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Abstract

This paper is concerned with a new family of error-correcting codes based on algebraic
curves over finite fields, and list decoding algorithms for them. The basic goal in the subject of
list decoding is to construct error-correcting codes C over some alphabet Σ which have good
rate R, and at the same every Hamming ball of (relative) radius p has few codewords of C, and
moreover these codewords can be found in polynomial time.

The trade-off between the rateR and the error-correction radius p is a central one governing
list decoding. Traditional “unique decoding” algorithms can achieve p = (1 − R)/2, and this
was improved in [7] to p = 1 −

√
R through a new list decoding algorithm for Reed-Solomon

(RS) codes. For several years, this remained the best known trade-off between rate and list
decoding radius. In a recent breakthrough, Parvaresh and Vardy [11] define a variant of RS
codes which can be list decoded beyond the 1 −

√
R radius for rates R 6 1/16.

We generalize the PV framework to algebraic-geometric (AG) codes, of which RS codes are
an important special case. This shows that their framework applies to fairly general settings,
and also better elucidates the key algebraic concepts underlying the new codes. Moreover,
since AG codes of arbitrary block length exist over fixed alphabets Σ, we are able to almost
match the trade-off between p andR obtained in [11] over alphabets of constant size. In contrast,
the PV codes have alphabet size that is polynomially large in the block length.

Similar to algorithms for AG codes from [7, 8], our encoding/decoding algorithms run in
polynomial time assuming a natural polynomial-size representation of the code. For codes
based on a specific “optimal” algebraic curve, we also present an expected polynomial time
algorithm to construct the requisite representation. This in turn also presents an efficient con-
struction of the representation needed by the list decoding algorithms for AG codes in [7].
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1 Introduction

1.1 Context and Motivation

In a recent breakthrough in coding theory, Parvaresh and Vardy [11] present a new family of
codes that is an elegant variant of Reed-Solomon (RS) codes. For rates R 6 1/16, these codes can
be efficiently list decoded beyond the fraction 1 −

√
R of errors that was the earlier best trade-off

between rate and list decoding radius (achieved for RS codes in [7]). For list decoding up to radius
1− ε for small ε→ 0, their scheme can be used to get codes with rate Ω(ε/ log(1/ε)), which is close
to the best possible rate of ε.

The new variant of RS codes put forth in [11] is as follows. In a RS code, the message is a
polynomial, which is encoded by its evaluations at elements of a field. In the PV-scheme, the
message is viewed as a polynomial f , and then a related polynomial h is computed (as a carefully
chosen function of f – the details of how this is done are crucial to the success of this approach),
and then the encoding comprises of the evaluations of both f and h on the field elements. This
gives a non-linear code of half the rate compared to the original Reed-Solomon code. To get
better trade-offs between rate and list decoding radius, one can use not a pair but an M -tuple of
correlated polynomials for the encoding.

In light of the improvement over RS codes this scheme offers, it is natural to consider whether
a similar construction can used to improve upon the list decodability of algebraic-geometric (AG)
codes, of which RS codes are but one special case. Such a construction will highlight the generality
and promise of this new approach, and in doing so perhaps elucidate its salient features in a
general setting unencumbered by specifics of a particular code. Furthermore, algebraic-geometric
codes achieve excellent parameters over alphabets of constant size, whereas RS codes require field
size at least as large as the alphabet size, and the dependence on alphabet size only worsens in the
variant of RS codes considered in [11] (to achieve the above-mentioned codes of rate Ω(ε/ log(1/ε))
for decoding radius 1 − ε, the alphabet size needed is nΩ(log(1/ε))).

In this work, using AG codes, we will beat the 1 −
√
R list decoding radius for low rates R

over alphabets of fixed size. For decoding up to radius 1 − ε for small ε → 0, we will get codes
with alphabet size (1/ε)O(a) and rate Ω(a−2ε1+1/a), for every integer a > 1. There is an easy
lower bound of 1/ε on the alphabet size and the rate has to be at most O(ε). Therefore, our result
does well simultaneously on both the alphabet size vs. list decoding radius and the rate vs. list
decoding radius trade-offs. Our codes also have a nice list recovering property which can be used
in concatenation schemes with suitable constant-sized inner codes to get uniformly constructive
binary codes of rate close to ε3 list-decodable up to radius (1/2 − ε).

Complexity of encoding/decoding: Since AG codes are a whole family of codes as opposed to a
specific code, when we say we give polynomial time encoding and decoding algorithms for them,
we mean that every AG-code has a natural (polynomial size) representation given which there are
encoding/decoding procedures that run in polynomial time. This is similar to the situation for
the original list decoding algorithm for AG codes [7, 8], and is the best one can hope for when we
want to decode every AG code of a certain type.

However, it makes sense to try to construct this requisite representation efficiently for certain
specific AG-codes, ideally the ones which offer the best trade-offs for list decoding. We explic-
itly address this question in Section 5. For the specific “optimal” AG codes based on a tower of
function fields due to Garcia and Stichtenoth [1, 2], we give an expected polynomial time (i.e., Las
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Vegas) construction of the description of the code. Though not explicit in the sense of deterministic
polynomial time constructibility, the representation is guaranteed to be correct and constructing it
(a one time job) takes polynomial time with overwhelming probability. This level of explicitness
should thus suffice for using the code. We remark that even for the algorithm of Guruswami and
Sudan [7, 8] (that achieved a decoding radius of at most 1 −

√
R), it was not known how to com-

pute the required representation efficiently. Our construction thus fills an important gap in the
literature on efficient decoding of AG codes.

1.2 Generalizing to AG-codes: Ideas and Complications

In this work, we propose a generalization of the Parvaresh-Vardy coding scheme to algebraic-
geometric codes. While fairly natural in hindsight (which a “correct” generalization ought to be!),
the generalization to algebraic-geometric codes is not immediate, since, as we describe below,
the special structure of RS-codes and the rational function field Fq(X) are used in a more than
superficial way in [11].

The ability to view a low-degree polynomial (i.e., the function being evaluated) also as a field
element from some field F, and operating on it in the field F to get another related polynomial is
crucial to the PV construction. Indeed, the decoding is performed by solving a system of poly-
nomial equations over the field F whose solutions contain all possible codewords that must be
output. For Reed-Solomon codes, there is a natural way to view polynomials as field elements,
since polynomials of degree < k are in one-to-one correspondence with elements of the extension
field Fq[X]/(E(X)) ≈ Fqk (where E(X) is an irreducible polynomial of degree k over Fq). In order
to generalize this framework to AG codes, we need an injective homomorphism from the elements
of the function field K that are evaluated to give the AG-encoding (i.e., the analog of low-degree
polynomials for the RS case) to a suitable field F. We achieve this by associating with an element
f of the function field, the field element Fqα which is the evaluation f(R) of f at a fixed place R
of (large enough) degree α. This evaluation is then used to obtain, from the message function f ,
a correlated function h such that h(R) is a carefully chosen function of f(R). Unlike the RS case,
however, for function fields of larger genus this evaluation map restricted to the message functions
is only injective and not bijective. Fortunately, we are able to show (Lemma 3) that a correlated
function h with the desired evaluation h(R) always exists in a slightly larger space compared to
the message space to which f belongs.

