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Abstract

We consider two of the most fundamental theorems in Cryptography. The first, due to
H̊astad et. al. [HILL99], is that pseudorandom generators can be constructed from any one-way
function. The second due to Yao [Yao82] states that the existence of weak one-way functions
(i.e. functions on which every efficient algorithm fails to invert with some noticeable probability)
implies the existence of full fledged one-way functions. These powerful plausibility results shape
our understanding of hardness and randomness in Cryptography. Unfortunately, the reductions
given in [HILL99, Yao82] are not as security preserving as one may desire. The main reason
for the security deterioration is the input blow up in both of these constructions. For example,
given one-way functions on n bits one obtains by [HILL99] pseudorandom generators with seed
length Ω(n8).

This paper revisits a technique that we call the Randomized Iterate, introduced by Goldreich,
et. al. [GKL93]. This technique was used in [GKL93] to give a construction of pseudorandom
generators from regular one-way functions. We simplify and strengthen this technique in order
to obtain a similar reduction where the seed length of the resulting generators is as short as
O(n log n) rather than Ω(n3) in [GKL93]. Our technique has the potential of implying seed-
length O(n), and the only bottleneck for such a result is the parameters of current generators
against space bounded computations. We give a reduction with similar parameters for security
amplification of regular one-way functions. This improves upon the reduction of Goldreich
et al. [GIL+90] in that the reduction does not need to know the regularity parameter of the
functions (in terms of security, the two reductions are incomparable). Finally, we show that
the randomized iterate may even be useful in the general context of [HILL99]. In Particular
we use the randomized iterate to replace the basic building block of the [HILL99] construction.
Interestingly, this modification improves efficiency by an n3 factor and reduces the seed length
by a factor of n (which also implies improvement in the security of the construction).
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1 Introduction

In this paper we address two fundamental problems in cryptography: constructing pseudorandom
generators from one-way functions and transforming weak one-way functions into strong one-way
functions. The common thread linking the two problems in our discussion is the technique we
use. This technique that we call the Randomized Iterate was introduced by Goldreich, Krawczyk
and Luby [GKL93] in the context of constructing pseudorandom generators from regular one-
way functions. We revisit this method, both simplify existing proofs and utilize our new view to
achieve significantly better parameters for security and efficiency. We further expand the application
of the randomized iterate to constructing pseudorandom generators from any one-way function.
Specifically we revisit the seminal paper of H̊astad, Impagliazzo, Levin and Luby [HILL99] and
show that the randomized iterate can help improve the parameters within. Finally, we use the
randomized iterate method to both simplify and strengthen previous results regarding efficient
hardness amplification of regular one-way functions. We start by introducing the randomized
iterate in the context of pseudorandom generators, and postpone the discussion on amplifying
weak to strong one-way function to subsection 1.2.

1.1 Pseudorandom Generators and the Randomized Iterate

Pseudorandom Generators, a notion first introduced by Blum and Micali [BM82] and stated in its
current, equivalent form by Yao [Yao82], are one of the cornerstones of cryptography. Informally,
a pseudorandom generator is a polynomial-time computable function G that stretches a short ran-
dom string x into a long string G(x) that “looks” random to any efficient (i.e., polynomial-time)
algorithm. Hence, there is no efficient algorithm that can distinguish between G(x) and a truly
random string of length |G(x)| with more than a negligible probability. Originally introduced in
order to convert a small amount of randomness into a much larger number of effectively random
bits, pseudorandom generators have since proved to be valuable components for various crypto-
graphic applications, such as bit commitments [Nao91], pseudorandom functions [GGM86] and
pseudorandom permutations [LR88], to name a few.

The first construction of a pseudorandom generator was given in [BM82] based on a particular
one-way function and was later generalized in [Yao82] into a construction of a pseudorandom
generator based on any one-way permutation. We refer to the resulting construction as the BMY
construction. The BMY generator works by iteratively applying the one-way permutation on its
own output. More precisely, for a given function f and input x define the ith iterate recursively as
xi = f(xi−1) where x0 = f(x). To complete the construction, one needs to take a hardcore-bit at
each iteration. If we denote by b(x) the hardcore-bit of x (take for instance the Goldreich-Levin
[GL89] predicate), then the BMY generator on seed x outputs the hardcore-bits b(x0), . . . , b(x`).

