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Abstract

We consider the following simple algorithm for feedback arc set problem in weighted tour-
naments — order the vertices by their weighted indegrees. We show that this algorithm has
an approximation guarantee of 5 if the weights satisfy probability constraints (for any pair of
vertices u and v, wuv + wvu = 1). Special cases of feedback arc set problem in such weighted
tournaments include feedback arc set problem in unweighted tournaments and rank aggregation.
Finally, for any constant ε > 0, we exhibit an infinite family of (unweighted) tournaments for
which the above algorithm (irrespective of how ties are broken) has an approximation ratio of
5− ε.

1 Introduction

Consider a sports tournament where all n players play each other and after all the
(n
2

)

games
are completed, one would like to rank the players with as few inconsistencies as possible. By an
inconsistency we mean a higher ranked player actually lost to a lower ranked player. A natural way
to generate such a ranking is to rank according to the number of wins (with ties broken in some
manner). We show that this natural heuristic has a provably good performance guarantee.

A weighted tournament with probability constraints is a complete directed graph T = (V,E,w)
where w(·) is the weight function such that for any u, v ∈ V with u 6= v, wuv + wvu = 1 and
wuv, wvu ≥ 0. We will use the term tournament to refer to a weighted tournament with probability
constraints. An unweighted tournament is a special case of weighted tournaments with probability
constraints, where the weights of the edges are either 0 or 1. The minimum feedback arc set in T is
the smallest weight set E ′ ⊆ E such that (V,E \E ′) is acyclic. Alternatively, a minimum feedback
arc set can be described by an ordering σ : V → {0, 1, · · · , n− 1} which minimizes the weight the
of backedges induced by σ where a backedge (u, v) ∈ E satisfies σ(u) > σ(n).
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The feedback arc set problem in general directed graphs can be approximated to within
O(log n log log n) [12, 17] and is APX-Hard [15, 10]. The complementary problem of the maxi-
mum acyclic subgraph problem1 can be approximated to within 2/(1 + Ω(1/

√
∆)) (where ∆ is the

maximum degree) [6, 14] and is APX-Hard [16]. The feedback arc set problem in tournaments
(shortened to FAS-TOURNAMENT for the rest of the paper) was conjectured to be NP-hard for
a long time [4]. The conjecture was very recently proved in [1, 2]2. The work of Ailon, Charikar
and Newman ([1]) also describe the following simple randomized 3-approximation algorithm for
unweighted FAS-TOURNAMENT. Their algorithm first picks a random vertex p to be the “pivot”
vertex. All the vertices which are connected to p with an out-edge are placed to the “left” of p
and the vertices which are connected to p through an in-edge are placed to the “right”. Then, the
algorithm recurses on the two tournaments induced by the vertices placed on either side of p.

Weighted FAS-TOURNAMENT is defined on a weighted tournament T where the weights satisfy
probability constraints. Ailon et al. show that running their algorithm for FAS-TOURNAMENT on
the unweighted tournament that is the weighted majority3 of T yields a 5 approximation for
weighted FAS-TOURNAMENT when the weights satisfy probability constraints.

There is a much simpler algorithm for both weighted and unweighted FAS-TOURNAMENT than
ones considered by Ailon et al. — order the vertices in increasing order of their (weighted) indegrees
(ties are broken arbitrarily). We analyze this algorithm (which we call INCR-INDEG in this paper)
and show that it has an approximation guarantee of 5 for both unweighted FAS-TOURNAMENT and
weighted FAS-TOURNAMENT when weights satisfy probability constraints.

