
Explicit Codes Achieving List Decoding Capacity:

Error-correction with Optimal Redundancy∗

Venkatesan Guruswami1† Atri Rudra2‡

1 Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195
venkat@cs.washington.edu

2 Department of Computer Science and Engineering
State University of New York at Buffalo

Buffalo, NY 14260
atri@cse.buffalo.edu

Abstract

We present error-correcting codes that achieve the information-theoretically best possible
trade-off between the rate and error-correction radius. Specifically, for every 0 < R < 1 and
ε > 0, we present an explicit construction of error-correcting codes of rate R that can be list
decoded in polynomial time up to a fraction (1−R−ε) of worst-case errors. At least theoretically,
this meets one of the central challenges in algorithmic coding theory.

Our codes are simple to describe: they are folded Reed-Solomon codes, which are in fact ex-
actly Reed-Solomon (RS) codes, but viewed as a code over a larger alphabet by careful bundling
of codeword symbols. Given the ubiquity of RS codes, this is an appealing feature of our result,
and in fact our methods directly yield better decoding algorithms for RS codes when errors
occur in phased bursts.

The alphabet size of these folded RS codes is polynomial in the block length. We are able to
reduce this to a constant (depending on ε) using ideas concerning “list recovery” and expander-
based codes from [11, 12]. Concatenating the folded RS codes with suitable inner codes also
gives us polynomial time constructible binary codes that can be efficiently list decoded up to
the Zyablov bound, i.e., up to twice the radius achieved by the standard GMD decoding of
concatenated codes.

∗A preliminary version of this paper [14] appears in the Proceedings of 38th Annual ACM Symposium on Theory

of Computing under the title “Explicit capacity-achieving list-decodable codes”.
†Research supported by NSF Career award CCF-0343672, an Alfred P. Sloan Research Fellowship, and a David

and Lucile Packard Foundation Fellowship.
‡Research supported by NSF CCF-0343672. This work was done when the author was at University of Washington.

0

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 133 (2005)

ISSN 1433-8092

1 Introduction

1.1 Background on List Decoding

Error-correcting codes enable reliable communication of messages over a noisy channel by cleverly
introducing redundancy into the message to encode it into a codeword, which is then transmitted
on the channel. This is accompanied by a decoding procedure that recovers the correct message
even when several symbols in the transmitted codeword are corrupted. In this work, we focus on
the adversarial or worst-case model of errors — we do not assume anything about how the errors
and error locations are distributed beyond an upper bound on the total number of errors that may
be caused. The central trade-off in this theory is the one between the amount of redundancy needed
and the fraction of errors that can be corrected. The redundancy is measured by the rate of the
code, which is the ratio of the the number of information symbols in the message to that in the
codeword — thus, for a code with encoding function E : Σk → Σn, the rate equals k/n. The block
length of the code equals n, and Σ is its alphabet.

The goal in decoding is to find, given a noisy received word, the actual codeword that it could
have possibly resulted from. If we target correcting a fraction ρ of errors (ρ will be called the error-
correction radius or decoding radius), then this amounts to finding codewords within (normalized
Hamming) distance ρ from the received word. We are guaranteed that there will be a unique such
codeword provided every two distinct codewords differ on at least a fraction 2ρ of positions, or in
other words the relative distance of the code is at least 2ρ. However, since the relative distance δ
of a code must satisfy δ 6 1−R where R is the rate of the code (by the Singleton bound), the best
trade-off between ρ and R that unique decoding permits is ρ = ρU (R) = (1 − R)/2. But this is
an overly pessimistic estimate of the error-correction radius, since the way Hamming spheres pack
in space, for most choices of the received word there will be at most one codeword within distance
ρ from it even for ρ much greater than δ/2. Therefore, always insisting on a unique answer will
preclude decoding most such received words owing to a few pathological received words that have
more than one codeword within distance roughly δ/2 from them.

A notion called list decoding provides a clean way to get around this predicament, and yet deal
with worst-case error patterns. Under list decoding, the decoder is required to output a list of all
codewords within distance ρ from the received word. The notion of list decoding itself is quite old
and dates back to work in 1950’s by Elias [4] and Wozencraft [29]. However, the algorithmic aspects
of list decoding were not revived until the more recent works [6, 27] which studied the problem for
complexity-theoretic motivations.

Let us call a code C (ρ, L)-list decodable if the number of codewords within distance ρ of
any received word is at most L. To obtain better trade-offs via list decoding, we need (ρ, L)-list
decodable codes where L is bounded by a polynomial function of the block length, since this is an
a priori requirement for polynomial time list decoding. How large can ρ be as a function of R for
which such (ρ, L)-list decodable codes exist? A standard random coding argument shows that we
can have ρ > 1−R− o(1) over large enough alphabets, cf. [30, 5], and a simple counting argument
shows that ρ can be at most 1 − R. Therefore the list decoding capacity, i.e., the information-
theoretic limit of list decodability, is given by the trade-off ρcap(R) = 1 − R = 2ρU (R). Thus list
decoding holds the promise of correcting twice as many errors as unique decoding, for every rate.

We note that since the original message M has Rn symbols, it is information-theoretically
impossible to perform the decoding if at most a fraction (R− ε) of the received symbols agree with
the encoding of M (for some ε > 0). This holds even for the erasure channel, and even if we are

1

told in advance which symbols will be erased! Therefore, for any given rate, list decoding allows
one to decode up to the largest fraction of errors that one can meaningfully hope to correct.

The above-mentioned list decodable codes are, however, non-constructive. In order to realize
the potential of list decoding, one needs explicit constructions of such codes, and on top of that,
polynomial time algorithms to perform list decoding. After essentially no progress in this direction
in over 30 years, the work of Sudan [27] and improvements to it in [17], achieved efficient list
decoding up to ρGS(R) = 1 −

√
R errors for an important family of codes called Reed-Solomon

codes. Note that 1 −
√

R > ρU (R) = (1 − R)/2 for every rate R, 0 < R < 1, so this result showed
that list decoding can be effectively used to go beyond the unique decoding radius for every rate (see
Figure 1). The ratio ρGS(R)/ρU (R) approaches 2 for rates R → 0, enabling error-correction when
the fraction of errors approaches 100%, a feature that has found numerous applications outside
coding theory, see for example [28], [8, Chap. 12].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ρ
 (

F
R

A
C

T
IO

N
 O

F
 E

R
R

O
R

S
)

 -
--

>

R (RATE) --->

List decoding capacity (this work)
Unique decoding radius

Guruswami-Sudan
Parvaresh-Vardy

Figure 1: Error-correction radius ρ plotted against the rate R of the code for known algorithms.
The best possible trade-off, i.e., capacity, is ρ = 1 − R, and our work achieves this.

Unfortunately, the improvement provided by [17] over unique decoding diminishes for larger

rates, which is actually the regime of greater practical interest. For rates R → 1, the ratio ρGS(R)
ρU (R)

approaches 1, and already for rate R = 1/2 the ratio is at most 1.18. Thus, while the results of
[27, 17] demonstrated that list decoding always, for every rate, enables correcting more errors than
unique decoding, they fell short of realizing the full quantitative potential of list decoding.

The bound ρGS(R) stood as the best known error-correction radius for efficient list decoding
for several years. In fact constructing (ρ, L)-list decodable codes of rate R for ρ > ρGS(R) and
polynomially bounded L, regardless of the complexity of actually performing list decoding to radius
ρ, itself was elusive. Some of this difficulty was due to the fact that 1 −

√
R is the largest radius

for which small list size can be shown generically, via the so-called Johnson bound to argue about
the number of codewords in Hamming balls using only information on the relative distance of the
code, cf. [7].

In a recent breakthrough paper [25], Parvaresh and Vardy presented codes that are list-decodable

2

beyond the 1 −
√

R radius for low rates R. The codes they suggest are variants of Reed-Solomon
(RS) codes obtained by evaluating m > 1 correlated polynomials at elements of the underlying
field (with m = 1 giving RS codes). For any m > 1, they achieve the error-correction radius

ρ
(m)
PV (R) = 1 − m+1

√
mmRm. For rates R → 0, choosing m large enough, they can list decode up to

radius 1 − O(R log(1/R)), which approaches the capacity 1 − R. However, for R > 1/16, the best

choice of m (the one that maximizes ρ
(m)
PV (R)) is in fact m = 1, which reverts back to RS codes and

the error-correction radius 1 −
√

R. (See Figure 1 where the bound 1 − 3
√

4R2 for the case m = 2
is plotted — except for very low rates, it gives a small improvement over ρGS(R).) Thus, getting
arbitrarily close to capacity for some rate, as well as beating the 1−

√
R bound for every rate, both

remained open1.

1.2 Our Results

In this paper, we describe codes that get arbitrarily close to the list decoding capacity ρcap(R) for
every rate. In other words, we give explicit codes of rate R together with polynomial time list
decoding up to a fraction 1 − R − ε of errors for every rate R and arbitrary ε > 0. As remarked
before, this attains the information-theoretically best possible trade-off one can hope for between
the rate and error-correction radius. While the focus of our presentation is primarily on the major
asymptotic improvements we obtain over previous methods, we stress that our results offers a
complexity vs. performance trade-of and gives non-trivial improvements, even for large rates and
modest block lengths, with a value of the “folding parameter” m as small as 4. A discussion of the
bounds for small values of m appears in Section 3.4.

Our codes are simple to describe: they are folded Reed-Solomon codes, which are in fact exactly
Reed-Solomon (RS) codes, but viewed as a code over a larger alphabet by careful bundling of
codeword symbols. Given the ubiquity of RS codes, this is an appealing feature of our result, and
in fact our methods directly yield better decoding algorithms for RS codes when errors occur in
phased bursts (a model considered in [22]).

Our result extends easily to the problem of list recovery (see Definition 5.1). The biggest
advantage here is that we are able to achieve a rate that is independent of the size of the input
lists. This is an extremely useful feature in concatenated code constructions. We are able to use
this to reduce the alphabet size needed to achieve capacity, and also obtain results for binary codes.
We briefly describe these results below.

