
Hardness of Approximate Two-level Logic Minimization and PAC

Learning with Membership Queries

Vitaly Feldman∗

IBM Almaden Research Center

650 Harry rd.

San Jose, CA 95120

vitaly@post.harvard.edu

Abstract

Producing a small DNF expression consistent with given data is a classical problem in com-
puter science that occurs in a number of forms and has numerous applications. We consider
two standard variants of this problem. The first one is two-level logic minimization or finding
a minimum DNF formula consistent with a given complete truth table (TT-MinDNF). This
problem was formulated by Quine in 1952 and has been since one of the key problems in logic
design. It was proved NP-complete by Masek in 1979. The best known polynomial approxi-
mation algorithm is based on a reduction to the SET-COVER problem and produces a DNF
formula of size O(d · OPT), where d is the number of variables. We prove that TT-MinDNF
is NP-hard to approximate within dγ for some constant γ > 0, establishing the first inapprox-
imability result for the problem. The other DNF minimization problem we consider is PAC
learning of DNF expressions when the learning algorithm must output a DNF expression as
its hypothesis (referred to as proper learning). We prove that DNF expressions are NP-hard to
PAC learn properly even when the learner has access to membership queries, thereby answering
a long-standing open question due to Valiant [40]. Finally, we provide a concrete connection
between these variants of DNF minimization problem. Specifically, we prove that inapproxima-
bility of TT-MinDNF implies hardness results for restricted proper learning of DNF expressions
with membership queries even when learning with respect to the uniform distribution only.

∗Work done while the author was at Harvard University supported by grants from the National Science Foundation
NSF-CCR-0310882, NSF-CCF-0432037, and NSF-CCF-0427129.

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 127 (2005)

ISSN 1433-8092

1 Introduction

The problem of finding a minimal-size disjunctive normal form expression consistent with a given
truth table (TT-MinDNF) is one of the oldest problems in computer science. It was formulated by
the famous logician and philosopher Willard Van Quine in his work on mathematical logic [32, 33].
His algorithm for simplifying logical steps was also discovered in 1956 by Edward McCluskey in the
context of circuit design [27]. Besides its important role in circuit design (in particular, two-level
and multi-level logic synthesis for VLSI design of ASICs and Programmable Gate Arrays [11]) the
problem has more recently appeared in reliability analysis [10], IP routing table compaction [24],
and high-dimensional data representation [1]. This array of applications has led to an ongoing effort
by many researchers to seek efficient heuristic and exact minimization procedures. We direct the
interested reader to [11] for an overview of a large number of publications and some software tools.
In the original Quine-McCluskey algorithm and in most of the later approaches, after a number of
simplification steps the problem is reduced to an instance of the classical SET-COVER problem.
Then, either an exact solution is found via the brute-force search, or an approximate solution is
found using a certain heuristic. In the former case the size of the search space is not theoretically
analyzed and in the latter no guarantees on the quality (i.e. size) of the output are given (both are
usually measured empirically).

Far less work has been done on the theoretical side of this problem. Gimpel [17] and Paul [30]
showed that Quine-McCluskey method can produce instances of SET-COVER that are NP-hard
to solve. Then, in 1979, the full truth table version was proven NP-complete by Masek [26] (his
manuscript was not published but the proof can be found in surveys by Czort [12] and Umans et
al. [38]). Inapproximability results are only known for a generalization of TT-MinDNF that allows
“don’t care” values in the truth table (i.e., the truth table is partial). Allender et al. prove that this
problem (we denote it by PTT-MinDNF) is NP-hard to approximate within any constant factor
and cannot be approximated within log d factor unless NP ⊆ RTIME(npolylog(n)), where d is the
number of variables [4]. Using Gimpel’s reduction from PTT-MinDNF to TT-MinDNF they also
produced a simpler proof (than Masek’s) for NP-hardness of TT-MinDNF.

On the approximation side the only known efficient approximating algorithm is the one resulting
from using the greedy algorithm to solve the SET-COVER instance obtained in Quine-McCluskey
algorithm [9]. It gives ln 2d = O(d) approximation factor.

In this paper we present the first result on hardness of approximating TT-MinDNF. More
specifically, we prove the following theorem.

Theorem 1.1 There exists a constant γ > 0 such that it is NP-hard to approximate TT-MinDNF
to within a factor dγ , where d is the number of variables of the TT-MinDNF instance.

This result implies that the approximation factor achieved by the greedy algorithm is at most
polynomially larger than the best possible. In addition we prove the first hardness of approximation
result for a natural restriction of SET-COVER problem, in which the ground set is {0, 1}d and all
subsets are subcubes (see Section 2 for a formal definition).

The unpublished results of Allender et al. were recently substantially strengthened by the same
authors and Paul McCabe [3]. They prove NP-hardness of approximating TT-MinDNF within
any constant factor and also show how to get the dγ factor under the assumption that NP 6⊆
DTIME(npolylog(n)). Their independent work is based on a similar approach.

2

Learning is another context where finding a small DNF formula consistent (or almost) with the
given data is a fundamental problem. The problem was formulated by Leslie Valiant in his seminal
paper introducing the PAC model of learning [40] and has been the subject of numerous subsequent
works. A number of questions related to PAC learning of DNF expressions were posed by Valiant
[40, 41]. Specifically, he asked whether DNF expressions are learnable from random examples with
or without the use of the membership query (MQ) oracle. Valiant’s original definition required
that the learning algorithm output a DNF expression but this restriction was later relaxed to any
efficiently-evaluatable hypothesis with the stricter version being referred to as proper learning. All
these variants of the DNF learning question remained open until a recent result by Alekhnovich
et al. that established NP-hardness of the hardest variant: proper learning from random examples
only [2]. Building on their proof, we resolve one more of Valiant’s questions:

Theorem 1.2 (informal) If NP 6= RP then there is no polynomial-time PAC learning algorithm
for DNF expressions that outputs a DNF expression even when the learning algorithm has access
to the membership oracle.

Besides, we observe that hardness of TT-MinDNF implies hardness of strongly proper learning
of DNF expressions with MQs even with respect to the uniform distribution, where strongly proper
means that the size (number of terms) of a hypothesis has to be upper-bounded by the DNF-size
of the target function. Our inapproximability result then translates to hardness even when the size
of a hypothesis is O(logγ n) times larger than the size of the target. We note that, as proved by
Jackson, unrestricted DNF expressions are learnable non-properly in this strong model [20], and
hence our result highlights the importance of knowledge representation in this model.

Access to membership queries plays an instrumental role in numerous learning algorithms (many
of which are proper), but hardness results for learning with MQs are still very scarce. Our results
are the first to show that PAC learning (of any class) can be NP-hard even when MQs are available.

1.1 Relation to Other Work

Besides the results that we have already mentioned, one of the most significant results in DNF
minimization is Umans’ proof that finding a minimum DNF formula for a function given by a DNF
formula (also called finding a minimum equivalent DNF and denoted MinEquDNF) is Σp

2-hard to
approximate within Nγ for some constant γ > 0, where N is the size of the given DNF formula [37].
Despite the same goal in both problems the difference in input makes the nature of the problem
(and, eventually, the proof techniques) very different. In particular, the gaps differ exponentially in
terms of the size of hard instances. Hardness results for some other variants of DNF minimization
can be found in a survey by Umans et al. [38].

Initial hardness results for properly learning DNF formulae due to Pitt and Valiant [31] show
that unless RP = NP, k-term DNF formulae over n variables are not learnable by 2k-term DNF.
These results were strengthened by Nock et al. [29] who proved similar hardness even when learning
by formulas of size kαnβ (where α ≤ 2 and β is any constant). Finally, Alekhnovich et al. removed
any bounds on the size of the hypothesis (other than those naturally imposed by the polynomial
running time of the learning algorithm) [2]. Angluin and Kharitonov prove that if non-uniform one-
way functions exist then MQs do not help predicting DNF formulae [5]. However, their reduction
does not preserve the representation of a hypothesis and therefore cannot be combined with the
result by Alekhnovich et al. to obtain hardness of proper learning with MQs.

3

Hardness results for learning of DNF expressions with MQs are only known for the exact model
of learning (which is weaker than PAC learning) and only for strong proper learning (or slight
relaxations similar to the one we prove for PAC learning with respect to the uniform distribution).
The strongest results in this model are due to Hellerstein and Raghavan [19] and are based on
information-theoretic hardness.

For proper PAC learning without MQs a number of hardness results are known for several other
representations [8, 18, 22, 2].

