
The normal form of reversible circuits consisting of CNOT and NOT gates

Miroslava Sotáková∗

Abstract

This paper deals with the reversible circuits with n input and output nodes, consisting of the reversible
gates FAN-IN=FAN-OUT≤ 2. We define a normal form of such type of circuits and describe a reduction
algorithm to transform a circuit in this form. Furthermore we use it for checking whether two circuits
are equivalent to each other without evaluating them.

1 Introduction

Reversible computing is computing which uses reversible operations, that means the operations which
can be exactly reversed. When this kind of reversibility is performed at the lowest level, in the physical
mechanisms of operation of the bit-devices, it avoids dissipating the energy that is associated with the
manipulated bits of information. This can help to reduce the energy dissipation of computations.

Reversible computing is also closely connected to the quantum computing which is a hot topic nowa-
days, mainly because it brings the exponential improvement of the time complexity of several classical
algorithms, like factorization.

In the area of reversible computing, Landauer [Lan61] was the first who described the Landauer
embedding which is the naive technique to transform irreversible computations into equivalent reversible
ones, but his machines do not reversibly get rid of the redundant computation histories. Bennett [Ben73]
invented a method to uncompute them and thereby proved that reversible computations could prevent
the entropy generation. Fredkin [FT78] introduced conservative logic circuits, and proved they were
universal. Toffoli [Tof80] invented the Toffoli gate (also called the controlled-controlled-not gate) which
is probably the most convenient universal reversible logic gate. All these works are the headstones of the
field of reversible computing.

This paper deals with the reversible circuits with n input and output nodes, consisting of the reversible
gates FAN-IN=FAN-OUT≤ 2. Although they are not universal and therefore such circuits are not too
powerful, describing their structure can be the first step to towards discovering the structure of general
reversible circuits consisting of unniversal ternary gates. More precisely, we search for the formal rules
which enable us to recognize the equivalent reversible circuits. It is known that for the first order
propositional logic there are finite sets of rewrite rules, which enable us do decide, whether the two
given Boolean formulae are equivalent, i.e. their equivalence is a tautology. They use the properties of
propositional connectives, like de Morgan rules, associativity, distributivity, idempotency of AND and OR,
double negation, properties of the constants 1 and 0, definition of the other propositional connectives and
some other inference rules. Using these rules it is possible to rewrite a given formula to the conjunctive
normal form. Once a formula is in such form, it suffices to use only one – the resolution inference rule
which is refutation-complete over first order logic that means it derives 0 (false symbol) if and only if the

∗
mirka@brics.dk, Department of Computer Science, Aarhus University

Electronic Colloquium on Computational Complexity, Report No. 128 (2005)

ISSN 1433-8092

given formula is an anti-tautology. If a Boolean formula is given, then we are able do decide, whether
the negation of it is an antitautology and thereby find, whether the given formula is a tautology. This
process is local, because it always deals with a bounded number of connectives, represented by the gates
in the logic circuits.

Is it possible to use the same principle in different calculi? More precisely, we ask, whether there
exists a finite rewrite system, which enables us to decide the problem of equivalence of two reversible
circuits consisting of unary and binary reversible gates (two such circuits are equivalent if their outputs
are equal for the same input). In the third section we introduce the basic technique to rewrite the
product of transpositions generating the symmetric group Sn to the unique form. We call this form the
normal representation of the permutation.

In the fourth section we extend this technique to deal with the circuits containing unary and binary
gates. Firstly we focus on the circuits acting on n bits, consisting of linear gates. The transformations,
which are computable by such circuits are in 1-1 correspondence with the non-singular n×n matrices over
Z2. This group is generated by elementary linear transformations, i.e. changing two columns and adding
a column to another one, written as matrices. The binary gates corresponding to these transformations
are called the linear gates. We present a finite rewrite system, which allows us to rewrite a linear circuit
to its normal form which is unique for the empty circuit.

Rewriting an arbitrary circuit to its normal form is the keypoint of the algorithm for checking the
equivalence of reversible circuits consisting of linear gates. Only a slight generalization is needed to deal
with the circuits consisting of general binary gates.

2 Preliminaries

Syntactic monoids

Let X be an arbitrary set. A word over X is a finite string of symbols from X , in which repetition is
allowed. The set of words with concatenation and the unit element, which is an empty word is called a
free monoid over X . It is generated by X .