The natural question arising from the BMY generator was whether one-way permutations are
actually necessary for pseudorandom generators or can one do with a more relaxed notion. Specifi-
cally, is any one-way function sufficient for pseudorandom generators? Levin [Lev87] observed that
the BMY construction works for any “one-way function on its iterates”, that is, a one-way function
that remains one-way when applied sequentially on its own outputs. However, a general one-way
function does not have this property since the output of f may have very little randomness in it,
and a second application of f may be easy to invert. A partial solution was suggested by Goldreich
et al. [GKL93] that showed a construction of a pseudorandom generator based on any regular one-
way function (referred to as the GKL generator). A regular function is a function such that every
element in its image has the same number of preimages. The GKL generator uses the technique at
the core of this paper, that we call the randomized iterate. Rather than simple iterations, an extra
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randomization step is added between every two applications of f . More precisely:

Definition (Informal): (The Randomized Iterate) For function f , input x and random
hash functions h1, . . . , h`, recursively define the ith randomized iterate (for i ≤ `) by:

f i(x, h1, . . . , h`) = xi = f(hi(x
i−1))

where x0 = f(x).
The rational is that hi(x

i) is now uniformly distributed, and the challenge is to show that f ,
when applied to hi(x

i), is hard to invert even when the randomizing hash functions h1, . . . , h` are
made public. Once this is shown, the generator is similar in nature to the BMY generator (the
generator outputs b(x0), . . . , b(x`), h1, . . . , h`).

Finally, H̊astad et al. [HILL99] (combining [ILL89, H̊as90]), culminated this line of research
by showing a construction of a pseudorandom generator using any one-way function (called here
the HILL generator). This result is one of the most fundamental and influential theorems in
cryptography. It introduced many new ideas that have since proved useful in other contexts,
such as the notion of pseudo-entropy, and the implicit use of family of pairwise-independent hash
functions as randomness extractors. We note that HILL departs from GKL in its techniques, taking
a significantly different approach.

1.1.1 The Complexity and Security of the Previous Constructions

While the HILL generator fully answers the question of the plausibility of a generator based on any
one-way function, the construction is highly involved and very inefficient. Other than the evident
contrast between the simplicity and elegance of the BMY generator to the complex construction and
proof of the HILL generator, the parameters achieved in the construction are far worse, rendering
the construction impractical.

In practice, it is not necessarily sufficient that a reduction translates polynomial security into
polynomial security. In order for reductions to be of any practical use, the concrete overhead
introduced by the reduction comes into play. There are various factors involved in determining the
security of a reduction, and in Section 2.8 we elaborate on the security of cryptographic reductions
and the classification of reductions in terms of their security. In this discussion, however, we
focus only on one central parameter, which is the length m of the generator’s seed compared to
the length n of the input to the underlying one-way function. The BMY generator takes a seed of
length m = O(n), the GKL generator takes a seed of length m = Ω(n3) while the HILL construction
produces a generator with seed length on the order of m = Ω(n8).1

The length of the seed is of great importance to the security of the resulting generator. While
it is not the only parameter, it serves as a lower bound to how good the security may be. For
instance, the HILL generator on m bits has security that is at best comparable to the security of
the underlying one-way function, but on only O( 8

√
m) bits. To illustrate the implications of this

deterioration in security, consider the following example: Suppose that we only trust a one-way
function when applied to inputs of at least 100 bits, then the GKL generator can only be trusted
when applied to a seed of length of at least one million bits, while the HILL generator can only be
trusted on seed lengths of 1016 and up (both being highly impractical). Thus, trying to improve the
seed length towards a linear one (as it is in the BMY generator) is of great importance in making
these constructions practical.

1The seed length actually proved in [HILL99] is O(n10), however it is mentioned that a more careful analysis can
get to O(n8).
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1.1.2 Our Results on Pseudorandom Generators

Regular One-Way Functions: We give a construction of a pseudorandom generator from any
regular one-way function with seed length O(n log n). We note that our approach has the potential
of reaching a construction with a linear seed, the bottleneck being the efficiency of the current
bounded-space generators. Our construction follows the randomized iterate method and is achieved
in two steps:

• We give a significantly simpler proof that the GKL generator works, allowing the use of a
family of hash functions which is pairwise-independent rather than n-wise independent (as
used in [GKL93]). This gives a construction with seed length m = O(n2).