Our hardness results for learning DNF expressions are contrasted by the fact that monotone
DNF expressions are known to be strongly properly PAC learnable with MQs [40]. In addition to
that, DNF expressions with k terms are known to be learnable by DNF expressions with 2k terms
when MQs are available [7]. It is also interesting to note that known non-trivial algorithms for

learning unrestricted DNF formulae (running in time 2Õ(n
1
3) [23] and in time 2Õ(

√
n) with DNF

hypotheses [2]) use only random examples and it is unknown whether they could be sped-up by
using MQs.

When learning with respect to the uniform distribution DNF expressions are known to be PAC
learnable (non-properly) with MQs [20] and PAC learnable properly in time nO(log (s/ε)) [42].

1.2 Outline and Organization

The proof of the TT-MinDNF hardness result has two key components. The first one is a reduction
from a more general problem of covering a subset of the Boolean hypercube with a given set of
subcubes (we denote it by PHC-COVER) to TT-MinDNF. PHC-COVER can be seen as a geometric
version of the general SET-COVER problem. The second component of the proof is a reduction
from a multi-prover proof system with certain simple properties to PHC-COVER. This reduction
follows the key ideas of the inapproximability result for SET-COVER by Lund and Yannakakis [25]
and its generalization by Bellare et al. [6]. Finally, a low-error PCP by Raz and Safra [34] is used
to obtain a multi-prover proof system with the desired properties, yielding the inapproximability
result for TT-MinDNF. The low-error PCP of Raz and Safra was used in a similar way to obtain
hardness of approximating within Ω(log n) for SET-COVER under the assumption that P 6= NP

[34].

Besides the main reduction in Section 4.1, we show a reduction from hypergraph vertex cover
problem to PHC-COVER. The reduction is based on families of sets in which none of the sets is
covered by k others. This reduction together with a recent result by Dinur et al. [13] implies the
same inapproximability result for TT-MinDNF under a stronger assumption NP 6⊆ DTIME(nlog(n)).
This reduction is more direct and simple than both the reduction given in Section 4.1 and the
reduction of Allender et al. [3] (which gives the same result).

The hardness of learning DNF expressions result is based on the proof by Alekhnovich et al. [2]
that is, in turn, based on hardness of approximating the chromatic number of a graph by Feige and
Kilian [16]. In essence, we augment the reduction from coloring to finding a small consistent DNF
by providing a way to efficiently define the value of the target function on the whole hypercube
without revealing any additional information about coloring and without changing the DNF-size of
the target function substantially. This allows for simulation of the membership oracle in the DNF
hardness reduction.

The rest of the paper is organized as follows. In Section 3 we show that to PHC-COVER can
be reduced to TT-MinDNF in an approximation-preserving way. Then, in Section 4, we give a

4

reduction from the low-error PCP by Raz and Safra [34] to PHC-COVER, establishing the desired
hardness of approximation result. In Section 5 we prove the above-mentioned hardness results for
proper learning with MQs.

2 Preliminaries

A Boolean partial function is a function f : {0, 1}d → {0, 1, ∗}. We say that a Boolean function g
is consistent with a partial function f , if for every a ∈ {0, 1}d such that f(a) 6= ∗, g(a) = f(a). A
subcube of a Boolean hypercube is a set I1 × I2 ×· · ·× Id where for each j, Ij ⊆ {0, 1}. We identify
each subcube with a term whose satisfying assignments are exactly the elements of the subcube.

The size of a DNF formula is the number of terms in it. The DNF-size of a function is the
size of a minimum DNF formula equal to the function. Given the truth table of a function f the
problem of finding the DNF-size of f is denoted TT-MinDNF. When f is a partial function the
problem of finding the size of a minimum DNF consistent with f is referred to as PTT-MinDNF.

The problem of finding the size of a minimum cover of the d-dimensional Boolean hypercube
with subcubes represented by the terms in T = {Ti}

m
i=1 is referred to as HC-COVER. We also

consider the following generalization of HC-COVER. Given a set of terms as above and a set
of points S ⊆ {0, 1}d find the size of a minimum cover of S by terms in T . We refer to this
generalized version as PHC-COVER. We say that PTT-MinDNF(f) = C (HC-COVER(T) = C, or
PHC-COVER(S,T) = C) if the size of a minimum DNF formula consistent with f (or, respectively,
a cover for an instance T or (S,T)) equals C.

In all the above problems, we assume that the input is of size poly(2d) (it cannot be larger
as there are 3d different terms). For PHC-COVER and HC-COVER the input can, in certain
situations, be represented more concisely. However, for consistency with the definition of the usual
set cover problem, we assume that all the 2d points of the cube are given explicitly as part of the
input. Hardness results for this setting imply hardness results for more concise representations of
the same problem.

We use a dot ‘·’ to denote concatenation of bits and bit vectors. Unless defined otherwise we use
a subscript to refer to an individual coordinate of a vector and use [n] to denote the set {1, 2, . . . , n}.
Let par() denote the parity function defined for any bit vector. For any Boolean variable v and
b ∈ {0, 1}, let `v(b) = v, if b = 1 and `v(b) = v̄, if b = 0. Similarly, for a vector of variables
w ∈ V r and a vector a ∈ {0, 1}r , we define eq(w, a) = ∧i≤r`wi(ai), or simply the term that checks
if variables of w are set to a.

Besides the usual disjunctions and conjunctions we consider threshold or halfspace gates equal
to sign(

∑

i wixi − θ) for some real-valued w1, . . . , wn, θ. AND-of-thresholds (OR-of-thresholds)
formula is a two-level formula with an AND (respectively OR) gate at the top (output) level and
thresholds at the bottom level. The size of such a formula is the number of thresholds gates in it.

2.1 Learning Model

Our learning model is Valiant’s well-known Probably Approximately Correct (PAC) learning model
[40]. In this model, for a concept c and a distribution D over domain X an example oracle EX(c,D)
is an oracle that upon request returns an example 〈x, c(x)〉, where x is chosen randomly with respect
to D independently of any previous examples. The membership oracle MEM(c) is the oracle that
given any point x ∈ X returns the value c(x). For ε ≥ 0 we say that function g ε-approximates

5

function f with respect to distribution D if PrD[f(x) = g(x)] ≥ 1 − ε. We say that an algorithm
A efficiently learns concept class C if for every ε > 0, δ > 0, n, c ∈ C, and distribution D over
X, A(n, ε, δ), runs in time polynomial in n, 1/δ, 1/ε, size(c) and, with probability at least 1 − δ,
outputs an efficiently computable hypothesis h that ε-approximates c. Here size(c) is the size of c
in the representation associated with C (e.g. number of terms if the representation is DNF). In the
basic PAC model A is allowed to use only random example oracle EX(c,D). We denote the model
in which the learner also has access to MEM(c) by PAC+MQ.

If the hypothesis is output in the representation associated with C, the algorithm A is called
proper. If, in addition, size(h) ≤ size(c), then the learning algorithm is called strongly proper.
The distribution specific version of this model requires the learning algorithm to succeed only with
respect to some specific distribution (in our case it will be the uniform distribution).

3 Hypercube Reductions

Below we show that the covering problems defined in the previous section have similar approxi-
mation complexity by describing efficient reductions from PHC-COVER to PTT-MinDNF, from
PTT-MinDNF to TT-MinDNF, and from TT-MinDNF to HC-COVER. Our reductions preserve
the approximation ratio and increase the number of variables by a small constant factor.

3.1 From PHC-COVER to PTT-MinDNF

It can be easily seen that PTT-MinDNF is an instance of PHC-COVER. For the other direction
our reduction converts an instance of PHC-COVER given by a set S ⊆ {0, 1}d and a set of terms
T , to an instance of PTT-MinDNF given by a function f where each element of T corresponds to a
prime implicant of f . A prime implicant of a function f is a term T such that T is consistent with
f (that is it does not accept points where f equals 0) and is not covered properly by another term
consistent with f . Any DNF formula consistent with f can always be easily converted to a DNF
formula of the same size that includes only prime implicants of f . Therefore, any DNF formula for
f produced by our reduction corresponds to a cover of S by terms from T . We now provide the
details of this mapping.

Theorem 3.1 There exists a polynomial-time algorithm that given an instance (S,T) of PHC-
COVER over d variables produces the truth table of partial function f over 2d variables such that
(S,T) has a cover of size C if and only if there exists a C-term DNF formula consistent with f .

