Electronic Colloquium on Computational Complexity, Report No. 130 (2005)

A Note on Testing Truthfulness

Ahuva Mu’alem*

Abstract

This work initiates the study of algorithms for the testing of monotonicity of mechanisms.
Such testing algorithms are useful for searching dominant strategy mechanisms. An e-tester for
monotonicity is given a query access to a mechanism, accepts if monotonicity is satisfied, and
rejects with high probability if more than e-fraction of the mechanism values must be modified
to obtain the property.

The notion of the distance from monotonicity essentially suggests a notion of distance from
truthfulness. A direct mechanism is (1 — €)-truthful if reporting the true valuation is a dominant
strategy for every player i with probability 1 — e (assuming v_; are uniformly distributed). This
raises the question of how a local measure of violation, representing the point of view of the
individual player, relates to the global measure of violation, representing the point of view of
the mechanism designer.

1 Introduction

In this work we study testing algorithms for mechanisms. A motivating scenario is as follows.
Suppose the designer of some mechanism argues that a certain behavior is optimal for the agents.
One such recommendation might be “truthfulness”: in this case the designer would like to promote
the true reporting of the individual preference as a dominant strategy. The agents then would like
to verify this best response recommendation. In computational scenarios, it might be preferable to
exhibit a quick test that examines a small ”sampled” portion of the mechanism, allowing reasonable
€errors.

Many common collective decision making procedures can be modeled as mechanisms: various
elections and resource allocation procedures, several markets, auctions and routing protocols in the
Internet. A typical mechanism aggregates the individual preferences (“valuations”), then chooses
a socially desired outcome (“alternative”), and possibly assigns payments for the agents. More
formally, a (direct) mechanism is a tuple m = (f, p), where the social choice function f: V — A
maps an n-tuple of valuations v = (v1,ve,...,v,) € V (C R™Al) to an outcome a € A, and the
function p : V' — R™ assigns payments. A mechanism is truthful if true reporting of the valuation
is a dominant strategy for every player. Formally, if v;(f(vi,v_;)) — pi(vi,v—i) > vi(f(vi,v_)) —
pi(vl,v_;), for all v;, v} and v_;.

It turns out that testing truthfulness is closely related to testing Boolean monotonicity. Our
work is inspired by the work of Goldreich, Goldwasser et al. [4], who considered the problem of
testing whether a given function f : {0,1}" — {0,1} is monotone. They presented a tester whose
query complexity and running time are linear in n and 1/e (note that the size of the input is 2").

*Email: ahumu@yahoo.com. CS Department, Bar-Ilan University, Ramat-Gan, Israel. This work was carried out
in School of Engineering and Computer Science, The Hebrew University of Jerusalem. Supported by grants from the
Israeli Academy of Sciences, Israeli Ministry of Sciences, and the USA-Israel Binational Science Foundation.

ISSN 1433-8092

Their tester performs a simple local test: It verifies whether (Boolean) monotonicity is maintained
for randomly chosen pairs of strings that differ exactly on a single bit. Their analysis relates the
measure of local violation of monotonicity to the global measure of the minimum distance of the
given function to any monotone function. They also considered extensions of the form f : ¥ — ¥/,
where X is a poset and Y/ is a total order.

It is easy to verify that monotonicity of Boolean functions f : {0,1}" — {0,1} is a special
case of monotonicity for social choice functions f : V — A. Note that in our setting the general
case is different from the binary case. First, each agent evaluates every possible outcome a € A
(as opposed to choosing between “0” or “1”). Moreover, the set A of the mechanism’s possible
outcomes is not necessarily ordered.

It is already known that the truthfulness of m = (f, p) implies the monotonicity of f [12, 8, 7, 3]*.
However, monotonicity is not strong enough to imply truthfulness (see e.g., [7]). The extended
monotonicity condition was (constructively) shown to fully characterize truthfulness [14, 9].