We also study the problem of RANK-AGGREGATION. In this problem, given n candidates and
k permutations of the candidates {π1, π2, · · · , πk}, we need to find the Kemeny optimal ranking,
that is, a ranking π such that κ(π, π1, π2, · · · , πk) =

∑k
i=1K(π, πi) is minimized, where K(πi, πj)

denotes the number of pairs of candidates that are ranked differently by πi and πj . The problem
is NP-hard even when the number of lists is only four [5, 11]. There is a simple deterministic
2-approximation for this problem — pick the best of the input rankings. Ailon et al. reduce RANK-

AGGREGATION to weighted FAS-TOURNAMENT with probability constraints [1]. This reduction
implies that INCR-INDEG is a 5-approximation for RANK-AGGREGATION. Interestingly, INCR-

INDEG in the RANK-AGGREGATION setting is exactly the same as the Borda’s method [7]. Thus,
our results show that the Borda’s method is a factor 5 approximation of the Kemeny optimal
ranking. Fagin et al. also show that the ranking produced by Borda’s method is within a constant
factor of the Kemeny optimal ranking [13].

Finally, for any ε > 0, we exhibit an infinite family of (unweighted) tournaments for which
INCR-INDEG has an approximation ratio of 5− ε (irrespective of how ties are broken). This result
shows that our analysis is tight. This is somewhat surprising as it shows that the “dumbest” way
of breaking ties is as good as the best tie breaking mechanism (at least from the viewpoint of
approximation guarantees).

Independent of our work, van Zuylen [18] has designed a deterministic algorithm for FAS-

TOURNAMENT with an approximation guarantee of 3 (when the weights satisfy probability con-
straints). Her algorithm derandomizes the algorithm of Ailon et al. mentioned earlier in this

1The maximum acyclic subgraph of a directed graph G = (V, E) is the largest cardinality subset E ′
⊆ E such

that the graph (V, E′) is acyclic.
2Ailon, Charikar and Newman showed that the problem is NP-hard under randomized reductions [1]. Alon

derandomized their construction [2]. A simpler reduction has been obtained by Contizer [8].
3The weighted majority of a weighted tournament T is defined as follows. For any pairs of vertices u and v, orient

the edge between u and v in the direction which has the larger weight (breaking ties arbitrarily).
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section (the pivot is chosen based upon the solution to the relaxation of a well known LP for
FAS-TOURNAMENT).

The rest of the paper is organized as follows. We introduce some notation and some known
facts in Section 2. We analyze the algorithm INCR-INDEG in Section 3. In Section 4, we present
an infinite family of tournaments for which INCR-INDEG has an approximation factor of 5− ε, for
any ε > 0. Finally, we conclude with some open questions in Section 5.

2 Preliminaries

We first fix some notations. For any positive integer m we will use [m] to denote the set {0, 1, · · · ,m−
1}. Also for any pairs of integers a < b, we will use [a, b] to denote the set {a, a+1, · · · , b}. We will
also use (a, b] to denote the set {a + 1, · · · , b}. The vertex set of the input tournament is assumed
to be [n]. For any edge (u, v) in T , its weight is given by wuv ≥ 0. For the rest of the paper,
the weights are assumed to satisfy probability constraints, that is, for any u, v ∈ [n], the following
identity holds — wuv + wvu = 1. For any vertex v ∈ [n], In(v) denotes the (weighted) indegree of
v, that is,

In(v) =
∑

u∈[n]\{v}
wuv.

We will use σ : [n] → [n] as a generic permutation. O will denote the permutation returned by
the optimal algorithm for FAS-TOURNAMENT on input T while A will denote the permutation
returned by INCR-INDEG. Given any permutation σ, Bσ denotes the sum of the weight of backedges
induced by σ on T , that is,

Bσ =
∑

u,v∈[n]:σ(u)>σ(v)

wuv.

We now recall two well known notions of distances between permutations. Given permutations
σ, ρ : [n]→ [n]; the Spearmans’ footrule distance between the two permutations is given by

F(σ, ρ) =
∑

v∈[n]

|σ(v) − ρ(v)|

and the Kendall-Tau distance is given by

K(σ, ρ) =
1

2
·

∑

u,v∈[n]

1(σ(u)−σ(v))·(ρ(u)−ρ(v))<0

where 1(·) is the indicator function. In other words, K(σ, ρ) is the number of (ordered) pairs which
are ordered differently by σ and ρ. The following relationship was shown in [9].