Proof: For a point x ∈ {0, 1}d, let p[x] denote a point in {0, 1}2d equal to x · x̄ (that is, x on first
d coordinates and the bit complement of x on coordinates from d + 1 to 2d). For a term T over d
variables, let p[T] denote a term over 2d variables in which all the positive literals are the same as
in T while each negative literal x̄i is replaced by literal xd+i. Let g(y) =

∨

T∈T p[T](y). Then we
map (S,T) to the instance of PTT-MinDNF given by the following function:

f(y) =

0 if g(y) = 0
1 if y = p[x] and x ∈ S
∗ otherwise

Let S ⊆ T be a set of C terms such that S ⊆ ∪T∈ST . We claim that h(y) =
∨

T∈S p[T](y) is
consistent with f . Let y be a point in {0, 1}2d. If f(y) = 0, then g(y) = 0 and so h(y) = 0. If

6

f(y) = 1 then there exists x such that y = p[x] and x ∈ S. Therefore, there exists T ∈ S such that
T (x) = 1, which is equivalent to p[T](p[x]) = 1. In particular, h(y) = 1, which completes the proof
of the claim.

For the other direction, let h =
∨

Z∈Z Z be a C-term DNF formula consistent with f . For a
term Z ∈ Z, let y be the point with the minimum number of 1’s accepted by Z. By the consistency
with f , we get that f(y) 6= 0 and hence g(y) = 1. Therefore let m(Z) be a term of g that covers y
and let TZ ∈ T be some term for which m(Z) = p[TZ]. We claim that Z ⊆ m(Z). If for a point
z, Z(z) = 1 then for every i ≤ 2d, if zi = 0 then yi = 0. This is true since if zi = 0 then Z does
not include literal xi and, therefore, by the minimality of y, yi = 0. The term m(Z) = p[TZ] is
monotone and, therefore, if it covers y then it covers z. This implies the claim that Z ⊆ m(Z).

Define T ′ = {TZ | Z ∈ Z}. If x ∈ S, then f(p[x]) = 1 and therefore, there exists Z ∈ Z such
that Z(p[x]) = 1. This, in turn, implies that TZ(x) = 1, that is, T ′ is a set of C subsets from T
that covers S. 2

3.2 From PTT-MinDNF to TT-MinDNF

The next step is an approximation preserving reduction from a partially-specified truth table to a
fully-specified one. A part of this reduction is based on Gimpel’s reduction from partially to fully
specified truth-table [17].

Theorem 3.2 There exists an algorithm that given the truth table of a partial function f on d
variables and an integer r ≥ 1 produces the truth table of partial function g over d + r + 2 variables
such that there exists a C-term DNF consistent with f if and only if there exists (2r−1C+ |f−1(∗)|)-
term DNF formula equal to g. The algorithm runs in time 2O(r+d).

Proof: The reduction has two components. The first component is Gimpel’s reduction [17]. It
converts f to a fully-specified function that has a distinct prime implicant for each point x where f
equals ∗ thereby forcing any consistent DNF to include a term for every ∗ of the original function.
The addition of new terms does not preserve approximation factors and therefore the second com-
ponent replicates f 2r−1 times to ensure that the size of the cover is still dominated by the original
problem (for large enough r). For a vector in {0, 1}d+r+2, we refer to its first d coordinates as
x1, . . . , xd; its next r variables as y1, . . . , yr; and its last two variables as z1, z2. We define Boolean
function g over {0, 1}d+r+2 as follows:

g(xyz) =

par(y) if f(x) = 1 and z = 11
1 if f(x) = ∗ and

(z = par(x) · ¬par(x) or z = 11)
0 otherwise

Let S = f−1(∗). We claim that there exists a C-term DNF consistent with f if and only if there
exists a (2r−1C + |S|)-term DNF equal to g. For the simpler direction, let S be a set of C terms
such that h(x) =

∨

T∈S T (x) is consistent with f . For b ∈ {0, 1} we define sw-z(b) = z2−b (that is,
sw-z switches between z1 and z2 according to b). We claim that

g(xyz) ≡ (h(x) ∧ par(y) ∧ z1 ∧ z2)
∨

((f(x) = ∗) ∧ sw-z(par(x))) .

By definition, the expression R(xyz) ≡ (f(x) = ∗) ∧ sw-z(par(x)) equals to g(xyz) on all points
with z 6= 11. In addition, for z = 11, R(xy · 11) ≡ (f(x) = ∗). The expression L(xyz) =

7

h(x) ∧ par(y) ∧ z1 ∧ z2 only covers points for which z = 11 and L(xy · 11) = h(x) ∧ par(y).
Therefore, by the consistency of h with f , L(xy · 11) equals to par(y) when f(x) = 1 and does not
cover any points for which f(x) = 0. Altogether, g(xyz) ≡ L(xyz) ∨ R(xyz).

Expressions L(xyz) and R(xyz) are not in DNF. To convert them to DNF we note that

par(y) ≡
∨

a∈{0,1}r ,par(a)=1

eq(y, a)

and
(f(x) = ∗) ≡

∨

a∈S

eq(x, a) .

Therefore

g(xyz) ≡

∨

T∈S,a∈{0,1}r ,par(a)=1

T ∧ eq(y, a) ∧ z1 ∧ z2

∨

(

∨

a∈S

eq(x, a) ∧ sw-z(par(a))

)

,

that is, g has a DNF expression with C2r−1 + |S| terms.
For the other direction, let T be a set of C2r−1 + |S| terms such that g(xyz) =

∨

T∈T T (xyz).
For each a ∈ S, let τa ∈ T be a term that accepts point

p(a) = a · 0r · par(a) · ¬par(a) .

We first prove that τa contains all the literals of eq(x, a). If τa does not contain literal `xi(ai), then
let ai be the point a with the i-th bit negated. Clearly τa will also accept the point ai · 0r · par(a) ·
¬par(a). But this contradicts the consistency with g, since par(a) = ¬par(ai). It follows that for
each a ∈ S, there is a distinct term in S that can only accept points with x part in S. We denote
this set of terms by T ∗.

Now let D = {p | p ∈ {0, 1}r , par(p) = 1}, p be any point in D and a be any point such that
f(a) = 1. Then, by definition of g, there exists a term τp,a that accepts the point a · p · 11. We
claim that τp,a contains all the literals of eq(y, p). If τp,a does not contain literal `yi(pi), then let pi

be the point p with the i-th bit negated. Clearly τp,a will also accept the point a · pi · 11. But this
contradicts the consistency with g, since g(a · pi · 11) = par(pi) = 0. Now let Tp = {τp,a | f(a) = 1}
and let hp(x) =

∨

T∈Tp
T (x · p · 11). We claim that hp(x) is consistent with f . This is true since

if f(a) = 1 then τp,a ∈ Tp and τp,a(a · p · 11) = 1. If f(a) = 0 then g(a · p · 11) = 0 and since
Tp ⊆ T then no term in Tp can accept point a · p · 11. As we have shown, all the Tp’s for p ∈ D are
disjoint and they are clearly disjoint from T ∗ (since 0r 6∈ D). Therefore |T | ≥ |S| +

∑

p∈D |Tp|. As

|D| = 2r−1 we get that there exists p such that |Tp| ≤ C and hence hp is a C-term DNF formula
consistent with f . 2

By a suitable choice of r in Theorem 3.1 one easily obtains the following corollary (the proof is
omitted for brevity):

Corollary 3.3 If TT-MinDNF can be approximated within h(d) in time t(d) then PTT-MinDNF
can be approximated within h(2d + log d) + 1 in time t(2d + log d) + 2O(d).

8

3.3 From TT-MinDNF to HC-COVER

We now give a simple reduction proving that finding a minimum cover of the whole hypercube by
terms from a restricted set T is not substantially easier than finding a minimum cover of a subset of
the hypercube. Note that this reduction is not required as a step in our main result and is provided
to extend our hardness of approximation results to HC-COVER.

Theorem 3.4 There exists an algorithm that, given the truth table of a function f on d variables
and an integer r ≥ 1, produces a set of terms T over d+r variables such that there exists a C-term
DNF expression equal to f , if and only if, {0, 1}d+r can be covered by 2rC + |f−1(0)| terms from
T . The algorithm runs in time 2O(r+d).

Proof: The idea of the proof is to create T that contains all the terms consistent with f and terms
that cover ¬f . As in the proof of Theorem 3.2, we will replicate f many times to preserve the
approximation ratio .

Our instance of the HC-COVER problem is over d + r variables where we refer to the first
d variables as x1, . . . xd and to the next r variables as y1, . . . , yr. Let T f be the set of all the
terms consistent with f (we can assume that it includes only the prime implicants of f but this

is not essential). For p ∈ {0, 1}r let T f
p = {T ∧ eq(y, p) | T ∈ T f}, let S = f−1(0) and T ¬f =

{eq(x, a) | a ∈ S}. Then we define

T = T ¬f
⋃

⋃

p∈{0,1}r

T f
p

 .