String rewriting system

Let T be a free monoid. A string rewriting system for T is a set R of ordered pairs of elements of
T of the form (p, q). Viewed as a set of symmetric relations, there is the least congruence on T , which
contains it. Let us denote it by R̃. If T is a free monoid over X , then (X, R) is called a presentation
of the factor monoid T/R̃ of T . The set of relations, which generate this congruence is called the set of
defining relations of T/R̃ on T .

The ordered pairs correspond to the rewrite rules. Suppose an element u of T has a subword p and
(p, q) is a rule of the rewriting system, then we can replace the substring p of u by the word q and obtain
a new word v. The word u was rewritten to the word v. u and v represent the same element of A. If u
cannot be rewritten using any rule of the rewriting system we say that u is reduced.

The equality of two circuits in the free monoid of reversible circuits will denote the bidirectional
rewrite rule. For instance, in the fourth section we will associate a monoid of linear circuits with n input
nodes with the corresponding factor monoid – GLn(Z2) group using the finite set of rewrite rules and
the corresponding set of defining relations, which determines the congruence on the set of linear circuits.

2

Reversible circuits

Definition 2.1 An n-bit reversible gate is a bijective mapping f from the set {0, 1}n of bit-strings of
size n to itself.

Definition 2.2 Reversible circuit is a circuit which consists of reversible gates. As in the reversible
gate, we need as many outputs as inputs in the reversible circuit.

Definition 2.3 A width of a reversible circuit is the number of bits in its input.

3 Defining relations for the symmetric group

Definition 3.1 The group Sn is a finite group of order n! whose elements are permutations of the set
of integers {1, . . . , n} and whose group operation is a composition of permutations. A cycle of length k
denoted by a k-tuple (a1, . . . , ak) is a permutation π, where π(ai mod k) = a(i+1) mod k, and π(b) = b if b
is not in {a1, . . . , ak}. A transposition is a cycle of length 2.

Remark: Any element of Sn can be written as a product of disjoint cycles. Any cycle the length k is a
product of (k − 1) transpositions

(e.g. (1, 2 . . . k) = (1, k)(1, k − 1) . . . (1, 2)). The Sn group is thereby generated by the set of transpo-
sitions.

Proposition 3.2 Let X be the set of transpositions in {1, . . . , n} and let . be the operation of concate-
nation in the free monoid generated by X. Let us denote it by T . The Sn group is a factor monoid of T
through the congruence defined by the following relations:

(a b)(c d) = (c d)(a b), ∀a 6= b, c 6= d, {a, b} ∩ {c, d} = ∅

(a b)(a c) = (a c)(b c), ∀a 6= b, a 6= c, b 6= c

(a b)(a b) = id, ∀a 6= b.

Before proving the proposition let us introduce a normal representation of a permutation. Proposition
3.2 is a consequence of Proposition 3.4 which describes the reduction of a given product of transpositions
to the normal representation of the permutation which it defines.

Definition 3.3 A normal representation of the permutation π is a product of transpositions in the form:

π̄ =

k
∏

i=1

li−1
∏

j=1

(ai
0 ai

j);

a1
0 < a2

0 < · · · < ak
0 ;

(∀i ∈ {1, 2, . . . , k})ai
0 = min{ai

0, a
i
1, . . . a

i
li−1};

(∀i ∈ {1, 2, . . . , k})(∀r, s ∈ {0, 1, . . . , li − 1}) r 6= s ⇒ ai
r 6= ai

s;

(∀i, j ∈ {1, 2, . . . , k}) i 6= j ⇒ {ai
0, a

i
1, . . . , a

i
li−1} ∩ {aj

0, a
j
1, . . . , a

j
lj−1} = ∅.

3

In fact π has k cycles, each of them written in the form

(a0 a1, . . . , al−1) = (a0 al−1)(a0 al−2) . . . (a0 a1), a0 = min{a0, a1, . . . al−1}.

The cycles are ordered with respect to their least elements.

Remark: Every permutation π ∈ Sn, as a product of disjoint cycles, can be written in the normal form,
denoted by π̄.

Notation: If π ∈ Sn is given, then let π̂ denote some representation of π as a product of transpositions.

Proposition 3.4 For the representation π̂ there are representations

π̂ = π̂0, π̂1, . . . , π̂r = π̄,

such that for each i ∈ {0, 1, . . . , r − 1} one of the following cases holds for some σ̂ and ϕ̂:

π̂i = σ̂(a b)(c d)ϕ̂ π̂i+1 = σ̂(c d)(a b)ϕ̂

π̂i = σ̂(a b)(a c)ϕ̂ π̂i+1 = σ̂(a c)(b c)ϕ̂

π̂i = σ̂(a c)(b c)ϕ̂ π̂i+1 = σ̂(a b)(a c)ϕ̂

π̂i = σ̂(a b)(a b)ϕ̂ π̂i+1 = σ̂ϕ̂

Proof: For π̂ = (a1 b1) . . . (am bm) let us define

domπ̂ =

m
⋃

i=1

{ai bi} ⊆ {1, . . . , n}.