The decoding algorithm follows the interpolation followed by root-finding idea that is com-
mon to [15, 7, 11]. However, another technical complication arises in the phase when the interpo-
lated polynomial, say Q, with coefficients from the function field, is mapped into a polynomial N
with coefficients from Fqα by evaluating each of its coefficients at the place R. Following [11], we
seek to find roots in Fqα of N , and using the above-mentioned injection from messages into Fqα ,
map these roots back to obtain the list of messages. It is crucial that in this step N is a nonzero
polynomial when Q is. For the Reed-Solomon case, this is easy to achieve, since the coefficients of
Q, which are polynomials over Fq in one variable, come from a principal ideal domain (PID), i.e., a
ring all of whose ideals are generated by a single element. Therefore, the only way N can be zero
when Q is nonzero, is if all coefficients of Q are divisible by the generator of the ideal R (i.e., by a
univariate polynomial E of degree α). In this case we can divide Q by the appropriate power of
E to get a lower-degree nonzero polynomial Q̃, and then work with it instead (by construction, E
doesn’t divide Q̃, so it will lead to a nonzero polynomial N upon reduction modulo R).

However, for general function fields, the ring of functions that have poles only at one point
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need not be a PID.1 Thus, the above idea of dividing out Q by the factor from R that divides all
coefficients cannot be applied. We do not, therefore, know how to argue in general that N will
be nonzero when Q is. We circumvent this problem by restricting the coefficients of Q to come
from a much smaller space of functions than is usually done in the interpolation based algorithms
of [15, 7, 11]. Specifically, we restrict the pole order of each of the functions to be less than α.
This ensures that no nonzero coefficient of Q evaluates to 0 at the place R, which has degree α.
Therefore, Q 6= 0 implies N 6= 0, as desired. This restriction on the coefficients of Q does not come
for free, however, and we need to give up a bit on the potential performance in terms of number of
errors corrected. Fortunately, this loss is offset by using extra correlated functions at the encoding
stage. In effect, the flexibility of using as many correlated functions for the evaluations during
encoding trades-off favorably with the loss in performance due to the above complication. This
is the reason why our approach begins to give improvements over the decoding of regular AG-
codes only when we use 3 or more correlated functions (as opposed to the case of RS codes in [11],
where a pair of functions already gives a substantial improvement).

Another fall out of our stringent restriction on the coefficients of Q is that the idea of using
large “multiplicities” in the interpolation phase actually degrades the error correction performance
of the algorithm (it does gives minor improvements for small multiplicities, the best one being for
multiplicity 3 for the case of three correlated functions). This is in contrast to [7] where the big im-
provement came by using multiplicities, and also to the Parvaresh-Vardy construction [11] where
again large multiplicities are useful. In our presentation, since a small multiplicity gives only a
minor improvement, we simply present the interpolation algorithm for the case of multiplicity
1 (i.e., simple zeroes). On the flip side, this greatly helps us in Section 5 since the construction
of the requisite representation of the AG code is simpler when one does not have to deal with
multiplicities.

1.3 Subsequent work

Subsequent to our work, Patthak [12] also shows how to extend the PV framework to certain
AG codes. The best rate we can achieve for list decoding up to radius (1 − ε) is Ω(ε/ log2(1/ε))
(Corollary 14). Patthak [12] improves this to Ω(ε/ log(1/ε)), which matches the bound obtained by
Parvaresh and Vardy [11]. However, obtaining a polynomial time construction and decoding al-
gorithm seems harder with the approach put forth in [12]. The main technical differences between
this work and [12] lie in how the two complications alluded to above are handled. We now briefly
describe these in turn.

Let us consider the first issue of evaluation at R possibly not being a bijection into Fqα . We
dealt with this by allowing a slightly larger space from which we pick the correlated functions.
This lets us apply our methods to arbitrary AG codes, including the explicitly constructed ones
based on the Garcia-Stichtenoth function fields [2, 13]. Patthak instead suggests using a specially
chosen message space for which the evaluation map is indeed a bijection. Such a space of functions
always exists for cases of interest, cf. [14, Prop. I.6.10], but it is not clear how easy explicitly finding
and using one is, and in any case one loses the ability to use without any change the preexisting
well-studied AG codes like those in [2, 13].

1Actually, for our purposes it suffices to stipulate that in this ring, all maximal ideals are principal. However, such a
ring, which is an instance of a holomorphy ring [14, Sec. III.2], is always a Dedekind domain, and therefore is a PID iff all
its maximal ideals are principal.
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The second issue was to ensure that the interpolation polynomial Q does not vanish when its
coefficients are evaluated at R. It is dealing with this issue that costs us a little in terms of per-
formance compared to [11] — the rate we achieve with m correlated functions is about a factor
m smaller, which accounts for the extra factor log(1/ε) loss in rate mentioned above. The specific
problem is that the coefficients of Q, which come from a space of functions say A, may all vanish
at R, and yet we may not be able to remove a common factor from the coefficients of Q to get a
new polynomial Q̃ over A that does not have this problem. To deal with this, Patthak suggests
dividing all cofficients of Q by a suitable function, say b, such that after division some coefficient
of the new polynomial Q̃, say a/b, has a nonzero value at R. However, one is no longer guaran-
teed that the cofficient a/b ∈ A. So, while such a function b always exists, there remain two issues
in implementing this solution in polynomial time (even with access to preprocessed information
about the code): (i) how to find such a function b and succinctly represent the necessary informa-
tion concerning it, and (ii) how to evaluate a/b at R (for a ∈ A where a(R) = 0), since in general
a/b lies outside the space A of functions.

Capacity-achieving codes: Recently, explicit codes that approach the capacity of list decoding, i.e.,
the optimal rate vs. error-correction radius trade-off, were presented in [5]. Specifically, for any
desired R, ε > 0, they present codes with rate R that can be list decoded up to a fraction 1−R− ε
of errors. (Though this essentially achieves the optimal error-correction radius for any given rate,
the result does not subsume those in this paper or [11], since the list size needed for decoding in
[5] is a large polynomial in the block length, whereas we only need constant list size. Also, the
decoding complexity and alphabet size we achieve is a lot smaller.)

The underlying codes in [5] are certain folded Reed-Solomon codes, which are exactly RS codes but
viewed as a code over a larger alphabet by appropriate bundling together of codeword symbols.
The ideas in this paper may provide the starting point to generalize such folding schemes to better
AG codes. While such a task appears rather intricate, it will be worth the effort as getting close
to capacity over a fixed alphabet, say GF(212), will enable concatenation with a well-understood
binary inner code, say the [24, 12, 8] binary Golay code, to get very good binary codes, cf. [9].

2 Our code construction

We now describe a code construction where we use a triple of functions in the evaluation. As
mentioned above, our scheme does not get an improvement in decoding performance (compared
to regular AG-codes) when just two correlated functions are used for the evaluation. The exten-
sion of the code, decoding algorithm, and analysis for the case when more than three correlated
functions are evaluated as part of encoding, follows in a natural way. The extensions are discussed
briefly in Section 4.