To get within ε of capacity, the folded RS codes that we construct have alphabet size nO(1/ε)

where n is the block length. By concatenating our codes of rate close to 1 (that are list recoverable)
with suitable inner codes followed by redistribution of symbols using an expander graph (similar to
a construction for linear-time unique decodable codes in [12]), we can get within ε of capacity with
codes over an alphabet of size 2O(ε−4 log(1/ε)). A counting argument shows that codes that can be
list decoded efficiently to within ε of the capacity need to have an alphabet size of 2Ω(1/ε), so the
alphabet size we attain is in the same ballpark as the best possible.

For binary codes, the list decoding capacity is known to be ρbin(R) = H−1(1 − R) where H(·)
denotes the binary entropy function [5, 10]. We do not know explicit constructions of binary codes
that approach this capacity. However, using our codes in a natural concatenation scheme, we give

1Independent of our work, Alex Vardy (personal communication) constructed a variant of the code defined in [25]
which could be list decoded with fraction of errors more than 1−

√

R for all rates R. However, his construction gives
only a small improvement over the 1 −

√

R bound and does not achieve the list decoding capacity.

3

polynomial time constructible binary codes of rate R that can be list decoded up to a fraction
ρZyab(R) of errors, where ρZyab(R) is the “Zyablov bound”. See Figure 2 for a plot of these bounds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

p
 (

E
R

R
O

R
-C

O
R

R
E

C
T

IO
N

 R
A

D
IU

S
)

 -
--

>

R (RATE) --->

Binary list decoding capacity
Zyablov bound

Figure 2: Error-correction radius ρ of our algorithm for binary codes plotted against the rate R.
The best possible trade-off, i.e., capacity, is ρ = H−1(1 − R), and is also plotted.

1.3 Bibliographic Remarks

These results were first reported in [14]. We would like to point out that the presentation in this
paper is somewhat different from the original papers [25, 14] in terms of technical details, organi-
zation, as well as chronology. With the benefit of hindsight, we believe this alternate presentation
to be simpler and more self-contained direct than the description in [14], which used the results
of Parvaresh-Vardy as a black-box. The exact relationship of our codes to the Parvaresh-Vardy
construction is spelled out in detail in Section 2.3. Below, we discuss some technical aspects of the
original development of this material, in order to shed light on the origins of our work. We also
point the reader to the survey [9] for a detailed treatment of recent advances in algorithms for list
decoding.

Two independent works by Coppersmith and Sudan [3] and Bleichenbacher, Kiayias and Yung [2]
considered the variant of RS codes where the message consists of two (or more) independent poly-
nomials over some field F, and the encoding consists of the joint evaluation of these polynomials at
elements of F (so this defines a code over F

2).2 A naive way to decode these codes, which are also
called “interleaved Reed-Solomon codes,” would be to recover the two polynomials individually, by
running separate instances of the RS decoder. Of course, this gives no gain over the performance of
RS codes. The hope in these works was that something can possibly be gained by exploiting that
errors in the two polynomials happen at “synchronized” locations. However, these works could not

2The resulting code is in fact just a Reed-Solomon code where the evaluation points belong to the subfield F of
the extension field over F of degree two.

4

give any improvement over the 1 −
√

R bound known for RS codes for worst-case errors. Never-
theless, for random errors, where each error replaces the correct symbol by a uniform random field
element, they were able to correct well beyond a fraction 1 −

√
R of errors. In fact, as the order

of interleaving (i.e., number of independent polynomials) grows, the radius approaches the optimal
value 1−R. Since these are large alphabet codes, this model of random errors is not interesting from
a coding-theoretic perspective, 3though the algorithms are interesting from an algebraic viewpoint.

In [24], Parvaresh and Vardy gave a heuristic decoding algorithm for these interleaved RS codes
based on multivariate interpolation. However, the provable performance of these codes coincided
with the 1 −

√
R bound for Reed-Solomon codes. The key obstacle in improving this bound was

the following: for the case when the messages are pairs (f(X), g(X)) of degree k polynomials, two
algebraically independent relations were needed to identify both f(X) and g(X). The interpolation
method could only provide one such relation in general (of the form Q(X, f(X), g(X)) = 0 for a
trivariate polynomial Q(X,Y,Z)). This still left too much ambiguity in the possible values of
(f(X), g(X)). (The approach in [24] was to find several interpolation polynomials, but there was
no guarantee that they were not all algebraically dependent.)

Then, in [25], Parvaresh and Vardy put forth the ingenious idea of obtaining the extra alge-
braic relation essentially “for free” by enforcing it as an a priori condition satisfied at the encoder.
Specifically, instead of letting the second polynomial g(X) to be an independent degree k polyno-
mial, their insight was to make it correlated with f(X) by a specific algebraic condition, such as
g(X) = f(X)d mod E(X) for some integer d and an irreducible polynomial E(X) of degree k + 1.

Then, once we have the interpolation polynomial Q(X,Y,Z), f(X) can be obtained as follows:
Reduce the coefficients of Q(X,Y,Z) modulo E(X) to get a polynomial T (Y,Z) with coefficients
from F[X]/(E(X)) and then find roots of the univariate polynomial T (Y, Y d). This was the key
idea in [25] to improve the 1−

√
R decoding radius for rates less than 1/16. For rates R → 0, their

decoding radius approached 1 − O(R log(1/R)).

The modification to using independent polynomials, however, does not come for free. In par-
ticular, since one sends at least twice as much information as in the original RS code, there is no
way to construct codes with rate more than 1/2 in the PV scheme. If we use s > 2 correlated
polynomials for the encoding, we incur a factor 1/s loss in the rate. This proves quite expensive,
and as a result the improvements over RS codes offered by these codes are only manifest at very
low rates.

The central idea behind our work is to avoid this rate loss by making the correlated polynomial
g(X) essentially identical to the first (say g(X) = f(γX)). Then the evaluations of g(X) can
be inferred as a simple cyclic shift of the evaluations of f(X), so intuitively there is no need to
explicitly include those too in the encoding.

1.4 Organization

We begin with a description of our code construction, folded Reed-Solomon codes, and outline their
relation to Parvaresh-Vardy codes in Section 2. In Section 3, we present and analyze a trivariate
interpolation based decoder for folded RS codes, which lets us approach a decoding radius of 1−R2/3

3This is because, as pointed out by Piotr Indyk, over large alphabets one can reduce decoding from uniformly
random errors to decoding from erasures with a negligible loss in rate. The idea is to pad each codeword symbol
with a small trail of 0’s; a uniformly random error is highly unlikely to keep each of these 0’s intact, and can thus be
detected and declared as an erasure. Now recall that decoding from a fraction 1 − R of erasures with rate R is easy
using Reed-Solomon codes.

5

with rate R. In Section 4, we extend the approach to (s + 1)-variate interpolation for any s > 3,
allowing us to decode up to radius 1 − Rs/(s+1), and by picking s large enough obtain our main
result (Theorem 4.4) on explicit codes achieving list decoding capacity. In Section 5, we generalize
our decoding algorithm to the list recovery setting with almost no loss in rate, and use this powerful
primitive to reduce the alphabet size of our capacity-achieving codes to a constant depending only
on distance to capacity as well as to construct binary codes list-decodable up to the Zyablov bound.
Finally, we close with some remarks in Section 6.

2 Folded Reed-Solomon Codes

In this section, we will use a simple variant of Reed-Solomon codes called folded Reed-Solomon
codes for which we can beat the 1−

√
R decoding radius possible for RS codes. In fact, by choosing

parameters suitably, we can decode close to the optimal fraction 1 − R of errors with rate R.

2.1 Description of Folded Codes

Consider a Reed-Solomon code C ′ = RSF,F∗[n′, k] consisting of evaluations of degree k polynomials
over F at the set F

∗ of nonzero elements of F. Let q = |F| = n′ + 1. Let γ be a generator of
the multiplicative group F

∗, and let the evaluation points be ordered as 1, γ, γ2, . . . , γn′−1. Using
all nonzero field elements as evaluation points is one of the most commonly used instantiations of
Reed-Solomon codes.

f(x0) f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7) f(xn−4) f(xn−3) f(xn−2) f(xn−1)

f(x0)

f(x1)

f(x2)

f(x3)

f(x4)

f(x5)

f(x6)

f(x7)

f(xn−4)

f(xn−3)

f(xn−2)

f(xn−1)

Figure 3: Folding of the Reed Solomon code with parameter m = 4.

Let m > 1 be an integer parameter called the folding parameter. Define n 6 n′ to be the
largest integer that is divisible by m. Let C be the [n, k]F RS code that is defined by the set of
evaluation points 1, γ, γ2, . . . , γn−1. In other words, C is obtained from C ′ by truncating the last
n′ − n symbols. Note that m divides n.

Definition 2.1 (Folded Reed-Solomon Code). The m-folded version of the RS code C, denoted
FRSF,γ,m,k, is a code of block length N = n/m over F

m, where n 6 |F|− 1 is the largest integer that
is divisible by m. The encoding of a message f(X), a polynomial over F of degree at most k, has
as its j’th symbol, for 0 6 j < n/m, the m-tuple (f(γjm), f(γjm+1), · · · , f(γjm+m−1)). In other
words, the codewords of FRSF,γ,m,k are in one-one correspondence with those of the RS code C and
are obtained by bundling together consecutive m-tuple of symbols in codewords of C.

6

We illustrate the above construction for the choice m = 4 in Figure 3. The polynomial f(X)
is the message, whose Reed-Solomon encoding consists of the values of f at x0, x1, . . . , xn−1 where
xi = γi. Then, we perform a folding operation by bundling together tuples of 4 symbols to give a
codeword of length n/4 over the alphabet F

4.

Note that the folding operation does not change the rate R of the original Reed-Solomon code.
The relative distance of the folded RS code also meets the Singleton bound and is at least 1 − R.

Remark 2.1 (Origins of term “folded RS codes”). The terminology of folded RS codes was coined
in [22], where an algorithm to correct random errors in such codes was presented (for a noise model
similar to the one used in [3, 2] that was mentioned earlier). The motivation was to decode RS
codes from many random “phased burst” errors. Our decoding algorithm for folded RS codes can
also be likewise viewed as an algorithm to correct beyond the 1−

√
R bound for RS codes if errors

occur in large, phased bursts (the actual errors can be adversarial).

