10. To obtain the claim we set
r = d + 2 log d − 2. Then if DNF-size(f) = k and |f−1(∗)| = s ≤ 2d, then DNF-size(g) =
2r−1k + s and the approximating algorithm for TT-MinDNF will return a value l ≤ h(d+
r + 2)(2r−1k + s). This would imply that

DNF-size(f) ≤
l − s

2r−1
=
h(d+ r + 2)(2r−1k + s)− s

2r−1
= h(d+ r + 2)k +

(h(d+ r + 2)− 1)s

2r−1

But h(d+ r + 2) ≤ (d+ r + 2)/10 and therefore for r = d+ log d− 2,

h(d+ r + 2)(2r−1c+ s)− s

2r−1
<
s(d+ log d)/10

2dd/8
< 1

for large enough d. Hence l−s
2r−1 ≤ h(2d+ log d)k + 1 ≤ (h(2d+ log d) + 1)k. 2

We summarize the reductions in this section by the following equivalence theorem:

Theorem 6 If there exists a constant 0 < γ ≤ 1 such that there is no polynomial-time
algorithm approximating PHC-COVER, to within a factor dγ then there is no polynomial-
time algorithm approximating TT-MinDNF, PTT-MinDNF and HC-COVER to within a
factor Ω(dγ).

Proof: Each of the reductions in Theorems 3,4, 22 multiplies the number of variables by
at most 2+ log d/d < 2+ δ (for any constant δ > 0) while preserving (up to additive 1) the
approximation factor. Therefore the gap in terms of the new number of variables d′ = O(d)
is Ω(d′γ). 2

4 Hardness of Approximation

Below we prove hardness of approximating PHC-COVER by presenting a direct reduction
from one-round multi-prover proof systems with certain properties to PHC-COVER. We
then obtain the claimed result by coupling our reduction with the low-error PCP for NP
due to Raz and Safra [33]. The reduction simulates a generalization of the reduction to
SET-COVER by Lund and Yannakakis [24] on the Boolean hypercube.
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4.1 Multi-prover Proof Systems

Following the definition by Bellare et al. [5] we distinguish five important parameters of
one-round multi-prover proof systems and define the class MIP1(`r, p, `a, `q, ε) as follows:

Definition 7 L ∈ MIP1(`r(n), p(n), `a(n), `q(n), ε(n)) if there exists a probabilistic polynomial-
time verifier V , communicating with p(n) provers such that for every x ∈ {0, 1}n, V per-
forms the following:

• tosses `r(n) random coins obtaining r ∈ {0, 1}`r ,

• computes p(n) questions q(r)1, . . . , q(r)p(n) each of length at most `q(n),

• asks the i-th prover question q(r)i and gets p(n) answers a1, . . . , ap(n) each of length
at most `a(n),

• computes a predicate V (x, r, a1, . . . , ap(n)) and accepts if and only if it is 1.

We also require that V has perfect completeness and soundness bounded by ε(n).

Our reduction will rely on three simple properties of V . The functionality property
requires that for each x ∈ {0, 1}n, r ∈ {0, 1}`r and each a1 ∈ {0, 1}

`a there is at most one
vector (a2, a3, . . . , ap) such that V (x, r, a1, a2, . . . , ap) = 1. The second property, uniformity,
requires that for each i ∈ [p], there exists a set Qi ⊆ {0, 1}

`q such that queries of V to prover
i are uniformly distributed over Qi. The last, equality of question space sizes, requires that
|Q1| = |Q2| = · · · = |Qp|. Following Bellare et al. [5] we call V canonical if it has these
three properties.

Similarly, we distinguish analogous parameters for a PCP system. We denote the class
PCP(`r(n), p(n), `a(n), `q(n), ε(n)) to be the class of languages decidable by a PCP verifier
V that uses `r(n) random bits, generates p(n) questions of length `r(n), gets answers of
length `a(n), has perfect completeness and soundness ε(n).

4.2 Packing a Proof System into the Boolean Hypercube

The main tool for creating an approximation gap is a set system Bm,l = (B;C1, C2, . . . , Cm)
where m, l are positive integers and for each i ∈ [m], Ci ⊆ B. This set system has the
property that if I ⊂ [m] and |I| ≤ l, then no union

⋃

i∈I Di covers B, where Di equals Ci
or its complement.

Lemma 8 ([24]) There exists Bm,l = (B;C1, C2, . . . , Cm) for |B| = O(2lm2) and it can be
constructed in time polynomial in |B|.

