
3 –Nash is PPAD – Complete

Xi Chen

Department of Computer Science

Tsinghua University

Beijing, P.R.China

xichen00@mails.tsinghua.edu.cn

Xiaotie Deng

Department of Computer Science

City University of Hong Kong

Hong Kong SAR, P.R.China

deng@cs.cityu.edu.hk

Abstract

In this paper, we improve a recent result of Daskalakis, Goldberg and Papadimitriou on
PPAD-completeness of 4-Nash, showing that 3-Nash is PPAD-complete.

1 Introduction

Nash equilibrium has traditionally been one of the most influential tools in the study of many
disciplines involved with strategies, such as Political Science and Economics. The rise of the
Internet and the study of its anarchical environment have made Nash equilibrium an indis-
pensable part of computer science. Great interests have shown in algorithmic issues of related
problems. Research effort into them has been the central topic in the emerging discipline,
Algorithmic Game Theory.

Naturally, the study of Nash Equilibrium’s algorithmic complexity and related topics be-
come one of theoreticians’ favorite topics. It has attracted talents, derived new methodologies,
and demanded hard works. Innovative ideas have been invented and applied on solving differ-
ent versions of this problem.

Several interesting results are known for the computational complexity of finding a Nash
equilibrium. An early result of Megiddo, [9] states that if 2-player Nash Equilibrium is NP-
hard, then NP equals to co-NP. On the other hand, it is known NP-complete to find various
specific kinds of Nash equilibria even in the 2-player case, developed by Gilboa and Zemel [5] as
well as Conitzer and Sandholm [3]. The exact complexity characterization for Nash equilibrium
remained beyond our comprehension until recently.

A recent result of Daskalakis, Goldberg and Papadimitriou [4] proved that 4-player Nash

(4-Nash) is PPAD-complete. PPAD is a sub-class of TFNP [10], which was first defined by
Papadimitriou [11, 12] to characterize total NP search problems whose totalities are implied
by the parity argument proofs. Their results built on two approaches: the graphical game in-
troduced by Kearns, Littman and Singh [8], and the reducibility among equilibrium problems

1

Electronic Colloquium on Computational Complexity, Report No. 134 (2005)

ISSN 1433-8092

by Goldberg and Papadimitriou [6]. They conjectured that 3-Nash is still PPAD-complete
and 2-Nash could possibly be polynomial-time solvable.

In this work, we reduce 4-Nash to 3-Nash, and hence confirming the first of the conjec-
tures, that is, 3-Nash is PPAD-complete.

Our proof relies on a new idea in the combined reductions [6] from r-Nash to degree 3
graphical Nash to 4-Nash. The main difference from the reduction of Goldberg and Papadi-
mitriou is that theirs transfers an exact Nash equilibrium of the degree 3 graphical game to an
exact one of the 4-player game but our reduction is approximate. Of course, their reduction
also preserves the approximation relation of Nash equilibriums in different games. Ours does
not preserve the exactness. The flexibility gained allows us to design a new structure in the
thread of successive reductions to reduce the number of players by one.

The paper is organized as follows: We review the necessary definitions in Section 2. We
present a threesome version of the matching pennies game in Section 3. The reduction from
problem 4-Nash to 3-Nash is divided into two steps. In Section 4, we give a new coloring
algorithm for the degree 3 graphical game necessary for the reduction. We finish our proof
in Section 5 by showing that while embedding the graphical game into a 3-player game, the
approximation of Nash equilibrium is preserved. We conclude in Section 6 with remarks and
discussion.