We claim that there exists a C-term DNF equal to f , if and only if, there exists a set S ⊆ T of size
C2r + |S| that is a cover of {0, 1}r+d. Let Sf be a set of C terms such that

∨

T∈Sf T = f . Then it
is clear that

S = T ¬f
⋃

{

T ∧ eq(y, p) | p ∈ {0, 1}r , T ∈ Sf
}

is a cover of {0, 1}r+d, has size C2r + |S|, and includes only terms from T .

For the other direction, let S ⊆ T be a cover of {0, 1}d+r . We observe that the only way to

cover S × {0, 1}r is by including all the terms of T ¬f in S. For each p ∈ {0, 1}r , let Sp = S ∩ T f
p .

Only terms in Sp cover the subset f−1(1)×{p} and therefore hp(x) =
∨

T∈Sp
T (x ·p) equals exactly

f(x). All the Sp’s are mutually disjoint and are disjoint from T ¬f . Therefore if |S| ≤ C2r + |S|,
then DNF-size(f) ≤ C. 2

As with Theorem 3.2, we obtain the following corollary.

Corollary 3.5 If HC-COVER can be approximated within h(d) = o(d) in time t(d), then TT-
MinDNF can be approximated within h(2d + log d) + 1 in time t(2d + log d) + 2O(d).

We summarize the reductions in this section by the following equivalence theorem:

Theorem 3.6 If there exists a constant 0 < γ ≤ 1 such that there is no polynomial-time algorithm
approximating PHC-COVER, to within a factor dγ then there is no polynomial-time algorithm
approximating TT-MinDNF, PTT-MinDNF and HC-COVER to within a factor Ω(dγ).

9

4 Hardness of Approximation

Below we prove hardness of approximating TT-MinDNF by presenting two reductions to PHC-
COVER both showing hardness of approximating within a factor of dγ for a constant γ > 0. The
first one is a reduction from the problem of finding a vertex cover of a k-uniform hypergraph.
It is simple (relative to the other reduction and the reduction by Allender et al. [3]) but relies
on a stronger assumption NP 6⊆ DTIME(nlog(n)). The second one is a general reduction from
one-round multi-prover proof systems. When used with a low-error PCP it gives NP-hardness of
approximating within a factor of dγ . In addition, it makes an explicit connection between γ and
standard parameters of a proof system that might be useful in obtaining inapproximability factors
with specific or optimal exponent γ.

4.1 Reduction from Hypergraph Vertex Cover to PHC-COVER

A k-uniform hypergraph H = (V,E) consists of a set of vertices V and a collection E of k-element
subsets of V called hyperedges. A vertex cover of H is a subset S ⊆ V such that every hyperedge
in E intersects S. The Ek-Vertex-Cover problem is the problem of finding a minimum size vertex
cover on a k-uniform hypergraph. The problem is alternatively called the minimum hitting set
problem with sets of size k and is equivalent to the set cover problem where each element of the
universe occurs in exactly k sets.

The first explicit hardness result shown for Ek-Vertex-Cover was due to Trevisan who showed
an inapproximability factor of k1/19 [36] (and a comparable result is implicit in Feige’s proof of
inapproximability of SET-COVER [15]). As we aim at obtaining a large inapproximability factor
for covering the hypercube, we are interested in results that hold for large values of k. The first
result stating the range of k explicitly is due to Dinur et al. [13] who give the following theorem.

Theorem 4.1 There exists some c > 0 such that unless NP ⊆ DTIME(nlog log(n)), there is no
polynomial-time algorithm for approximating Ek-Vertex-Cover for k ≤ (log M)1/c to within a factor
of bk/2c − 0.01, where M is the number of hyperedges in the k-uniform hypergraph.

Remark 4.2 It can be easily seen from the proof of this theorem, that the number of vertices N is
smaller than M and therefore the result can be stated with the number of vertices N in place of M .

4.1.1 Union-free Families

A family of sets F is called k-union-free if A0 6⊆ A1∪A2∪· · ·∪Ak for all distinct A0, A1, . . . ,Ak ∈ F .
They were introduced by Kautz and Singleton [21] (and then rediscovered by Erdös et al. [14]). A
family of sets F is a (s, `)-combinatorial design if each set in F has size s and the intersection of any
two sets in F has size at most `. If ` < s/k then (s, `)-combinatorial design is k-union-free. The
first efficient construction of combinatorial designs was given by Nisan and Widgerson [28]. For our
purposes, k-union-free families can be obtained by derandomizing a straightforward randomized
construction using the method of conditional probabilities (cf. [39, Lecture 21]).

Theorem 4.3 There exists a k-union-free family of sets over [d] of size m for d = O(k2 log m).
Moreover, such F can be constructed in time poly(m,d).

10

4.1.2 Simple Reduction to PHC-COVER

Below we present a reduction from SET-COVER with each point occurring in k sets to PHC-
COVER.

Theorem 4.4 There exists a polynomial-time algorithm that, given a k-uniform hypergraph H =
(V,E) with |V | = N , produces an instance (S,T) of PHC-COVER over d = O(k2 log N) variables
such that H has a vertex cover of size C, if and only if, (S,T) has a cover of size C. The algorithm
runs in time O(N2d).

Proof: We first transform the k-uniform hypergraph vertex cover problem to its dual set cover
problem with each point occurring in k sets. That is, for v ∈ V , let Sv = {e | e ∈ E, v ∈ e} and
S = {Sv | v ∈ V }. Then (E,S) is the equivalent instance of SET-COVER. Let F = {Pv}v∈V be a
k-union-free family (with N elements indexed by nodes in V). By Theorem 4.3, such F exists and
can be efficiently constructed for d = O(k2 log N). For any set P ⊆ [d], let χ(P) be a characteristic
vector of P , that is vector with χ(P)i = 1 when i ∈ P and χ(P)i = 0, otherwise. For each e ∈ E,
let xe = χ(∪v∈ePv). We define T = {eq(x, χ(Pv)) | v ∈ V }, and define S = {xe | e ∈ E}.

To prove the correctness of this reduction all we need to show is that for each e ∈ E and v ∈ V ,
eq(x, χ(Pv)) covers xe, if and only if, e ∈ Sv or, in other words, v ∈ e. If v ∈ e then Pv ⊆ ∪u∈ePu

and, therefore xe
i = 1 for all i ∈ Pv. This implies that eq(x, χ(Pv)) = ∧i∈Pvxi accepts xe. On the

other hand, if v 6∈ e then for each u ∈ e, by the properties of F , Pv 6⊆ ∪u∈ePu. This implies that
eq(x, χ(Pv)) will not accept xe. 2

Corollary 4.5 There exists a constant γ > 0 such that, unless NP ⊆ DTIME(nlog(n)), there is
no polynomial-time algorithm approximating PHC-COVER to within a factor dγ , where d is the
number of variables in the PHC-COVER instance.

Proof: Given an instance of SAT on n variables, the reduction of Theorem 4.1 produces an instance
of Ek-Vertex-Cover on N = nO(log log n) vertices for k = (log N)1/b, where b = max{3, c}. The gap
in vertex cover sizes between positive and negative instances is αk (α ≈ 1/2). Then reduction in
Theorem 4.4 will produce an instance of PHC-COVER over d = O(k2 log N) = O((log N)1+2/b)
with the same gap of αk, that in terms of d, is Ω(d1/(b+2)) > dγ for any constant γ < 1

2+b (and
large enough d). The running time of the reduction and the produced instance are both bounded
by

2O(d) = 2O((log N)1+2/b) = nO((log n)2/b(log log n)1+2/b) = O(nlog n)

(since b ≥ 3). 2

4.2 Reducing from Multi-prover Proof Systems

Below we prove hardness of approximating PHC-COVER by presenting a direct reduction from
one-round multi-prover proof systems with certain properties to PHC-COVER. We then obtain
the claimed result by coupling our reduction with the low-error PCP for NP due to Raz and Safra
[34]. The reduction simulates the reduction from SET-COVER given by Bellare et al. [6] (which is
a simple generalization of the reduction by Lund and Yannakakis [25]) on the Boolean hypercube.
That is, the instance of PHC-COVER we create is the same as the instance of SET-COVER created
in the reduction of Bellare et al. [6]. Therefore the analysis we give follows directly from the analysis
of Lund and Yannakakis [25].