K(σ, ρ) ≤ F(σ, ρ) ≤ 2K(σ, ρ) (1)

For RANK-AGGREGATION, we will need the notion of Kemeny distance. Given the input lists
{π1, π2, · · · , πk} and an aggregate permutation σ, the Kemeny distance is defined as

κ(σ, π1, π2, · · · , πk) =

k
∑

i=1

K(σ, πi)
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We now present the reduction of RANK-AGGREGATION to weighted FAS-TOURNAMENT with
probability constraints from [1]. Let {π1, · · · , πk} be a RANK-AGGREGATION instance on the set
of candidates [n]. The equivalent weighted FAS-TOURNAMENT instance is a weighted tournament
on [n] such that for any pair of vertices i and j, wij is the fraction of input permutations which rank
i before j. Note that by construction the weights satisfy probability constraints. Finally, sorting
the vertices by their weighted indegrees (on the weighted tournament constructed above), is the
well known Borda’s method [7].

3 The algorithm for FAS-TOURNAMENT

We will analyze INCR-INDEG in this section. Recall that INCR-INDEG orders the vertices by their
(weighted) indegrees (with ties being broken arbitrarily).

Our main result is the following theorem.

Theorem 1 INCR-INDEG is a 5-approximation for weighted FAS-TOURNAMENT, that is, BA ≤
5BO.

The reduction from FAS-TOURNAMENT to RANK-AGGREGATION outlined in Section 2 implies
the following corollaries to Theorem 1.

Corollary 1 INCR-INDEG is a 5-approximation for RANK-AGGREGATION.

Corollary 2 If σ is the Kemeny optimal rank aggregation for input rankings π1.π2, · · · , πk and σ′

is an output of the Borda’s method for the same input, then

κ(σ′, π1, π2, · · · , πk) ≤ 5κ(σ, π1, π2, · · · , πk).

We will prove Theorem 1 through a sequence of lemmas.

Lemma 1 For any permutation σ : [n]→ [n],

2Bσ ≥
∑

v∈[n]

|σ(v) − In(v)|.

Lemma 2 For any permutation σ : [n]→ [n],

∑

v∈[n]

|σ(v)− In(v)| ≥
∑

v∈[n]

|A(v)− In(v)|.

Lemma 3 For any two permutations σ, ρ : [n]→ [n],

∑

v∈[n]

|σ(v) − ρ(v)| ≥ |Bρ −Bσ|.
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We first show how the above lemmas prove our main result.

Proof of Theorem 1: Consider the following sequence of inequalities.

4BO ≥
∑

v∈[n]

|O(v)− In(v)|+
∑

v∈[n]

|O(v)− In(v)|

≥
∑

v∈[n]

|O(v)− In(v)|+
∑

v∈[n]

|A(v)− In(v)|

=
∑

v∈[n]

(|O(v) − In(v)|+ |A(v)− In(v)|)

≥
∑

v∈[n]

|O(v)−A(v)|

≥ BA −BO

The first, second and last inequalities follow from Lemmas 1, 2 and 3 respectively (with σ =
O and ρ = A). The third inequality is triangle inequality while the equality just follows from
rearrangement of the terms. Thus, we have BA ≤ 5BO which proves the theorem.

In the rest of this section, we will prove Lemmas 1-3.

Proof of Lemma 1: Consider any arbitrary v ∈ [n]. Let W −
L (v) be the sum of weights of edges

from vertices to the “left” of v (according to σ) to v; W +
L (v) be the sum of weights of edges from

v to vertices which are to the left of v ; and W −
R (v) be the sum of weights of edges from vertices

which are to the right of v to v. More formally,

W−
L (v) =

∑

u:σ(u)<σ(v)

wuv

W+
L (v) =

∑

u:σ(u)<σ(v)

wvu

W−
R (v) =

∑

u:σ(u)>σ(v)

wuv

By definition, we have
W−

L (v) + W−
R (v) = In(v) (2)

The following identity follows from definitions and the fact that weights satisfy probability con-
straints.