2.2 Why might folding help?

Since folding seems like such a simplistic operation, and the resulting code is essentially just a RS
code but viewed as a code over a large alphabet, let us now understand why it can possibly give
hope to correct more errors compared to the bound for RS codes.

Consider the folded RS code with folding parameter m = 4. First of all, decoding the folded
RS code up to a fraction p of errors is certainly not harder than decoding the RS code up to the
same fraction p of errors. Indeed, we can “unfold” the received word of the folded RS code and
treat it as a received word of the original RS code and run the RS list decoding algorithm on it.
The resulting list will certainly include all folded RS codewords within distance p of the received
word, and it may include some extra codewords which we can, of course, easily prune.

In fact, decoding the folded RS code is a strictly easier task. It is not too hard to see that
correcting mT errors, where the errors occur in T contiguous blocks involves far few error patterns
than correcting mT errors that can be arbitrarily distributed. As a concrete example, say we want
to correct a fraction 1/4 of errors. Then, if we use the RS code, our decoding algorithm ought to
be able to correct an error pattern that corrupts every 4’th symbol in the RS encoding of f(X)
(i.e., corrupts f(x4i) for 0 6 i < n/4). However, after the folding operation, this error pattern
corrupts every one of the symbols over the larger alphabet F

4, and thus need not be corrected. In
other words, for the same fraction of errors, the folding operation reduces the total number of error
patterns that need to be corrected, since the channel has less flexibility in how it may distribute
the errors.

It is of course far from clear how one may exploit this to actually correct more errors. To this
end, algebraic ideas that exploit the specific nature of the folding and the relationship between a
polynomial f(X) and its shifted counterpart f(γX) will be used. These will become clear once we
describe our algorithms later in the paper.

We note that above “simplification” of the channel is not attained for free since the alphabet
size increases after the folding operation4. For folding parameter m that is an absolute constant,
the increase in alphabet size is moderate and the alphabet remains polynomially large in the
block length. (Recall that the RS code has an alphabet size that is linear in the block length.)
Still, having an alphabet size that is a large polynomial is somewhat unsatisfactory. Fortunately,
existing alphabet reduction techniques, which are used in Section 5.3, can handle polynomially

4However, we note that most of the operations in decoding still take place in the original field.

7

large alphabets, so this does not pose a big problem. Moreover, the benefits of our results kick in
already for very small values of m (see Section 3.4).

2.3 Relation to Parvaresh Vardy codes

In this subsection, we relate folded RS codes to the Parvaresh-Vardy (PV) codes [25], which among
other things will help make the ideas presented in the previous subsection more concrete.

The basic idea in the PV codes is to encode a polynomial f by the evaluations of s > 2
polynomials f0 = f, f1, . . . , fs−1 where fi(X) = fi−1(X)d mod E(X) for an appropriate power d
(and some irreducible polynomial E(X)) — let us call s the order of such a code. Our first main
idea is to pick the irreducible polynomial E(X) (and the parameter d) in such a manner that every
polynomial f of degree at most k satisfies the following identity: f(γX) = f(X)d mod E(X),
where γ is the generator of the underlying field. Thus, a folded RS code with bundling using
an γ as above is in fact exactly the PV code of order s = m for the set of evaluation points
{1, γm, γ2m, . . . , γ(n/m−1)m}. This is nice as it shows that PV codes can meet the Singleton bound
(since folded RS codes do), but as such does not lead to any better codes for list decoding.

Here comes our second main idea. Let us compare the folded RS code to a PV code of order
2 (instead of order m) for the set of evaluation points {1, γ, . . . γm−2, γm, . . . , γn−m, . . . , γn−2}. We
find that in the PV encoding of f , for every 0 6 i 6 n/m − 1 and every 0 < j < m − 1, f(γmi+j)
appears exactly twice (once as f(γmi+j) and another time as f1(γ

−1γmi+j)), whereas it appears
only once in the folded RS encoding. (See Figure 4 for an example when m = 4 and s = 2.) In

FRS codeword

f(x0)

f(γx0)

f(γ2x0)

f(x0)

f(γx0)

f(γ2x0)

f(γ3x0)

f(x4)

f(γx4)

f(γ2x4)

f(γ3x4)

f(x0)

f(γx0)

f(γx0)

f(γ2x0)

f(γ2x0)

f(γ3x0)

f(γ3x0)

PV codeword

f(x4)

f(γx4)

f(γx4)

f(γ2x4)

f(γ2x4)

f(γ3x4)

Figure 4: The correspondence between a folded Reed-Solomon code (with m = 4 and xi = γi) and
the Parvaresh Vardy code (of order s = 2) evaluated over {1, γ, γ2, γ4, . . . , γn−4, . . . , γn−2}. The
correspondence for the first block in the folded RS codeword and the first three blocks in the PV
codeword is shown explicitly in the left corner of the figure.

other words, the PV and folded RS codes have the same information, but the rate of the folded
RS codes is bigger by a factor of 2m−2

m = 2 − 2
m . Decoding the folded RS codes from a fraction

ρ of errors reduces to correcting the same fraction ρ of errors for the PV code. But the rate vs.
error-correction radius trade-off is better for the folded RS code since it has (for large enough m,
almost) twice the rate of the PV code.

8

In other words, our folded RS codes are chosen such that they are “compressed” forms of suitable
PV codes, and thus have better rate than the corresponding PV code for a similar error-correction
performance. This is where our gain is, and using this idea we are able to construct folded RS
codes of rate R that are list decodable up to radius roughly 1 − s+1

√
Rs for any s > 1. Picking s

large enough lets us get within any desired ε from capacity.

3 Trivariate interpolation based decoding

The list decoding algorithm for RS codes from [27, 17] is based on bivariate interpolation. The key
factor driving the agreement parameter t needed for the decoding to be successful was the ((1, k)-
weighted) degree D of the interpolated bivariate polynomial. Our quest for an improved algorithm
for folded RS codes will be based on trying to lower this degree D by using more degrees of
freedom in the interpolation. Specifically, we will try to use trivariate interpolation of a polynomial
Q(X,Y1, Y2) through n points in F

3. This enables performing the interpolation with D = O(
3
√

k2n),
which is much smaller than the Θ(

√
kn) bound for bivariate interpolation. In principle, this could

lead to an algorithm that works for agreement fraction R2/3 instead of R1/2. Of course, this is a
somewhat simplistic hope and additional ideas are needed to make this approach work. We now
turn to the task of developing a trivariate interpolation based decoder and proving that it can
indeed decode up to a fraction 1 − R2/3 of errors.

3.1 Facts about trivariate interpolation

We begin with some basic definitions and facts concerning trivariate polynomials.

Definition 3.1. For a polynomial Q(X,Y1, Y2) ∈ F[X,Y1, Y2], its (1, k, k)-weighted degree is defined
to be the maximum value of ` + kj1 + kj2 taken over all monomials X`Y j1

1 Y j2
2 that occur with a

nonzero coefficient in Q(X,Y1, Y2).

Definition 3.2 (Multiplicity of zeroes). A polynomial Q(X,Y1, Y2) over F is said to have a zero of
multiplicity r > 1 at a point (α, β1, β2) ∈ F

3 if Q(X +α, Y1 +β1, Y2 +β2) has no monomial of degree
less than r with a nonzero coefficient. (The degree of the monomial XiY j1

1 Y j2
2 equals i + j1 + j2.)

Lemma 3.1. Let {(αi, yi1, yi2)}n0
i=1 be an arbitrary set of n0 triples from F

3. Let Q(X,Y1, Y2) ∈
F[X,Y1, Y2] be a nonzero polynomial of (1, k, k)-weighted degree at most D that has a zero of mul-
tiplicity r at (αi, yi1, yi2) for every i, 1 6 i 6 n0. Let f(X), g(X) be polynomials of degree at
most k such that for at least t > D/r values of i, we have f(αi) = yi1 and g(αi) = yi2. Then,
Q(X, f(X), g(X)) ≡ 0.

Proof. If we define R(X) = Q(X, f(X), g(X)), then R(X) is a univariate polynomial of degree at
most D. Now, for every i for which f(αi) = yi1 and g(αi) = yi2, (X−αi)

r divides R(X) (this follows
from the definition of what it means for Q to have a zero of multiplicity r at (αi, f(αi), g(αi))).
Therefore if rt > D, then R(X) has more roots (counting multiplicities) than its degree, and so it
must be the zero polynomial.

Lemma 3.2. Given an arbitrary set of n0 triples {(αi, yi1, yi2)}n0
i=1 from F

3 and an integer param-
eter r > 1, there exists a nonzero polynomial Q(X,Y1, Y2) over F of (1, k, k)-weighted degree at

9

most D such that Q(X,Y1, Y2) has a zero of multiplicity r at (αi, yi1, yi2) for all i ∈ {1, 2 . . . , n0},
provided

D3

6k2
> n0

(

r + 2

3

)

. (1)

Moreover, we can find such a Q(X,Y1, Y2) in time polynomial in n0, r by solving a system of
homogeneous linear equations over F.

Proof. The condition that Q(X,Y1, Y2) has a zero of multiplicity r at a point amounts to
(

r+2
3

)

homogeneous linear conditions in the coefficients of Q. The number of monomials in Q(X,Y1, Y2)
equals the number, say N3(k,D), of triples (i, j1, j2) of nonnegative integers that obey i+kj1+kj2 6

D. One can show that the number N3(k,D) is at least as large as the volume of the 3-dimensional
region {x + ky1 + ky2 6 D | x, y1, y2 > 0} ⊂ R

3 [25]. An easy calculation shows that the latter

volume equals D3

6k2 . Hence, if D3

6k2 > n0

(

r+2
3

)

, then the number of unknowns exceeds the number of
equations, and we are guaranteed a nonzero solution. (See Remark 3.1 for an accurate estimate of
the number of monomials of (1, k, k)-weighted degree at most D, which sometimes leads to a better
condition under which a polynomial Q with the stated property exists.)

3.2 Using trivariate interpolation for Folded RS codes

Let us now see how trivariate interpolation can be used in the context of decoding the folded RS
code C ′′ = FRSF,γ,m,k of block length N = n/m. (Throughout this section, we will use n to denote
the block length of the “unfolded” RS code.) Given a received word z ∈ (Fm)N for C ′′ that needs
to be list decoded, we define y ∈ F

n to be the corresponding “unfolded” received word. (Formally,
let the j’th symbol of z be (zj,0, . . . , zj,m−1) for 0 6 j < N . Then y is defined by yjm+l = zj,l for
0 6 j < N and 0 6 l < m.) Finally define I to be the set {0, 1, 2, . . . , n−1}\{m−1, 2m−1, . . . , n−1}
and let n0 = |I|. Note that n0 = (m − 1)n/m.