The main construction of this section is given in the following lemma.

Lemma 9 If L ∈ MIP1(`r, p, `a, `q, ε) with a canonical verifier V , then there exists an
algorithm A that given x, produces an instance of PHC-COVER (Sx, Tx) over d ≤ `r +
p(`q + 2`a) variables such that

• if x ∈ L then PHC-COVER(Sx, Tx) = p|Q1|, where Q1 is the question space of the
first prover.
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• if x 6∈ L then PHC-COVER(Sx, Tx) ≥
1
2(2ε)

−1/p|Q1|.

Moreover, A runs in time polynomial in n and 2d.

Proof: As before, let Qi ⊆ {0, 1}`q denote the set of questions that V asks prover i
and let Ai be the answer space of prover i. Set sa = |A2| + |A3| + . . . + |Ap| and let
Bsa,l = (B;C1, C2, . . . , Csa) be a set system given by Lemma 8 for l to be specified later.
We associate each question ai ∈ Ai to prover i for i ≥ 2 with a unique subset from Bsa,l
that we denote Ci,ai . Let ta =

∑

i∈[p] |Ai| and τ be a function mapping each pair (i, ai) for
i ∈ [p] and ai ∈ Ai to a unique element of [ta]. Now for each setting of a random string
r ∈ {0, 1}`r and j ∈ [ta], we assign a set C(r, j) ⊆ B as follows. Let (i, ai) = τ−1(j). If i ≥ 2
let C(r, j) = Ci,ai . For i = 1, if there exist a2, . . . , ap such that V (x, r, a1, a2, . . . , ap) = 1,
then C(r, j) = C2,a2 ∩· · ·∩Cp,ap , otherwise C(r, j) = ∅. In both cases C(r, j) is well-defined
since V has the functionality property.

Let d = `r + p`q + ta. We refer to the first `r variables of the Boolean cube {0, 1}d as
yr,1, . . . , yr,`r , the next p`q variables as zi,j for i ∈ [p] and j ∈ [`q], and the last ta variables
as zA,j for j ∈ [ta].

For every r ∈ {0, 1}`r and b ∈ B let z(r, b) be a Boolean vector of length ta such that
z(r, b)j = 1 whenever b ∈ C(r, j). Furthermore, let (r, b) = r · q(r)1 · · · q(r)p · z(r, b). Let
Sx = {(r, b) | r ∈ {0, 1}`r , b ∈ B}. We now proceed to define the terms. For i ∈ [p], qi ∈ Qi,
and ai ∈ Ai, let T (i, qi, ai) be the term that checks that variables of i-th question equal to
qi and that the variable corresponding to answer ai from prover i is set to 1, or formally

T (i, qi, ai) = eq(zi,1 · · · zi,`q , qi) ∧ zA,τ(i,ai) .

Let Tx = {T (i, qi, ai) | i ∈ [p], qi ∈ Qi, ai ∈ Ai}. It is easy to verify that term T (i, qi, ai)
covers a points (r, b) if and only if qi = q(r)i (V generates query qi to prover i on input x
and random string r) and b ∈ C(r, τ(i, ai)). Therefore the set system (Sx, Tx) corresponds
exactly to the set system created in the generalized version of the reduction to SET-COVER
by Lund and Yannakakis [24]. Their analysis implies that for x ∈ L, PHC-COVER(Sx, Tx) ≤
∑

i∈P |Qi| = p|Q1| and for x 6∈ L, PHC-COVER(Sx, Tx) ≥ (1 − εlp)l · |Q1| [5]. Therefore

by setting l = (2ε)−1/p we will get the stated inapproximability gap of (2ε)−1/p/(2p). The
analysis is a straightforward generalization of the analysis by Lund and Yannakakis and we
include it for completeness in Appendix A.2. 2

4.3 Obtaining Proof Systems with Canonical Verifiers

In this section, we show how to derive canonical multi-prover proofs systems from general
PCPs for NP. The first step is obtaining a multi-prover system from a PCP. As shown
by Bellare, Goldreich, and Safra, (their proof appears in Ta-Shma’s paper [34]) identity
transformation of a PCP to an MIP (that is, just distributing p queries to p different
provers) increases the soundness of the proof system by a factor of at most pp. That is,

Lemma 10 ([34]) PCP(`r(n), p(n), `a(n), `q(n), ε(n)) ⊆ MIP1(`r(n), p(n), `a(n), `q(n), p
pε(n)).

The next step in our transformation is obtaining the functionality property.