2.1 Preliminaries

Most of the notation and terminology we use is standard in the study of algebraic-geometric codes,
and can be found in Stichtenoth’s book [14]. We briefly recap some key facts concerning algebraic
function fields and algebraic-geometric codes that we need for our description. LetK be a function
field over Fq, denotedK/Fq, i.e., a finite algebraic extension of the field Fq(X) of rational functions
over Fq. A subring X of K is said to be a valuation ring if for every z ∈ K, either z ∈ X or
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z−1 ∈ X . Each valuation ring is a local ring, i.e., it has a unique maximal ideal. The set of places
of K, denoted PK , is the set of maximal ideals of all the valuation rings of K. Geometrically,
this corresponds to the set of all (non-singular) points on the algebraic curve corresponding to K.
The valuation ring corresponding to a place P is called the ring of regular functions at P and is
denoted OP . Associated with a place P is a valuation vP : K → Z, that measures the number
of zeroes or poles of a function at P (with the convention vP (0) = ∞. In terms of vP , we have
OP = {x ∈ K | vP (x) > 0} and P = {x ∈ K | vP (x) > 0}. The quotient OP /P is a field since P is a
maximal ideal – it is called the residue field at P . The residue field OP /P is a finite extension field
of degree of Fq; the degree of this extension is called the degree of P , and is denoted deg(P ). For
every place P , we have an evaluation map evP : OP → OP /P defined by evP (z) = z(P ) = z + P ;
this map is Fq-linear. We will think of evP as a map into Fqdeg(P ) using an isomorphism of the
residue field to Fqdeg(P ) . Thus, elements of K can be viewed as functions on PK (hence the name
function field for K); the evaluation of z ∈ K and P ∈ PK , denoted z(P ), is either ∞ (if z /∈ OP ),
or belongs to Fqdeg(P ) .

The set of divisors DK of a function field K/Fq is the (additively written) free abelian group
generated by the places PK . For a divisor D =

∑

P∈PK
nPP where all but finitely many nP are

0, its degree, denoted deg(D), is defined as deg(D) =
∑

P∈PK
nP deg(P ) (note that this is a finite

sum). For a divisor D =
∑

P nPP , we define the set of functions L(D)
def
= {x ∈ K | vP (x) >

−nP ∀P ∈ PK}; this forms a vector space over Fq.

Theorem 1 (Follows from Riemann-Roch). If D ∈ DK is a divisor of K/Fq of degree at least 2g − 1,
then dim(L(D)) = deg(D) − g + 1.

An algebraic-geometric code over Fq is obtained by evaluating a carefully chosen subset of
elements of K at places of degree one. For a place P∞ of degree one and an integer α, the set
L((α − 1)P∞) consists of all those z ∈ K for which z has no poles at places other than P∞, and
has less than α poles at P∞. Typically, an AG-code is defined to be the evaluations of functions in
L((α− 1)P∞) at n distinct places P1, P2, . . . , Pn (different from P∞) of degree one. That is,

Cα,P∞
= {〈f(P1), f(P2), . . . , f(Pn)〉 | f ∈ L((α− 1)P∞)} .

This is a linear code since L((α − 1)P∞) is a vector space over Fq. The dimension of Cα,P∞
is at

least α−g by the Riemann-Roch theorem. Its minimum distance is at least n−α+1 since a nonzero
function in L((α− 1)P∞) can have at most (α− 1) zeroes.

2.2 The code and encoding

We now describe our construction of the code. Let K be a function field over Fq corresponding to
a smooth, irreducible curve. Let g be the genus of K. Suppose K has at least n+1 places of degree
one, say P1, P2, . . . , Pn and P∞. Let k > g be arbitrary (this assumption is mainly for convenience).
We will describe a code C of block length n over alphabet Fq3 with qk codewords. The rate of the
code will thus be r(C) = k/(3n). The code will not be linear. Let {1, β1, β2} be a basis of Fq3 over
Fq.

The messages of C will be identified with the vector space F
k
q . We specify the code by specify-

ing its encoding function, Enc, which will be an injective map Enc : F
k
q →

(

Fq3

)n.

Let α = k + g. Since α − 1 > 2g − 1, by Theorem 1, L((α − 1)P∞) is a k-dimensional vector
space over Fq and it is with this space that we identify our messages. Let φ1, φ2, . . . , φk be a
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basis of L((α − 1)P∞). Specifically, a message (a1, a2, . . . , ak) ∈ F
k
q will be viewed as the element

a1φ1 + · · · + akφk ∈ L((α− 1)P∞). Therefore, we will describe our encoding function as a map

Enc : L((α− 1)P∞) → (Fq3)n . (1)

Let R ∈ PK be a place of degree α. 2 We begin with the following simple lemma, which lets us
view our messages as a subset of Fqα , using their evaluations at R. Note that L((α− 1)P∞) ⊆ OR

since functions in L((α − 1)P∞) have no poles outside P∞ and thus certainly do not have a pole
at R.

Lemma 2. The restriction of the map evR to L((α − 1)P∞) is injective. Its range is a k-dimensional
subspace of Fqα .

Proof: Indeed, if f1, f2 ∈ L((α− 1)P∞) satisfy f1(R) = f2(R), then f1 − f2 has a zero at R. Hence
the zero divisor of f1 − f2 has degree at least deg(R) = α. However, the pole divisor of f1 − f2 has
degree at most α−1 since f1−f2 ∈ L((α−1)P∞). Therefore we must have f1−f2 = 0. Since evR is
Fq-linear, and L((α− 1)P∞) is a k-dimensional vector space over Fq, the image evR(L((α− 1)P∞))
is a k-dimensional subspace.

Our plan is to use the above as follows. We can view the message f ∈ L((α − 1)P∞)) as
the field element f(R). We can attempt to define a correlated message h whose evaluation h(R)
is an appropriate function Γ (over Fqα) applied to f(R).3 However, for the decoding procedure,
it seems important that this function Γ be non-linear (over Fq). The the image of evR restricted
to L((α − 1)P∞) is a subspace of Fqr . When Γ is not linear, in general there may not exist h ∈
L((α− 1)P∞) satisfying h(R) = Γ(f(R)).4 The following crucial lemma shows that such a h exists
provided we allow slightly bigger pole order at P∞.

Lemma 3. The image of L((α+ 2g − 1)P∞) under evR equals Fqα .

Proof: Let D be the divisor (α + 2g − 1)P∞. We wish to show that the restriction of evR to L(D),
denote it by H : L(D) → Fqα , is surjective. Note that H is a Fq-linear map, so the the image of H ,
Im(H), is a subspace of Fqα . We will show that Im(H) has dimension α, and this will show that H
is surjective.

The image Im(H) is isomorphic to the quotient L(D)/ ker(H) where ker(H) = {z ∈ L(D) |
H(z) = 0} is the kernel of H . Recalling that H(z) = 0 iff evR(z) = 0, we have ker(H) = {z ∈
L(D) | z has a zero at R}. Therefore, we have ker(H) = L(D −R). Therefore,

dim(Im(H)) = dim(L(D)/L(D −R)) = dim(L(D)) − dim(L(D −R)) .

Now, using Theorem 1, dim(L(D)) = (α + 2g − 1) − g + 1 = α + g, and dim(L(D − R)) =
deg(D − R) − g + 1 = ((α + 2g − 1) − α) − g + 1 = g. It follows that dim(Im(H)) = α, as
desired.