Let us proceed by induction according to the number of transpositions in the product.

We will use a cycle-extraction, that means we will always pick an element and construct a represen-
tation of the cycle which it is contained in. We will do it in such a way that each transposition of this
representation will contain the chosen element. Let such an element be called the leading element of
the cycle representation. We will extract the cycles respectively according to their least elements (which
will be the leading elements of their representations) and we will order the corresponding transposition
products from the left. At first we will construct the normal representation of the cycle containing the
smallest element which is not a fixed point. Normal representations of the other cycles can be constructed
analogously.

If there is only one transposition in the product, there is nothing to solve, because it has only one
cycle of length 2 and it is already in the normal form. Assume we are able to extract an arbitrary cycle
of a product of at most m transpositions by constructing the representation with an arbitrary leading
element which it contains. Let us prove that we are able to do it for (m + 1) transpositions.

For the given representation π̂ which is a product of (m+1) transpositions let us define e = min domπ̂.
It is possible to transform this representation to the equivalent one containing e in the leftmost trans-
position, using the rules

(y z)(e x) → (e x)(y z),

(x z)(e x) → (e z)(x z).

If there is still a transposition containing e outside the left (connected) block (e.g. (e a)), it can be joined
to the right side of this block by an analogous process. If there is (e a) which has at least two occurrences

4

in this block afterwards, take the rightmost such pair (there is no one behind the left gate of this pair in
the left block). Then use the rule

(e x)(e a) → (e a)(x a)

to bubble the second (e a) from the left to the leftmost one and cancel them both. Connected left block of
transpositions containing e would be divided to two parts separated by a block of transpositions contain-
ing a by this operation. Fortunately each transposition of this block commutes with each transposition
from the right part of divided left block (they are always disjoint), hence they can be rearranged to
form the new (shorter than before) connected block of transpositions containing e, followed by a block
of transpositions containing a. The number of (e a)-elements is two less than before this operation. This
operations can be repeated until the number of elements in the form (e x) is at most one for each x in
the left block built of transpositions containing e.

Having such a left block it is necessary to get rid of the transpositions which are incident with its
domain and do not belong to it. Let us look at the leftmost one (not containing e). Two cases can
happen.

1. In the first one, both of the elements of the investigated transposition are involved in the left
block. Let us call this transposition (a b). In this case, multiplying the left block by (a b) from the right
will divide the cycle defined by this block to two cycles. Formally, we will use the rule

(x y)(a b) → (a b)(x y)

to bubble (a b) to the first occurrence (WLOG) (e b). Then use

(e b)(a b) → (e a)(e b).

Afterwards bubble (e a) to its leftmost occurrence by

(e x)(e a) → (e a)(a x)

and cancel them both. Finally change the order of the right block of transpositions containing e and
a block of transpositions containing a. It can be done, because the transpositions from these blocks
commute. In this case no transposition standing to the left or on an original position of (a b) is incident
with a block containing e in each transposition.

2. In the second case only one of the elements in the investigated transposition is already involved in
the left block. The permutation defined by the product of transpositions standing to the left from such
transposition, denoted by (a b), contains a and b in different cycles. Multiplying by (a b) joins these two
cycles to the one, which will be defined by the left block. WLOG let a be involved in some (e a). Let us
look at the sequence of transpositions between (a b) (including (a, b)) and the left (e)-block. It contains
less then (m+1) transpositions, thus it is possible to extract the cycle containing a (in each transposition
of the corresponding transposition product) and place it to the left, just next to the (e)-block.

Then it is possible to move these transpositions commutatively (one by one) to (e a) and use

(e a)(a x) → (e x)(e a)

to make the block containing e in each transposition connected. After repeating this procedure, until
we get rid of the transpositions containing a and not e in the right side of the block, it could be easily
seen, there is no transposition standing in front of or on the original position of (a b), but outside the
left block, containing any of the newly added elements of the domain of the left block.