Suppose f(X) is a polynomial whose encoding agrees with z on at least t locations. Then, here
is an obvious but important observation:

For at least t(m− 1) values of i, i ∈ I, both the equalities f(γi) = yi and f(γi+1) = yi+1

hold.

Define the notation g(X) = f(γX). Therefore, if we consider the n0 triples (γi, yi, yi+1) ∈ F
3 for

i ∈ I, then for at least t(m − 1) triples, we have f(γi) = yi and g(γi) = yi+1. This suggests that
interpolating a polynomial Q(X,Y1, Y2) through these n0 triples and employing Lemma 3.1, we can
hope that f(X) will satisfy Q(X, f(X), f(γX)) = 0, and then somehow use this to find f(X). We
formalize this in the following lemma. The proof follows immediately from the preceding discussion
and Lemma 3.1.

Lemma 3.3. Let z ∈ (Fm)N and let y ∈ F
n be the unfolded version of z. Let Q(X,Y1, Y2) be

any nonzero polynomial over F of (1, k, k)-weighted degree at D that has a zero of multiplicity
r at (γi, yi, yi+1) for i ∈ I. Let t be an integer such that t > D

(m−1)r . Then every polynomial

f(X) ∈ F[X] of degree at most k whose encoding according to FRSF,γ,m,k agrees with z on at least
t locations satisfies Q(X, f(X), f(γX)) ≡ 0.

Lemmas 3.2 and 3.3 motivate the following approach to list decoding the folded RS code
FRSF,γ,m,k. Here z ∈ (Fm)N is the received word and y = (y0, y1, . . . , yn−1) ∈ F

n is its unfolded

10

version. The algorithm uses an integer multiplicity parameter r > 1, and is intended to work for
an agreement parameter 1 6 t 6 N .

Algorithm Trivariate-FRS-decoder:

Step 1 (Trivariate Interpolation) Define the degree parameter

D = b 3
√

k2n0r(r + 1)(r + 2)c + 1 . (2)

Interpolate a nonzero polynomial Q(X,Y1, Y2) with coefficients from F with the following two
properties: (i) Q has (1, k, k)-weighted degree at most D, and (ii) Q has a zero of multiplicity
r at (γi, yi, yi+1) for i ∈ I. (Lemma 3.2 guarantees the feasibility of this step as well as its
computability in time polynomial in r and n0 (and hence, n).)

Step 2 (Trivariate “Root-finding”) Find a list of all degree 6 k polynomials f(X) ∈ F[X] such that
Q(X, f(X), f(γX)) = 0. Output those whose encoding agrees with z on at least t locations.

Ignoring the time complexity of Step 2 for now, we can already claim the following result
concerning the error-correction performance of this strategy.

Theorem 3.4. The algorithm Trivariate-FRS-decoder successfully list decodes the folded Reed-

Solomon code FRSF,γ,m,k up to a number of errors equal to

(

N −
⌊

N 3

√

(

mk
(m−1)n

)2
(

1 + 1
r

) (

1 + 2
r

)

⌋

− 2

)

.

Proof. By Lemma 3.3, we know that any f(X) whose encoding agrees with z on t or more locations
will be output in Step 2, provided t > D

(m−1)r . For the choice of D in (2), this condition is met for

the choice t = 1 + b 3

√

k2n0
(m−1)3

(

1 + 1
r

) (

1 + 2
r

)

+ 1
(m−1)r c. The number of errors is equal to N − t,

and recalling that n = mN and n0 = (m − 1)n/m, we get the claimed bound on the list decoding
radius.

The rate of the folded Reed-Solomon code is R = (k +1)/n > k/n, and so the fraction of errors

corrected (for large enough r) is 1−
(

mR
m−1

)2/3
. Note that for m = 2, this is just the bound 1−(2R)2/3

that Parvaresh-Vardy obtained for decoding their codes using trivariate interpolation [25]. The
bound becomes better for larger values of m, and letting the folding parameter m grow, we can
approach a decoding radius of 1 − R2/3.

3.3 Root-finding step

In light of the above discussion in Section 3.2, the only missing piece in our decoding algorithm is
an efficient way to solve the following trivariate “root-finding” type problem:

Given a nonzero polynomial Q(X,Y1, Y2) with coefficients from a finite field F of size q,
a primitive element γ of the field F, and an integer parameter k < q − 1, find a list of
all polynomials f(X) of degree at most k such that Q(X, f(X), f(γX)) ≡ 0.

The following simple algebraic lemma is at the heart of our solution to this problem.

Lemma 3.5. Let F be the field Fq of size q, and let γ be a primitive element that generates its
multiplicative group. Then we have the following two facts:

11

1. The polynomial E(X)
def
= Xq−1 − γ is irreducible over F.

2. Every polynomial f(X) ∈ F[X] of degree less than q−1 satisfies f(γX) = f(X)q mod E(X).

Proof. The fact that E(X) = Xq−1 − γ is irreducible over Fq follows from a known, precise char-
acterization of all irreducible binomials, i.e., polynomials of the form Xa − c, see for instance [23,
Chap. 3, Sec. 5]. For completeness, and since this is an easy special case, we now prove this
fact. Suppose E(X) is not irreducible and some irreducible polynomial f(X) ∈ F[X] of degree
b, 1 6 b < q − 1, divides it. Let ζ be a root of f(X) in the extension field Fqb . We then have

ζqb−1 = 1. Also, f(ζ) = 0 implies ζq−1 = γ. These equations together imply γ
qb−1
q−1 = 1. Now, γ is

primitive in Fq, so that γm = 1 iff m is divisible by (q − 1). We conclude that q − 1 must divide
1 + q + q2 + · · ·+ qb−1. This is, however, impossible since 1 + q + q2 + · · ·+ qb−1 ≡ b (mod (q − 1))
and 0 < b < q − 1. This contradiction proves that E(X) has no such factor of degree less than
q − 1, and is therefore irreducible.

For the second part, we have the simple but useful identity f(X)q = f(Xq) that holds for all
polynomials in Fq[X]. Therefore, f(X)q − f(γX) = f(Xq) − f(γX). The latter polynomial is
clearly divisible by Xq − γX, and thus also by Xq−1 − γ. Hence f(X)q ≡ f(γX) (mod E(X))
which implies that f(X)q mod E(X) = f(γX) since the degree of f(γX) is less than q − 1.

Armed with this lemma, we are ready to tackle the trivariate root-finding problem.

Theorem 3.6. There is a deterministic algorithm that on input a finite field F of size q, a primitive
element γ of the field F, a nonzero polynomial Q(X,Y1, Y2) ∈ F[X,Y1, Y2] of degree less than q in
Y1, and an integer parameter k < q − 1, outputs a list of all polynomials f(X) of degree at most k
satisfying the condition Q(X, f(X), f(γX)) ≡ 0. The algorithm has runtime polynomial in q.

Proof. Let E(X) = Xq−1−γ. We know by Lemma 3.5 that E(X) is irreducible. We first divide out
the largest power of E(X) that divides Q(X,Y1, Y2) to obtain Q0(X,Y1, Y2) where Q(X,Y1, Y2) =
E(X)bQ0(X,Y1, Y2) for some b > 0 and E(X) does not divide Q0(X,Y1, Y2). Clearly, if f(X)
satisfies Q(X, f(X), f(γX)) = 0, then Q0(X, f(X), f(γX)) = 0 as well, so we will work with
Q0 instead of Q. Let us view Q0(X,Y1, Y2) as a polynomial T0(Y1, Y2) with coefficients from F[X].
Further, reduce each of the coefficients modulo E(X) to get a polynomial T (Y1, Y2) with coefficients

from the extension field F̃
def
= F[X]/(E(X)) (this is a field since E(X) is irreducible over F). We

note that T (Y1, Y2) is a nonzero polynomial since Q0(X,Y1, Y2) is not divisible by E(X).

In view of Lemma 3.5, it suffices to find degree 6 k polynomials f(X) satisfying Q0(X, f(X), f(X)q)
(mod E(X)) = 0. In turn, this means it suffices to find elements Γ ∈ F̃ satisfying T (Γ,Γq) = 0. If

we define the univariate polynomial R(Y1)
def
= T (Y1, Y

q
1), this is equivalent to finding all Γ ∈ F̃ such

that R(Γ) = 0, or in other words the roots in F̃ of R(Y1).

Now R(Y1) is a nonzero polynomial since R(Y1) = 0 iff Y2 − Y q
1 divides T (Y1, Y2), and this

cannot happen as T (Y1, Y2) has degree less than less than q in Y1. The degree of R(Y1) is at most
dq where d is the total degree of Q(X,Y1, Y2). The characteristic of F̃ is at most q, and its degree
over the base field is at most q lg q. Therefore, we can find all roots of R(Y1) by a deterministic
algorithm running in time polynomial in d, q [1]. Each of the roots will be a polynomial in F[X] of
degree less than q − 1. Once we find all the roots, we prune the list and only output those roots of
f(X) that have degree at most k and satisfy Q0(X, f(X), f(γX)) = 0.

12

With this, we have a polynomial time implementation of the algorithm Trivariate-FRS-decoder.
There is the technicality that the degree of Q(X,Y1, Y2) in Y1 should be less than q. This degree
is at most D/k, which by the choice of D in (2) is at most (r + 3) 3

√

n/k < (r + 3)q1/3. For a fixed
r and growing q, the degree is much smaller than q. (In fact, for constant rate codes, the degree is
a constant independent of n.) By letting m, r grow in Theorem 3.4, and recalling that the running
time is polynomial in n, r, we can conclude the following main result of this section.

Theorem 3.7. For every ε > 0 and R, 0 < R < 1, there is a family of m-folded Reed-Solomon
codes for m = O(1/ε) that have rate at least R and which can be list decoded up to a fraction
1 − (1 + ε)R2/3 of errors in time polynomial in the block length and 1/ε.