2We note that a place of degree d exists for all d such that (qd − 1) > 2qd/2g, and d = α > 2g satisfies this condition.
3More generally, following the PV-scheme, we can let (f(R), h(R)) belong to some curve, but this will improve

parameters slightly at best.
4For the Reed-Solomon case, g = 0, and hence α = k and so the image evR(L((α − 1)P∞)) = Fqα , and so such an

h ∈ L((α − 1)P∞) satisfying h(R) = Γ(f(R)) will always exist.
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Before we finally describe the encoding function (1), we need one other notation. For each
γ ∈ Fqα , we fix an arbitrary preimage in L((α+2g−1)P∞), denote it I[γ], that satisfies evR(I[γ]) =
γ. (Such a preimage exists by Lemma 3.) The code will be parameterized by integers s1, s2 > 1
(which will be specified later when we analyze the decoding algorithm). For f ∈ L((α − 1)P∞),
we define the i’th coordinate of Enc(f), for i = 1, 2, . . . , n, by

Enc(f) = f(Pi) + β1 · I[f(R)s1 ](Pi) + β2 · I[f(R)s2 ](Pi) (2)

(recall that {1, β1, β2} is a basis of Fq3 over Fq). In other words, the encoding consists of the evalu-
ation f(Pi) and also the evaluations h1(Pi) and h2(Pi) where hi is a specific function that satisfies
hi(R) = f(R)si for i = 1, 2 (the raising to si’th power happens in the field Fqα).

Note that the rate of C is k/(3n) and its distance d is at least n − α + 1 = n − k − g + 1. Its
alphabet size is q3.

2.3 Encoding complexity

The above encoding can be performed in polynomial time, provided (i) we can efficiently compute
functions in L((α + 2g − 1)P∞) at the places P1, P2, . . . , Pn and R, and (ii) we can compute the
preimage I[γ] ∈ L((α+2g−1)P∞) of arbitrary γ ∈ Fqα efficiently. Since the space L((α+2g−1)P∞)
is a α+ g-dimensional Fq-vector space, both of these tasks can be solved in polynomial time using
elementary linear algebra, assuming we have a basis for L((α + 2g − 1)P∞) together with the
evaluations of the basis functions at Pi as well as atR. This is the representation which we assume
for our code. This representation will also suffice to implement our list decoding algorithm in
polynomial time, as we will see in Section 3.4.

3 Interpolation based decoding procedure

We now turn to list decoding the above code construction. We recollect the notation of relevant
parameters in the construction:

• block length n;

• places P1, . . . , Pn, P∞ of degree 1;

• message length k (over Fq); α = k + g; messages correspond to functions in L((α− 1)P∞)

• a place R of degree α.

• the powering exponents s1, s2 (these will be specified later).

The list decoding problem for radius n−t amounts to solving the following function reconstruction
problem:

Input: Triples (yi, z1i, z2i) ∈ F
3
q , for i = 1, 2, . . . , n

Output: All functions f ∈ L((α− 1)P∞) for which the triple of functions (f, h1 = I[f(R)s1 ], h2 =
I[f(R)s2 ]) satisfies f(Pi) = yi, h1(Pi) = z1i and h2(Pi) = z2i for at least t values of i ∈
{1, 2, . . . , n}.
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3.1 High level idea behind the algorithm

Let A denote the ring ∪`>0L(`P∞) of all functions in K that have no poles other than possibly at
P∞. The basic idea, following the interpolation based decoding procedure of [15, 7, 11], is to find
a nonzero polynomial Q in the polynomial ring A[Y,Z1, Z2] such that all triples (f, h1, h2) that
meet the above output condition are roots of Q. This is done in the same way as in [7] (except
even simpler, since we only insist on simple zeroes and not zeroes of higher multiplicities), by
finding a nonzero solution to an appropriate homogeneous linear system over Fq. However, the
polynomialQwill have exponentially many roots in general, so finding all of them and looking for
valid triples (f, h1, h2) among them is not an option. Instead, we reduce the polynomialQmodulo
the place R, by evaluating each of its coefficients at R, to obtain a polynomial N ∈ Fqα [Y, Z1, Z2].
At this step, as mentioned earlier, we have to be careful that N remains a nonzero polynomial,
and for this we depart a bit in the structure we impose on Q.

If (f, h1, h2) is a root of Q, clearly the evaluations (f(R), h1(R), h2(R)) is a root of N . This
together with the fact that hi(R) = f(R)si for i = 1, 2 implies that f(R) is a root of the univariate
polynomial N [Y, Y s1 , Y s2 ], call it T [Y ]. By Lemma 2, the message f ∈ L((α − 1)P∞) is uniquely
recoverable from its evaluation f(R), and so all the solution messages f (and hence the triples
(f, h1, h2)) can be found by checking amongst the roots of the polynomial T . One additional point
to be careful about is that T does not become the zero polynomial (even though N [Y, Z1, Z2] is
nonzero). This is ensured by a suitable, large enough choice of s1, s2.

3.2 Properties required of the interpolated polynomial

We now define the properties we would like from the interpolation polynomial Q ∈ A[Y, Z1, Z2].
These properties will guide how the homogeneous linear system will be set up to find Q. Let ` be
a positive integer to be specified later.

1. Q is nonzero.

2. For all f, h1, h2 ∈ L((α+ 2g − 1)P∞), Q(f, h1, h2) ∈ L((`− 1)P∞).5

3. For every i = 1, 2, . . . , n, for all (f, h1, h2) which satisfy f(Pi) = yi, h1(Pi) = z1i and h2(Pi) =
z2i, Q(f, h1, h2) has a zero at Pi.

The following simple lemma shows the utility of such a polynomial Q.

Lemma 4. Let Q satisfy the above conditions. Let f, h1, h2 ∈ L((α + 2g − 1)P∞) satisfy f(Pi) = yi,
h1(Pi) = z1i and h2(Pi) = z2i for t values of i. If t > `, then Q(f, h1, h2) = 0.

Proof: The function Q(f, h1, h2) has at most (` − 1) poles, and it has a zero at Pi for each i for
which f(Pi) = yi, h1(Pi) = z1i and h2(Pi) = z2i, and thus at least t zeroes. If t > `, this implies
that Q(f, h1, h2) is the zero function.

5It will actually suffice for us to require that Q(f, h1, h2) ∈ L((` − 1)P∞) whenever f ∈ L((α − 1)P∞) and h1, h2 ∈
L((α + 2g − 1)P∞). But for sake of uniformity and simplicity, we ensure this also for f from the larger space L((α +
2g − 1)P∞).
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3.3 The Algorithm

We now specify the decoding algorithm for C formally. Recall the input to the decoding algorithm
is a string consisting of triples (yi, z1i, z2i) ∈ F

3
q , and the algorithm should find all codewords with

agreement t or more with the input string (the parameter t will come out from the analysis). In
what follows, φ1, φ2, . . . , φk denotes a basis of L((α − 1)P∞) (recall that this is a k-dimensional
vector space over Fq).

Step 0: Compute integer parameters p, ` where

`
def
= p(α+ 2g − 1) + α (so that

`− α

α+ 2g − 1
= p) , (3)

and p satisfies k
(

p+3
3

)

> n, say

p
def
=

⌊(6n

k

)1/3⌋

. (4)

Step 1: Find a nonzero trivariate polynomialQ[Y,Z1, Z2] with coefficients in L((α−1)P∞) of total
degree p, i.e., of the form

Q[Y,Z1, Z2] =
∑

j,j1,j2
j+j1+j26p

(

k
∑

r=1

qr,j,j1,j2φr

)

Y jZj1
1 Z

j2
2 ,

by finding the value of the unknowns qr,j,j1,j2 ∈ Fq, such that for each i = 1, 2, . . . , n, the
following holds

• The constant term of the polynomial Q(i)[Y,Z1, Z2]
def
= Q[Y + yi, Z1 + zi1, Z2 + zi2] van-

ishes at Pi.