W+
L (v) + W−

L (v) = σ(v) (3)

Now, 2Bσ =
∑

v∈[n](W
+
L (v) + W−

R (v)) as each backedge is counted twice in the sum. To complete

the proof, we claim that for any v ∈ [n], W +
L (v) + W−

R (v) ≥ |σ(v) − In(v)|.
Indeed from (2) and (3),

W+
L (v) + W−

R (v) = σ(v) + In(v) − 2W−
L (v)

= |σ(v)− In(v)|+ 2(min{σ(v), In(v)} −W −
L (v))

≥ |σ(v)− In(v)|
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The last inequality again follows from (2) and (3) and the fact that W +
L (v),W−

R (v) ≥ 0.

Lemma 2 is a restatement of the fact that for any real numbers a1 ≤ a2 · · · ≤ an, the permutation
σ : [n] → [n] which minimizes the quantity

∑n
i=1 |ai − σ(i)| is the identity. For the sake of

completeness, we present a proof in Appendix A.

Proof of Lemma 3: Consider the set of edges which are back edges in σ but are not backedges
in ρ. Denote this set by Bσ\ρ. Also consider the set of edges which are back edges in ρ but are not
backedges in σ. Denote this set by Bρ\σ. Note that

∑

(u,v)∈Bσ\ρ

wuv +
∑

(u,v)∈Bρ\σ

wuv ≥ |Bρ −Bσ| (4)

The crucial observation is that if an edge (u, v) ∈ Bσ\ρ then (v, u) ∈ Bρ\σ. This along with
the fact that the weights satisfy probability constraints imply that K(σ, ρ) =

∑

(u,v)∈Bσ\ρ

wuv +
∑

(u,v)∈Bρ\σ

wuv which by (4) implies K(σ, ρ) ≥ |Bρ −Bσ|. Equation (1) completes the proof.

4 A Lower Bound for INCR-INDEG

We will prove the following theorem in this section.

Theorem 2 For every constant ε > 0, there exists an infinite family of (unweighted) tournaments
Tε such that arranging the vertices of any tournament in Tε according to their indegrees, irrespective
of how ties are broken, results in at least 5− ε times as many backedges as the optimal ordering.

Note that the above result implies the analysis in Section 3 is tight, even if one modified INCR-

INDEG to break ties in some “intelligent” way.
For any tournament T , we will use I(T ) to denote the ordering according to indegrees which

induces the least number of backedges (that is, ties are broken “optimally”). Also let O(T ) denote
the optimal ordering. For the rest of this section we use tournaments to refer to unweighted
tournaments.

We will use two parameters, x and n, in this section. For any n ≥ 5 and x ≥ 4 such that x is a
perfect square, we will construct a tournament Tx,n such that

lim
x,n→∞

BI(Tx,n)

BO(Tx,n)
= 5, (5)

which will prove Theorem 2.
In the rest of this section, we will describe the construction of Tx,n and show that (5) holds. Fix

n ≥ 5 and x ≥ 4 such that x is a perfect square. Tx,n will have n(2x+1) vertices. We will partition
the vertices into n blocks of 2x+1 vertices each. The ith block for any i = 1, 2, . . . , n, will be denoted
by bi. Further, for every j = 0, 1, . . . , 2x; the j th node in bi will be denoted by bi

j. The node bi
x is

the middle node of bi and the sets of nodes {bi
0, b

i
1, · · · , bi

x−1} and {bi
x+1, b

i
x+2, · · · , bi

2x} are the left
half and right half of bi respectively. Let φ denote the ordering b1

0, · · · , b1
2x, b2

0, · · · , b2
2x, · · · , bn

0 , · · · ,
bn
2x. Finally, unless mentioned otherwise, an edge will be called backward or forward in Tx,n with

respect to φ.
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bi bi+1

Figure 1: The Type I edges between bi and bi+1 (1 ≤ i < n) when x = 4.