2 Preliminaries

2.1 Games, Graphical Games and Nash Equilibriums

A game G between r ≥ 2 players is composed of two parts. First, every player p ∈ [r] where
[r] = {0, 1, ... r} has a set Sp of pure strategies. Second, for each p ∈ [r] and s ∈ S where

S = S1 × S2 × ... × Sr,

we have up
s as the payoff or utility of player p. Here s is called a pure strategy profile of the

game. For any p, we use S−p to denote the set of all strategy profiles of players other than
p. For any j ∈ Sp and s ∈ S−p, we use js to denote the pure strategy profile in S, which is
combined by j and s. A mixed strategy xp of player p ∈ [r] is a probability distribution over
Sp, that is, real numbers xp

j ≥ 0 for any j ∈ Sp and
∑

j∈Sp
xp

j = 1. A profile of mixed strategies

x of game G consists of r mixed strategies xp, p = 1, 2, ... r. For any p ∈ [r], xp is a mixed
strategy of player p. For any p ∈ [r] and s ∈ S−p, we define xs as

xs =
∏

p′∈[r], p′ 6=p

xp′

s
p′

Now we give the definition of both accurate and approximate Nash equilibriums of a game.
Intuitively, a Nash equilibrium is a profile of mixed strategies x such that no player can gain
by unilaterally choosing a different mixed strategy, where the other strategies in the profile are
kept fixed. The concept of approximate Nash equilibrium here was first proposed by [12].

2

Definition 1. A Nash equilibrium of game G is a profile of mixed strategies x such that

∑

s∈S−p

up
isxs >

∑

s∈S−p

up
jsxs =⇒ xp

j = 0

for any p ∈ [r] and i, j ∈ Sp.

Definition 2. An ε-Nash equilibrium of game G is a profile of mixed strategies x such that

∑

s∈S−p

up
isxs >

∑

s∈S−p

up
jsxs + ε =⇒ xp

j = 0

for any p ∈ [r] and i, j ∈ Sp.

A useful class of games are graphical games, which was first defined in [8] and then gen-
eralized by [6]. Players in a graphical game GG are nodes of an underlying directed graph G.
A player u can affect the payoffs to player v only if uv ∈ G. While general games require
exponential data for their descriptions, graphical games have succinct representations. More
exactly, when the in-degree of the underlying graph G is bounded, the representation of the
game GG is polynomial in the number of players and strategies.

2.2 TFNP, PPAD and r-Nash

Let R ⊂ Σ∗ × Σ∗ be a polynomial-time computable, polynomially balanced relation (that is,
there exists a polynomial p such that for any x and y satisfy (x, y) ∈ R, |y| ≤ p(|x|)). The
NP search problem QR specified by R is this: given input x ∈ Σ∗, return a y ∈ Σ∗ such that
(x, y) ∈ R, if such a y exists, and return the string “no” otherwise. An NP search problem is
said to be total if for every x, there exists a y such that (x, y) ∈ R. We use TFNP [10] to
denote the class of total NP search problems.

Definition 3. Given two problems QR1
, QR2

∈ TFNP, we say that QR1
is reducible to QR2

if there exists a pair of polynomial-time computable functions (f, g) such that, for every input

x of R1, if y satisfies (f(x), y) ∈ R2, then (x, g(y)) ∈ R1.

One of the most interesting sub-classes of TFNP is PPAD which is the directed version
of class PPA. The totality of problems in PPAD is guaranteed by the following trivial fact:
in a directed graph, where the in-degree and out-degree of every vertex are no more than one,
if there exists a source, there must be another source or sink. Many important problems were
identified to be in PPAD [12], e.g. the search versions of Brouwer’s fixed point theorem,
Kakutani’s fixed point theorem, Smith’s theorem and Borsuk-Ulam theorem. r-Nash, that is,
the problem of finding an approximate Nash equilibrium, also belongs to PPAD [12].

Definition 4. The input of problem r-Nash is a pair (G, 0k) where G is an r-player game in

normal form, and the output is a (1/2k)-Nash equilibrium of G.

It was shown in [4] that problem 4-Nash is PPAD-complete. In this work, we construct a
reduction (definition 3) from 4-Nash to 3-Nash, and thus prove the latter is also complete.

3

3 3-Player Matching Pennies

In this section, we define a game called 3-player Matching Pennies which is a generalization of
the 2-player Matching Pennies described in [6].