• The new proof allows for the derandomization of the choice of the randomizing hash functions
via the bounded-space generator of Nisan [Nis92], further reducing the seed length to m =
O(n log n).

The proof method: Following is a high-level description of our proof method. For simplicity we
focus on a single randomized iteration, that is on x1 = f1(x, h) = f(h(f(x))). In general, the main
task at hand is to show that it is hard to find x0 = f(x) when given x1 = f1(x, h) and h. This
follows by showing that any procedure A for finding x0 given (x1, h) enables to invert the one-way
function f . Specifically, we show that for a random image z = f(x), if we choose a random and
independent hash h′ and feed the pair (z, h′) to A, then A is likely to return a value f(x′) such
that h′(f(x′)) ∈ f−1(z) (and thus we obtain an inverse of z).

Ultimately, we assume that A succeeds on the distribution of (x1, h) where h is such that
x1 = f1(x, h), and want to prove A is also successful on the distribution of (x1, h′) where h′ is
chosen independently. Our proof is inspired by a technique used by Rackoff in his proof of the
Leftover Hash Lemma (in [IZ89]). Rackoff proves that a distribution is close to uniform by showing
that it has collision-probability2 that is very close to that of the uniform distribution. We would like
to follow this scheme and consider the collision-probability of the two aforementioned distributions.
However, in our case the two distributions could actually be very far from each other. Yet, with the
analysis of the collision-probabilities we manage to prove that the probability of any event under
the first distribution is polynomially related to the probability of the same event under the second
distribution. This proof generalizes nicely also to the case of many iterations.

The derandomization using bounded-space follows directly from the new proof. In particular,
consider the procedure that takes two random inputs x0 and x1 and random h1, . . . , h`, and com-
pares f `(x0, h1, . . . , h`) and f `(x1, h1, . . . , h`). This procedure can be run in bounded-space since it
simply needs to store the two intermediate iterates at each point. Also, this procedure accepts with
probability that is exactly the collision-probability of (f `(x, h1, . . . , h`), h1, . . . , h`). Thus, replacing
h1, . . . , h` with the output of a bounded-space generator cannot change the acceptance rate by
much, and the collision-probability is thus unaffected. The proof of security of the derandomized
pseudorandom generator now follows as in the proof when using independent randomizing hash
functions.

Any One-Way Function: The HILL generator takes a totally different path than the GKL
generator. We ask whether the technique of randomized-iterations can be helpful for the case of
any one-way function, and give a positive answer to this question. Interestingly, this method also

2The collision-probability of a distribution is the probability of getting the same element twice when taking two
independent samples from the distribution.
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improves the efficiency by an n3 factor and reduces the seed length by a factor of n (which also
implies improvement in the security of the construction) over the original HILL generator.

Unlike in the case of regular functions, the hardness of inverting the randomized iterate deterio-
rates quickly when using any one-way function. Therefore we use only the first randomized iterate
of a function, that is x1 = f(h(f(x))). Denote the degeneracy of y by Df (y) = dlog

∣∣f−1(y)
∣∣e (this

is a measure that divides the images of f to n categories according to their preimage size). Let
b denote a hardcore-bit (again we take the Goldreich-Levin hardcore-bit [GL89]). Loosely speak-
ing, we consider the bit b(x0) when given the value (x1, h) (recall that x0 = f(x)) and make the
following observation: When Df (x0) ≥ Df (x1) then b(x0) is (almost) fully determined by (x1, h),
as opposed to when Df (x0) < Df (x1) where b(x0) is essentially uniform. But in addition, when
Df (x0) = Df (x1) then b(x0) is computationally-indistinguishable from uniform (that is, looks uni-
form to any efficient observer), even though it is actually fully determined. The latter stems from
the fact that when Df (x0) = Df (x1) the behavior is close to that of a regular function.