Lemma 11 If L ∈ MIP1(`r, p, `a, `q, ε) with a verifier V , then L ∈ MIP1(`r, p+1, p`a, p`q, ε)
with a verifier V ′ that has the functionality property.
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Proof: To get a verifier V ′ with the desired property, we add one more prover (which we
place first in the enumeration). Given r, V ′ uses V to generate questions q1, . . . , qp, asks all
the “old” provers their respective questions, and asks the new prover question (q1, q2, . . . , qp).
Given answers a1, . . . , ap from the “old” provers and an answer (a′1, . . . , a

′
p) from the new

prover, V ′ accepts if a′i = ai for all i ∈ [p], and V (x, r, a1, . . . , ap) = 1. We first observe that,
by definition, V ′ has the functionality property. Next, it is easy to see, that soundness of
the new multi-prover system is at most ε. Completeness does not decrease since if the first
prover answers his questions in the same way as the other p honest deterministic provers,
then V ′ will accept whenever V accepts. Finally, the bounds on the length of queries and
answers grow by a factor of at most p. 2

Next we describe how to obtain the last two properties required to get a canonical
verifier.

Lemma 12 If L ∈ MIP1(`r, p, `a, `q, ε) with a verifier V , then L ∈ MIP1((p+1)`r, p, `a, `r+
`q, ε) with a verifier V ′ that has uniformity and “equality of answer space sizes” properties.
Furthermore, if V has the functionality property then V ′ is canonical.

Proof: For each qi ∈ Qi, let Ri,qi denote the set of random strings for which V generates
question qi for prover i. New verifier V ′ uses V to generate questions q1, q2, . . . , qp and
then asks questions ((q1, j1), (q2, j2), . . . , (qp, jp)) where ji is an element of [|Ri,qi |] chosen
randomly, uniformly, and independently of other choices. It is easy to see that after this
modification the sets of possible questions are all of the same size 2`r and the questions
are distributed uniformly. These random bits can be disregarded by honest provers and
therefore completeness is not changed. Clearly, randomly and independently chosen bits
cannot help dishonest provers and therefore soundness is still bounded by ε. Finally, the
bound on questions size is at most `r+`q and the number of random bits required is at most
(p+1)`r. The accepting predicate of V was not changed and thus functionality property is
preserved in this transformation. 2

We can now combine these transformations with the following theorem due to Raz and
Safra [33],

Theorem 13 ([33]) For any β ≤ 1/4, `q(n) ≤ logβ n there exist fixed positive constants
br, bp, bq, bε such that SAT ∈ PCP (br logn, bp, `a(n), bq log n, 2

−bε`a(n)).

obtaining the following result:

Lemma 14 SAT ∈ MIP1(cr logn, cp, log logn, cq log n, log
−cε n) with a canonical verifier

for some fixed positive constants cr, cp, cq, cε.

Proof: We start with the PCP from Theorem 13 and then apply Lemmas 10, 11, and 12 to

get that SAT ∈ MIP1((bp+2)br log n, bp+1, bp`a(n), (bpbq + br) log n, b
bp
p 2−bε`q(n)). We now

choose `a(n) = (log log n)/bp and obtain the desired result for cr = (bp + 2)br, cp = bp + 1,
cq = (bpbq + br), and any cε > bε/bp (“strictly greater” is to offset the constant factor

b
bp
p ). 2 Hence, by Lemma 9, we get an inapproximability gap of (2 log n)cε/cp/(2cp), while
d ≤ (cr + cpcq + cp) log n immediately implying Theorem 1.
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5 Hardness of Proper PAC Learning with Membership Queries

In this section, we present our hardness results for proper PAC+MQ learning of DNF
formulae. We first look at the learning model where the distribution over the input space
is not restricted. In this setting our result is based on the hardness result for learning
DNF expressions without MQs by Alekhnovich et al. [2]. As in their work, we prove a
stronger result that shows hardness of learning DNF expressions by a richer1 class of OR-
of-thresholds. Formally restating Theorem 2 we prove the following.

Theorem 15 If there exists an algorithm A such that for every Boolean function c, distribu-
tion D and ε, A, given access to EXD(c) and MEM(c), runs in time poly(n, DNF-size(c), 1/ε)
and with probability at least 3/4 outputs an OR-of-thresholds formula f such that Prx∈D[f(x) =
c(x)] ≥ 1− ε, then NP = RP.