Proof of Proposition 3.2: It is possible to transform each representation of a permutation to the
normal one using the rewrite rules given in Proposition 3.4. This representation is uniquely determined

5

by uniqueness of the cycle-factorization of a permutation. The relations determine a congruence of the
free monoid Tn generated by the transpositions on the set of n elements. Each congruence class is
represented by a normal representation of a permutation. The mapping which maps the congruence
class Tn/R, where R is a congruence generated by the given relations, to the corresponding element of
Sn is clearly an isomorphism.

4 Circuits consisting of CNOT, NOT and swap gates

Linear circuits

Let us have a reversible circuit of width n containing one type of logical gates

CNOT : (a, b) → (a, a ⊕ b),

where a, b are both 0 or 1 and ⊕ denotes adding in Z2.
If we assume the positions of bits in the input to be ordered, then two instances of CNOT-gate can be

distinguished. If a < b, then
LCNOT : (a, b) → (a ⊕ b, b),

RCNOT : (a, b) → (a, a ⊕ b).

Remark that using these two gates it is possible to transpose the operands in the following way:

RCNOT ◦ LCNOT ◦ RCNOT : (a, b) → (b, a).

Thereby we define the swap gate
C : (a, b) → (b, a)

which will stand for the previous three-gate composition.

The output of a circuit consisting only of CNOT-gates, acting on

(a1, . . . , an)

is
(

n
∑

i=1

c1
i ai,

n
∑

i=1

c2
i ai, . . . ,

n
∑

i=1

cn
i ai

)

,

where all cj
i -s are 0 or 1, that means each coordinate is a linear combination of the input bits over Z2.

Instead such logical circuit β, it is possible to deal with the non-singular matrix Bn×n transforming
the input vector to the output one, having the entries cj

i , i.e. the j-th column of the matrix determines
the j-th output bit. Of course, such a non-singular matrix represents infinitely many circuits. The C-
and CNOT-gates correspond respectively to changing the order of two columns and adding a column to
another one, which are elementary linear transformations. Each non-singular matrix over Z2 can be
created from the identity matrix via these elementary transformations. Hence a C-gate is constructible

6

from CNOT-gates, then each non-singular n × n matrix corresponds to a circuit of width n consisting of
CNOT-gates. Thus there are exactly

(2n − 1)(2n − 2) . . . (2n − 2n−1) = 2n(n−1)/2
n
∏

i=1

(2i − 1)

inequivalent circuits consisting of this type of logical gates, in the sense that for each pair of such circuits
there is at least one input, for which the outputs differ. This equivalence is a congruence of the free
monoid of circuits and in the case of linear circuits the corresponding factor monoid is isomorphic to the
group of non-singular n × n matrices over Z2. Therefore let us call these circuits the linear circuits and
the appropriate transformations (resp. gates) the linear transformations (gates).

Remark: LCNOT(a, b) = C ◦ RCNOT ◦ C(a, b) = RCNOT ◦ C ◦ RCNOT(a, b). That means that each circuit
consisting of CNOT-gates can be rewritten to a circuit which contains only C- and RCNOT-gates.

Notation: In further text C, RCNOT and LCNOT-gates operating on a, b will be denoted by [a, b],(a, b〉,〈a, b)
respectively.

Theorem 4.1 In the free monoid of linear circuits of width n over

{[ai, aj], (ai, aj〉; i 6= j; i, j ∈ {1, . . . , n}}

the following equations give a finite presentation of GLn(Z2) group.

[a, b][c, d] ' [c, d][a, b] (1)

[a, b] (c, d〉 ' (c, d〉[a, b] (2)

(a, b〉[c, d] ' [c, d](a, b〉 (3)

(a, b〉(c, d〉 ' (c, d〉(a, b〉 (4)

[a, b][a, b] ' (a, b〉(a, b〉 ' 1 (5)

[a, b](a, b〉[a, b] ' (a, b〉[a, b](a, b〉 (6)

[a, b][b, c] ' [a, c][a, b] (7)

[b, c][a, b] ' [a, c][b, c] (8)

[a, b](b, c〉 ' (a, c〉[a, b] (9)

[b, c](a, b〉 ' (a, c〉[b, c] (10)

(a, b〉(b, c〉 ' (b, c〉(a, c〉(a, b〉 (11)

Different letters denote different positions in {a1, . . . , an}. In addition, starting from (5) the bits are
ordered (a, b, c) in the input.

Note: The given relations will be used as the bidirectional rewrite rules for the words in the free monoid
of linear circuit.