3.4 Alternate decoding bound for high rates and practical considerations

In the discussion above, the fraction of errors 1−
(

mR
m−1

)2/3
, call it ρ

(m,2)
a (R), approaches 1−R2/3

(and hence improves upon the bound of ρGS(R) = 1−
√

R in [17]) for every rate R for large enough
m. For practical implementations the parameter m will be some small fixed integer. Note that for

fixed m, the bound of ρ
(m,2)
a (R) is useless for R > 1 − 1

m , whereas the 1 −
√

R bound for decoding
Reed-Solomon codes [17] is meaningful for all R < 1.

Given that one is often interested in high rate codes, this suggests that in order to reap the
benefits of our new codes for large rates, the folding parameter needs to be picked large enough.
Fortunately, this is not the case, and we now show that one can beat the 1 −

√
R bound for all

rates R for a fixed value of the folding parameter m; in fact, a value as small as m = 5 suffices.
These bounds also hint at the fact that the improvements offered by the decoding algorithms in
this paper are not just asymptotic and kick in for parameter choices that could be practical.

Our goal now is to sketch how a minor change to the algorithm in Section 3.2 allows us to
correct a fraction

ρ
(m,2)
b (R) =

m

m + 1

(

1 − R2/3
)

(3)

of errors. The bound of ρ
(m,2)
b (R) gives a larger decoding radius than ρ

(m,2)
a (R) for large rates

R. A more precise comparison of the bounds ρ
(m,2)
a , ρ

(m,2)
b and ρGS is done at the end of this

subsection. The improvement of the decoding radius to ρ
(m,2)
b (R) for large rates (and hence small

error fractions) comes via another way to analyze (a variant of) the algorithm in Section 3.2, which
was suggested to us by Jørn Justesen. The algorithm is the same as in Section 3.2 except that the
set of interpolating points is slightly different. In particular in the trivariate interpolating step, we
choose I = {0, 1, . . . , n−2}. Let n0 = |I| = n−1. The crucial observation here is that an erroneous
symbol zj ∈ F

m (for some position 0 6 j < N in the received word z) translates to at most m + 1
errors among the interpolation tuples in the trivariate interpolation step. More precisely, given
that 0 6 e 6 N is the number of errors,

For at least t′ = n0 − e(m + 1) values of i, i ∈ I, both the equalities f(γi) = yi and
f(γi+1) = yi+1 hold.

By Lemmas 3.1, 3.2 and the degree bound (2), the algorithm outlined above will work as long as

n0 − e(m + 1) > 3

√

k2n0

(

1 +
1

r

)(

1 +
2

r

)

+
1

r
.

13

Recalling that n0 = n − 1 < n, the above is satisfied if

n − 1 − e(m + 1) > 3

√

k2n

(

1 +
1

r

)(

1 +
2

r

)

+
1

r
.

Recalling that n = Nm, the above is satisfied if

e <

(

m

m + 1

)

N



1 − 3

√

(

k

n

)2(

1 +
1

r

)(

1 +
2

r

)



− 2

m + 1
.

Noting that m > 1, leads to the following analog of Theorem 3.4:

Theorem 3.8. The version of algorithm Trivariate-FRS-decoder discussed above, successfully list
decodes the folded Reed-Solomon code FRSF,γ,m,k as long as the number of errors is less than
⌊

(

m
m+1

)

N

(

1 − 3

√

(

k
n

)2 (
1 + 1

r

) (

1 + 2
r

)

)⌋

− 1.

For large enough r, the above implies that rate R folded RS codes can be list decoded up to a

fraction ρ
(m,2)
b (R) =

(

m
m+1

)

(

1 − R2/3
)

of errors.

Comparison of the bounds

We now make a comparison between the bounds ρ
(m,2)
b , ρ

(m,2)
a and ρGS. We first note that

ρ
(m,2)
b (R) > ρ

(m,2)
a (R) for every rate R >

(

1 − 1
m

)

(

1

m+1− 3
√

m(m−1)2

)3/2

. In particular, ρ
(m,2)
b (R) >

ρ
(m,2)
a (R) for all rates R > 1− 1

m . Let us now compare ρ
(m,2)
b (R) and ρGS(R). Specifically, we give

a heuristic argument to show that for high enough rates R and m > 4, ρ
(m,2)
b (R) > ρGS(R). Let

R = 1 − ε. Then ignoring the O(ε2) terms in the Taylor expansions we get ρGS(1 − ε) ≈ ε/2 and

ρ
(m,2)
b (1 − ε) ≈ 2mε

3(m+1) : the latter quantity is strictly larger than the former for every m > 4. In

fact, it can be verified that for all rates R > 0.44, ρ
(4,2)
b > ρGS. Figure 5 plots the tradeoff ρGS(R)

and max
(

ρ
(m,2)
b (R), ρ

(m,2)
a (R)

)

for some small values of m > 2. The limit for large m, which is

1 − R2/3, is also plotted.

Remark 3.1 (Better bound on (1, k, k)-weighted degree). For small values of the parameter r,
one should use a better estimate for the degree bound D than the bound (1) based on the volume
argument. The number of monomials XiY j1

1 Y j2
2 whose (1, k, k)-weighted degree is at most D is

exactly equal to

k

(

a + 2

3

)

+ (D − ak + 1)

(

a + 2

2

)

(4)

where a =
⌊

D
k

⌋

. This is often larger than the D3

6k2 lower bound we used in Lemma 3.2, and certainly
for any specific setting of parameters n, k, r, the estimate (4) should be used. A similar remark
applies for the bound used in Lemma 4.1 for (s + 1)-variate interpolation. Since it makes no
difference for the asymptotics, we chose to stick with the simpler expressions.

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ρ
 (

F
R

A
C

T
IO

N
 O

F
 E

R
R

O
R

S
)

 -
--

>

R (RATE) --->

Guruswami-Sudan
m=4
m=5
m=6

1-R2/3

Figure 5: Error-correction radius max(ρ
(m,2)
b (R), ρ

(m,2)
a (R)) for m = 4, 5. For comparison ρGS(R) =

1 −
√

R and the limit 1 − R2/3 are also plotted. For m = 5, the performance of the trivariate
interpolation algorithm strictly improves upon that of ρGS for all rates.

4 Codes approaching list decoding capacity

Given that trivariate interpolation improved the decoding radius achievable with rate R from
1 − R1/2 to 1 − R2/3, it is natural to attempt to use higher order interpolation to improve the
decoding radius further. In this section, we discuss the (quite straightforward) technical changes
needed for such a generalization.

Consider again the m-folded RS code C ′ = FRSF,γ,m,k where F = Fq. Let s be an integer in
the range 1 6 s 6 m. We will develop a decoding algorithm based on interpolating an (s + 1)-
variate polynomial Q(X,Y1, Y2, . . . , Ys). The definitions of the (1, k, k, . . . , k)-weighted degree (with
k repeated s times) of Q and the multiplicity at a point (α, β1, β2, . . . , βs) ∈ F

s+1 are straightforward
extensions of Definitions 3.1 and 3.2.

As before let y = (y0, y1, . . . , yn−1) be the unfolded version of the received word z ∈ (Fm)N of
the folded RS code that needs to be decoded. Define the set of interpolations points to be

I = {0, 1, 2, . . . , n − 1} \





n/m−1
⋃

j=0

{jm + m − s + 1, jm + m − s + 2, . . . , jm + m − 1}



 .

The reason for this choice of I is that if the m-tuple containing yi is correct and i ∈ I, then all the
s values yi, yi+1, . . . , yi+s−1 are correct.

Define n0 = |I|. Note that n0 = n(m − s + 1)/m. Following algorithm Trivariate-FRS-decoder,
for suitable integer parameters D, r, the interpolation phase of the (s+1)-variate FRS decoder will
fit a nonzero polynomial Q(X,Y1, . . . , Ys) with the following properties:

1. It has (1, k, k, . . . , k)-weighted degree at most D

15

2. It has a zero of multiplicity r at (γi, yi, yi+1, . . . , yi+s−1) for i ∈ I.

The following is a straightforward generalization of Lemmas 3.2 and 3.3.

Lemma 4.1. 1. Provided Ds+1

(s+1)!ks > n0

(

r+s
s+1

)

, a nonzero polynomial Q(X,Y1, . . . , Ys) with the
above stated properties exists and moreover can be found in time polynomial in n and rs.

2. Let t be an integer such that t > D
(m−s+1)r . Then every polynomial f(X) ∈ F[X] of degree at

most k whose encoding according to FRSF,γ,m,k agrees with the received word z on at least t
locations satisfies Q(X, f(X), f(γX), . . . , f(γs−1X)) ≡ 0.

Proof. The first part follows from (i) a simple lower bound on the number of monomials XaY b1
1 · · · Y bs

s

with a + k(b1 + b2 + · · · + bs) 6 D, which gives the number of coefficients of Q(X,Y1, . . . , Ys), and
(ii) an estimation of the number of (s + 1)-variate monomials of total degree less than r, which
gives the number of interpolation conditions per (s + 1)-tuple.

The second part is similar to the proof of Lemma 3.3. If f(X) has agreement on at least
t locations of z, then for at least t(m − s + 1) of the (s + 1)-tuples (γi, yi, yi+1, . . . , yi+s−1), we

have f(γi+j) = yi+j for j = 0, 1, . . . , s − 1. As in Lemma 3.1, we conclude that R(X)
def
=

Q(X, f(X), f(γX), . . . , f(γs−1X)) has a zero of multiplicity r at γi for each such (s + 1)-tuple.
Also, by design R(X) has degree at most D. Hence if t(m − s + 1)r > D, then R(X) has more
zeroes (counting multiplicities) than its degree, and thus R(X) ≡ 0.