11

Following the definition by Bellare et al. [6] we distinguish five important parameters of one-
round multi-prover proof systems and define the class MIP1(`r, p, `a, `q, ε) as follows:

Definition 4.6 L ∈ MIP1(`r(n), p(n), `a(n), `q(n), ε(n)) if there exists a probabilistic polynomial-
time verifier V , communicating with p(n) provers such that for every x ∈ {0, 1}n the verifier:

• tosses `r(n) random coins obtaining r ∈ {0, 1}`r ,

• computes p(n) questions q(r)1, . . . , q(r)p(n) each of length at most `q(n),

• for each i, asks the i-th prover question q(r)i and gets p(n) answers a1, . . . , ap(n) each of length
at most `a(n),

• computes a predicate V (x, r, a1, . . . , ap(n)) and accepts if and only if it is 1,

• has perfect completeness: if x ∈ L then ∃P̄ = P1, . . . , Pp(n) such that
Prr[V accepts when interacting with P̄] = 1 ;

• has soundness error at most ε(n): if x 6∈ L then ∀P̄ = P1, . . . , Pp(n),
Prr[V accepts when interacting with P̄] ≤ ε(n).

Our reduction will rely on three simple properties of V . The functionality property requires
that for each x ∈ {0, 1}n and each a1 ∈ {0, 1}`a there is at most one vector (a2, a3, . . . , ap) such
that V (x, r, a1, a2, . . . , ap) = 1 for some r ∈ {0, 1}`r . The second property, uniformity, requires that
for each i ∈ [p], queries of V to prover i are uniformly distributed over the set Qi of all the possible
queries to prover i. The last, equality of question space sizes, requires that |Q1| = |Q2| = · · · = |Qp|.
Following Bellare et al. [6] we call V canonical if it has these three properties.

Similarly, we distinguish analogous parameters for a PCP system. We denote the class

PCP(`r(n), p(n), `a(n), `q(n), ε(n))

to be the class of languages decidable by a PCP verifier V that uses `r(n) random bits, generates
p(n) questions of length `r(n), gets answers of length `a(n), has perfect completeness and soundness
error ε(n).

4.2.1 Packing a Proof System into the Boolean Hypercube

The main tool for creating an approximation gap is a set system

Bm,l = (B;C1, C2, . . . , Cm)

where m, l are positive integers and for each i ∈ [m], Ci ⊆ B. This set system has the property
that if I ⊂ [m] and |I| ≤ l, then no union

⋃

i∈I Di covers B, where Di equals Ci or its complement.

Lemma 4.7 ([25]) There exists Bm,l = (B;C1, C2, . . . , Cm) for |B| = O(22lm2) and it can be
constructed in time polynomial in |B|.

The main construction of this section is given in the following lemma.

Lemma 4.8 If L ∈ MIP1(`r, p, `a, `q, ε) with a canonical verifier V , then there exists an algorithm
A that given x, produces an instance of PHC-COVER (Sx,Tx) over d ≤ `r + p(`q + 2`a) variables
such that

12

• if x ∈ L then PHC-COVER(Sx,Tx) = p|Q1|, where Q1 is the question space of the first prover.

• if x 6∈ L then PHC-COVER(Sx,Tx) ≥ 1
2(2ε)−1/p|Q1|.

Moreover, A runs in time polynomial in n and 2d.

Proof: We start by describing a way to map an answer from a prover to a subset. In this mapping
the first prover is treated differently from the rest because of the functionality property of V .
As before, let Qi ⊆ {0, 1}`q denote the set of questions that V asks prover i and let Ai be the
answer space of prover i. Set sa = |A2| + |A3| + . . . + |Ap| (note that |A1| is not included) and let
Bsa,l = (B;C1, C2, . . . , Csa) be a set system given by Lemma 4.7 for l to be specified later. We index
the sets C1, C2, . . . , Csa by pairs (i, ai) for 2 ≤ i ≤ p and ai ∈ Ai. Let A = {(i, ai) | i ∈ [p], ai ∈ Ai}
be the set of all possible answers (answers from different provers correspond to different elements).

Now for each setting of a random string r ∈ R = {0, 1}`r and (i, ai) ∈ A, we define a subset
C(r, i, ai) ⊆ B as follows.

C(r, i, ai) =

Ci,ai if i ≥ 2
B \ (C2,a2 ∪ · · · ∪ Cp,ap) if i = 1 and

∃a2, . . . , ap, V (x, r, a1, a2, . . . , ap) = 1
∅ otherwise

For a1 ∈ A1, C(r, 1, a1) is well-defined since V has the functionality property. The definition
of C(r, i, ai) implies that if V (x, r, a1, a2, . . . , ap) = 1 then ∪i∈[p]C(r, i, ai) = B, that is, answers
from provers that cause the verifier to accept correspond to “small” covers. Bellare et al. [6]
define the following instance of SET-COVER. The ground set equals to R × B and for every
i ∈ [p], qi ∈ Qi, ai ∈ Ai the set system includes a subset

Z(i, qi, ai) = {(r, b) | qi = q(r)i and b ∈ C(r, i, ai)} ,

where qi = q(r)i means that V generates query qi to prover i on input x and random string r. In
other words, the set system is Zx = {Z(i, qi, ai) | i ∈ [p], qi ∈ Qi, ai ∈ Ai}.

We now show that exactly the same set system can be created on a hypercube of dimension
d = `r +p`q + |A|. We refer to the first `r variables of the Boolean cube {0, 1}d as yr,1, . . . , yr,`r , the
next p`q variables as zi,j for i ∈ [p] and j ∈ [`q], and the last |A| variables as z(i,ai) for (i, ai) ∈ A.

For every r ∈ R and b ∈ B, let z(r, b) ∈ {0, 1}A be a Boolean vector of length |A| such that
z(r, b)(i,ai) = 1 whenever b ∈ C(r, i, ai). Furthermore, let [r, b] = r · q(r)1 · · · q(r)p · z(r, b). Let
Sx = {[r, b] | r ∈ R, b ∈ B}. We now proceed to define the terms. For i ∈ [p], qi ∈ Qi, and
ai ∈ Ai, let T (i, qi, ai) be the term that checks that variables of i-th question equal to qi and that
the variable corresponding to answer ai from prover i is set to 1, or formally

T (i, qi, ai) = eq(zi,1 · · · zi,`q , qi) ∧ z(i,ai) .

Let Tx = {T (i, qi, ai) | i ∈ [p], qi ∈ Qi, ai ∈ Ai}. It is easy to verify that the term T (i, qi, ai)
covers a point [r, b] if and only if qi = q(r)i and b ∈ C(r, i, ai). Therefore the set system (Sx,Tx)
corresponds exactly to the SET-COVER instance of Bellare et al. [6], where [r, b] corresponds to
(r, b) and T (i, qi, ai) corresponds to Z(i, qi, ai).

The analysis of Lund and Yannakakis [25] can now be used to prove that for x ∈ L, PHC-
COVER(Sx,Tx) ≤

∑

i∈P |Qi| = p|Q1| and for x 6∈ L, PHC-COVER(Sx,Tx) ≥ (1 − εlp)l · |Q1|.

13

Therefore by setting l = (2ε)−1/p we will get the stated inapproximability gap of (2ε)−1/p/(2p). For
completeness we provide the details of this analysis using the notation of the above SET-COVER
instance.

First, let x ∈ L and let P̄ be an honest deterministic prover. For qi ∈ Qi denote by Pi(qi)
the answer given by Pi to query qi and set S = {Z(i, qi, Pi(qi)) | i ∈ [p], qi ∈ Qi}. For every
point (r, b) and i ∈ [p], let a′i = Pi(q(r)i). By perfect completeness of V , V (x, r, ā′) = 1 and
therefore C(r, 1, a′1) = B \ (C2,a′

2
∪ · · · ∪ Cp,a′

p
), i.e, ∪i∈[p]C(r, i, a′i) = B. This means that for some

j, b ∈ C(r, j, a′j) and therefore (r, b) ∈ Z(j, q(r)j , a
′
j). This means that S ⊆ Z is a collection of size

∑

i∈[p] |Qi| that covers R × B. By equality of question space sizes, |S| =
∑

i∈[p] |Qi| = p|Q1|.
Let x 6∈ L and S ⊆ Zx be a cover for R × B. For a random string r and a set C ⊆ B, denote

by (r, C) the set {(r, b) | b ∈ C} and let Sr = {Z(i, q(r)i, ai) | i ∈ [p], Z(i, q(r)i, ai) ∈ S}, in other
words Sr includes the terms from S that cover (r,B). We say that r is good if |Sr| ≤ l and bad
otherwise. Let δ be the fraction of good r’s.