Note that the above condition is a homogeneous linear equation over Fq in the unknowns
qr,j,j1,j2 ; hence finding such a polynomial Q amounts to finding a nonzero solution to a ho-
mogeneous linear system over Fq.

Step 2: Compute the polynomial N ∈ Fqα [Y,Z1, Z2] by evaluating each of the coefficients of Q
(which are functions in L((α− 1)P∞)) at the place R.

Step 3: Compute the univariate polynomial T ∈ Fqα [Y ] where T [Y ]
def
= N [Y, Y s1 , Y s2 ].

Step 4: Compute all the roots in Fqα of T . (There will be at most degree(T ) 6 max{s1, s2}p such
roots, when T is a nonzero polynomial.)
For each root γ ∈ Fqα of T , do the following:

• Compute the unique f ∈ L((α − 1)P∞), if any, such that f(R) = γ (this can also be ac-
complished by solving a linear system, with unknowns being the coefficients a1, . . . , ak

of the basis elements φ1, . . . , φk where f = a1φ1 + · · · + akφk).

• If such a f exists, test if the encoding of f , Enc(f) that is defined in (2), agrees with the
input triples on at least t locations. If so, output f .

10



3.4 Runtime analysis of the algorithm

The above algorithm can be implemented to run in polynomial time, given an appropriate repre-
sentation of the code, that consists of:

(i) The evaluation of the basis elements φ1, . . . , φk of L((α − 1)P∞) at the places P1, P2, . . . , Pn,
as well as at a place R of degree α.

(ii) The evaluation of ψ1, ψ2, . . . , ψ2g at the place R, where φ1, . . . , φk, ψ1, . . . , ψ2g forms a basis
of L((α+ 2g − 1)P∞).

We stress that this is the same information that is needed to perform the encoding in polynomial
time (see the discussion in Section 2.3). So we do not require any additional precomputation
compared to the natural representation used for the encoding.

We now describe why the above information suffices for efficient decoding. With the informa-
tion in (i), one can perform

• Step 1 using the values of φi’s at P1, . . . , Pn by solving a homogeneous linear system over
Fq;

• Step 2 using the values of the φi’s at R; and

• The computation of f (if any) satisfying f(R) = γ in Step 4, again using the values of the φi’s
at R.

Using the information in (ii) one can compute the map I : Fqα → L((α + 2g − 1)P∞) and thus
compute Enc(f) in Step 4 and check which of the f ’s that are found must be output.

The root-finding in Step 4 can be performed in deterministic poly(n, q, α) time. Therefore, the
overall runtime will be polynomial in the block length n.

We want to point out that the typical representation of an AG-code is a generator matrix, which
amounts to the evaluation of the basis functions φ1, . . . , φk at the places P1, . . . , Pn. The only extra
information we require for the algorithm is the evaluation of these basis functions (and up to 2g
extra ones) at a place R of larger degree. For the tower of function field towers in [2], for which it
is known how to compute the generator matrix efficiently [13], we give an expected polynomial
time algorithm in Section 5 to compute the evaluations at a high degree place efficiently.

3.5 Analysis of Error-correction Performance

Theorem 5. For the choice s1 = p+1 and s2 = p2 +p+1, the decoding algorithm of Section 3.3 correctly
finds all codewords c = 〈c1, . . . , cn〉 of C which satisfy ci = yi + β1zi1 + β2zi2 for at least t values of
i ∈ {1, 2, . . . , n}, for

t = k + g +

(

6
(

1 +
3g − 1

k

)

)1/3

·
(

(k + 3g − 1)2n
)1/3

. (5)

The number of codewords the algorithm outputs in the worst-case is at most p(p2 + p+1) 6 3p3 6 18n/k.
In particular, for k > g, this implies the algorithm will output all codewords with agreement at least
2k + 4(6k2n)1/3 with a received word.
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We will prove the above by a sequence of lemmas.

Lemma 6. For parameters p, ` defined in Step 0 of the algorithm, Step 1 of the algorithm finds a nonzero
polynomial Q[Y,Z1, Z2] of total degree p that satisfies the interpolation conditions of Section 3.2.

Proof: Step 1 of the algorithm finds a polynomial Q[Y,Z1, Z2] of total degree p whose coefficients
lie in L((α − 1)P∞). The coefficient of Y jZj1

1 Z
j2
2 is expressed using the unknowns qr,j,j1,j2 for

1 6 r 6 k. The total number of unknowns is thus k times the number of trivariate monomials of
total degree at most p, which is

(

p+3
3

)

, and thus equals k
(

p+3
3

)

. The number homogeneous linear
conditions imposed on the unknowns is n, one for each place Pi. Therefore, if k

(

p+3
3

)

> n, the
number of unknowns exceeds the number of constraints, and so a nonzero Q can be found.

It remains to prove that any Q that is found satisfies the following two conditions:

(a) For all f, h1, h2 ∈ L((α+ 2g − 1)P∞), Q(f, h1, h2) ∈ L((`− 1)P∞), and

(b) For each i = 1, 2, . . . , n, if f, h1, h2 evaluate to yi, zi1, zi2 respectively at Pi, then Q(f, h1, h2)
vanishes at Pi.

Condition (a) is immediate. Indeed, each monomial of Q has degree p and each coefficient of Q
belongs to L((α − 1)P∞). Therefore, for f, h1, h2 ∈ L((α + 2g − 1)P∞), Q(f, h1, h2) will have at
most (α− 1) + p(α+ 2g − 1) = `− 1 poles at P∞, and no poles elsewhere.

For (b), we note the following.

evPi

(

Q(f, h1, h2)
)

= evPi

(

Q(i)(f − yi, h1 − zi1, h2 − zi2)
)

= evPi

(

Q(i)(f − f(Pi), h1 − h1(Pi), h2 − h2(Pi))
)

= 0

where the last equality follows since by construction of Q, the constant term of Q(i)(Y, Z1, Z2)
vanishes at Pi, and the functions f−f(Pi), h1−h1(Pi) and h1−h2(Pi) all clearly vanish at Pi.

Lemma 7. If Q 6≡ 0, then N ∈ Fqα [Y,Z1, Z2] obtained in Step 2 is a nonzero polynomial of total degree at
most p. Moreover, if Q(f, h1, h2) = 0 for some functions f, h1, h2 ∈ OR, then N(f(R), h1(R), h2(R)) =
0.

Proof: Q has total degree at most p, and hence so does N . Also, any nonzero coefficient of Q
evaluates to a nonzero value at R. This is because each coefficient belongs to L((α − 1)P∞) and
thus has less than α zeroes, while deg(R) = α. Therefore, ifQ 6≡ 0, thenN is a nonzero polynomial.
Since the evaluation map evR : OR → Fqα is a homomorphism, N(f(R), h1(R), h2(R)) equals the
evaluation of Q(f, h1, h2) at R, and so must equal 0 if Q(f, h1, h2) = 0.

Lemma 8. If p > 1, s1 > p, s2 > s1p, and N [Y,Z1, Z2] is a nonzero polynomial of total degree at most p,
then the polynomial T [Y ] = N [Y, Y s1 , Y s2 ] is a nonzero polynomial of degree at most s2p.

Proof: The claim about the degree of T is obvious, so we just need to show that T is nonzero.

Define the polynomial S[Y,Z2]
def
= N [Y, Y s1 , Z2]. Now S ≡ 0 iff Z1 − Y s1 divides N [Y, Z1, Z2].