For consistency, we prove an equivalent formulation that CNF expressions are not learn-
able by AND-of-thresholds. The proof of Alekhnovich et al. is based on a reduction to
approximating the chromatic number of a graph. Given a graph G, they produce a set of
examples such that if the chromatic number of G is “small” then there exists a “small”
CNF formula consistent with the examples. Otherwise, if the chromatic number of the
underlying graph is “large”, then the size of the minimal AND-of-thresholds formula with
“small” error on the induced distribution over the examples is “large”. Our contribution
is to show that we can define (efficiently) values of the target function f on the rest of the
hypercube so that in the case of the “small” chromatic number, f can still be represented
by a relatively “small” CNF formula. This allows us to answer queries to the membership
oracle without any knowledge of a “small” coloring.

5.1 From Coloring to Learning

Given a graph G = (V,E), construct a target function f and a distribution D as follows.
Fix some positive integer parameter r. The examples are from {0, 1}n×r = ({0, 1}n)r.

Definition 16 Let G(V,E) be a graph with n vertices and m edges. For a vertex v of G, let
i(v) denote the index of the vertex (according to some fixed enumeration), let z(v) denote
the vector with a 1 in the i(v)-th position and 0 everywhere else. For an edge e = (u, v) of
G, let z(e) be the vector with a 1 in positions i(u) and i(v).

For each vector (v1, v2, . . . , vr) ∈ V
r, we associate a negative example (z(v1), . . . , z(vr), 0).

For each choice of k1, k2, such that 1 ≤ k1 ≤ r, 1 ≤ k2 ≤ r, k1 6= k2, e = (u,w) ∈ E and
vi ∈ V for each i = 1, 2, . . . , r, i 6= k1, k2, we associate a positive example

(z(v1), . . . , z(vk1−1), z(e), z(vk1+1), . . . , z(vk2−1), 0, z(vk2+1), . . . , z(vr), 1) .

Let S+ denote the positive examples and S− denote the negative examples. Set S = S+∪S−.
The distribution D is uniform over the above set of examples S.

On the rest of the hypercube we define f as follows: let x = (x1, . . . , xr) be a point not
in S+ ∪ S−. If for some i ≤ r, there exist indices j1 and j2 such that vertices with indices

1Richer in the sense that all size k DNF formulae can be expressed by size k OR-of-thresholds.
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j1 and j2 are not connected by an edge in G, then f(x) = 0. We call this set of points
non-graph points. Otherwise, let f(x) = 1.

We now prove that if the chromatic number χ(G) is small, then there exists a small
CNF formula equal to f .

Lemma 17 If χ(G) ≤ nλ, then there is a CNF formula of size at most nrλ+ r|E| equal to
f .

Proof: [Sketch] Suppose V =
⋃χ
i=1 Ii, where Ii are independent sets. Such sets must exist

by the definition of χ. Define the CNF formula g(x1, x2, . . . , xn) =
∧χ
i=1

∨

j /∈Ii xj . We then
define a CNF formula H on r · n variables that rejects all the non-graph points

H(x1, . . . , xr) =
∧

k≤r; (u,w)6∈E
(xki(u) ∨ x

k
i(w)) ,

and the CNF formula F that rejects all the points in S−

F (x1, . . . , xr) =
r
∨

k=1

g(xk1, . . . , x
k
n) =

r
∨

k=1

χ
∧

i=1

∨

j /∈Ii

xkj .

It is not hard to verify that the set S− and the non-graph points are exactly the points
where the target function is negative and therefore F ∧ H is consistent with the above
definition of the target function. Note that F above is not written as a CNF formula. It
is, however, a disjunction of r CNF formulas, each having at most χ(G) clauses. Hence
expanding the expression for F yields a CNF formula with at most χ(G)r ≤ nλr clauses.
So F ∧H can be written as a CNF formula satisfying the conditions of the lemma. 2

For the case when the chromatic number is large, we can simply use the original analysis
[2] since our definition of the target function on points with weight 0 does not make the task
of finding an AND-of-thresholds formula with small error any easier or harder. Namely,
the following was proved by Alekhnovich et al. :

Lemma 18 ([2]) Let G be a graph such that χ(G) ≥ n1−λ. Let F = ∧`i=1hi where ` <
1

2χr

(

χ−1
logn

)r
. Then F has error at least 1

n2rγ+4 with respect to D.

Combining the two cases (Lemmas 17 and 18) gives us the following claim.

Lemma 19 Suppose that CNF formulas are learnable by AND-of-thresholds in time O(nk ·
sk · (1

ε )
k), where k > 1. Then there exists a randomized algorithm for approximating the

chromatic number of a graph within a factor of n1−k/10 in time O(n9k+1). Moreover, the
algorithm will always give a valid answer for χ ≥ n1−k/10.