7

Lemma 4.2 In the group of transformations generated by [,] and (, 〉 satisfying the relations from
the previous theorem the following identities hold for the ordered triple (a, b, c) of bits in the input:

[a, c][a, b] ' [b, c][a, c] (12)

[a, c][b, c] ' [a, b][a, c] (13)

(b, c〉[a, c] ' [a, c](a, b〉[a, b](a, b〉 ' [a, c]〈a, b) (14)

(a, b〉[a, c] ' [a, c](b, c〉[b, c](b, c〉 ' [a, c]〈b, c) (15)

[a, c](b, c〉 ' [a, b](a, b〉[a, b][a, c] ' 〈a, b)[a, c] (16)

[a, c](a, b〉 ' [b, c](b, c〉[b, c][a, c] ' 〈b, c)[a, c] (17)

(a, b〉(a, c〉 ' (a, c〉(a, b〉 (18)

(a, c〉(b, c〉 ' (b, c〉(a, c〉 (19)

Proof of the lemma: Thanks to (5) all equations hold if both of their sides are written in inverse
order. (12) and (13) are the rules for multiplying transpositions which are implied by (7) and (8), These
rules allow us to transform a permutation circuit to the normal form according to the previous section.
(14) can be derived in such a way:

(b, c〉[a, c]
5
' [a, c][a, c] · (b, c〉[a, c]

7
' [a, c] · [a, b][b, c][a, c] · (b, c〉[a, c]

9
' [a, c][a, b][b, c] · (a, c〉[a, b] · [a, c]

10
'

[a, c][a, b] · (a, b〉[b, c] · [a, b][a, c]
7,5
' [a, c]〈a, b).

(18) can be derived in the following way:

(a, b〉(a, c〉
11
' (b, c〉 · (a, b〉(b, c〉

11
' (b, c〉 · (b, c〉(a, c〉(a, b〉

5
' (a, c〉(a, b〉.

Remark: Using these relations allows us to transform each circuit containing C- and RCNOT-gates to the
circuit consisting of the gates acting only on the pairs of neighbouring bits resp. on the pairs containing
the rightmost resp. leftmost bit. The generating set of the gates operating on all pairs can be restricted
in such a way.

Lemma 4.3 For a non-singular n × n matrix B over Z2 representing a linear circuit there is a rear-
rangement of its columns, which gives B̃, such that B̃ arises from E (the identity matrix) in the following
way:

For 1 ≤ i ≤ n, in the i-th step add some columns to the (n + 1 − i)-th column.

Proof of the lemma: The given matrix is non-singular, i.e. it has non-zero determinant. Computing it
via expansion according to the first row gives at least one non-zero element in the first row accompanied
with a nonzero determinant of an (n− 1)× (n− 1) submatrix, obtained from an original one by deleting
the first row and the appropriate column. Let us change the positions of the corresponding column
and the first one. Apply this principle inductively, that means that in the i-th iteration choose the i-th
column from the (n+1− i)×(n+1−i) submatrix placed right down analogously and change this column
and the originally i-th one. The columns of B will be ordered into B̃ after (n − 1) iterations. In this
rearrangement it is possible to replace the last i columns of E by the appropriate i columns of B̃ and
still obtain non-singular matrix. In i-th step there is precisely one diagonal 1 in each of the first (n − i)

8

columns, thus the determinant of such matrix is equal to the determinant of the i × i submatrix which
is an intersection of last i columns and rows. This one was constructed to have a non-zero determinant.
The column vectors stay linearly independent after the replacement of the (n + 1 − i)-th column in the
i-th step. Q.E.D.

Previous lemma suggests to define a normal form of a linear circuit.

Definition 4.4 Let β be a circuit acting on (a1, . . . , an). Let us call the equivalent circuit

β̄ =

m
∏

j=1

(aσ(j), an〉

k
∏

i=1

[aπ(i), an]

li
∏

j=1

(aσi(j), an〉

 γ,

where
k, m ≥ 0, li > 0,

1 ≤ π(i) ≤ (n − 1), i = 1 . . . k,

i 6= j ⇒ π(i) 6= π(j),

n > σ(1) > σ(2) > · · · > σ(m) > 0,

n > σi(1) > σi(2) > · · · > σi(li) > 0

and γ is a circuit consisting only of C-gates, corresponding to the normal form of permutation, the normal
form of β.

That means, that each RCNOT-gate (adding the columns) is operating on the rightmost bit, since then
it is possible to add an arbitrary other bit, using one RCNOT-gate. At the end, the permutation circuit
rearranges the obtained values in the correct order.

Corollary 4.5 Each linear circuit can be written in a normal form.