But this is impossible since the total degree of N is at most p < s1. Therefore, S is a nonzero
polynomial of total degree at most s1p. Now, the polynomials T, S are related by T [Y ] = S[Y, Y s2 ].
Therefore, T ≡ 0 iff Z2 − Y s2 divides S[Y,Z2]. Again this is impossible since the degree of S is at
most s1p < s2. We conclude that T must be a nonzero polynomial.
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Combining the above lemmas, it is easy to conclude:

Lemma 9. For `, p defined as in Step 0, and the choices s1 = p + 1 and s2 = p(p + 1) + 1, for every
f ∈ L((α − 1)P∞), the following holds: If Enc(f) agrees with the input word on ` or more places, then
f(R) is a root of T , and thus f will be found and output in Step 4 of the algorithm. Moreover, the algorithm
will output at most p3 + p2 + p such functions f .

Proof: By Lemma 6 and Lemma 4, each f ∈ L((α − 1)P∞) for which Enc(f) has agreement > `
with the input word, satisfies Q(f, h1, h2) = 0, where h1 = I[f(R)s1 ] and h2 = I[f(R)s2 ]. By
Lemma 7, N(f(R), h1(R), h2(R)) = 0. Hence

T (f(R)) = N(f(R), f(R)s1 , f(R)s2) = N(f(R), h1(R), h2(R)) = 0 .

Thus f(R) is a root of T . By Lemma 8, T is a nonzero polynomial of degree at most s2p. It follows
that the number of solutions f output by the algorithm is at most s2p = p3 + p2 + p.

Proof of Theorem 5: Theorem 5 follows immediately from Lemma 9 and the choice of ` in (3):
` = α+ (α+ 2g − 1)p where p = (6n/k)1/3 and α = k + g.

For small rates, the result of Theorem 5 improves over the list decoding algorithm for algebraic-
geometric codes in [7] which corrects up to n−

√

(k + g − 1)n errors.

So far our construction applied to any function field. We conclude this section by stating the
following corollary to Theorem 5 that records the best trade-off between list decoding radius and
rate our scheme offers. This is achieved by using functions fields which have the largest possible
ratio of g/n, i.e., the genus to the number of places of degree 1. By the Drinfeld-Vlădut bound, this
ratio is at most 1/(

√
q − 1) as q is held fixed and n tends to infinity. For q which is a square, there

are sequence of functions fields known with increasing genus known for which g/n approaches
1/(

√
q − 1) [17, 1]. Plugging in these function fields in the result of Theorem 5, and recalling that

the rate of our code construction equals k/(3n), we get the following final result for this section.
(The claim about the polynomial time constructibility of the codes follows from Section 5.)

Theorem 10. For q a square prime power and every r, 1√
q−1 < 3r < 1 − 1√

q−1 , there is a family of codes
over alphabet size q3 of rate r, relative distance at least 1 − 3r − 1√

q−1 , and which is list decodable up to a
fraction

1 − 3r − 1√
q − 1

− 6
(

r +
1√
q − 1

)2/3

of errors using lists of size at most 6/r.6 Furthermore, there is a natural representation of the codes, com-
putable in expected polynomial time, for which the encoding as well as list decoding up to this radius can be
performed in polynomial time.

For decoding up to a fraction of errors approaching 1, we get the following corollary. (We
say a code of block length n is (ρ, L)-list decodable for every received word there are at most L
codewords within distance ρn from it.)

Corollary 11. For all small enough ε > 0, there is a family of Q-ary codes for Q = O(1/ε9) which has
rate Ω(ε3/2) and which is (1 − ε,O(1/ε3/2))-list decodable. Furthermore, the codes have a representation,
computable in expected polynomial time, that permits polynomial time encoding and list decoding up to
radius (1 − ε).

6When the stated fraction of errors is non-positive, the stated bound of course becomes trivial. So the result is
meaningful only for small rates r.
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The above corollary can be contrasted with regular AG codes that are list decodable up to
radius (1 − ε) using the algorithm in [7]. Those codes had worse rate of Θ(ε2), but their alphabet
size was O(1/ε4).

4 Extension to codes using higher order correlations and list recovering

Evidently, we can extend our construction to use more than three correlated functions for the
encoding. For low rates this leads to much better, and in fact near-optimal, rate vs. list decoding
radius trade-offs. In this section, we state the formal results that follow from such a generalization.
We also state a generalization of our results to list recovering, a setting where for each position we
have not just one but several possible values, and the goal is to find codewords which agree with
at least one of the suggested values on t or more locations, for some agreement parameter t. Since
these generalizations are quite easy to work out, we skip the proofs, and simply state the results
with brief explanations of the key changes.

4.1 Using more than three correlated functions

We can modify the construction of Section 2.2 by usingm > 4 correlated functions f, h1, h2, . . . , hm−1

to perform the encoding. The function f ∈ L((α − 1)P∞) will be the message, and the functions
hi ∈ L((α + 2g − 1)P∞) will be defined by hi = I[f(R)si ] for suitable choices of s1, s2, . . . , sm−1.
The rate of the code is k/(mn) and its distance at least n− k − g + 1.

For the decoding, in order to find a nonzero interpolation polynomial Q, the parameter p in (4)
must now satisfy

k

(

p+m

m

)

> n

since the number of monomials in a total degree p m-variate polynomial equals
(

p+m
m

)

. The above
condition is satisfied for the choice p = b(m!n/k)1/mc. The choice of ` remains the same as in (3).
For the choice s1 = p+ 1 and si = psi−1 + 1 for i 6 2 6 m− 1, a decoding algorithm similar to the
one in Section 3.3 finds all codewords with agreement at least t with any input word, where

t = k + g +

(

m!
(

1 +
3g − 1

k

)

)1/m

·
(

(k + 3g − 1)m−1n
)1/m

. (6)

The size of list output will be at most sm−1p =
∑m

i=1 p
i 6 mpm. Using the above with the function

fields of best possible g/n ratio, we get the following generalization of Theorem 10, which we view
as our main result.

Theorem 12 (Main). For q a square prime power, an integerm > 3, and every r satisfying 1√
q−1 < mr <

1− 1√
q−1 , the following holds. There is a family of codes over alphabet size qm of rate r, relative distance at

least 1 −mr − 1√
q−1 , and which is list decodable up to a fraction

1 −mr − 1√
q − 1

− (4m!)1/m
(

mr +
3√
q − 1

)1−1/m

of errors using lists of size at most m!/r. Moreover, there is a natural representation of the codes, com-
putable in expected polynomial time, for which the encoding as well as list decoding up to this radius can be
performed in polynomial time.
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Likewise, we get the following generalization of Corollary 11.

Corollary 13. For all ε > 0 and every integer m > 3, there is a family of Q-ary codes for Q =

O((m/ε)2m2/(m−1)) which has rate Ω( 1
m2 · εm/(m−1)) and which is (1 − ε,O(m2m!(1/ε)m/(m−1)))-list

decodable. Moreover, the codes have a representation, computable in expected polynomial time, that permits
polynomial time list decoding up to radius (1 − ε).

To maximize the rate as a function of ε (which we think of as a small constant), we can pick
m = Θ(log(1/ε)) in the above corollary. This leads to the following corollary.