Note the lower bound condition on D above is met with the choice

D =
⌊

(ksn0r(r + 1) · · · (r + s))1/(s+1)
⌋

+ 1 . (5)

The task of finding a list of all degree k polynomials f(X) ∈ F[X] satisfying
Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 can be solved using ideas similar to the proof of Theo-
rem 3.6. First, by dividing out by E(X) enough times, we can assume that not all coefficients
of Q(X,Y1, . . . , Ys), viewed as a polynomial in Y1, . . . , Ys with coefficients in F[X], are divisible
by E(X). We can then go modulo E(X) to get a nonzero polynomial T (Y1, Y2, . . . , Ys) over the
extension field F̃ = F[X]/(E(X)). Now, by Lemma 3.5, we have f(γjX) = f(X)q

j
mod E(X) for

every j > 1. Therefore, the task at hand reduces to the problem of finding all roots Γ ∈ F̃ of the

polynomial R(Y1) where R(Y1) = T (Y1, Y
q
1 , . . . , Y qs−1

1). There is the risk that R(Y1) is the zero
polynomial, but it is easily seen that this cannot happen if the total degree of T is less than q. This
will be the case since the total degree is at most D/k, which is at most (r + s)(n/k)1/(s+1) � q.

The degree of the polynomial R(Y1) is at most qs, and therefore all its roots in F̃ can be found
in qO(s) time. We conclude that the “root-finding” step can be accomplished in polynomial time.

The algorithm works for agreement t > D
(m−s+1)r , which for the choice of D in (5) is satisfied if

t >
(ksn0)

1/(s+1)

m − s + 1





s
∏

j=1

(

1 +
j

r

)





1/(s+1)

+ 2 .

The above along with the fact that n0 = N(m− s + 1) implies the following, which is multivariate
generalization of Theorem 3.4.

16

Theorem 4.2. For every integer m > 1 and every s, 1 6 s 6 m, the (s + 1)-variate FRS decoder
successfully list decodes the m-folded Reed-Solomon code FRSF,γ,m,k up to a radius N − t as long as
the agreement parameter t satisfies

t > s+1

√

√

√

√

(

N
k

m − s + 1

)s s
∏

j=1

(

1 +
j

r

)

+ 2 . (6)

The algorithm runs in nO(s) time and outputs a list of size at most |F |s = nO(s).

Recalling that the block length of FRSF,γ,m,k is N = n/m and the rate is (k + 1)/n, the above
algorithm can decode a fraction of errors approaching

1 − s+1

√

√

√

√

(

mR

m − s + 1

)s s
∏

j=1

(

1 +
j

r

)

(7)

using lists of size at most qs. By picking r,m large enough compared to s, the decoding radius can
be made larger than 1− (1 + δ)Rs/(s+1) for any desired δ > 0. We state this result formally below.

Theorem 4.3. For every 0 < δ 6 1, integer s > 1 and 0 < R < 1, there is a family of m-folded
Reed-Solomon codes for m = O(s/δ) that have rate at least R and which can be list decoded up to a
fraction 1− (1 + δ)Rs/(s+1) of errors in time (Nm)O(s) and outputs a list of size at most (Nm)O(s)

where N is the block length of the code. The alphabet size of the code as a function of the block
length N is (Nm)O(m).

Proof. We first note that (7) is at least

1 −
(

1 +
s

r

)

(

m

m − s + 1

)

Rs/(s+1). (8)

We now instantiate the parameters r and m in terms of s and δ:

r =
3s

δ
m =

(s − 1)(3 + δ)

δ
.

With the above choice, we have

(

1 +
s

r

) m

m − s + 1
=

(

1 +
δ

3

)2

< 1 + δ .

Together with the bound (8) on the decoding radius, we conclude that the (s + 1)-variate decoding
algorithm certainly list decodes up to a fraction 1 − (1 + δ)Rs/(s+1) of errors.

The worst case list size is qs and the claim on the list size follows by recalling that q 6 n+m and
N = n/m. The alphabet size is qm = (Nm)O(m). The running time has two major components:
(1) Interpolating the s + 1-variate polynomial Q(·), which by Lemma 4.1 is (nrs)O(1); and (2)
Finding all the roots of the interpolated polynomial, which takes qO(s) time. Of the two, the time
complexity of the root finding step dominates, which is (Nm)O(s).

In the limit of large s, the decoding radius approaches the list decoding capacity 1−R, leading
to our main result.

17

Theorem 4.4 (Explicit capacity-approaching codes). For every ε > 0 and 0 < R < 1, there is a
family of folded Reed-Solomon codes that have rate at least R and which can be list decoded up to a
fraction 1 − R − ε of errors in time (and outputs a list of size at most) (N/ε2)O(ε−1 log(1/R)) where
N is the block length of the code. The alphabet size of the code as a function of the block length N
is (N/ε2)O(1/ε2).

Proof. Given ε,R, we will apply Theorem 4.3 with the choice

s =

⌈

log(1/R)

log(1 + ε)

⌉

and δ =
ε(1 − R)

R(1 + ε)
. (9)

The list decoding radius guaranteed by Theorem 4.3 is at least

1 − (1 + δ)Rs/(s+1) = 1 − R(1 + δ)(1/R)1/(s+1)

> 1 − R(1 + δ)(1 + ε) (by the choice of s in (9))

= 1 − (R + ε) (using the value of δ) .

We now turn our attention to the time complexity of the decoding algorithm and the alphabet
size of the code. To this end we first claim that m = O(1/ε2). To see this note that by the definition
of s and δ:

m = O
(s

δ

)

= O

(

s · R(1 + ε)

ε(1 − R)

)

= O

(

1

ε2
· R ln(1/R)

1 − R

)

= O(1/ε2) ,

where for the last step we used ln(1/R) 6
1
R − 1 for 0 < R 6 1. The claims on the running time,

worst case list size and the alphabet size of the code follow from Theorem 4.3 and the facts that
m = O(1/ε2) and s = O(ε−1 log(1/R)).

With the proof of our main theoretical result (Theorem 4.4) completed, we close this section
with a few remarks.

Remark 4.1 (Improvement to decoding radius for high rates). As in Section 3.4, it is possible to
improve the bound of (7) to

max





m

m + s − 1



1 − s+1

√

√

√

√Rs

s
∏

j=1

(

1 +
j

s

)



 , 1 − s+1

√

√

√

√

(

mR

m − s + 1

)s s
∏

j=1

(

1 +
j

r

)



 .

The former bound is better for large rates.

Remark 4.2 (Optimality of degree q of relation between f(X) and f(γX)). Let K be the extension
field Fq[X]/(E(X)) where E(X) = Xq−1 − γ. The elements of K are in one-one correspondence
with polynomials of degree less than q − 1 over Fq. The content of Lemma 3.5, which we made
crucial use of above, is that the map Γ : K → K defined by f(X) 7→ f(γX) is a degree q map over
K, i.e., as a polynomial over K, Γ(Z) = Zq. The fact that this degree is as large as q is in turn the
cause for the large list size that we need for list decoding. It is natural to ask if a different map Γ′

could have lower degree (perhaps over a different extension field K1). Unfortunately, it turns out
this is not possible, as argued below.

Indeed, let Γ′ be a ring homomorphism of Fq[X] defined by Γ′(f(X)) = f(G(X)) for some
polynomial G over Fq. Let E1(X) be an irreducible polynomial over Fq of degree `, and let K1 =

18

Fq[X]/(E1(X)) be the associated extension field. We can view Γ′ as a map Γ1 on K1 by identifying
polynomials of degree less than ` with K1 and defining Γ1(f(X)) = f(G(X)) mod E1(X). The key
point is that Γ1 is an Fq-linear map on K1. Expressed as a polynomial over K1, Γ1 must therefore
be a linearized polynomial, [23, Chap. 3, Sec. 4], which has only terms with exponents that are
powers of q (including q0 = 1). It turns out that for our purposes Γ1 cannot have degree 1, and so
it must have degree at least q.

5 Extensions and Codes over Smaller Alphabets

5.1 Extension to list recovery

We now present a very useful generalization of the list decoding result of Theorem 4.4 to the
setting of list recovery. Under the list recovery problem, one is given as input for each codeword
position, not just one but a set of several, say l, alphabet symbols. The goal is to find and output
all codewords which agree with some element of the input sets for several positions. Codes for
which this more general problem can be solved turn out to be extremely valuable as outer codes in
concatenated code constructions. In short, this is because one can pass a set of possibilities from
decodings of the inner codes and then list recover the outer code with those sets as the input. If
we only had a list-decodable code at the outer level, we will be forced to make a unique choice in
decoding the inner codes thus losing valuable information.

Definition 5.1 (List Recovery). A code C ⊆ Σn is said to be (ζ, l, L)-list recoverable if for every
sequence of sets S1, . . . , Sn where each Si ⊆ Σ has at most l elements, the number of codewords
c ∈ C for which ci ∈ Si for at least ζn positions i ∈ {1, 2, . . . , n} is at most L.

A code C ⊆ Σn is said to (ζ, l)-list recoverable in polynomial time if it is (ζ, l, L(n))-list re-
coverable for some polynomially bounded function L(·), and moreover there is a polynomial time
algorithm to find the at most L(n) codewords that are solutions to any (ζ, l, L(n))-list recovery
instance.

We remark that when l = 1, (ζ, 1, ·)-list recovery is the same as list decoding up to a (1 − ζ)
fraction of errors. List recovery has been implicitly studied in several works; the name itself was
coined in [11].

Theorem 4.4 can be generalized to list recover the folded RS codes. Specifically, for a FRS
code with parameters as in Section 4, for an arbitrary constant l > 1, we can (ζ, l)-list recover in
polynomial time provided

ζN > s+1

√

√

√

√

(

k

m − s + 1

)s nl

m

s
∏

j=1

(

1 +
j

r

)

+ 2 . (10)

where N = n/m. We briefly justify this claim. The generalization of the list decoding algorithm of
Section 4 is straightforward: instead of one interpolation condition for each symbol of the received
word, we just impose |Si| 6 l many interpolation conditions for each position i ∈ {1, 2, . . . , n} (where
Si is the i’th input set in the list recovery instance). The number of interpolation conditions is at
most nl, and so replacing n by nl in the bound of Lemma 4.1 guarantees successful decoding. This
in turn implies that the condition on the number of agreement of (6) generalizes to the one in (10).
This straightforward generalization to list recovery is a positive feature of all interpolation based
decoding algorithms [27, 17, 25] beginning with the one due to Sudan [27].

19

Picking r � s and m � s in (10), we get (ζ, l)-list recover with rate R for ζ >
(

lRs
)1/(s+1)

.
Now comes the remarkable fact: we can pick a suitable s � l and perform (ζ, l)-list recovery
with agreement parameter ζ > R + ε which is independent of l! We state the formal result below
(Theorem 4.4 is a special case when l = 1).