Definition 5 (3-Player Matching Pennies). Let’s call the three players P1, P2 and P3.

Each of them has N pure strategies [N] = {1, 2, ... N }. Let (i1, i2, i3) be any pure strategy

profile of the game. For player P1, it receives a payoff of u > 0 if i1 = i2 or i1 = i3, and 0
otherwise. For player P2, it receives a payoff of −u if i2 = i1 or i2 = i3, and 0 otherwise. For

player P3, it receives a payoff of u if i3 = i2, and 0 otherwise.

The following lemma is easy to prove.

Lemma 1. 3-Player Matching Pennies has a unique (accurate) Nash equilibrium x in which

xi is the uniform distribution over [N] for any i ∈ [3].

Proof. First, we prove that x2 is uniform. Otherwise, we define two non-empty sets

L =
{

i ∈ [N]
∣

∣

∣
x2

i >
1

N

}

and S =
{

i ∈ [N]
∣

∣

∣
x2

i ≤
1

N

}

.

As x is a Nash equilibrium, we have x3
s = 0 for any s ∈ S, and similarly x1

s = 0 for any s ∈ S.
Pick any l ∈ L such that x1

l 6= 0. Obviously, player P2 prefers strategy s where s ∈ S to
strategy l. This contradicts with our assumption that l ∈ L and x2

l > 1/N > 0.

Second, we prove that x3 is uniform. Otherwise, we define two non-empty sets

L =
{

i ∈ [N]
∣

∣

∣
x3

i >
1

N

}

and S =
{

i ∈ [N]
∣

∣

∣
x3

i ≤
1

N

}

.

As x is a Nash equilibrium, we have x1
s = 0 for any s ∈ S. Obviously, for any strategy l ∈ L

and s ∈ S, P2 prefers s to l, which contradicts with the fact that x2 is uniform. Finally, it’s
easy to check that x1 is also uniform, and the lemma is proven.

4 Reduction from 4-Nash to 3-Nash : Step I

Let (G, 0k) be any input pair of problem 4-Nash, in which every player p ∈ [4] has M pure
strategies [M]. We first construct a graphical game GG in the same way as the section 3 of [6].
Every player (vertex) in game GG has two strategies {0, 1} and the underlying directed graph
G = (V ∪ W,E) is bipartite with maximum in-degree 3. W and V are disjoint and each edge
in E goes between V and W .

For any j ∈ [M] and player p ∈ [4], GG contains a vertex v(xp
j) ∈ V . The construction of

GG guarantees that, given any Nash equilibrium of GG, if the probability of player v(xp
j) using

strategy 1 (which is denoted by p[v(xp
j)]) is interpreted as the value of xp

j , then the profile
of mixed strategies x obtained is exactly a Nash equilibrium of the original game G.

4

The main idea of the construction is described informally as follows. First, gadgets are
designed to implement arithmetic operations of addition, multiplication and maximization.
Here vertices in W are used to mediate between vertices of V , so that the latter ones obey
the intended arithmetic relationship. For example, given two vertices v1 and v2, we can setup
the payoffs of w and v3 appropriately such that in any Nash equilibrium, p[v3] = p[v1]p[v2].
Second, GG contains two vertices v(U p

j) and v(Up
≤j) for any j ∈ [M] and p ∈ [4]. Gadgets are

assembled properly such that p[v(U p
j)] is the payoff to player p if it chooses strategy j, and

p[v(Up
≤j)] = max

1≤i≤j
expected payoff of player p if it chooses strategy i.

Finally, p[v(U p
j)] and p[v(U p

≤j+1)] are compared, and results feed back to v(xp
j) to make sure

x satisfies the constraint in definition 1. Because of the importance of the three arithmetic
gadgets in the reduction, we list all the related propositions in [6] below.

Proposition 1. Let α be a non-negative real number. Let v1, v2 and w be vertices in a graphical

game GG, and suppose that the payoffs to v2 and w are as follows.