Our contribution. Monotonicity and extended monotonicity testing reflect the point of view of
the mechanism designer. Intuitively, if all the payments are known, then the agents would like to
test the “truthfulness” directly. That is, player ¢ would like to estimate the probability of a local
violation (3w} such that v;(f(vi,v—:)) — pi(vi,v—i) < vi(f(v},v_;)) — pi(v},v_;)). The following
theorem relates both points of view.

Thml Let V ={1,2,... ,q}”"A‘. If f:V — A is e-close to extended monotonicity then there
exists an associate generic payment function p : V. — R" such that m = (f,p) is (1 — 2¢)-truthful.

From a computational point of view this theorem suggests the following straight-forward im-
plication: In the search for (almost) dominant strategy mechanisms the designer should only look
for social choice functions that are (close to) extended monotonicity. The agents then will test the
extended monotonicity. In particular, this test queries the social choice function alone and not the
payment function: this means that the mechanism designer does not need to compute any part of
the entire “table” of payments in advance for every possible input v_;. Note that intuitively, com-
puting the above generic payment p;(v) takes |VZ~|O(C) (essentially a shortest path computation), so
that querying the payment function might be costly. A trusted authority can compute the specific
payments after the agents report their bids.

The following shows that beyond extended monotone functions, the class of almost truthful
mechanisms contains several approximations to the social welfare.

Thm2 Let V ={1,2,... ,q}”"A‘. If f: V — Ais (14 ¢)-approximation to the social welfare then
it is (€2gn)-close to monotone and (e - |A| - gn)-close to extended monotonicity.

We then observe that Thml and the proof of Thm2 suggest a generic way to derive (almost)
truthful mechanisms, using a shifting technique.?

We also show a monotonicity tester for a special case. It is worth noting that the tester accepts
not only monotone functions with high probability but also almost monotone functions.

Open. Asthe above discussion suggests, describing a monotonicity testing algorithm for the general

!The monotonicity property is called W-MON in [7].

2Such a technique was used in [2] to reduce the influence of Boolean variables. In our case the influence of an
individual player may not be decreased (by a single shift operation), but rather the total social welfare is increased.
Thus, intuitively, every monotone Boolean function corresponds to a local minimum of the total influence, and every
monotone social choice function corresponds to a local maximum of the total social welfare.

case f : {1,2,...,¢}™4l = A is an interesting open problem. Besides the general case (where A
is not ordered “at all”), the “weakly” ordered case (assuming some “universally bad” outcome
2o = vi(a) > vi(zp) for all @ and 7) seems interesting as well (e.g. for the testing of Combinatorial
Auctions).

1.1 Related Work

Several Algorithmic Mechanism Design [10] papers consider various notions of almost truthfulness
(see [1, 6] and references therein). The paper [1] shows an almost truthful mechanism for Combina-
torial Auctions with single parameter agents. [6] shows that every approximation algorithm w.r.t.
the social welfare, can be coupled with a payment function that ensures “almost” truthfulness
(using a different notion of almost truthfulness from ours).

Testing algorithms for the convexity and submodularity of valuations are studied in [11]. Such
testers are applicable for mechanisms which guarantee certain properties (such as truthfulness or
an approximation ratio) only if the input follows some specific structure.

2 Preliminaries

e A social choice function f : V — A is e-close to a property P if there exists a function
g : V — A satisfying P such that w < ¢, where V is finite. The function is e-far,
otherwise.

e A social choice function is monotone if for every i, v_;, v;, vi:

vi(£ (Wi, v-4)) — vi(f (v}, v-4)) + vi(f (v, v—3)) — vi(f (vi, v-3)) > 0.
k

e A social choice function is extended monotone if for every i, v_;, k, v},v?,..., v

vy (f(vi,v-0)) = 0 (F (0], 0-4)) + - + 0 (f(0F, v-0)) = oF (f (v],v=0)) > 0.

This is also called the non-negative cycle property. As mentioned, extended monotonicity
implies monotonicity but not necessarily vice versa. Clearly, if f is e-close to extended mono-
tonicity, then it is e-close to monotonicity.

e A social choice function f : V — A is a (1 + €)-approximation with respect to the social
welfare if: w < %; vi(f(v)), where the function f* : V' — A always outputs an

alternative with the highest social welfare, that is f*(v) = argmax,¢ 4 3; v;(a).