Claim 4.9 There exists a prover P̄ such that V will accept with probability δ/lp.

Proof: We define P̄ with the following strategy: prover Pi on query qi chooses ai from the set
Ai

qi
= {a | Z(i, qi, a) ∈ S} randomly and uniformly (this set cannot be empty). Note that for every

r,
∑

i |A
i
q(r)i

| = |Sr|. If r is good, then |Sr| ≤ l and hence there should exist a′1, . . . , a
′
p such that for

every i ≤ p, a′i ∈ Ai
q(r)i

and V (x, r, a′1, . . . , a
′
p) = 1. To prove this, assume that for every a1 ∈ A1

q(r)1
,

there exists j(a1) such that V (x, r, a1, . . . , ap) = 1 but aj(a1) 6∈ A
j(a1)
q(r)j(a1)

. Then

Z(1, q(r)1, a1) ∩ (r,B) = (r, C(1, τ(1, a1)) = (r,B \
⋃

i≥2

Ci,ai) ⊆ (r,Cj(a1),aj(a1)
) .

This implies that

⋃

a1∈A1
q(r)1

Cj(a1),aj(a1)

⋃

⋃

i≥2, ai∈Ai
qi

Ci,ai

 = B .

We obtained a union of at most l sets from Bsa,l that does not include a set and its complement,
and covers B. This contradicts the definition of Bsa,l, proving the existence of a′1, . . . , a

′
p as above.

For good r’s and each i, |Ai
q(r)i

| ≤ l and therefore, the probability that each Pi will answer with a′i
is at least l−p. Hence this strategy has success probability at least δ/lp. 2 (Claim 4.9)

Claim 4.10 |S| ≥ (1 − δ)l|Q1|.

Proof: For each bad r, |Sr| ≥ l and therefore
∑

r |Sr| = (1 − δ)2`r l. On the other hand, each
subset Z(i, qi, ai) ∈ S appears once in all the sets for which qi = q(r)i. The uniformity property of
V implies that each query qi is asked for exactly 2`r/|Qi| = 2`r/|Q1| different r’s (the last equality
follows from the equality of question space sizes property). This implies that

|S| =
|Qi|

2`r

∑

r

|Sr| ≥
|Qi|

2`r
(1 − δ)2`r l = (1 − δ)l|Q1| .

2 (Claim 4.10)
By Claim 4.9 and soundness of V , we get that δ ≤ ε · lp. By Claim 4.10, this implies that

|S| ≥ (1 − εlp)l|Q1|. 2 (Lemma 4.8)

14

4.2.2 Obtaining Proof Systems with Canonical Verifiers

In this section, we show how to derive canonical multi-prover proofs systems from general PCPs for
NP. The first step is obtaining a multi-prover system from a PCP. As shown by Bellare, Goldreich,
and Safra, (their proof appears in Ta-Shma’s paper [35]) the identity transformation of a PCP to
an MIP (that is, just distributing p queries to p different provers) increases the soundness error of
the proof system by a factor of at most pp. That is,

Lemma 4.11 ([35])

PCP(`r(n), p(n), `a(n), `q(n), ε(n)) ⊆ MIP1(`r(n), p(n), `a(n), `q(n), ppε(n)) .

The next step in our transformation is obtaining the functionality property.

Lemma 4.12 If L ∈ MIP1(`r, p, `a, `q, ε) with a verifier V , then

L ∈ MIP1(`r, p + 1, p`a, p`q, ε)

with a verifier V ′ that has the functionality property.

Proof: To get a verifier V ′ with the desired property, we add one more prover (which we place
first in the enumeration). Given r, V ′ uses V to generate questions q1, . . . , qp, asks all the “old”
provers their respective questions, and asks the new prover question (q1, q2, . . . , qp). Given answers
a1, . . . , ap from the “old” provers and an answer (a′1, . . . , a

′
p) from the new prover, V ′ accepts if

a′i = ai for all i ∈ [p], and V (x, r, a1, . . . , ap) = 1. We first observe that, by definition, V ′ has the
functionality property. Next, we observe that V ′ interacts with the original p provers exactly as V
does and accepts only when V does. Therefore the soundness error of the new multi-prover system
does not increase and, in particular, is at most ε. Perfect completeness is preserved since if the first
prover answers his questions in the same way as the other p honest deterministic provers, then V ′

will accept whenever V accepts. Finally, the bounds on the length of queries and answers grow by
a factor of at most p. 2

Next we describe how to obtain the last two properties required to get a canonical verifier.

Lemma 4.13 If L ∈ MIP1(`r, p, `a, `q, ε) with a verifier V , then

L ∈ MIP1((p + 1)`r, p, `a, `r + `q, ε)

with a verifier V ′ that has uniformity and “equality of answer space sizes” properties. Furthermore,
if V has the functionality property then V ′ is canonical.

Proof: For each qi ∈ Qi, let Ri,qi denote the set of random strings for which V generates question
qi for prover i. New verifier V ′ uses V to generate questions q1, q2, . . . , qp and then asks questions
((q1, j1), (q2, j2), . . . , (qp, jp)) where ji is an element of [|Ri,qi |] chosen randomly, uniformly, and
independently of other choices. It is easy to see that after this modification the sets of possible
questions are all of the same size 2`r and the questions are distributed uniformly. These random
bits can be disregarded by honest provers and therefore completeness is not changed. Clearly,
randomly and independently chosen bits cannot help dishonest provers and therefore soundness
error is still bounded by ε. Finally, the bound on questions size is at most `r + `q and the number
of random bits required is at most (p + 1)`r. The accepting predicate of V was not changed and
thus functionality property is preserved in this transformation. 2

We can now combine these transformations with the following theorem due to Raz and Safra
[34],

15

Theorem 4.14 For any β ≤ 1/4, `q(n) ≤ logβ n there exist fixed positive constants br, bp, bq, bε

such that SAT ∈ PCP (br log n, bp, `a(n), bq log n, 2−bε`a(n)).

obtaining the following result:

Lemma 4.15 There exist fixed positive constants cr, cp, cq, cε for which

SAT ∈ MIP1(cr log n, cp, log log n, cq log n, log−cε n)

with a canonical verifier.

Proof: We start with the PCP from Theorem 4.14 and then apply Lemmas 4.11, 4.12, and 4.13
to get

SAT ∈ MIP1((bp + 2)br log n, bp + 1, bp`a(n), (bpbq + br) log n, b
bp
p 2−bε`q(n)) .

We now choose `a(n) = (log log n)/bp and obtain the desired result for cr = (bp + 2)br, cp = bp + 1,

cq = (bpbq + br), and any cε > bε/bp (“strictly greater” is to offset the constant factor b
bp
p). 2

We can now use the results from Sections 3 and 4.2 to summarize our inapproximabilily results
for covering problems on the Boolean hypercube.

Theorem 4.16 (subsumes Th. 1.1) There exists a constant γ > 0 such that, unless P = NP,
there is no polynomial-time algorithm approximating TT-MinDNF, PTT-MinDNF, HC-COVER,
and PHC-COVER, to within a factor dγ = Ω(logγ(N)), where d is the number of variables and N
is the size of an instance.

By using our reduction from MIP to PHC-COVER(Lemma 4.8) with the canonical-verifier MIP
obtained from the PCP of Raz and Safra [34] (Lemma 4.15), we get an inapproximability gap of
(2 log n)cε/cp/(2cp) for d ≤ (cr + cpcq + cp) log n. This implies the claim for PHC-COVER. We use
Theorem 3.6 to extend the result to TT-MinDNF, PTT-MinDNF and HC-COVER.

5 Hardness of Proper PAC Learning with Membership Queries

In this section, we present our hardness results for proper PAC+MQ learning of DNF formulae.
We first look at the learning model where the distribution over the input space is not restricted. In
this setting our result is based on the hardness result for learning DNF expressions without MQs by
Alekhnovich et al. [2]. As in their work, we prove a stronger result that shows hardness of learning
DNF expressions by a more expressive1 class of OR-of-thresholds.

Theorem 5.1 (subsumes Th. 1.2) If there exists an algorithm A such that for every Boolean
function c, distribution D and ε, A, given access to EX(c,D) and MEM(c), runs in time
poly(n, DNF-size(c), 1/ε) and with probability at least 3/4 outputs an OR-of-thresholds formula h
such that Prx∈D[h(x) = c(x)] ≥ 1 − ε, then NP = RP.