Proof: Fix δ = 1/4, ε = 1
n6 , and r = 10k. For a graph G let the target function f and

the distribution D be defined as in Section 5.1. Run the learning algorithm with respect
to distribution D and with queries answered according to f . If it does not terminate after
n9k+1 steps, output “χ ≥ n1−k/10”. Otherwise, let h be the hypothesis the algorithm
outputs. Calculate the error εh of h with respect to the distribution D. If εh <

1
n6 output

“χ ≤ nk/10”, otherwise output “χ ≥ n1−k/10”. We claim that this algorithm works with

12



probability ≥ 3
4 for sufficiently large n’s in approximating χ ≤ nk/10, and works perfectly

for χ ≥ n1−k/10.
If χ ≤ nk/10, then Lemma 17 implies that s ≤ n

1
10k

10k + 10k|E| ≤ 10k · n2. Hence the
running time with probability ≥ 3

4 is at most O((10k ·n)k(10k ·n2)k(n6)k) = O(n9k) < n9k+1

for sufficiently large n, and the output is supposed to have an error < ε = 1
n6 . Hence the

algorithm outputs “χ ≤ n1/10k” with probability ≥ 3
4 in this case.

If χ ≥ n1−k/10, then by Lemma 18, the output of the algorithm must contain at least
1

2χr

(

χ−1
lnn

)r
terms in order to have an error < ε = 1

n6 = 1
n2·10k(k/10)+4 . In this case the

running time of the algorithm is at least

1

2χr

(

χ− 1

lnn

)r

≥
1

20χ · k

(

n1−k/10 − 1

lnn

)10k

≥
1

20nk

(

n1−k/10

2 lnn

)10k

≥ n10k−3

for sufficiently large n. Hence if the algorithm terminates in n9k+1 < n10k−3 steps, its error
will be larger than ε, and the algorithm outputs “χ ≥ n1−k/10” with probability 1 in this
case. 2

Finally, we will require the following hardness result due to Feige and Kilian [14]:

Theorem 20 [14] For any constant γ > 0, there exists a polynomial-time randomized
reduction mapping instances f of SAT of length n to graphs G with N = poly(n) vertices
with the property that if f is satisfiable then χ(G) ≤ O(N γ) and if f is unsatisfiable then
χ(G) ≥ Ω(N1−γ). The reduction has zero-sided error.

Combining Lemma 19 and Theorem 20 gives Theorem 15.

5.2 Proper PAC Learning with Respect to the Uniform Distribution

We now show a simple application of the hardness of TT-MinDNF to the hardness of proper
PAC learning of DNF expressions restricted to the uniform distribution over {0, 1}n. It is
a very strong model in which, as proved by Jackson [19], DNF expressions are learnable
non-properly.

It has been observed by Allender et al. that TT-MinDNF naturally reduces to exact
learning of DNF with MQs [3]. We further this observation by reducing TT-MinDNF to
PAC+MQ learning with respect to the uniform distribution.

Theorem 21 There exists a constant γ > 0 such that, if there exists an algorithm A that
for every Boolean function c and ε > 0, A, given access to EXD(c) and MEM(c), runs in
time poly(n, DNF-size(c), 1/ε) and, with probability at least 3/4, outputs a DNF formula f
of size s ≤ logγ n · DNF-size(c) such that Prx∈{0,1}n [f(x) = c(x)] ≥ 1− ε, then NP = RP.

Proof: We reduce from TT-MinDNF and let γ be the constant from Theorem 1. Given
the truth table of a function f over d = log n variables, we let the target concept be
c(x) = f(x1 · · ·xd). Clearly, s = DNF-size(c) ≤ 2logn = n. The definition of c(x) implies
that MEM(c) can be efficiently simulated given the truth table of f . We then set ε = 1/(2n)
and δ = 1/2. A strongly proper algorithm on this input will (with probability at least 1/2)
produce in time polynomial in n = 2d a DNF formula h of size s ≤ logγ n ·DNF-size(c) that
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1
2n -approximates c. Now we choose a vector y of length n− d randomly and uniformly and
let hy be the projection of h to first d variables with the last n − d variables set to y. We
claim that with probability at least 1/2, f ≡ hy. To see this, note that

1

2n
≥ Prx∈{0,1}n [c(x) 6= h(x)] = Ey∈{0,1}n−d

[

Prz∈{0,1}d [f(z) 6= hy(z)]
]