A tester algorithm for property P is a randomized algorithm that for any given input function
f and a distance parameter e:

— The tester accepts with probability > % if f has the property.
— The tester rejects with probability < % if f is e-far from the property.

3 Almost Truthfulness

3.1 Proof of Theorem 1

The following theorem shows that every almost extended monotone function can be coupled with
an “associate generic” payment function that ensures almost truthfulness.

Theorem 1 Let V = {1,... ,q}""“”. If f:V — A is e-close to extended monotonicity then there
is p:V — R™ such that the mechanism m = (f,p) is (1 — 2¢)-truthful.

proof: Using a bound from [4] we shall see that the payment in [13, 14] fits our setting. We start
with some definitions. For every distinct b,c € A and v_; define:

5éc(v_i) = inf {v}(b) — vi(c) | vi € V; and f (v}, v_;) = b}, and

o) = 0l Bl (0-3) + Blaga(0) o s (0-0) O (0-)
Clearly i (v_;) < 6} (v_;). Note that in presence of a negative cycle (with respect to v_;)
T¢.(v_;) = —oo. Now, fix some arbitrary alternative a € A, and define the associate generic
payment function:

pfj(v,i) B Téa(’l]_z') d+#a a'nd Téa(’ll_i) # —00
0 otherwise.

Consider the graph G with the vertices V(G) = V, and the edges:
E(G) = {(v,u) | there exist v;,u; € V; such that v = (v;,v_;) and u = (u;,v—;)}.

Clearly, |[E(G)| =3 -|V|-n-(¢# —1). Let A C E(G) be a minimal set of violating edges that

must be omitted from G in order to avoid negative cycles. Let § = | bl(%)‘. The proof follows from

the following two lemmas.

Lemma 1 ¢ > %.

proof: The argument in [4] is applicable for this generalized case: To obtain the property, €|V|
changes must be made. Each change can fix at most n - (q|A| — 1) violating edges, and so:
Al §-|E(G)|

Viz G- T i)

To simplify the notation, we next assume a single player.
Lemma 2 If f(v) = b, then v(b) — py > v(c) — p. with probability at least 1 — 6, for every ¢ € A.

proof: There are 3 cases to consider:

1. If ¢ = a, then py — p, equals 7y, with probability 1 — §, and 75 < dpq < v(b) — v(a), by
definition.

2. If b = a, then with probability 1 — 6, Teq + dgc > 0, and so w.h.p pg — pc < —Teg < Jge <

v(a) — v(c).

3. If a # b, ¢, again w.h.p 7Ty < 7T¢q + b, and so W.hp pp — pe = Topg — Tea < Gpe < v(b) —v(c). 1

3.2 Proof of Theorem 2

In this subsection we show that the class of almost extended monotone social choice functions
contains the class of approximations to the social welfare (for small enough).

Theorem 2 Let V = {1,...,¢}" Al If f : V = A is (1 + €)-approzimation to the social welfare
then it is (e2gn)-close to monotone and (e - |A| - gn)-close to extended monotonicity.

We start with the definition of the extended shift operator. Choose arbitrary collection of inputs

that form a negative cycle: C = {(vgl), v_;), (UZ@, Vei)y «nes (fufk), v—;)}. More formally, there

exist a(M, ..., a®) such that: f(vl(j),v,i) = a; and vgl) (a1) — vgl)(ag) + fuZ@) (ag) — v?) (a3) +---+
ng) (ag) — Ufk)(al) < 0. ,

The “shifted” f would be f(v%),v_;) = aj41, where k+1 equals 1, and f(v') = f(v'), otherwise.
That is, f repairs the given negative cycle, and is similar to f elsewhere.