Corollary 14. For all ε > 0, there is a family of Q-ary codes for Q = (1/ε)O(log(1/ε)) which has rate
Ω(ε/ log2(1/ε)) and which is (1− ε, (1/ε)O(log log(1/ε)))-list decodable. Moreover, the codes have a natural
representation, computable in expected polynomial time, that permits polynomial time encoding as well as
polynomial time list decoding up to radius (1 − ε).

4.2 Extension to list recovering

Definition 15. A code C ⊆ Σn is said to be (γ, l, L)-list recoverable if for every sequence of sets
S1, S2, . . . , Sn, where each Si ⊆ Σ has at most l elements, the number of codewords c ∈ C which
satisfy ci ∈ Si for at least γn values of i ∈ {1, 2, . . . , n} is at most L.

Note a code being (ρ, L)-list decodable is the same thing as it being (1−ρ, 1, L)-list recoverable,
so the above notion is more general than list decoding. The notion of list recovering actually sits
somewhere in between hard decoding where for each position we have a unique symbol in the re-
ceived word and soft decoding where for each position we have appropriate non-negative weights
for all symbols in Σ. List recovering was first explicitly studied in work on extractor codes [16];
the name was coined in [3], and it has played a crucial role in combinatorial constructions of list
decodable codes, including those with linear complexity algorithms [4].

We now make the following observation. The algorithm in Section 3.3 can be trivially general-
ized to handle the case when there is a set Si consisting of possibly more than one triple (yi, zi1, zi2)
for each location i. We simply need to add a constraint for each such triple in the interpolation
of Step 2, so that the total number of constraints will now be the total number of triples N (or in
other words the total size of all the Si’s). It immediately follows that we get an algorithm for list
recovering that works with agreement t as in (5) with N replacing the block length n. Of course, a
similar generalization also holds for the m-variate decoding algorithm and the agreement bound
of (6).

Plugging this into function fields with g/n = 1/(
√
q−1), and performing some straightforward

computations, we can get the following. We note that Corollary 13 is a special case obtained by
setting l = 1 and γ = ε.

Theorem 16. For all integers l > 2, for all γ > 0 and all integers m > 3, there is a family of Q-ary
codes for Q = O((ml1/m/γ)2m2/(m−1)) which has rate Ω(γ/m2 · (γ/l)1/(m−1)) and which is (γ, l, L)-
list recoverable for L = O(m2 · m! · (l/γ)m/(m−1)). Moreover, the codes have a natural representation,
computable in expected polynomial time, that permits polynomial time encoding as well as polynomial time
(γ, l, L)-list recovering.

Using the choice m = dlog2(l/γ)e in the above we get:
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Corollary 17. For all integers l > 2 and all γ > 0, there is a family of Q-ary codes for Q = lO(log log(l/γ)) ·
2O(log2(1/γ)) which has rate Ω

(

γ
log2(l/γ)

)

and which is (γ, l, L)-list recoverable for L = (l/γ)O(log log(l/γ)).
Moreover, the codes have a natural representation, computable in expected polynomial time, that permits
polynomial time encoding as well as polynomial time (γ, l, L)-list recovering.

4.3 Binary codes for list decoding up to radius (1/2 − ε)

We now consider the problem of constructing binary codes for list decoding up to radius (1/2−ε),
for small ε > 0. Using the list recoverable codes of Corollary 17 with parameters l = O(1/ε2) and
γ = ε/2 as the outer code in a concatenation scheme with a constant-sized binary inner code with
Q codewords and rate Ω(ε2) and that is (1/2 − ε/2, l)-list decodable, we can show the following.

Theorem 18. For every ε > 0, there is a family of binary codes of rate Ω(ε3/ log2(1/ε)) that is (1/2 −
ε, (1/ε)O(log log(1/ε)))-list-decodable. The codes can be constructed in expected polynomial time and admit a
polynomial time encoding algorithm as well a polynomial time list decoding algorithm for radius (1/2− ε).

We remark that a similar result, in fact with a slightly better rate of Ω(ε3/ log(1/ε)), can be
obtained by using the Parvaresh-Vardy codes as the outer code. But the construction time of such a
code will be at least nΩ(log(1/ε)) since the inner code we need to find by brute-force will have at least
nΩ(log(1/ε)) codewords. Similarly, the recent construction of [5] achieve a rate of Ω(ε3) for (1/2 −
ε, L)-list-decodable codes, but their construction time as well as list size is nΩ(1/ε). In contrast,
our codes are uniformly constructive, i.e., can be constructed and decoded in time f(ε)nO(1) with
exponent of n independent of ε.

5 Constructing the representation of the code

We now show how for a specific family of AG codes, we can construct in (expected) polynomial
time, the representation outlined in Section 3.4 that is needed for the encoding and decoding
algorithms. The particular codes are based on a tower of function fields proposed by Garcia and
Stichtenoth [2]. This tower meets the Drinfeld-Vlădut bound and thus gives the best possible AG
codes (in terms of the rate vs. distance trade-off). We next describe this tower.

Let q0 be a prime power and F = Fq2
0
. The tower of function fields Fi, i = 0, 1, 2, . . . is defined

as a sequence of Artin-Schreier extensions. We begin with F0 = F (x0), the field of rational functions
in x0. For i > 1, Fi is an algebraic extension of Fi−1 of degree q0:

Fi = Fi−1(xi) where xq0
i + xi =

xq0
i−1

xq0−1
i−1 + 1

. (7)

The above tower meets the Drinfeld-Vlădut bound, and thus leads to AG codes with best rate
vs distance trade-offs. In [13], a polynomial time algorithm is presented to compute the generator
matrix of this code. All we need to add to this to achieve the representation needed in Section 3.4
are the evaluations of the basis elements at some place R of a specified large degree, and the
evaluations of 2g extra functions at the code places P1, P2, . . . , Pn and at R. This turns out to be
not so straightforward. We begin with a description of some of the basic facts about the function
fields Fm. The description assumes some basic knowledge of splitting of places in field extensions.
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The genus g(Fm) of Fm satisfies g(Fm) 6 qm+1
0 . Let Ω = {γ ∈ F | γq0 + γ = 0} denote the set

of trace zero elements. For θ ∈ F , let P (0)
θ denote the unique zero of x0 − θ in F0. Let P (0)

∞ denote
the unique pole of x0 in F0. The place P (0)

∞ is totally ramified in the tower, i.e., in each Fm there
is precisely one place, P (m)

∞ , that lies above P (0)
∞ and moreover this place has degree one. We will

use AG codes based on Fm by using as message space L((α−1)P
(m)
∞ ) — functions in Fm that have

< α poles at P (m)
∞ and no poles elsewhere.

We now describe the places where the message functions are evaluated for the encoding. Each
of the q20 − q0 places P (0)

θ for θ ∈ F \ Ω splits completely in the tower and thus has qm
0 places of

degree one lying above it in Fm. Let n = (q2
0 − q0)q

m
0 and let P1, P2, . . . , Pn be the set of all places

of Fm that lie above P (0)
θ for θ ∈ F \ Ω. We use the places P1, P2, . . . , Pn as the evaluation places

for encoding. Note that n/g(Fm) > (q0 − 1) and hence the code meets the Drinfeld-Vlădut bound.