Proof of the corollary: Let the input and output bits of the circuit be
(a1, . . . , an), (

∑n
i=1 c1

i ,
∑n

i=1 c2
i , . . . ,

∑n
i=1 cn

i), respectively. Define B = (cj
i)1≤i≤n. Transform B into B̃

according to Lemma 4.3. In the i-th step compute the value defined by the (n + 1 − i)-column on the
(n + 1− i)-th bit, placing this bit to the right and computing the appropriate value by adding the other
bits. After computing all the values rearrange the bits in the correct order. Q.E.D.

Remark: The rearrangement of columns from Lemma 4.3 is not uniquely determined, neither is the
normal form of linear circuit. In the described case the matrix transformation gives a normal form where
the left bits of C-gates are ordered from the right to the left. Still two such normal forms can differ
from each other in the selected permutation of columns, i.e. in the order of output values, before using
the permutation part γ. Moreover in the normal form, constructed via a matrix, the number of C-gates
behind the first RCNOT-gate-block excluding the permutation part is minimal, because the bits are added
to the bit only if the corresponding output value is a linear combination of at least two input values.
Otherwise the bit stays unchanged during the first part of computation and is placed correctly by γ.
Generally, definition of normal form does not force the number of C-gates to be minimal and the left bits
of them to be ordered. We will present an algorithm to transform the linear circuit into the normal form
according to the definition.

Proof of Theorem 4.1: It is necessary to prove that it is possible to verify the equivalence of each pair
of two equivalent linear circuits via given relations. Then the equivalence relation on the set of linear
circuit is determined by such transformations. The homomorphism between the equivalence classes of
linear circuits of width n and GLn(Z2) is an isomorphism, hence the proposed set of relations on the

9

n-bit input is a presentation of the GLn(Z2) group in the free monoid of linear circuits. Because of
reversibility, we only have to prove that for each pair O1, O2 of equivalent circuits, the circuit O1O

−1
2 is

equivalent to the identity via given relations. That would give us

O1 ' (O1O
−1
2)O2 ' O2.

Let us transform an n-bit linear circuit to the one, having all gates acting on the rightmost bit, using
(8) and (10), i.e.

[i, j] ' [j, n][i, n][j, n]

(i, j〉 ' [j, n](i, n〉[j, n]

Then cancel everything what is possible according to (5). If there are still two different C-gates one
after the other, let us use (8) and (12) to transform such a pair into the new one having the second
gate missing the rightmost bit. Then use (1), (2), (7) or (9) to bubble this gate to the bottom, where it
becomes a part of C-circuit γ which can be transformed to define the normal form of permutation exactly
as in the proof of Proposition 3.4 according to (7),(8),(12) and (13). Continue with cancelling the pairs of
the same consecutive gates until it is no such pair in the circuit any more. Use the commutativity of the
RCNOT-gates having the same last bit, according to (18) and (19) to get rid of the multiple occurrences
of such gates between two C-gates. Now the circuit is in a form which ends with a permutation circuit
and the beginning is built of blocks starting with a C-gate followed by a string of several RCNOT-gates, in
which each such gate occurs at most once. In the first block the C-gate is not necessary. The maximal
connected block of C-gates at the end of circuit will be called the tail, whereas the rest of circuit will be
called the head. After performing the operationes, which were mentioned above, some C-gates can occur
several times in the head, conversely to the normal form. After getting rid of their multiple occurrences
we will reach the normal form.

Let [i, n] be a gate which has at least two occurrences in the head-part. Let us take the first and the
second ones. The second one is preceded by a block of (, n〉-gates acting on the rightmost bit. Let us
call it Y0. According to (6), (10) and (18) it is possible to transform the fragment Y0[i, n] into [i, n]Z0,
where Z0 is a block of (, i〉- and (i,)-gates which add the bits to the i-th bit. In case Y contains (i, n〉,
Z contains 〈i, n) according to (6). The first [i, n]-gate from [i, n]Z is preceded either by some [j, n], where
j 6= i, or by [i, n]. In the first case use

[j, n][i, n] ' [i, n][i, j]

Continue with bubbling the second [i, n] through the next preceding block of (, n〉-gates, until it reaches
the first occurrence of [i, n]-gate, i.e. the second case happens. In the second case cancel both [i, n]-gates
according to (5).

During the bubbling process of the second [i, n]-gate to the first one, the fragment which was placed be-
tween two surveyed [i, n]-gates in the original circuit is transformed to Zm[i, jm−1]Zm−1[i, jm−2] . . . Z1[i, j1]Z0,
where Zr are the blocks of 〈i,)- and (, i〉-gates. Let us take Z0. The gates adding something to the
i-th bit commute. If Z0 contains a 〈i, n)-gate, let it be the first one in this block. Bubble all gates of Z0

through the first gate which stands behind Z0.