,

and therefore for at least 1/2 of y’s, Prz∈{0,1}d [f(z) 6= hy(z)] = 0, that is f(z) = hy(z) for
all z. For each y, the number of terms in hy is at most s and therefore with probability at
least 1/4, s approximates DNF-size(f) within dγ . 2

6 Conclusions and Open Problems

In this work we have conclusively answered the question of proper learning of DNF expres-
sions in the PAC+MQ model. We also made some progress towards answering a similar
question when the distribution is restricted to be uniform. It is easy to see that in the
uniform case finding a DNF hypothesis log (1/ε) times larger than the target can be done
in time nlog (1/ε) and therefore, is unlikely to be NP-hard. This means that substantial im-
provements of the result will have to be based on different (probably stronger) assumptions.
A more important direction would be to reduce restrictions on the output hypothesis in the
hardness results (with the final goal being the circuit representation).

It would be also interesting to close the gap between O(d) and dγ for approximating
TT-MinDNF. As it follows from our reduction, stronger hardness results can be obtained
by using query and randomness-efficient PCPs. More specifically, γ is at most log (1/ε)

log (|Q|+`r)
where the soundness ε is at least 1/ logp (n) (in a PCP with constant number of queries and
perfect completeness). Most known PCPs are not query-efficient and known query-efficient
constructions are based on the long code that requires a “large” number of random bits
(c.f. [17]). Therefore in the reductions from the known PCPs for NP the fraction (and
subsequently γ) is at most a small constant.
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A Appendix

A.1 From TT-MinDNF to HC-COVER

We give a simple reduction proving that covering the whole hypercube by terms from a
restricted set T is not substantially easier than covering a subset of the hypercube. Note
that this reduction is not required as a step in our main result.

Theorem 22 There exists an algorithm that, given the truth table of a function f on d
variables and an integer r ≥ 1, produces a set of terms T over d + r variables such that
there exists a C-term DNF expression equal to f , if and only if, {0, 1}d+r can be covered by
2rC + |f−1(0)| terms from T . The algorithm runs in time 2O(r+d).

Proof: The idea of the proof is to create T that contains all the terms consistent with f
and terms that cover ¬f . As in the proof of Theorem 4, we will replicate f many times to
preserve the approximation ratio .

Our instance of the HC-COVER problem is over d + r variables where we refer to the
first d variables as x1, . . . xd and to the next r variables as y1, . . . , yr. Let T f be the set
of all the terms consistent with f (we can take only prime implicants of f , but this is

not essential). For d ∈ {0, 1}r let T f
p = {T ∧ eq(y, p) | T ∈ T f}, let S = f−1(0) and

T ¬f = {eq(x, a) | a ∈ S}. Then we define

T = T ¬f
⋃





⋃

p∈{0,1}r
T f
p



 .

We claim that there exists a C-term DNF equal to f , if and only if, there exists a set S ⊆ T
of size C2r + |S| that covers {0, 1}r+d. Let Sf be a set of C terms such that

∨

T∈Sf T = f .
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Then it is clear that S = T ¬f
⋃
{

T ∧ eq(y, p) | p ∈ {0, 1}r, T ∈ Sf
}

covers {0, 1}r+d, has
size C2r + |S|, and includes only terms from T .

For the other direction, let S ⊆ T be a cover for {0, 1}d+r. We observe that the only
way to cover S × {0, 1}r is by including all the terms of T ¬f in S. For each p ∈ {0, 1}r,

let Sp = S ∩ T f
p . Only terms in Sp cover the subset f−1(1) × {p} and therefore hp(x) =

∨

T∈Sp T (x · p) equals exactly f(x). All the Sp’s are disjoint and are disjoint from T ¬f .
Therefore if |S| ≤ C2r + |S|, then DNF-size(f) ≤ C. 2

As with Theorem 4 we obtain the following corollary.

Corollary 23 If HC-COVER can be approximated within h(d) = o(d) in time t(d), then
TT-MinDNF can be approximated within h(2d+ log d) + 1 in time t(2d+ log d) + 2O(d).