For consistency, we prove an equivalent formulation that CNF expressions are not learnable by
AND-of-thresholds. The proof of Alekhnovich et al. is based on a reduction from approximating
the chromatic number of a graph. Given a graph G, they produce a set of examples such that if

1More expressive in the sense that all size k DNF formulae can be expressed by size k OR-of-thresholds (but not
vice versa).

16

the chromatic number of G is “small” then there exists a “small” CNF formula consistent with the
examples. Otherwise, if the chromatic number of the underlying graph is “large”, then the size of
the minimum AND-of-thresholds formula with “small” error on the induced distribution over the
examples is “large”. Our contribution is to show that we can define (efficiently) values of the target
function f on the rest of the hypercube so that in the case of the “small” chromatic number, f can
still be represented by a relatively “small” CNF formula. This allows us to answer queries to the
membership oracle without any knowledge of a “small” coloring.

5.1 From Coloring to Learning

Given a graph G = (V,E), construct a target function f and a distribution D as follows. Fix some
positive integer parameter r. The examples are from

(

{0, 1}V
)r

= {0, 1}|V |·r.

Definition 5.2 Let G(V,E) be a graph with n vertices and m edges. For a vertex v ∈ V , let z(v)
denote the vector with a 1 in the v-th position and 0 everywhere else. For an edge e = (u, v) of G,
let z(e) be the vector with a 1 in positions u and v.

Following the construction of Alekhnovich et al. [2], with each vector (v1, v2, . . . , vr) ∈ V r, we
associate a negative example 〈z(v1), . . . , z(vr), 0〉. For each choice of k1, k2, such that 1 ≤ k1 ≤ r,
1 ≤ k2 ≤ r, k1 6= k2, e = (u,w) ∈ E and vi ∈ V for each i = 1, 2, . . . , r, i 6= k1, k2, we associate a
positive example

〈z(v1), . . . , z(vk1−1), z(e), z(vk1+1), . . . , z(vk2−1), 0, z(vk2+1), . . . , z(vr), 1〉 .

Let S+ denote the positive examples and S− denote the negative examples. Set S = S+ ∪S−. The
distribution D is uniform over the above set of examples S.

These examples define the values of f on points in S. In order to answer membership query we
also need to define f on the rest of the hypercube. Let x = (x1, . . . , xr) be a point not in S+ ∪S−.
If for all i, xi ∈ {0̄}∪{z(v) | v ∈ V } then f(x) = 0. We refer to this set of points as 0-vertex points.
If for some i ∈ [r], there exists (u, v) 6∈ E such that xi

u = xi
v = 1, then f(x) = 0. We call this set of

points non-edge points. Otherwise, let f(x) = 1. We first note that the example oracle for f with
respect to the distribution D and the membership query oracle for f can be simulated efficiently
by a randomized algorithm with input G.

We now prove that if the chromatic number χ(G) is small, then there exists a small CNF
formula equal to f .

Lemma 5.3 If χ(G) ≤ nλ, then there is a CNF formula of size at most nrλ + r|E| equal to f .

Proof: Suppose V =
⋃χ

i=1 Vi, where Vi are independent sets. Such sets must exist by the definition
of χ. Define the CNF formula

g(x1, x2, . . . , xn) =

χ
∧

i=1

∨

v/∈Vi

xv .

This formula rejects all points in {0̄} ∪ {z(v) | v ∈ V } and accepts all points in {z(e) | e ∈ E}.
We then define an expression F that rejects all the points in S− and 0-vertex points

F (x1, . . . , xr) =

r
∨

k=1

g(xk
1 , . . . , xk

n) =

r
∨

k=1

χ
∧

i=1

∨

v/∈Vi

xk
v ,

17

and a CNF formula H on r · n variables that is negative on all the non-edge points and positive
elsewhere

H(x1, . . . , xr) =
∧

k∈[r]; (u,v)6∈E

(xk
u ∨ xk

v) .

We claim that in addition to S− and 0-vertex points F rejects only non-edge points. By the
definition of F , if F rejects a point x1, . . . , xr then for all k ∈ [r], there exists i ∈ [χ] such that for all
v 6∈ Vi, xv = 0. Therefore if for some k ∈ [r] and u, v ∈ V , xk

u = xk
v = 1 then u, v ∈ Vi for some i. In

particular, (u, v) 6∈ E since Vi is an independent set. We therefore obtain that F ∧H rejects exactly
points in S−, 0-vertex points and the non-edge points, in other words, is identical to f . We remark
that in order to answer membership queries to F we would need to know which non-edge points
it accepts and which rejects. This would not be possible without knowing the “small” coloring.
Therefore f is defined as F ∧ H in order to hide all the coloring-dependent information in F by
using H that rejects all the non-edge points.

Note that F above is not written as a CNF formula. It is, however, a disjunction of r CNF
formulas, each having at most χ(G) clauses. Hence expanding the expression for F yields a CNF
formula with at most χ(G)r ≤ nλr clauses. So F ∧ H can be written as a CNF formula satisfying
the conditions of the lemma. 2

For the case when the chromatic number is large, we can use the original analysis of Aleknovich
et al. [2]. This is possible since the distribution D and values of f on points in S are identical to
those in their construction.

Lemma 5.4 (Th. 26 in [2]) Let G be a graph such that χ(G) ≥ n1−λ. Let F = ∧`
i=1hi. If

` < 1
2χr

(

χ−1
log n

)r
then F has error at least 1

n2rγ+4 with respect to D.

Combining the two cases (Lemmas 5.3 and 5.4) gives us the following claim.

Lemma 5.5 Suppose that there exists an algorithm A such that for every Boolean function c of
CNF-size s, distribution D, and ε > 0, A, given access to EX(c,D) and MEM(c), runs in time
O(nk · sk · (1

ε)
k) and with probability at least 3/4 outputs an AND-of-thresholds formula h such that

Prx∈D[h(x) = c(x)] ≥ 1 − ε. Then there exists a randomized algorithm that given a graph G on

N vertices, can distinguish between the case when χ(G) ≤ N
1

10k and the case when N1− 1
10k in time

O(N9k+1). Moreover, the algorithm always succeeds when χ(G) ≥ N1− 1
10k .

Proof: Fix ε = 1
N6 , and r = 10k. For a graph G let the target function f and the distribution D

be defined as in Section 5.1. The dimension of the learning problem is n = rN = 10kN . Run the
learning algorithm with respect to distribution D and with queries answered according to f . If it
does not terminate after N9k+1 steps, output “χ ≥ N1− 1

10k ”. Otherwise, let h be the hypothesis
the algorithm outputs. Calculate the error εh of h with respect to the distribution D. If εh < 1

N6

output “χ ≤ N
1

10k ”, otherwise output “χ ≥ N1− 1
10k ”. We claim that this algorithm succeeds with

probability at least 3/4 when χ ≤ N
1

10k and always succeeds when χ ≥ N1− 1
10k .

If χ ≤ N
1

10k , then Lemma 5.3 implies that

s = CNF-size(f) ≤ N
1

10k
10k + 10k|E| ≤ 10k · N2 .

Hence, the running time of A is at most

O(nk · sk · (
1

ε
)k) = O((10k · N)k(10k · N2)k(N6)k) = O(N9k) < N9k+1

18

for sufficiently large N and, with probability at least 3/4, the output hypothesis has error less than

ε = 1
N6 . Hence the algorithm outputs “χ ≤ N

1
10k ” with probability at least 3/4 in this case.

If χ ≥ N1− 1
10k , then by Lemma 5.4, an AND-of-thresholds with error less than ε = 1

N6 =
1

N2·10k(1
10k

)+4
must be of size at least 1

2χr

(

χ−1
ln N

)r
. Therefore in order to output a hypothesis with

error at most ε, the running time of A must be at least

1

2χr

(

χ − 1

ln N

)r

≥
1

20χ · k

(

N1− 1
10k − 1

ln N

)10k

≥
1

20Nk

(

N1− 1
10k

2 ln N

)10k

≥ N10k−3

for sufficiently large N . Hence if A terminates in N9k+1 < N10k−3 steps, its error will be larger
than ε, and the algorithm outputs “χ ≥ N1− 1

10k ” with probability 1 in this case. 2

Finally, we will require the following hardness result due to Feige and Kilian [16]:

Theorem 5.6 ([16]) For any constant γ > 0, there exists a polynomial-time randomized reduction
mapping instances f of SAT of length n to graphs G with N = poly(n) vertices with the property
that if f is satisfiable then χ(G) ≤ O(Nγ) and if f is unsatisfiable then χ(G) ≥ Ω(N1−γ). The
reduction has zero-sided error.

Combining Lemma 5.5 and Theorem 5.6 gives Theorem 5.1.