Payoffs to v2 :

w : 0 w : 1

v2 : 0 0 1
v2 : 1 1 0

Payoffs to w : w : 0

v2 : 0 v2 : 1

v1 : 0 0 0
v1 : 1 α α

w : 1

v2 : 0 v2 : 1

v1 : 0 0 1
v1 : 1 0 1

Then, in any Nash equilibrium of GG, p[v2] = min(αp[v1], 1).

Proposition 2. Let α, β and γ be non-negative real numbers. Let v1, v2, v3 and w be vertices

in a graphical game GG, and suppose that the payoffs to v3 and w are as follows.

Payoffs to v3 :

w : 0 w : 1

v3 : 0 0 1
v3 : 1 1 0

Payoffs to w : w : 0

v2 : 0 v2 : 1

v1 : 0 0 β
v1 : 1 α α + β + γ

w : 1 v3 : 0 0
v3 : 1 1

Then, in any Nash equilibrium of GG, p[v3] = min(αp[v1] + βp[v2] + γp[v1]p[v2], 1).

Proposition 3. Let v1, v2, v3, v4, v5, v6, w1, w2, w3 and w4 be vertices in a graphical game GG,

and suppose that the payoffs to vertices other than v1 and v2 are as follows.

Payoffs to w1 : w1 : 0

v2 : 0 v2 : 1

v1 : 0 0 0
v1 : 1 1 1

w : 1

v2 : 0 v2 : 1

v1 : 0 0 1
v1 : 1 0 1

5

v
1

v
2

w

v
1
 v
2

v
3

w

v
1
 v
2

v
5

v
3
 v
4

v
6

w
1

w
2
 w
3

w
4

Figure 1: Underlying Graphs of Proposition 1 − 3

Payoffs to v5 :

w1 : 0 w1 : 1

v5 : 0 1 0
v5 : 1 0 1

Payoffs to w2 and v3 are chosen using Proposition 2 to ensure p[v3] = p[v1](1 − p[v5]).
Payoffs to w3 and v4 are chosen using Proposition 2 to ensure p[v4] = p[v2]p[v5].
Payoffs to w4 and v6 are chosen using Proposition 2 to ensure p[v6] = min(1,p[v3] + p[v4]).
Then, in any Nash equilibrium of graphical game GG, p[v6] = max(p[v1],p[v2]).

The underlying graphs of the three propositions are shown in figure 1. In this work, we
consider approximate Nash equilibriums. While the equalities in Proposition 1-3 don’t hold
anymore, the gadgets designed give good approximations of all the three arithmetic relations.

Proposition 4. In any ε-Nash equilibrium of GG, we have

p[v2] = min(αp[v1], 1) ± ε in Proposition 1;

p[v3] = min(αp[v1] + βp[v2] + γp[v1]p[v2], 1) ± ε in Proposition 2;

p[v6] = max(p[v1],p[v2]) ± 3ε in Proposition 3.

By x = y ± ε, we mean that y − ε ≤ x ≤ y + ε.

Using Proposition 4, it’s easy to check that, given any approximate Nash equilibrium of
GG, we can compute an approximate Nash equilibrium of G very efficiently.

Property 1. There exists a polynomial p1(n) such that, given any ε′-Nash equilibrium of the

graphical game GG where ε′ = ε2−p1 (|G|), an ε-Nash equilibrium of the original game G can be

computed in polynomial time.

The following three properties of graphical game GG can be easily found in [6].

Property 2. The size of graphical game GG is polynomial of the size of game G.

6

We use |GG| and |G| to denote the size of game GG and G respectively. The size of a game
is the number of bits necessary to describe it.

Property 3. Every vertex in W has ≤ 3 incoming edges and ≤ 1 outgoing edge.

Property 4. Every vertex in V has ≤ 1 incoming edge and ≤ 2 outgoing edges.

Further observation on the three gadgets would give us the following property.