Theorem 5.1. For every integer l > 1, for all R, 0 < R < 1 and ε > 0, and for every prime
p, there is an explicit family of folded Reed-Solomon codes over fields of characteristic p that have
rate at least R and which can be (R + ε, l)-list recovered in polynomial time. The alphabet size of a
code of block length N in the family is (N/ε2)O(ε−2 log l/(1−R)).

Proof. (Sketch) Using the exact same arguments as in the proof of Theorem 4.3 to the agree-
ment condition of (10), we get that one can list recover in polynomial time as long as ζ >

(1 + δ)(lRs)1/(s+1), for any δ > 0. The arguments to obtains a lower bound of R + ε are simi-
lar to the ones employed in the proof of theorem 4.4. However, s needs to be defined in a slightly
different manner:

s =

⌈

log(l/R)

log(1 + ε)

⌉

.

Also this implies that m = O
(

log l
(1−R)ε2

)

, which implies the claimed bound on the alphabet size of

the code.

Remark 5.1 (Soft Decoding). The decoding algorithm for folded RS codes from Theorem 4.4 can
be further generalized to handle soft information, where for each codeword position i the decoder
is given as input a non-negative weight wi,z for each possible alphabet symbol z. The weights wi,z

can be used to encode the confidence information concerning the likelihood of the the i’th symbol
of the codeword being z [21]. For any ε > 0, for suitable choice of parameters, our codes of rate
R over alphabet Σ have a soft decoding algorithm that outputs all codewords c = 〈c1, c2, . . . , cN 〉
that satisfy

N
∑

i=1

wi,ci
>

(

(1 + ε)(RN)s
(

N
∑

i=1

∑

z∈Σ

ws+1
i,z

)

)1/(s+1)

.

For s = 1, this soft decoding condition is identical to the one for Reed-Solomon codes in [17].

5.2 Binary codes decodable up to Zyablov bound

Concatenating the folded RS codes with suitable inner codes also gives us polytime constructible
binary codes that can be efficiently list decoded up to the Zyablov bound, i.e., up to twice the radius
achieved by the standard GMD decoding of concatenated codes. The optimal list recoverability of
the folded RS codes plays a crucial role in establishing such a result.

Theorem 5.2. For all 0 < R, r < 1 and all ε > 0, there is a polynomial time constructible family
of binary linear codes of rate at least R · r which can be list decoded in polynomial time up to a
fraction (1 − R)H−1(1 − r) − ε of errors.

Proof. We will construct binary codes with the claimed property by concatenating two codes C1

and C2. For C1, we will use a folded RS code over a field of characteristic 2 with block length n1,
rate at least R, and which can be (R + ε, l)-list recovered in polynomial time for l = d10/εe. Let
the alphabet size of C1 be 2M where M = O(ε−2 log(1/ε) log n1). For C2, we will use a binary

20

linear code of dimension M and rate at least r which is (ρ, l)-list decodable for ρ = H−1(1− r− ε).
Such a code is known to exist via a random coding argument that employs the semi-random
method [10]. Also, a greedy construction of such a code by constructing its M basis elements in
turn is presented in [10] and this process takes 2O(M) time. We conclude that the necessary inner

code can be constructed in n
O(ε−2 log(1/ε))
1 time. The code C1, being a folded RS code over a field

of characteristic 2, is F2-linear, and therefore when concatenated with a binary linear inner code
such as C2, results in a binary linear code. The rate of the concatenated code is at least R · r.

The decoding algorithm proceeds in a natural way. Given a received word, we break it up into
blocks corresponding to the various inner encodings by C1. Each of these blocks is list decoded
up to a radius ρ, returning a set of at most l possible candidates for each outer codeword symbol.
The outer code is then (R + ε, l)-list recovered using these sets, each of which has size at most l,
as input. To argue about the fraction of errors this algorithm corrects, we note that the algorithm
fails to recover a codeword only if on more than a fraction (1 − R − ε) of the inner blocks the
codeword differs from the received word on more than a fraction ρ of symbols. It follows that the
algorithm correctly list decodes up to a radius (1 − R − ε)ρ = (1 − R − ε)H−1(1 − r − ε). Since
ε > 0 was arbitrary, we get the claimed result.

Optimizing over the choice of inner and outer codes rates r,R in the above results, we can
decode up to the Zyablov bound, see Figure 2.

Remark 5.2. In particular, decoding up to the Zyablov bound implies that we can correct a fraction
(1/2− ε) of errors with rate Ω(ε3) for small ε → 0, which is better than the rate of Ω(ε3/ log(1/ε))
achieved in [13]. However, our construction and decoding complexity are nO(ε−2 log(1/ε)) whereas
these are at most f(ε)nc for an absolute constant c in [13]. Also, we bound the list size needed in the
worst-case by nO(ε−1 log(1/ε)), while the list size needed in the construction in [13] is (1/ε)O(log log(1/ε)).

Remark 5.3 (Decoding up to the Blokh-Zyablov bound). In a follow-up paper, we use a similar
approach extended to multilevel concatenation schemes together with inner codes that have good
“nested” list-decodability properties, to construct binary codes list-decodable up to the Blokh-
Zyablov bound [15].

5.3 Capacity-Achieving codes over smaller alphabets

Our result of Theorem 4.4 has two undesirable aspects: both the alphabet size and worst-case list
size output by the list decoding algorithm are a polynomial of large degree in the block length. We
now show that the alphabet size can be reduced to a constant that depends only on the distance ε
to capacity.

Theorem 5.3. For every R, 0 < R < 1, every ε > 0, there is a polynomial time constructible
family of codes over an alphabet of size 2O(ε−4 log(1/ε)) that have rate at least R and which can be
list decoded up to a fraction (1 − R − ε) of errors in polynomial time.

Proof. The theorem is proved using the code construction scheme used in [12] for linear time
unique decodable codes with optimal rate, with different components appropriate for list decoding
plugged in. We briefly describe the main ideas behind the construction and proof below. The high
level approach is to concatenate two codes Cout and Cin, and then redistribute the symbols of the
resulting codeword using an expander graph (Figure 6 depicts this high level structure and should

21

be useful in reading the following formal description). In the following, assume that ε < 1/6 and
let δ = ε2.

The outer code Cout will be a code of rate (1− 2ε) over an alphabet Σ of size n(1/δ)O(1)
that can

be (1 − ε,O(1/ε))-list recovered in polynomial time, as guaranteed by Theorem 5.1. That is, the
rate of Cout will be close to 1, and it can be (ζ, l)-list recovered for large l and ζ → 1.

The inner code Cin will be a ((1 −R − 4ε), O(1/ε))-list decodable code with near-optimal rate,
say rate at least (R + 3ε). Such a code is guaranteed to exist over an alphabet of size O(1/ε2)
using random coding arguments. A naive brute-force for such a code, however, is too expensive,
since we need a code with |Σ| = nΩ(1) codewords. Guruswami and Indyk [11], see also [8, Sec. 9.3],
prove that there is a small (quasi-polynomial sized) sample space of pseudolinear codes in which
most codes have the needed property. Furthermore, they also present a deterministic polynomial
time construction of such a code (using derandomization techniques), see [8, Sec. 9.3.3].

The concatenation of Cout and Cin gives a code Cconcat of rate at least (1 − 2ε)(R + 3ε) > R
over an alphabet Σ of size |Σ| = O(1/ε2). Moreover, given a received word of the concatenated
code, one can find all codewords that agree with the received word on a fraction R+4ε of locations
in at least (1 − ε) of the inner blocks. Indeed, we can do this by running the natural list decoding
algorithm, call it A, for Cconcat that decodes each of the inner blocks to a radius of (1 − R − 4ε)
returning up to l = O(1/ε) possibilities for each block, and then (1 − ε, l)-list recovering Cout.

The last component in this construction is a D = O(1/ε4)-regular bipartite expander graph
which is used to redistribute symbols of the concatenated code in a manner so that an overall
agreement on a fraction R + 7ε of the redistributed symbols implies a fractional agreement of
at least R + 4ε on most (specifically a fraction (1 − ε)) of the inner blocks of the concatenated
code. In other words, the expander redistributes symbols in a manner that “smoothens” the
distributions of errors evenly among the various inner blocks (except for possibly a ε fraction of
the blocks). This expander based redistribution incurs no loss in rate, but increases the alphabet
size to O(1/ε2)O(1/ε4) = 2O(ε−4 log(1/ε)).

We now discuss some details of how the expander is used. Suppose that the block length of the
folded RS code Cout is N1 and that of Cin is N2. Let us assume that N2 is a multiple of D, say
N2 = n2D (if this is not the case, we can make it so by padding at most D − 1 dummy symbols at
a negligible loss in rate). Therefore codewords of Cin, and therefore also of Cconcat, can be thought
of as being composed of blocks of D symbols each. Let N = N1n2, so that codewords of Cconcat

can be viewed as elements in (ΣD)N .

Let G = (L,R,E) be a D-regular bipartite graph with N vertices on each side (i.e., |L| = |R| =
N), with the property that for every subset Y ⊆ R of size at least (R+7ε)N , the number of vertices
belonging to L that have at most (R + 6ε)D of their neighbors in Y is at most δN (for δ = ε2). It
is a well-known fact (used also in [12]) that if G is picked to be the double cover of a Ramanujan
expander of degree D > 4/(δε2), then G will have such a property.

We now define our final code C∗ = G(Cconcat) ⊆ (ΣD)N formally. The codewords in C∗ are in
one-one correspondence with those of Cconcat. Given a codeword c ∈ Cconcat, its ND symbols (each
belonging to Σ) are placed on the ND edges of G, with the D symbols in its i’th block (belonging
to ΣD, as defined above) being placed on the D edges incident on the i’th vertex of L (in some fixed
order). The codeword in C∗ corresponding to c has as its i’th symbol the collection of D symbols
(in some fixed order) on the D edges incident on the i’th vertex of R. See Figure 6 for a pictorial
view of the construction.