The basic idea behind the construction is as follows. In Tx,n, the sub-tournaments spanned by
each bi would have no backedges if nodes in bi are arranged according to φ. However, backedges
from bi+1 and bi+2 will force I(Tx,n) to order the vertices in bi (more or less) in the reverse order
of φ. This will result in I(Tx,n) inducing many more back edges than the optimal.

We will describe the construction of Tx,n by starting with a tournament on the vertex set ∪n
i=1b

i

such that all the edges are forward edges according to φ. Then we will reverse the direction of
some edges between bi and bi+1 (which we call Type I edges) and some edges between bi and bi+2

(which we call Type II edges) to get our final Tx,n. We now formally define these edges.
Assume we start with a set of edges E on V = ∪n

i=1b
i such that for any u, v ∈ V , (u, v) ∈ E if

φ(u) < φ(v) and (v, u) ∈ E otherwise. We first describe the Type I edges. For every i (1 ≤ i < n),
the last vertex of bi+1 has a Type I edge to every vertex in the left half of bi. The second last
vertex of bi+1 has a Type I edge to all but the last vertex in the left half of bi and so on. More
formally, for every i = 1, 2, · · · , n− 1,

for (j = x + 1, x + 2, · · · , 2x)

for (k = 0, 1, · · · , j − x− 1)

E ← (E \ {(bi
k, bi+1

j }) ∪ {(bi+1
j , bi

k)}
See Figure 1 for an example when x = 4.

We turn to the Type II edges. First, partition the left and the right half of every bi into
√

x
consecutive minigroups of

√
x vertices each. A minigroup is connected to another if there is an

edge from the `th (0 ≤ ` ≤ √x − 1) vertex in the first minigroup to the `th vertex in the second
minigroup. For any i (1 ≤ i < n− 1), Type II edges are introduced to connect the last minigroup
in the right half of bi+2 to all the minigroups in the left half of bi. The second last minigroup in the
right half of bi+2 is connected to all but the last minigroup in the left half of bi and so on. More
formally. for every i = 1, 2, · · · , n− 2,

for (k = 0, 1, · · · ,√x− 1)

for (r = 0, 1, · · · , k)

for (` = 0, 1 · · · ,√x− 1)

E ← (E \ {(bi
r
√

x+`
, bi+2

x+k
√

x+`+1
)}) ∪ {(bi+2

x+k
√

x+`+1
, bi

r
√

x+`
)}

See Figure 2 for an example of Type II edges for the case when x = 4.
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bi+1 bi+2bi

Figure 2: Type I edges between bi and bi+1 and Type II edges between bi and bi+2 (1 ≤ i < n−1)
when x = 4. Type II edges are the ones which are not present in Figure 1.

The tournament defined by the vertices V and edges E is the required tournament Tx,n. We will
now estimate the indegrees of the vertices in Tx,n. Consider an i such that 2 < i < n−2. Before Type
I and Type II edges were introduced, Tx,n was an acyclic graph. Thus, the indegree of the vertex
bi
j (where 0 ≤ j ≤ 2x) was the number of vertices connected to it, that is, bi

j = (i− 1)(2x + 1) + j.

When Type I edges were introduced, the indegree of the last vertex in bi decreased by x (as there
was now an edge from it to every vertex in the left half of bi−1) while the indegree of the first vertex
in bi increased by x (as there was now an edge from every vertex in the right half of bi+1 to bi

0).
Similarly, the indegree of the second last vertex decreased by x−1 while the indegree of the second
vertex increased by x− 1 and so on. Thus, after all Type I edges were introduced, the degree of bi

j

(0 ≤ j ≤ 2x) was (i− 1)(2x + 1) + x. When Type II edges were introduced, the indegree of every
vertex in the last minigroup in the right half of bi decreased by

√
x (as the last minigroup was now

connected to every minigroup in the left half of bi−2) while the indegree of every vertex in the first
minigroup in the left half of bi increased by