Property 5. Let w be any vertex in W with 3 incoming edges, then when player w chooses

strategy 1, its payoff only depends on one player in V (which is named vw and vww ∈ E);
when player w chooses strategy 0, its payoff depends on two players in V which are different

from vw (they are named v1
w and v2

w, v1
ww, v2

ww ∈ E). Furthermore, we have wv1
w, wv2

w /∈ E.

Property 5 is the key which gives us an embedding of GG into a 3-player game. Before
that, we normalize game GG and color all of its vertices in three colors {0, 1, 2}. After the
normalization, GG and the 3-coloring c should satisfy the following four properties :

A. The underlying graph G = (V ∪ W,E) is still bipartite, where V and W are disjoint.

B. All sets Vi (the set of vertices with color i, where i ∈ [3]) have the same cardinality.

C. Every vertex u in graph G has either 0 or 4 incoming edges. For the latter case, we use
u1u, u2u, u′

1u, u′
2u ∈ E to denote the 4 incoming edges. The color of u is different from

all the four vertices which satisfy that c(u1) = c(u2) 6= c(u′
1) = c(u′

2). When u plays
strategy 0 (or 1), its payoff only depends on two players with different colors.

D. Utilities (or payoffs) of graphical game GG lie in the range [0, 1].

The normalization is described by the algorithm in figure 2 and all the four properties above
are satisfied. Property 6 and 7 are simple corollaries of Property 2 and 1 respectively.

Property 6. The size of graphical game GG after normalization is still polynomial of |G|.

Property 7. There exists a polynomial p2(n) such that, given any ε′-Nash equilibrium of the

graphical game GG after normalization where ε′ = ε2−p2 (|G|), an ε-Nash equilibrium of the

original game G can be computed in polynomial time.

Now we know that, given any input pair (G, 0k) of 4-Nash, we can construct a graphical
game GG and a 3-coloring c in polynomial time. Let integer n = k + p2(|G|), then given any

1/2n-Nash equilibrium of GG, a 1/2k-Nash equilibrium of G can be computed very efficiently.

Property 8. There exists a polynomial p3 such that for any input pair (G, 0k) of 4-Nash,

∣

∣

∣

(

GG, 0n
)

∣

∣

∣
≤ p3

(
∣

∣

∣

(

G, 0k
)

∣

∣

∣

)

.

In the next section, we show how to embed the graphical game GG into a 3-player game
G∗ in polynomial time (of |(GG, 0n) |). Given any 1/2k∗

-Nash equilibrium of game G∗, we can
extract a 1/2n-Nash equilibrium of game GG very efficiently.

7

Normalization of Graphical Game GG

1: set c(w) = 1 for all vertices w in W , and c(v) = 2 for all vertices v in V .

2: for any vertex w ∈ W with 2 incoming edges v1w, v2w ∈ E do

3: if c(v1) = c(v2) then

4: according to Property 3, without loss of generality, we assume that wv1 /∈ E

5: add vertex v′ to V and w′ to W

6: replace edge v1w with edges v1w′, w′v′, v′w′ and v′w

7: set c(w′) = 1, choose c(v′) ∈ {2, 3} 6= (c(v1) = c(v2))

8: payoffs to w′ and v′ are chosen using Proposition 1 with α = 1 (p[v ′] = p[v1])

9: for any vertex w ∈ W with 3 incoming edges do

10: according to Property 5, name the three vertices in V as vw, v1
w and v2

w

11: if c(v1
w) = c(v2

w) then

12: according to Property 5, we have edge wv1
w /∈ E

13: add vertex v′ to V and w′ to W

14: replace edge v1
ww with edges v1

ww′, w′v′, v′w′ and v′w

15: set c(w′) = 1, choose c(v′) ∈ {2, 3} 6= (c(v1
w) = c(v2

w))

16: payoffs to w′ and v′ are chosen using Proposition 1 with α = 1 (p[v ′] = p[v1
w])

17: for any vertex u in the graph with ≥ 1 incoming edges do

18: add extra vertices and incoming edges, color them properly to satisfy Property C

19: [although we add incoming edges, the vertices added don’t affect u’s payoffs]