1. If it is [i, n], each 〈i, k)[i, n] becomes [i, n](k, n〉, and each (k, i〉[i, n] becomes [i, n](k, n〉.

2. Otherwise, if the situation is not 〈i, n)(i, n〉, then 〈i, k)(j, n〉, (k, i〉(j, n〉, 〈i, k)[j, n] and (k, i〉[j, n]
(some of different letters can denote the same bit) are transformed to PQ (preceded by [j, n] in the
last two cases), where P is a block of (, n〉-gates and Q is a block of 〈i,)- and (, i〉-gates. In fact, in

10

each step the next gate can be bubbled through several (, n〉-gates to reach the block of gates adding
something to the i-th bit.

3. 〈i, n)(i, n〉 can be transformed to (i, n〉[i, n]. If such a situation happens, bubble the new [i, n]-gate
to the end of the following block of 〈i,)- and (, i〉-gates. This action transforms this block to a block
of (, n〉-gates.

At the end of such operation Z0 is transformed either to some U0 which is a block of 〈i,)- and
(, i〉-gates, preceded by a block of (, n〉-gates, or to the block of (, n〉-gates. In the first case rearrange
U0 to have the 〈i, n)-gate at the beginning (if it is contained in it) and continue with bubbling U0 to the
right according to 1, 2 and 3.

Repeat the operation until the block of gates adding something to the i-th bit vanishes or such block
reaches the beginning of the tail. In this case add [i, n][i, n] to the front of the block of 〈i,)- and (, i〉-
gates preceding the tail, denoted again by U0. Move the second [i, n] to the end of U0 to become a part
of the tail. U0 is finally transformed to the block of (, n〉-gates.

At the end of such operation, [i, j1] is followed by the gates operating on the rightmost bit only, in
each case. Thus it is possible to bubble it to the tail through the whole circuit. After doing this, the
RCNOT-gates remain to work on the rightmost bit, all [j1, n]-gates are changed to [i, n]-gates and all [i, n]-
gates are changed to [j1, n]-gates. The string Zm[i, jm−1] . . . Z1[i, j1]Z0 has become shorter during this
operation. If there was a [i, j1]-gate to bubble, a new circuit’s head has two C-gates less than the original
one (two of [i, n]-s were canceled, one [i, n] arose by 2. and 3., and was changed to [j1, n] afterwards, one
[i, j1]-gate was bubbled to the tail). Otherwise it has at least one gate less than before. In each step take
the actually last Z-block and do this operation. At most one new C-gate, operating on the rightmost bit
arises, but one C-gate [i, jr] is bubbled to the tail in each step, except the last one. In the last step, no
[i, j]-gate is bubbled to the end of the head. Thus the head of the circuit has all gates operating on the
rightmost bit and the number of C-gates is at least one less than before after (m + 1) iterations.

It is possible to do this operation, if there is at least one C-gate with at least two occurrences in the
head. Because each linear circuit has an equivalent form, in whose head every admissible C-gate occurs
at most once, it has to be reached after finitely many iterations. An original circuit can be transformed
in its normal form using the given relations. Q.E.D.

Remark: If the given circuit is equivalent to a permutation of the input bits, the normal form is uniquely
determined, i.e. the head is empty and the tail is a permutation in its normal representation.

In a normal form of a circuit with a non-empty head, the output on the first bit which the other
bits were added to, would be some linear combination of all bits, having at least two 1-s among the
coefficients. This value does not change until the end of such circuit’s computation, hence the output
would be not a pure permutation of bits.

Consequently, the only normal form of a circuit which is equivalent to the identity is the empty
circuit.

Remark: For the circuit O the inverse circuit O−1 consists of the same gates as O in inverse order,
according to (5).

It is possible to verify the equivalence of the two circuits O1 and O2 via given relations in the following
way. Add the circuit O−1

2 O2 which is equivalent to the identity, to the end of the circuit O1. Transform
O1O

−1
2 to its normal form according to the presented algorithm, to get an empty circuit. The result of

this transformation is the circuit O2.

All circuits having the same output are equivalent via relations, given by Theorem 4.1. Each equiva-
lence class corresponds to a non-singular matrix whose columns represent the output values of the circuit.