A.2 Analysis for the Proof of Lemma 9

First, let x ∈ L and let P̄ be an honest deterministic prover. For qi ∈ Qi denote by Pi(qi)
the answer given by Pi to query qi and set S = {T (i, qi, Pi(qi)) | i ≤ p, qi ∈ Qi}. For every
point (r, b) and i ≤ p, let a′i = Pi(q(r)i). By perfect completeness of V , V (x, r, ā′) = 1 and
therefore C(r, τ(a′1, 1)) = C2,a′2

∩ · · · ∩ Cp,a′p , i.e, ∪i≤pC(r, τ(a′i, i)) = B. This means that
for some j, b ∈ C(r, τ(a′j , j)) and therefore (r, b) ∈ T (j, q(r)j , a

′
j). This means that S is a

collection of size p|Q1| that covers Sx.
Let x 6∈ L and S ⊆ Tx be a cover for Sx. For a random string r and a set C ⊆ B, denote

by (r, C) the set {(r, b) | b ∈ C} and let Sr = {T (i, q(r)i, ai) | i ≤ p, T (i, q(r)i, ai) ∈ S}, in
other words Sr includes the terms from S that cover (r,B). We say that r is good if |Sr| ≤ l
and bad otherwise. Let δ be the fraction of good r’s.

Claim 24 There exists a prover P̄ such that V will accept with probability δ/lp.

Proof: We define P̄ with the following strategy: prover Pi on query qi chooses ai from the
set Aiqi = {a | T (i, qi, a) ∈ S} randomly and uniformly (this set cannot be empty). Note
that for every r,

∑

i |A
i
q(r)i

| = |Sr|. If r is good, then |Sr| ≤ l and hence there should exist

a′1, . . . , a
′
p such that for every i ≤ p, a′i ∈ Aiq(r)i and V (x, r, a′1, . . . , a

′
p) = 1. To prove this,

assume that for every a1 ∈ A1
q(r)1

, there exists j(a1) such that V (x, r, a1, . . . , ap) = 1 but

aj(a1) 6∈ A
j(a1)
q(r)j(a1)

. Then

T (1, q(r)1, a1) ∩ (r,B) = (r, C(1, τ(1, a1)) = (r,
⋂

i≥2

Ci,ai) ⊆ (r, Cj(a1),aj(a1)
) .

This implies that






⋃

a1∈A1
q(r)1

Cj(a1),aj(a1)







⋃





⋃

i≥2, ai∈Ai
qi

Ci,ai



 = B .

We obtained a union of at most l sets from Bsa,l that does not include a set and its com-
plement, and covers B. This contradicts the definition of Bsa,l, proving the existence of
a′1, . . . , a

′
p as above. For good r’s and each i, |Ai

q(r)i
| ≤ l and therefore, the probability that

each Pi will answer with a′i is at least l−p. Hence this strategy has success probability at
least δ/lp. 2
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Claim 25 |S| ≥ (1− δ)l|Q1|.

Proof: For each bad r, |Sr| ≥ l and therefore
∑

r |Sr| = (1 − δ)2`r l. On the other hand,
each term T (i, qi, ai) ∈ S appears once in all the sets for which qi = q(r)i. The uniformity
property of V implies that each query qi is asked for exactly 2`r/|Qi| = 2`r/|Q1| different r’s
(the last equality follows from the equality of question space sizes property). This implies
that

|S| =
|Qi|

2`r

∑

r

|Sr| ≥
|Qi|

2`r
(1− δ)2`r l = (1− δ)l|Q1| .

2

By Claim 24 and soundness of V , we get that δ ≤ ε · lp. By Claim 25, this implies that
|S| ≥ (1− εlp)l|Q1|.

B Reduction from Hypergraph Vertex Cover to PHC-COVER

Our hardness of approximation result for TT-MinDNF can also be obtained via a reduction
from the problem of minimizing the size of vertex cover for k-uniform hypergraphs. This
reduction only gives the desired inapproximability factor under the assumption that NP
is not in quasipolynomial time but is substantially simpler than the reduction from multi-
prover systems. The main tool we use in the reduction is families of sets in which no set is
covered by k others.

B.1 Vertex Cover for k-uniform Hypergraphs

A k-uniform hypergraph H = (V,E) consists of a set of vertices V and a collection E of
k-element subsets of V called hyperedges. A vertex cover of H is a subset S ⊆ V such that
every hyperedge in E intersects S. The Ek-Vertex-Cover problem is the problem of finding
a minimum size vertex cover on a k-uniform hypergraph. The problem is alternatively
called the minimum hitting set problem with sets of size k and is equivalent to the set cover
problem where each element of the universe occurs in exactly k sets.

The first explicit hardness result shown for Ek-Vertex-Cover was due to Trevisan who
showed an inapproximability factor of k1/19 [35] (and a comparable result is implicit in
Feige’s proof of inapproximability of SET-COVER [13]). As we aim at obtaining a large
inapproximability factor for covering the hypercube, we are interested in results that hold
for large values of k. The first result stating the range of k explicitly is due to Dinur et al.
[11] who give the following theorem2.