20: add idle isolated vertices, color them properly to satisfy Property B

21: re-scale the utilities of GG so that they lie in the range [0, 1], and satisfy Property D

Figure 2: Normalization of Graphical Game GG

5 Reduction From 4-Nash to 3-Nash : Step II

Game G∗ has three players P1,P2,P3 and every player has 2N strategies where N = |Vi|. For
any i ∈ [3], we pick an arbitrary one-to-one correspondence Ci from Vi to [N] and define the
set of pure strategies Si of player Pi as

Si =
{

(Ci(u), 0), (Ci(u), 1)
∣

∣

∣
u ∈ Vi

}

=
{

(i1, i2), i1 ∈ [N], i2 ∈ {0, 1}
}

.

For convenience, we will always neglect Ci and recognize vertex u itself as an integer in [N].
Utilities of G∗ are described by the algorithm in figure 3, where constant M = 2N 6L and
L = 22n. Let k∗ be the smallest integer satisfying 2k∗

> N2L. Although M is exponentially
large, we still have the following property.

Property 9. |(G∗, 0k∗

)| is polynomial of |(GG, 0n)|, and thus polynomial of |(G, 0k)|.

The correctness of our reduction from GG to G∗ is guaranteed by the following theorem.

8

Theorem 1. Let y be any 1/2k∗

-Nash equilibrium of G∗, then x is a 1/2n-Nash equilibrium

of game GG, which is obtained as follows : for any player u in GG, let c(u) = i ∈ [3], then

xu
0 =

yi
(u,0)

yi
(u,0) + yi

(u,1)

xu
1 =

yi
(u,1)

yi
(u,0) + yi

(u,1)

.

The proof of Theorem 1 relies on Lemma 2 which states that, the distribution y i of player
Pi over the N vertices is very close to the uniform distribution. Here for any j ∈ [N] and
i ∈ [3], we use yi

j to denote the probability yi
(j,0) + yi

(j,1).

Lemma 2. Let y be any 1/2k∗

-Nash equilibrium of G∗, then for any j ∈ [N] and i ∈ [3],

1

N
−

1

NL
≤ yi

j ≤
1

N
+

1

NL
.

Proof. We prove the following stronger result :

∀ j ∈ [N], y1
j ≤

1

N
+

1

N2L

(

and thus, ∀ j ∈ [N],
1

N
−

1

NL
≤ y1

j ≤
1

N
+

1

N2L

)

(1)

∀ j ∈ [N], y2
j ≤

1

N
+

1

N6L

(

and thus, ∀ j ∈ [N],
1

N
−

1

N5L
≤ y2

j ≤
1

N
+

1

N6L

)

(2)

∀ j ∈ [N], y3
j ≤

1

N
+

1

N4L

(

and thus, ∀ j ∈ [N],
1

N
−

1

N3L
≤ y3

j ≤
1

N
+

1

N4L

)

(3)

Step 1: If (2) is not true, without loss of generality, we assume y2
1 > 1/N + 1/(N 6L) and

set S = { s ∈ [N] | y2
s ≤ 1/N } which is non-empty. If P3 chooses strategy (1, 0) or (1, 1),

its expected payoff p ≥ y2
1M . On the other hand, if P3 plays strategy (s, 0) or (s, 1) where

s ∈ S, then its expected payoff p′ ≤ 1 + y2
sM (using Property D). As a result, we have

p − p′ ≥ 1 > 1/2k∗

, and y3
s = 0 for any s ∈ S. Similarly, we can prove y1

s = 0 for any s ∈ S.
To get a contradiction, we observe player P2. Pick any i /∈ S satisfying y1

i ≥ 1/N . Obviously,
player P2 prefers strategies (s, 1), (s, 0) where s ∈ S to (i, 0), (i, 1), and thus y2

i = 0, which
contradicts with our assumption that y2

i > 1/N .