11

Obviously each circuit has a representing matrix and each matrix corresponds to a circuit (even in the
normal form). The mapping which maps the equivalence classes of the circuits to the corresponding
matrices is an isomorphism of the groups. The set of relations from Theorem 4.1 is a presentation of the
GLn(Z2) group in the free monoid of linear circuits with n input nodes. Q.E.D.

Adding the NOT gates

After discussing linear circuits composed of linear gates, it is natural to focus on all reversible circuits
consisting of the gates with at most two inputs and outputs. Surely, the unary gate NOT : a → a ⊕ 1
belongs to the set of gates which are not constructible from CNOT-gates.

On the other hand, each reversible binary gate operating on two bits can be viewed as a permutation
of four vectors of {0, 1}2. This can be represented by a 4× 4 permutation matrix. An element of {0, 1}2

can be viewed as a number written in the binary system. For i ∈ {0, 1, 2, 3} let the corresponding element
of {0, 1}2 be denoted by (i)2. The the matrix A corresponding to the permutation π fulfills

aij = 1 ⇔ π((i)2) = (j)2.

All elements of S4 - the permutation group on {0, 1, 2, 3}, are generated by three transpositions e.g.
(0 1), (1 2), (2 3). These correspond to the gates ¬RCNOT : (a, b) → (a, a ⊕ b ⊕ 1), C and RCNOT. The first
gate can be also constructed using RCNOT and NOT.

That implies that the outputs of circuits acting on

(a1, . . . , an),

are in a form:

(e1 ⊕
n
∑

i=1

c1
i ai, e2 ⊕

n
∑

i=1

c2
i ai, . . . , en ⊕

n
∑

i=1

cn
i ai),

where cj
i and ej are 0 or 1. The outputs in the previously mentioned form correspond uniquely to the

(n + 1) × n matrices, whose entries are cj
i if i ≥ 1 and ej in the row labelled by 0. The C-, RCNOT- and

NOT-gates correspond to changing columns, adding the column to the right and adding 1 to the 0-th row
of the matrix. These are up to the third one, the elementary linear transformations. The additional
NOT-gates can be viewed as shifting of the origin of the system of coordinates. Therefore the circuits
acting on n bits correspond to affine transformations in the n-dimensional vector space over Z2.

It is possible to construct the circuit which corresponds to the matrix with an arbitrarily chosen 0-th
row. Consequently there are

2n2n(n−1)/2
n
∏

i=1

(2i − 1) = 2n(n+1)/2
n
∏

i=1

(2i − 1)

inequivalent circuits containing only binary gates.

Let a, b, c be the ordered distinct positions in the input. Denoting NOT(a) as ã, this operator fulfills
the following equations.

˜̃a ' 1 (20)

ã[b, c] ' [b, c]ã (21)

ã(b, c〉 ' (b, c〉ã (22)

ã[a, b] ' [a, b]b̃ (23)

b̃(a, b〉 ' (a, b〉b̃ (24)

ã(a, b〉 ' (a, b〉ãb̃. (25)

12

According to them, it is possible to separate all the NOT-gates from the others, and place them to the
bottom of an arbitrary given circuit.

Theorem 4.6 The set consisting of the equations 4.1-4.11 together with the equations 4.20-4.25 is a
presentation of the group of reversible transformations which are constructible by binary gates.

Proof: The theorem is a corollary of Theorem 4.1.

Remark: For each circuit consisting of unary and binary reversible gates there is an equivalent one,
which size is in O(n2). The normal form consists of a head of at most n2 gates, of a tail of at most n
gates and eventually of at most n negations.

5 Summary

The main result of this work is contained in the fourth section. We introduce the finite set of rewrite rules
which enables us to rewrite a given reversible circuit consisting of CNOT and NOT gates to its normal form
containing O(n2) gates for a circuit with n input nodes. Thereby we can check whether two circuits are
equivalent without evaluating them. It would be interesting to generalize this result to ternary circuits,
that means find the finite set of rewrite rules which would identify the given circuit with its normal form,
if such set exists. Probably it would be useful to use a finite number of auxiliary bits, which does not
depend on the number of input nodes of a circuit.

References

[Ben73] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and Development,
17:525–532, 1973.

[FT78] E. Fredkin and T. Toffoli. Design principles for achieving high-performance submicron digital
technologies. MIT Laboratories for Computer Science to DARPA, 1978.

[Lan61] R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal of
Research and Development, 5:183–191, 1961.

[Tof80] T. Toffoli. Reversible computing. Automata, Languages and Programming, pages 632–634, 1980.

13

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