Theorem 26 ([11]) There exists some b > 0 such that unless NP ⊆ DTIME(nlog log(n)),
there is no polynomial time algorithm for approximating Ek-Vertex-Cover for k ≤ (logM)1/b

to within a factor of bk/2c − 0.01, where M is the number of hyperedges in the k-uniform
hypergraph.

Remark 27 It can be easily seen from the proof of this theorem, that the number of vertices
N is smaller than M and therefore the result can be stated with the number of vertices N
instead of M .

2In fact, weaker but sufficient for our purposes result is implicit in the above-mentioned work of Feige
[13].
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B.2 Union-free Families

A family of sets F is called k-union-free if A0 6⊆ A1 ∪ A2 ∪ · · · ∪ Ak for all distinct
A0, A1, . . . ,Ak ∈ F . They were introduced by Kautz and Singleton [20] (and then rediscov-
ered by Erdös et al. [12]). Commonly-used combinatorial designs introduced by Nisan and
Wigderson [27] are in particular union-free families of sets (for an appropriate limit on the
size of intersections). The following theorem is obtained by derandomizing a straightforward
randomized construction using the method of conditional probabilities (c.f. [38][Lecture 21]).

Theorem 28 There exists a k-union-free family of sets over [d] of sizem for d = O(k2 logm).
Moreover, such F can be constructed in time poly(m, d).

B.3 Reduction to PHC-COVER

Below we present a reduction from SET-COVER with each point occurring in k sets to
PHC-COVER.

Theorem 29 There exists a polynomial-time algorithm that, given a k-uniform hyper-
graph H = (V,E) with |V | = N , produces an instance (S, T ) of PHC-COVER over
d = O(k2 logN) variables such that H has a vertex cover of size C, if and only if, (S, T )
has a cover of size C. The algorithm runs in time O(N2d).

Proof: We first transform the k-uniform hypergraph vertex cover problem to its dual set
cover problem with each point occurring in k sets. That is, for v ∈ V , let Sv = {e | e ∈
E, v ∈ e} and S = {Sv | v ∈ V }. Then (E,S) is an instance of set cover with cover of
size C. Let F = {P1, . . . , PN} be a k-union-free family. By Theorem 28, such F exists
and can be efficiently constructed for d = O(k2 logN). For each v ∈ V , let Pv = Pi if v is
the i-th vertex in V according to some fixed enumeration. For any set P ⊆ [d], let χ(P )
be a characteristic vector of P , that is vector with χ(P )i = 1 when i ∈ P and χ(P )i = 0,
otherwise. For each e ∈ E, let xe = χ(∪v∈ePv). We define T = {eq(x, χ(Pv)) | v ∈ V }, and
define S = {xe | e ∈ E}.

To prove the correctness of this reduction all we need to show is that for each e ∈ E and
v ∈ V , eq(x, χ(Pv)) covers x

e, if and only if, e ∈ Sv or, in other words, v ∈ e. If v ∈ e then
Pv ⊆ ∪u∈ePu and, therefore xei = 1 for all i ∈ Pv. This implies that eq(x, χ(Pv)) = ∧i∈Pvxi
accepts xe. On the other hand, if v 6∈ e for each u ∈ e then, by the properties of F ,
Pv 6⊆ ∪u∈ePu. This implies that eq(x, χ(Pv)) will not accept x

e. 2

Corollary 30 There exists a constant γ > 0 such that, unless NP ⊆ DTIME(nlog(n)),
there is no polynomial-time algorithm approximating PHC-COVER to within a factor dγ,
where d is the number of variables in the PHC-COVER instance.

Proof: Given an instance of SAT on n variables, the reduction of Theorem 26 produces an
instance of Ek-Vertex-Cover on N = nO(log logn) vertices for k = (logN)1/c, where c > 1.
The gap in vertex cover sizes is αk (α ≈ 1/2). Then reduction in Theorem 29 will produce
an instance of PHC-COVER over d = O(k2 logN) = O((logN)1+2/c) with the same gap of
αk, that in terms of d, is O(d1/(b+2)) > dγ for any constant γ < 1

2+b (and large enough d).
The running time of the reduction and the produced instance are both bounded by

2O(d) = 2O((logN)1+2/c) = nO((logn)2/c(log logn)1+2/c) = O(nlogn)

for c > 2. 2
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