Step 2: If (3) is not true, without loss of generality, we assume y3
1 > 1/N + 1/(N 4L) and

set S = { s ∈ [N] | y3
s ≤ 1/N } which is non-empty. Using the result of Step 1, we have

y2
1 ≥

1

N
−

1

N5L
and y2

s ≤
1

N
+

1

N6L
, ∀ s ∈ S .

If P1 plays strategy (1, 0) or (1, 1), its expected payoff p ≥ M(y2
1 + y3

1 − y2
1y

3
1). If P1 plays

strategy (s, 0) or (s, 1) where s ∈ S, its expected payoff p′ ≤ 1 + M(y2
s + y3

s − y2
sy

3
s). As

p − p′ ≥ 2

(

N2 − 2N +
1

N3L
+

1

N

)

− 1 >
1

2k∗
,

we have y1
s = 0 for any s ∈ S. Similarly as Step 1, we pick any i /∈ S satisfying y1

i ≥ 1/N
and observe P2. It’s easy to check that, compared with (i, 0), (i, 1), strategies (s, 0), (s, 1) are

9

preferred by player P2 where s ∈ S, which contradicts with (2).

Step 3: If (1) is not true, without loss of generality, we assume y1
1 > 1/N + 1/(N 2L) and

s ∈ [N] satisfies that y1
s ≤ 1/N . Using the result of Step 2, we have

y3
1 ≥

1

N
−

1

N3L
and y3

s ≤
1

N
+

1

N4L
.

If P2 plays strategy (1, 0) or (1, 1), its payoff p ≤ 1 − M(y1
1 + y3

1 − y1
1y

3
1). On the other hand,

if P2 plays strategy (s, 0) or (s, 1), its payoff p′ ≥ −M(y1
s + y3

s − y1
sy

3
s). As

p′ − p ≥ 2

(

N4 − 2N3 + N +
N

L

)

− 1 >
1

2k∗
,

we have y2
1 = 0, which contradicts with (2).

Now we are ready to prove Theorem 1, and finally finish the reduction.

Proof of Theorem 1. Let y be any 1/2k∗

-Nash equilibrium of game G∗ and x be the profile of
mixed strategies constructed in Theorem 1. For any u in GG, we use pu

0 (pu
1) to denote the

expected payoff to u in GG when it plays strategy 0 (1). To prove that x is a 1/2n-Nash
equilibrium of GG, it’s only necessary to prove the following inequalities for any u in GG.

pu
0 − pu

1 >
1

2n
=⇒ pc

(u,0) − pc
(u,1) >

1

2k∗
(=⇒ yc

(u,1) = 0 =⇒ xu
1 = 0)

pu
1 − pu

0 >
1

2n
=⇒ pc

(u,1) − pc
(u,0) >

1

2k∗
(=⇒ yc

(u,0) = 0 =⇒ xu
0 = 0)

where c = c(u) and pc
(u,0) (pc

(u,1)) is the payoff to Pc in G∗ if it plays (u, 0) ((u, 1)).

Using Lemma 2, we have

pc
(u,0) − pc

(u,1) ≥

(

1

N
−

1

NL

)2

pu
0 −

(

1

N
+

1

NL

)2

pu
1

>
1

N2

(

1 −
1

L

)2 1

2n
−

4

N2L
(Property D ⇒ pu

0 , pu
1 ∈ [0, 1])

>
1

4N22n
−

4

N222n
>

1

N222n
>

1

2k∗

for any u in GG. The other inequality can be proven similarly.

6 Concluding Remarks

Two major open problems, 3-Nash and 2-Nash, were proposed in [4] after their PPAD-
complete proof of 4-Nash. They conjectured that 3-Nash remains PPAD-complete, and
suspected that 2-Nash may not be PPAD-complete. Our result confirms their first conjec-
ture. Their second conjecture remains the most prominent open problem in Algorithmic Game

10

Utilities of the 3-Player Game G∗

1: for any s = ((i1, j1), (i2, j2), (i3, j3)) where i1, i2, i3 ∈ [N] and j1, j2, j3 ∈ {0, 1} do