Note that the rate of C∗ is identical to that Cconcat, and is thus at least R. Its alphabet size is

22

Codeword in

b

c

b

〈a, b, c〉

D

D

Cin

Cin

Cin

C
o
d
ew

or
d

in
C

ou
t

C
o
d
ew

ord
in

C
∗

a

c

a

Expander graph G

u1

u2

uN1

Cconcat

Figure 6: The code C∗ used in the proof of Theorem 5.3. We start with a codeword 〈u1, . . . , uN1〉
in Cout. Then every symbol is encoded by Cin to form a codeword in Cconcat (this intermediate
codeword is marked by the dotted box). The symbols in the codeword for Cconcat are divided into
chunks of D symbols and then redistributed along the edges of an expander G of degree D. In the
figure, we use D = 3 for clarity. Also the distribution of three symbols a, b and c (that form a
symbol in the final codeword in C∗) is shown.

|Σ|D = O(1/ε2)O(1/ε4) = 2O(ε−4 log(1/ε)), as claimed. We will now argue how C∗ can be list decoded
up to a fraction (1 − R − 7ε) of errors.

Given a received word r ∈ (ΣD)N , the following is the natural algorithm to find all codewords
of C∗ with agreement at least (R + 7ε)N with r. Redistribute symbols according to the expander
backwards to compute the received word r′ for Cconcat which would result in r. Then run the
earlier-mentioned decoding algorithm A on r′.

We now briefly argue the correctness of this algorithm. Let c ∈ C∗ be a codeword with
agreement at least (R + 7ε)N with r. Let c′ denote the codeword of Cconcat that leads to c after
symbol redistribution by G, and finally suppose c′′ is the codeword of Cout that yields c′ upon
concatenation by Cin. By the expansion properties of G, it follows that all but a δ fraction of
N D-long blocks of r′ have agreement at least (R + 6ε)D with the corresponding blocks of c′.
By an averaging argument, this implies that at least a fraction (1 −

√
δ) of the N1 blocks of c′

that correspond to codewords of Cin encoding the N1 symbols of c′′, agree with at least a fraction
(1 −

√
δ)(R + 6ε) = (1 − ε)(R + 6ε) > R + 4ε of the symbols of the corresponding block of r′. As

argued earlier, this in turn implies that the decoding algorithm A for Cconcat when run on input r′

will output a polynomial size list that will include c′.

23

6 Concluding Remarks

We close with some remarks and open questions. In the preliminary version [14] of this paper,
we noted that the folded RS codes bear some resemblance to certain “randomness extractors”
constructed in [26], and wondered if some of the techniques in this work and [25] could be used
to construct simple extractors based on univariate polynomials. In a recent work [19], this has
been answered in the affirmative in a fairly strong sense. It is shown in [19] that the Parvaresh-
Vardy codes yield excellent “randomness condensers,” which achieve near-optimal compression of a
weak random source while preserving all its min-entropy, and in turn these lead to the best known
randomness extractors (that are optimal up to constant factors).

We have solved the qualitative problem of achieving list decoding capacity over large alphabets.
Our work could be improved with some respect to some parameters. The size of the list needed to
perform list decoding to a radius that is within ε of capacity grows as nO(1/ε) where n is the block
length of the code. It remains an open question to bring this list size down to a constant independent
of n, or even to f(ε)nc with an exponent c independent of ε (we recall that the existential random
coding arguments work with a list size of O(1/ε)). We managed to reduce the alphabet size needed
to approach capacity to a constant independent of n. However, this involved a brute-force search
for a rather large code. Obtaining a “direct” algebraic construction over a constant-sized alphabet
(such as variants of algebraic-geometric (AG) codes) might help in addressing these two issues.
To this end, Guruswami and Patthak [13] define correlated AG codes, and describe list decoding
algorithms for those codes, based on a generalization of the Parvaresh-Vardy approach to the general
class of algebraic-geometric codes (of which RS codes are a special case). However, to relate folded
AG codes to correlated AG codes like we did for RS codes requires bijections on the set of rational
points of the underlying algebraic curve that have some special, hard to guarantee, property. This
step seems like an highly intricate algebraic task, and especially so in the interesting asymptotic
setting of a family of asymptotically good AG codes over a fixed alphabet.

Finally, constructing binary codes (or q-ary codes for some fixed, small value of q) that approach
the respective list decoding capacity remains a challenging open problem. In recent work [16], we
show that there exist q-ary linear concatenated codes that achieve list decoding capacity (in the
sense that every Hamming ball of radius H−1

q (1−R− ε) has polynomially many codewords, where
R is the rate). In particular, this results holds when the outer code is a folded RS code. This
is somewhat encouraging news since concatenation has been the preeminent method to construct
good list-decodable codes over small alphabets. But realizing the full potential of concatenated
codes and achieving capacity (or even substantially improving upon the Blokh-Zyablov bound)
with explicit codes and polynomial time decoding remains a huge challenge. It seems likely that
carefully chosen soft information to pass from the inner decodings to the outer algebraic decoder
(see [20, 18] for examples of such decoders) may hold the key to further progress in list decoding
concatenated codes.

Acknowledgments

We thank Jørn Justesen for suggesting the alternate bound on decoding radius (3) discussed in
Section 3.4, and for kindly allowing us to include it in our presentation. We thank an anonymous
referee for several useful comments and in particular for encouraging us to highlight the relevance of
the results even for small values of the folding parameter; this was the impetus for the discussion in
Section 3.4. We thank Piotr Indyk, Charanjit Jutla, Farzad Parvaresh, Anindya Patthak, Madhu

24

Sudan, and Alexander Vardy for useful discussions and comments.

References

[1] E. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation,
24:713–735, 1970.

[2] D. Bleichenbacher, A. Kiayias, and M. Yung. Decoding interleaved Reed-Solomon codes over
noisy channels. Theoretical Computer Science, 379(3):348–360, 2007.

[3] D. Coppersmith and M. Sudan. Reconstructing curves in three (and higher) dimensional spaces
from noisy data. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
pages 136–142, June 2003.

[4] P. Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of
Electronics, MIT, 1957.

[5] P. Elias. Error-correcting codes for list decoding. IEEE Transactions on Information Theory,
37:5–12, 1991.

[6] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, pages 25–32, 1989.

[7] V. Guruswami. Limits to list decodability of linear codes. In Proceedings of the 34th ACM
Symposium on Theory of Computing, pages 802–811, 2002.

[8] V. Guruswami. List decoding of error-correcting codes. Number 3282 in Lecture Notes in
Computer Science. Springer, 2004.

[9] V. Guruswami. Algorithmic Results in List Decoding, volume 2 (Issue 2) of Foundations and
Trends in Theoretical Computer Science (FnT-TCS). NOW publishers, 2007.

[10] V. Guruswami, J. H̊astad, M. Sudan, and D. Zuckerman. Combinatorial bounds for list
decoding. IEEE Transactions on Information Theory, 48(5):1021–1035, 2002.

[11] V. Guruswami and P. Indyk. Expander-based constructions of efficiently decodable codes. In
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, pages
658–667, 2001.

[12] V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with near-optimal rate.
IEEE Transactions on Information Theory, 51(10):3393–3400, October 2005.

[13] V. Guruswami and A. Patthak. Correlated Algebraic-Geometric codes: Improved list decoding
over bounded alphabets. In Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 227–236, October 2006. Accepted to Mathematics of
Computation.

[14] V. Guruswami and A. Rudra. Explicit capacity-achieving list-decodable codes. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, pages 1–10, May 2006.

25

[15] V. Guruswami and A. Rudra. Better binary list-decodable codes via multilevel concatenation.
In Proceedings of 11th International Workshop on Randomization and Computation, pages
554–568, August 2007.

[16] V. Guruswami and A. Rudra. Concatenated codes can achieve list decoding capacity. In
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, January 2008.
To appear.

[17] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric
codes. IEEE Transactions on Information Theory, 45:1757–1767, 1999.

[18] V. Guruswami and M. Sudan. Decoding concatenated codes using soft information. In Pro-
ceedings of the 17th Annual IEEE Conference on Computational Complexity (CCC), pages
148–157, 2002.

[19] V. Guruswami, C. Umans, and S. P. Vadhan. Unbalanced expanders and randomness extrac-
tors from Parvaresh-Vardy codes. In Proceedings of the 22nd Annual IEEE Conference on
Computational Complexity, pages 96–108, 2007.

[20] R. Koetter. On optimal weight assignments for multivariate interpolation list-decoding. In
Proc. 2006 IEEE Information Theory Workshop, pages 37–41, March 2006.

[21] R. Koetter and A. Vardy. Algebraic soft-decision decoding of Reed-Solomon codes. IEEE
Transactions on Information Theory, 49(11):2809–2825, November 2003.

[22] V. Y. Krachkovsky. Reed-Solomon codes for correcting phased error bursts. IEEE Transactions
on Information Theory, 49(11):2975–2984, November 2003.

[23] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their applications. Cambridge
University Press, Cambridge, MA, 1986.

[24] F. Parvaresh and A. Vardy. Multivariate interpolation decoding beyond the Guruswami-
Sudan radius. In Proceedings of the 42nd Allerton Conference on Communication, Control
and Computing, 2004.

[25] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in polyno-
mial time. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 285–294, 2005.

[26] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random
generator. Journal of the ACM, 52(2):172–216, 2005.

[27] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of
Complexity, 13(1):180–193, 1997.

[28] M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16–27, 2000.

[29] J. M. Wozencraft. List Decoding. Quarterly Progress Report, Research Laboratory of Electron-
ics, MIT, 48:90–95, 1958.

[30] V. V. Zyablov and M. S. Pinsker. List cascade decoding. Problems of Information Transmis-
sion, 17(4):29–34, 1981 (in Russian); pp. 236-240 (in English), 1982.

26

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Background on List Decoding
	Our Results
	Bibliographic Remarks
	Organization

	Folded Reed-Solomon Codes
	Description of Folded Codes
	Why might folding help?
	Relation to Parvaresh Vardy codes

	Trivariate interpolation based decoding
	Facts about trivariate interpolation
	Using trivariate interpolation for Folded RS codes
	Root-finding step
	Alternate decoding bound for high rates and practical considerations

	Codes approaching list decoding capacity
	Extensions and Codes over Smaller Alphabets
	Extension to list recovery
	Binary codes decodable up to Zyablov bound
	Capacity-Achieving codes over smaller alphabets

	Concluding Remarks