Let Rm be the ring of functions that have a pole only at P (m)
∞ . As shown in [13], every function

Rm has an expression of the form

xl
0 ·





(m−1)q0+1
∑

e0=0

q0−1
∑

e1=0

· · ·
q0−1
∑

em=0

ceg0
xe0

0 x
e1
1 · · ·xem

m

π1 · · ·πm−1



 (8)

where l > 0, ce ∈ F , and for 0 6 k < m, gk = xq0−1
k + 1 and πk = g0g1 · · · gk. Moreover, for any

n′, Shum et al [13] present an algorithm running in time polynomial in n′, n that outputs a basis of
L(n′P

(m)
∞ ) in the above form, together with evaluations of the basis elements at P1, P2, . . . , Pn. We

note that this latter evaluation part is easily done once the basis elements are represented in the
form (8), since for each Pi, evaluating at Pi amounts to substituting appropriate values from F \Ω
for x0, x1, . . . , xm.7 Likewise, it suffices to find out the evaluations of x0, x1, . . . , xm at a place R
of degree α in Fm. We now proceed towards this goal, and will soon prove Theorem 20 that will
show how this can be done.

The places of degree α in F0 = F (x0) are in one-one correspondence with irreducible polyno-
mials of degree α over F . The place corresponding to an irreducible polynomial p0(x0) ∈ F [x0] is
equal to

Pp0(x0)
def
=

{

a(x0)

b(x0)
| a(x0), b(x0) ∈ F [x0], p0(x0)|a(x0), p0(x0) 6 |b(x0)

}

.

The following lemma shows that one can find a place of degree α in Fm by finding a place of
degree α in F0 that has a place of degree α lying above it in the extension [Fm : F0].

Lemma 19. For every D > max{m+ 5, 10}, there are at least q2D
0

2D·qm
0

places of degree D in F0 that have a
place of degree D lying above them in Fm.

Proof: Let g = g(Fm) be the genus of of Fm; we know g 6 qm+1
0 . Let TD denote the set of places

in Fm of degree D. By the Hasse-Weil bound, it is known that the number of places BD = |TD| of
degree D in Fm satisfies |BD − q2D

0 /D| < (2 + 7g)qD
0 /D, cf. [14, Corollary V.2.10]. It follows that

BD > q2D
0 /D − 8gqD

0 /D > q2D
0 /D − 8qm+1+D

0 /D >
q2D
0
2D .

Let T ′
D ⊆ TD be those places of degree D in Fm that do not lie above a place of degree D in F0.

Let B′
D = |T ′

D|. The number ND of places of degree D in F0 which have a place of degree D lying
7If we begin with x0 = γ ∈ F \Ω, and solve the equations in (7) in sequence for x1, x2, . . . , xm, then for all solutions,

we will have each xi ∈ F \ Ω, cf. [2, Lemma 3.9].

17



above them in Fm satisfies ND > (BD −B′
D)/qm

0 , since the degree of the extension [Fm : F0] = qm
0

and so at most qm
0 places of Fm lie above any place of F0.

Now, if P̃ ∈ T ′
D, then the place P̃0 lying below it in F0 must have degree D0 at most D/2 (since

D0 must divide D and is not equal to D). It follows that B ′
D 6 qm

0 nD/2 where nD/2 is the number

of places of degree at most D/2 in F0. Clearly nD/2 6
∑D/2+1

i=1 (q20)
i 6 qD+4

0 .

Hence qm
0 ND > BD −B′

D > q2D
0 /D− 8qm+1+D

0 /D− qD+4
0 and this latter quantity is easily seen

to be at least q2D
0
2D when D > max{m+ 5, 10}.

We are now ready to prove that the evaluations of the basis functions of L(n′P
(m)
∞ ) at some

place of large degree in Fm can be efficiently found. Recall that the block length n of the code is
n = (q2 − q)qm.

Theorem 20. There is a randomized algorithm that on input integers n′, α with 5 log n 6 α 6 n, outputs
in expected poly(n, n′) time the evaluations of a set of basis functions of L(n′P

(m)
∞ ) at some place R ∈ PFm

with deg(R) = α.

Proof: Applying Lemma 19, when 5 logn 6 α 6 n, if we pick a monic polynomial p0(x0) over Fq2
0

of degree α, then with probability at least 1
2αqm

0
>

1
2n2 , the degree α place Pp0(x0) ∈ PF0 will have a

place of degree α above it in Fm. Suppose that given an irreducible polynomial p0(x0) of degree α
we could check in poly(n) time whether the place Pp0(x0) has some place Rp0(x0) of degree α above
it in Fm, and if so also output the evaluations of x0, x1, . . . , xm at the place Rp0(x0). Then we can
simply pick a random monic polynomial of degree α, check it is irreducible (which can be done in
deterministic polynomial time), and run the above check, and repeat the process till we succeed
in finding a place of degree α in Fm together with the evaluations of x0, x1, . . . , xm at that place.
This process will succeed in expected O(n2) trials of the initial monic polynomial. Using the form
(8) of the basis elements of L(n′P

(m)
∞ ), we can also compute the evaluations of the basis functions

at Rp0(x0) from the evaluations of x0, x1, . . . , xm at Rp0(x0).

Therefore, it remains to check whether a given degree α irreducible p0(x0) ∈ F [x0] has a place
of degree α above it in Fm, and if it does, to find the evaluations of x0, . . . , xm at one of those
places. Let L = F [x0]/(p0(x0)); L is isomorphic to the finite field Fq2α

0
. Let ζ0 ∈ L be the residue of

x
q0
0

x
q0−1
0 +1

modulo p0(x0). A well-known theorem of Kummer, cf. [14, Theorem III.3.7], when applied

to the tower (7), implies that Pp0(x0) has some place of degree α above it in Fm iff the sequence of

equations xq0
1 + x1 = ζ0 and xq0

i+1 + xi+1 =
x

q0
i

x
q0−1
i +1

for 1 6 i < m has a solution xi = ζi ∈ L

for 1 6 i 6 m. Moreover, in such a case, there is a place Rp0(x0) of degree α in Fm such that the
evaluation of xi at the place equals ζi for 0 6 i 6 m.

Now, for any ζ ∈ L represented in the basis {1, x0, . . . , x
α−1
0 } over Fq2

0
, one can find all solutions

in L of a single equation zq + z = ζ in poly(α) time by solving a linear system with 2α unknowns
over Fq0 . This is because zq0 + z is a linearized polynomial and is a Fq0-linear function on L, cf. [10,
Chap. 3, Sec. 4]. It follows that one can find all solutions (ζ1, . . . , ζm) ∈ Lm to x1, . . . , xm that
satisfy the above equations in qm

0 · poly(α) = poly(n) time, by solving at most qm
0 such linearized

polynomial equations. If no such solution exists, the particular choice p0(x0) fails. Otherwise,
we can use an arbitrary one of those solutions (ζ0, ζ1, . . . , ζm) as the evaluations of x0, . . . , xm

respectively at a place of degree α.
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6 Concluding Remarks

We have generalized the Parvaresh-Vardy approach to all algebraic-geometric codes. These new
codes are obtained by evaluating several functions from a function field, which are correlated in a
carefully specified way, at some rational points on the algebraic curve. Some complications arise
in the higher genus case compared to RS codes (the genus 0 case), but we showed how to handle
these with some loss in error-correction performance.

The scheme of evaluating correlated functions/messages to perform the encoding is quite gen-
eral and can also be applied to Chinese Remainder codes (in fact for these codes there is a precise
parallel with Reed-Solomon codes), and perhaps more generally to “ideal-based” codes [6]. The
details should be quite straightforward now that we have abstracted the salient features of the
algorithm for general AG-codes.
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