2: if i1 = i2 or i1 = i3 then

3: set (the payoff to player P1) u1
s = M

4: else

5: set (the payoff to player P1) u1
s = 0

6: if i2 = i1 or i2 = i3 then

7: set (the payoff to player P2) u2
s = −M

8: else

9: set (the payoff to player P2) u2
s = 0

10: if i3 = i2 then

11: set (the payoff to player P3) u3
s = M

12: else

13: set (the payoff to player P3) u3
s = 0

14: for any vertex u in GG with 4 incoming edges do

15: assume c(u) = 1, other cases can be handled similarly

16: let u2 and u3 be the two vertices which can affect the payoff to u when u plays 0

17: let u′
2 and u′

3 be the two vertices which can affect the payoff to u when u plays 1

18: assume c(u2) = c(u′
2) = 2 and c(u3) = c(u′

3) = 3

19: for any i, j ∈ {0, 1} do

20: let a be the payoff to u in game GG when u plays 0, u2 plays i and u3 plays j

21: set u1
s = u1

s + a where pure strategy profile s = ((u, 0), (u2 , i), (u3, j))

22: let b be the payoff to u in game GG when u plays 1, u′
2 plays i and u′

3 plays j

23: set u1
s = u1

s + b where pure strategy profile s = ((u, 1), (u′
2 , i), (u

′
3, j))

Figure 3: Utilities of the 3-Player Game G∗

Theory. It would require new insight and new techniques for developing a conclusive answer
to this problem.

For two similar and very closely related problems, the oracle model of the Brouwer fixed
point problem [1, 7], and the polynomial-time Turing machine model of the Sperner’s prob-
lem [2], their algorithmic complexities for the 2-dimensional cases exhibit similar structures
to the high dimensional cases. If 2-Nash indeed turns against such parallelism, it is possible
that the impact could expand beyond what has already been the most amazing development
in the interplays of Computer Science and Economics, started from fifteen years ago with the
introduction of the PPAD class [11, 12] in a daring effort to characterize the parity argument
in mathematical proofs, gradually made its way into our understanding of many important
problems till the recent exalted inclusion of the r-Nash into the class of PPAD-complete
problems. The challenge now is to settle the ultimate open problem of 2-Nash.

11

References

[1] Xi Chen and Xiaotie Deng. On Algorithms for Discrete and Approximate Brouwer Fixed
Points. In STOC 2005, pages 323–330.

[2] Xi Chen and Xiaotie Deng. 2D-SPERNER is PPAD-complete. manuscript, 2005.

[3] V. Conitzer and T. Sandholm. Complexity Results about Nash Equilibria. In Proceedings

of 18th IJCAI, pages 765–771, Acapulco, Mexico, 2003.

[4] C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The Complexity of Computing a
Nash Equilibrium. ECCC, Report No. 115, 2005.

[5] I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity considerations.
Games and Economic Behavior, 1989.

[6] P.W. Goldberg and C.H. Papadimitriou. Reducibility Among Equilibrium Problems.
ECCC, Report No. 90, 2005.

[7] M.D. Hirsch, C.H. Papadimitriou, and S. Vavasis. Exponential lower bounds for finding
Brouwer fixed points. J.Complexity, 5:379–416, 1989.

[8] M. Littman M. Kearns and S. Singh. Graphical Models for Game Theory. In In Proceedings

of UAI, 2001.

[9] N. Megiddo. A Note on the complexity of P-Matrix LCP and Computing an Equilibrium.
IBM Almaden Research Center, San Jose, Research Report RJ6439:CA95120, 1988.

[10] N. Megiddo and C.H. Papadimitriou. On total functions, existence theorems and compu-
tational complexity. Theoret. Comput. Sci., 81:317–324, 1991.

[11] C.H. Papadimitriou. On graph-theoretic lemmata and complexity classes. In In Pro-

ceedings 31st Annual Symposium on Foundations of Computer Science, pages 794–801,
1990.

[12] C.H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and System Sciences, pages 498–532, 1994.

12

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