proof: Let ws(v) = E; v;(f(v)), and wyp(v) = ; v;(f*(v)), be the resulted social welfare of
[(and the optimal social welfare, respectively) for the input v. Let Wy = X ey wy(v), and
W, = Zyev wy=(v) be the resulted total welfare over all possible inputs. The (14¢)-approximability
of f implies that K/f—*e < Wy, so that:

W,
1+e

W, -W; < Wy — < Wy < e-ng-|V]|. (%)

It is easy to verify that W; < W,, and that Wy +1 < W5. To see this, Wy = Z,cy\¢ wr(v) +

Tvec (vi(f(v) + Zjzivi(f(v) < Bpevie wr(v) + Tveo (vi(F(v)) + Bjz;(f(v))) = Wy

By (x) we get that the given approximation function might have at most eng|V| negative cycles,
as each shift iteration increases the total welfare by at least 1. In each shift iteration at most |A]
entries are being updated. This shows (e - |A| - gn)-closeness to extended-monotonicity. Similarly,
to show the closeness to monotonicity, the operator can be restricted to shift only negative cycles
of length 2. n

3.3 Generic Design

For finite (not necessarily single-parameter) domains the above shifting technique suggests a generic
way to construct (almost) truthful mechanisms. Note that, as demonstrated in [5], for bounded
domains (as opposed to unrestricted domains [14]) there are truthful mechanisms other than the
celebrated VCG and weighted VCG mechanisms, so the resulted mechanisms after the shifting may
be different.

Generic Design Technique: Start with an arbitrary social choice function f. Use the extended
shift operator to make it (close to) extended monotone. Construct a (almost) truthful mechanism
by combining the modified social choice function with the associate generic payment function.

A single shift operation repairs one given cycle of violation. It might be the case that some
other new violated cycles will pop-up, as a result. However, the proof of theorem 2 shows that a
“long enough” sequence of shifting operations leads eventually to extended monotone function.

4 Monotonicity Testers

In this section we present monotonicity tester for a special case. Let v, denotes the following zero-
one valuation: v,(a) =1, and v,(b) = 0 for every b # a. The domain of these valuations is denoted
Va={vs|a € A}. We show a tester for f : V4 — A and f: V4 x V4 — A. The following algorithm
and its analysis is inspired by [4].

Algorithm 1 Repeat O(‘i) times:

€

o Uniformly selectv € Vax---xVy, i €1,...,n, and v} € V4. Query f(vi,v—;) and f(v},v_;).

(Assume w.l.0.g that v; = v,, v} = vp)

e Reject if a violation is detected.
(That is, reject if either f(va,v—i) =b# f(vp,v—i) or f(ve,v—i) = a # f(va,v—-i))-

If all iterations are completed without a reject then accept.

Proposition 1 Algorithm 1 is a monotonicity tester for f : V4 — A and f : V4 x V4 — A.

proof: Clearly monotone functions are always accepted. We start with f : V4 — A. Let Ay =
{(va,vp) | f(va) = b # f(vp) or f(vp) = a # f(va)}, be the set of all violating pairs. Let § be

the fraction of violating pairs, that is: § = W&A\-ﬁ'

operator as in [4] cannot decrease the number of non-violating pairs. Let a,b € A arbitrary
elements, then the shift of f (w.r.t v, and vp) is as follows: if v,, v form a violating pair then

F(va) = f(vy), f(vs) = f(va) and f(vc) = f(ve), ¢ # a,b, otherwise f = f.
Claim 1 |Af| < ‘Af|

It is easy to check that a similar shift

proof: Define Ay(v,) = {(vs,v4) | (vz,v,) is a violating pair }. If f(v,) = b and f(vy) = a, then
after the shift w.r.t vy, vy, Af-(va) = Af('ub) = (. Otherwise, assume w.l.o.g that f(v,) # a,b and
f(vp) = a. Again Af(va) = (). For every z such that vy, v, is a non-violating pair: If f(vy) = z,
it is easy to see that vy, v, is a non violating pair after the shift. If f(v;) # =, it is easy to see
that vy, v, is a violating pair only if f(v,) = z. Clearly, this pair cancels out with v,, vy, and thus

|Afl <|Ag]- m

By the above claim it is immediate that there is a “long enough” sequence of shifts which result
in a monotone social choice function (say g : V4 — A, as it might depend on the specific order of
shifts). Note that this sequence is finite, as each shift operation increases the total social welfare
W;. Finally, e|A] < dist(f,g) < 2-|Af| < §-|A2. This shows that if f is e-far, then the test

. .1 Ol4l
accepts with probability (1 — §)~' ¢/ < const.