5.2 Hardness of Proper PAC+MQ Learning over the Uniform Distribution

We now show a simple application of the hardness of TT-MinDNF to the hardness of proper PAC
learning of DNF expressions restricted to the uniform distribution over {0, 1}n. It is a very strong
model in which, as proved by Jackson [20], DNF expressions are learnable non-properly.

It has been observed by Allender et al. that TT-MinDNF naturally reduces to exact learning of
DNF with MQs [4]. We further this observation by reducing TT-MinDNF to PAC+MQ learning
of DNF over the uniform distribution. We denote the uniform distribution over {0, 1}n by U .

Theorem 5.7 There exists a constant γ > 0 such that, if there exists an algorithm A that for
every Boolean function c and ε > 0, A, given access to EX(c, U) and MEM(c), runs in time
poly(n, s = DNF-size(c), 1/ε) and, with probability at least 3/4, outputs a DNF formula h of size
at most logγ (s/ε) · s that ε-approximates c with respect to U , then NP = RP.

Proof: We reduce from TT-MinDNF and let γ be the constant from Theorem 1.1. Given the
truth table of a function f over d = log n variables, we let the target concept be c(x) = f(x1 · · · xd).
Clearly, s = DNF-size(c) ≤ 2log n = n. The definition of c(x) implies that EX(c, U) and MEM(c)
can be efficiently simulated given the truth table of f . We then set ε = 1/(2n) and δ = 1/2.
A strongly proper algorithm on this input will (with probability at least 1/2) produce in time
polynomial in n = 2d a DNF formula h of size t ≤ logγ (s/ε) · s that 1

2n -approximates c. Now we
choose a vector y of length n − d randomly and uniformly and let hy be the projection of h to
first d variables with the last n− d variables set to y. We claim that with probability at least 1/2,
f ≡ hy. To see this, note that

1

2n
≥ Prx∈{0,1}n [c(x) 6= h(x)] = Ey∈{0,1}n−d

[

Prz∈{0,1}d [f(z) 6= hy(z)]
]

,

19

and thus for at least 1
2 of y’s, Prz∈{0,1}d [f(z) 6= hy(z)] = 0, that is, f(z) = hy(z) for all z.

For each y, the number of terms in hy is at most t and therefore with probability at least 1/4, t
approximates DNF-size(f) within logγ (s/ε) = O(dγ). 2

6 Conclusions and Open Problems

In this work we have conclusively answered the question of proper learning of DNF expressions
in the PAC+MQ model. We also made some progress towards answering a similar question when
the distribution is restricted to be uniform. It is easy to see that in the uniform case finding a
DNF hypothesis O(log (s/ε)) times larger than the target can be done in time nO(log (s/ε)) [42] and
therefore, is unlikely to be NP-hard. This means that substantial improvements of the result will
have to be based on different (probably stronger) assumptions. A more important direction would
be to reduce restrictions on the output hypothesis in the hardness results (with the final goal being
the circuit representation).

It would be also interesting to close the gap between O(d) and dγ for approximating TT-
MinDNF.

Acknowledgments

I am grateful to Leslie Valiant for his advice and encouragement of this research. I would also
like to thank Alex Healy, Shaili Jain, Emanuele Viola, and anonymous referees of STOC 2006 and
JCSS for careful proofreading and valuable comments on the earlier versions of this manuscript.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of
high dimensional data. Data Mining and Knowledge Discovery, 11(1):5–33, July 2005.

[2] M. Alekhnovich, M. Braverman, V. Feldman, A. Klivans, and T. Pitassi. The complexity of
properly learning simple classes. Journal of Computer and System Sciences, 74(1):16–34, 2008.

[3] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M.Saks. Minimizing DNF formulas
and AC0 circuits given a truth table. In Proceedings of IEEE Conference on Computational
Complexity, pages 237–251, 2006.

[4] E. Allender, L. Hellerstein, T. Pitassi, and M.Saks. On the complexity of finding minimal
representations of boolean functions. 2004. Unpublished.

[5] D. Angluin and M. Kharitonov. When won’t membership queries help? Journal of Computer
and System Sciences, 50(2):336–355, 1995.

[6] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs
and applications to approximations. In Proceedings of STOC, pages 294–304, 1993.

[7] A. Blum and S. Rudich. Fast learning of k-term DNF formulas with queries. Journal of
Computer and System Sciences, 51(3):367–373, 1995.

20

[8] A. L. Blum and R. L. Rivest. Training a 3-node neural network is NP-complete. Neural
Networks, 5(1):117–127, 1992.

[9] V. Chvàtal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4:233–235, 1979.

[10] O. Coudert and J. Madre. METAPRIME, an Interactive Fault-Tree Analyser. IEEE Trans-
actions on Reliability, 43(1):121–127, 1994.

[11] O. Coudert and T. Sasao. Two-level logic minimization. In R. Brayton, S. Hassoun, and
T. Sasao, editors, Logic Synthesis and Verification, pages 1–29. Kluwer, 2001.

[12] S. Czort. The complexity of minimizing disjunctive normal form formulas. Master’s thesis,
University of Aarhus, 1999.

[13] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered pcp and the hardness of
hypergraph vertex cover. SIAM Journal of Computing, 34(5):1129–1146, 2005.

[14] P. Erdös, P. Frankl, and Z. Furedi. Families of finite sets in which no set is covered by the
union of r others. Israel Journal of Mathematics, 51:79–89, 1985.

[15] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–652,
1998.

[16] U. Feige and J. Kilian. Zero knowledge and the chromatic number. In Proceedings of Conference
on Computational Complexity (CCC-96), pages 278–289, May 24–27 1996.

[17] J.F. Gimpel. A method for producing a boolean function having an arbitrary prescribed prime
implicant table. IEEE Transactions on Computers, 14:485–488, 1965.

[18] E. A. Gold. Complexity of automaton identification from given data. Information and Control,
37:302–320, 1978.

[19] L. Hellerstein and V. Raghavan. Exact learning of DNF formulas using DNF hypotheses. In
Proceedings of STOC, pages 465–473, 2002.

[20] J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution. Journal of Computer and System Sciences, 55:414–440, 1997.

[21] W. Kautz and R. Singleton. Nonrandom binary superimposed codes. IEEE Trans. Inform.
Theory, 10:363–377, 1964.

[22] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of Boolean formulae. In
Proceedings of STOC, pages 285–295, 1987.

[23] A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). Journal of Computer and
System Sciences, 68(2):303–318, 2004.

[24] H. Liu. Routing table compaction in ternary cam. IEEE Micro, 22(1):58–64, 2002.

21

[25] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, 41(5):960–981, 1994.

[26] W. Masek. Some NP-complete set covering problems. unpublished, 1979.

[27] E. L. Jr. McCluskey. Minimization of Boolean Functions. Bell Sys. Tech. Jour., 35:1417–1444,
1956.

[28] N. Nisan and A. Wigderson. Hardness versus randomness. Journal of Computer and System
Sciences, 49:149–167, 1994.

[29] R. Nock, P. Jappy, and J. Sallantin. Generalized graph colorability and compressibility of
boolean formulae. In Proceedings of the 9th International Symposium on Algorithms and
Computation (ISAAC), 1998.

[30] W. J. Paul. Boolesche minimalpolynome und überdeckungsprobleme. Acta Informatica, 4:321–
336, 1974.

[31] L. Pitt and L. Valiant. Computational limitations on learning from examples. Journal of the
ACM, 35(4):965–984, 1988.

[32] W.V. Quine. The problem of simplifying truth functions. Americal Mathematical Monthly,
59:521–531, 1952.

[33] W.V. Quine. A way to simplify truth functions. Americal Mathematical Monthly, 62:627–631,
1956.

[34] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In Proceedings of STOC, pages 475–484, 1997.

[35] A. Ta-Shma. A Note on PCP vs. MIP. Information Processing Letters, 58(3):135–140, 1996.

[36] L. Trevisan. Non-approximability results for optimization problems on bounded degree in-
stances. In Proceedings of STOC, pages 453–461, 2001.

[37] C. Umans. Hardness of approximating Σp
2 minimization problems. In Proceedings of FOCS,

pages 465–474, 1999.

[38] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli. Complexity of two-level logic mini-
mization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25(7):1230–1246, 2006.

[39] S. Vadhan. Lecture notes on pseudorandomness. Available at
http://www.courses.fas.harvard.edu/~cs225/, 2004.

[40] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[41] L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, pages 560–566, 1985.

22

[42] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time. In
Proceedings of the Third Annual Workshop on Computational Learning Theory, pages 314–
326, 1990.

23

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