√
x (as every minigroup in the right half of bi+2 was

now connected to the first minigroup in the left half of bi). Similarly, the indegree of every vertex
in the second last minigroup in the right half of bi decreased by

√
x− 1 while the indegree of every

vertex in the second minigroup in the left half of bi increased by
√

x− 1 and so on. In particular,
the indegree of bi

x did not change. Thus, for 0 ≤ j < x, bi
j = (i − 1)(2x + 1) + x + dx−j√

x
e and for

x < j ≤ 2x, bi
j = (i− 1)(2x + 1) + x− d j−x√

x
e = (i− 1)(2x + 1) + x + bx−j√

x
c.

Taking care of the boundary cases we have the following expressions for the indegrees.

In(b1
j ) =

{

x + dx−j√
x
e, j ∈ [0, x]

j, j ∈ (x, 2x]
(6)

In(b2
j ) =

{

3x + 1 + dx−j√
x
e, j ∈ [0, x]

3x + 1, j ∈ (x, 2x]
(7)

For i = 3, · · · , n− 2 and for j = 0, 1, · · · , 2x;

In(bi
j) =

{

(i− 1)(2x + 1) + x + dx−j√
x
e, j ∈ [0, x]

(i− 1)(2x + 1) + x + bx−j√
x
c, j ∈ (x, 2x]

(8)

In(bn−1
j ) =

{

(n− 2)(2x + 1) + x, j ∈ [0, x]

(n− 2)(2x + 1) + x + bx−j√
x
c, j ∈ (x, 2x]

(9)
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In(bn
j ) =

{

(n− 1)(2x + 1) + j, j ∈ [0, x]

(n− 1)(2x + 1) + x + bx−j√
x
c, j ∈ (x, 2x]

(10)

We first upper bound the number of backedges in the optimal ordering.

Lemma 4 The number of backedges in the optimal ordering of Tx,n is at most x2n
2 + o(x2n).

Proof : To prove the lemma, we show that Bφ ≤ x2n/2 + o(x2n). Note that the only backedges in
Tx,n according to φ are the Type I and Type II edges. By definition, the number of Type I edges
is

(n− 1)(x + x− 1 + · · · + 1) =
x(x− 1)

2
(n− 1) ≤ x2n

2

and the number of Type II edges is

(n− 2)(
√

x +
√

x− 1 + · · · + 1) =
x(
√

x− 1)

2
(n− 2) ≤ x3/2n

2
= o(x2n).

The proof is complete.
We now lower bound the number of backedges induced by I(Tx,n).

Lemma 5 The number of backedges induced by I(Tx,n) on Tx,n is at least 5x2n
2 − o(x2n).

Note that Lemmas 4 and 5 prove equation (5) and thus, Theorem 2. We end this section by
proving Lemma 5.

Proof of Lemma 5: We first claim that for any i < i′, every node in bi is placed before every
node of bi′ by I(Tx,n). In other words, all Type I and Type II edges are back edges (between
vertices in the different blocks) according to I(Tx,y). The proof of lemma 4 shows that this number
is at least x2n/2− o(x2n). For any i, let maxi and mini be the maximum and minimum indegrees
of all vertices in bi. To prove the claim, we will show that

for all i = 1, 2, · · · , n− 1; maxi < mini+1. (11)

Indeed from Equations (6)-(10), we have the following values for maxi and mini:

maxi =







2x, i = 1
(2i − 1)x +

√
x + (i− 1), i = 2, · · · , n− 2

(2n− 3)x + (n− 2), i = n− 1

mini =







3x + 1, i = 2
(2i− 1)x−√x + (i− 1), i = 3, · · · , n
(2n− 2)x + n− 1, i = n

An inspection of the values shows that (11) holds.
Thus, we have counted all the back edges between vertices of bi and bi′ for i 6= i′. We now need