For f: V4 x V4 — A, first try the perform a similar shift operation (say over (vg,v2), (vp,v2))-
If the number of violating pairs increases as a result, by the above argument the number of violating
pairs over the rows of V = V4 x V4 must be increased. There are several simple cases to consider
(for f(ve,v2) = b, f(vp,v2) = a : vy € {vg,vp,v:} and for f((vqs,v2) = z, f(vp,v2) = a : vy €
{va,Vz,vp,vc}). In these cases we use some other natural shifts depending on the specific case.

e In the case vy = v, we use the following shift f(v,,v2) = a. In the case vo = vy, z # b we use
the following shift f(wvp,v2) = z. In the case vy = v, we use the following shift f(vp,v2) = b.

e In case vo = v, ¢ # a,b,z. If there is a violating pair (vg, v,), (v, vq) repair first this shift as
in the former case. Otherwise, f(v,,v2) = a.

Finally, e|A|? < dist(f,g) <2-|Af| <4§-|A>-2-|A|. n
The following claim shows that the above algorithm accepts “almost monotonicity” w.h.p.
Claim 2 Algorithm 1 accepts w.h.p social choice functions that are e-close to monotone.

proof: By Lemma 1, 2¢ > 4, and so the probability that the test rejects an e-close function is
[A]
de.n

Acknowledgements

We thank Michal Feldman, Daniel Lehmann, Noam Nisan, Amir Ronen, Alex Samorodnitsky and
Michael Schapira for helpful discussions and comments.

References

[1] Aaron Archer, Christos Papadimitriou, Kunal Talwar, and Eva Tardos. An approximate
truthful mechanism for combinatorial auctions with single parameter agent. In SODA, 2003.

[2] Michael Ben-Or and Nathan Linial. Collective coin flipping. In Randomness and Computation,
pages 91-115. Academic Press, New York, 1990.

[3] Sushil Bikhchandani, Shurojit Chatterji, and Arunava Sen. Incentive compatibility in multi-
unit auctions, 2003. Working paper.

[4] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Combinatorica, 20(3):301-337, 2000.

[5] Philippe Jehiel, Moritz Meyer ter Vehn, and Benny Moldovanu. Potential and implementation,
2004. Working paper.

[6] Anshul Kothari, David Parkes, and Subhash Suri. Approximately-strategyproof and tractable
multi-unit auctions. In Proc. of the ACM Conference on Electronic Commerce (EC’03), 2003.

[7] Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Towards a characterization of truthful combi-
natorial auctions, 2003. Working paper. Preliminary version presented in FOCS-03.

[8] Daniel Lehmann, Liadan O’Callaghan, and Yoav Shoham. Truth revelation in approximately
efficient combinatorial auctions. Journal of the ACM, 49(5):577-602, 2002.

[9] Rudolf Muller and Rakesh Vohra. On dominant strategy mechanisms, 2003. Working paper.

[10] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35:166-196, 2001.

[11] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing convexity and submodularity.
SIAM Journal on Computing, 32(5):1158-1184, 2003.

[12] Kevin Roberts. The characterization of implementable choice rules. In Jean-Jacques Laf-
font, editor, Aggregation and Revelation of Preferences. Papers presented at the 1st European
Summer Workshop of the Econometric Society, pages 321-349. North-Holland, 1979.

[13] J.C. Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context.
Journal of Mathematical Economics, 16:191-200, 1987.

[14] Irit Rozenshtrom. Dominant strategy implementation with quasi-linear preferences, 1999.
Master’s thesis, Dept. of Economics, The Hebrew University, Jerusalem, Israel.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