to count the number of back edges between vertices in the same bi. Counting conservatively, we
assume that there are no such back edges for i ∈ {1, 2, n, n− 1}. Fix an i such that 2 < i < n− 1.
We claim that the number of back edges between vertices in bi is at least

x(2x + 1)− x(
√

x− 1). (12)
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To see this divide the left half of bi into
√

x minigroups– l0, l1, · · · , l√x−1. In particular, lk con-

sists of the vertices bi
k
√

x
, bi

k
√

x+1
, · · · , bi

(k+1)
√

x−1
. Similarly the right half of bi is divided into

√
x

minigroups– r0, r1, · · · , r√x−1. Observe from (8) that for any k = 0, 1, · · · ,√x − 1; the degree of
a vertex in lk and rk is (i − 1)(2x + 1) + x +

√
x− k and (i− 1)(2x + 1) + x− k − 1 respectively.

Thus, I(Tx,n) will have to arrange vertices in the order r√x−1, r
√

x−2, · · · , r0, followed by the middle

node bi
x, followed by vertices in the order l√x−1, l

√
x−2, · · · , l0. Again counting conservatively, we

assume that there are no backedges in induced tournaments over any minigroup lk or rk (where
k = 0, 1, · · · ,√x−1). However, note that every other edge in T i

x,n, the induced tournament over bi,

is a backedge. There are a total of
(2x+1

2

)

= x(2x +1) edges in T i
x,n while the induced tournaments

over any lk or rk has
(

√
x

2

)

many edges and there are 2
√

x such minigroups. This implies that the
number of backedges in T i

x,n is at least x(2x + 1)− 2
√

x · √x(
√

x− 1)/2 as claimed in (12).
Recalling that there are n− 4 choices for i, the number of backedges within some block totaled

over all the n− 4 blocks is

(

x(2x + 1)− x(
√

x− 1)
)

(n− 4) ≥ 2x2n− o(x2n).

Adding the estimates of the number of backedges between different bis and number of backedges
within the same bi completes the proof.

5 Conclusions and Open problems

The best known approximation guarantee for the FAS-TOURNAMENT problem is 3 for determin-
istic algorithms ([18]) and 2.5 for randomized algorithms ([1]). It is an interesting open question
to determine the correct approximation factor. We remark that the complementary problem of
maximum acyclic subgraph problem on tournaments has a PTAS [3].

Another interesting problem is to get a tighter bound on how good Borda’s method is for
approximating the optimal ranking for rank aggregation. Note that the example in Section 4 is not
a valid exmaple for rank aggregation (the weights do not satisfy triangle inequality).
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A Proof of Lemma 2

If σ sorts the vertices in [n] according to their indegrees then the statement of the lemma holds
trivially.

So now consider the case when there exits i ∈ [n] such that In(u) > In(v) where u = σ−1(i)
and v = σ−1(i + 1). Construct a new ordering σ′ that is same as σ except u and v are swapped:
σ′(w) = σ(w) if w 6∈ {u, v} and σ′(u) = i+1, σ′(v) = i. We next show that

∑

v∈[n] |σ(v)−In(v)| ≥
∑

v∈[n] |σ′(v)− In(v)|: the rest of the proof is a simple induction. By the construction of σ ′,

∑

v∈[n]

(|σ(v) − In(v)| − |σ′(v) − In(v)|)

= |i− In(u)|+ |i + 1− In(v)| − |i− In(v)| − |i + 1− In(u)|
= 2(min{i, In(v)} −min{i, In(u)}) + 2(min{i + 1, In(u)} −min{i + 1, In(v)})

The last equality follows from the identity |x− y| = x + y− 2min{x, y}. Finally it can be verified4

that the last sum is always non-negative.

4There are three cases. If i ≥ In(u) then the first term is 2(In(v)−In(u)) while the second term is 2(In(u)−In(v)).
If In(v) ≥ i then the first term is 0 while the second term is 2max(i + 1− In(v), 0). Finally if In(u) > i > In(v) then
the first term is 2(In(v) − i) while the second term is 2(i + 1 − In(v)).
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