As a corollary we get that the bit b(x0) has entropy of no more than 1
2 (the probability of

Df (x0) < Df (x1)), but has entropy of at least 1
2 + 1

O(n) in the eyes of any computationally-bounded

observer (the probability of Df (x0) ≤ Df (x1)). In other words, b(x0) has entropy 1
2 but pseudo-

entropy of 1
2 + 1

O(n) . It is this gap of 1
O(n) between the entropy and pseudo-entropy that eventually

allows the construction of a pseudorandom generator.
Indeed, a function with similar properties lies at the basis of the HILL construction. HILL

give a different construction that has entropy p but pseudo-entropy of at least p + 1
O(n) . However,

in the HILL construction the entropy threshold p is unknown (i.e., not efficiently computable),
while with the randomized iterate the threshold is 1

2 . This is a real advantage since knowledge
of this threshold is essential for the overall construction. To overcome this, the HILL generator
enumerates all values for p (up to an accuracy of Ω( 1

n)), runs the generator with every one of these
values and eventually combines all generators using an XOR of their outputs. This enumeration
costs an additional factor n to the seed length as well an additional factor of n3 to the number of
calls to the underlying function f .

On pseudorandomness in NC1: For the most part, the HILL construction is “depth” pre-
serving. In particular, given two “non-uniform” hints of log n bits each (that specify two different
properties of the one-way function), the reduction gives generators in NC 1 from any one-way func-
tion in NC1. Unfortunately, without these hints, the depth of the construction is polynomial
(rather than logarithmic). Our construction eliminates the need for one of these hints, and thus
can be viewed as a step towards achieving generators in NC 1 from any one-way function in NC1

(see [AIK04] for the significance of such a construction).

1.2 One-Way Functions - Amplification from Weak to Strong

The existence of one-way functions is essential to almost any task in cryptography (see for exam-
ple [IL89]) and also sufficient for numerous cryptographic primitives, such as the pseudorandom
generators discussed above. In general, for constructions based on one-way functions we use what
are called strong one-way functions. That is, functions that can only be inverted efficiently with
negligible success probability. A more relaxed definition is that of an α-weak one-way function
where α(n) is a polynomial fraction. This is a function that any efficient algorithm fails to invert
on almost an α(n) fraction of the inputs. This definition is significantly weaker, however, Yao
[Yao82] showed how to convert any weak one-way function into a strong one. The new strong
one-way function simply consists of many independent copies of the weak function concatenated
to each other. The solution of Yao, however, incurs a blow-up factor of at least ω(1)/α(n) to the
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input length of the strong function3, which translates to a significant loss in the security (as in the
case of pseudorandom generators).

With this security loss in mind, several works have tried to present an efficient method of am-
plification from weak to strong. Goldreich et al. [GIL+90] give a solution for one-way permutations
that has just a linear blowup in the length of the input. This solution generalizes to “known-
regular” one-way functions (regular functions whose image size is efficiently computable), where its
input length varies according to the required security. The input length is linear when security is
at most 2Ω(

√
n), but deteriorates up to O(n2) when the required security is higher (e.g., security

2O(n)).4 Their construction uses a variant of randomized iterates where the randomization is via
one random step on an expander graph.

1.2.1 Our Contribution to Hardness Amplification

We present an alternative efficient hardness amplification for regular one-way functions based on
the randomized iterate. Our construction is arguably simpler and has the following advantages:

1. While the [GIL+90] construction works only for known regular weak one-way functions, our
amplification works for any regular weak one-way functions (whether its image size is effi-
ciently computable or not).

2. The input length of the resulting strong one-way function is O(n log n) regardless of the
required security. Thus, for some range of the parameters our solution is better than that of
[GIL+90] (although it is worse than [GIL+90] for other ranges).

Note that our method may yield an O(n) input construction if bounded-space generators with
better parameters become available.

The Idea: At the basis of all hardness amplification lies the fact that for any inverting algorithm,
a weak one-way function has a set that the algorithm fails upon, called here the failing-set of this
algorithm. The idea is that a large enough number of randomly chosen inputs are bound to hit
every such failing-set and thus fail every algorithm. Taking independent random samples works
well, but when trying to generate the inputs to f sequentially this rationale fails. The reason is that
sequential applications of f are not likely to give random output, and hence are not guaranteed
to hit a failing-set. Instead, the natural solution is to use randomized iterations. However, it
might be easy for an inverter to find some choice of randomizing hash functions so that all the
iterates are outside of the required failing-set. To overcome this, the randomizing hash functions
are also added to the output, and thus the inverter is required to find an inverse that includes the
original randomizing hash functions. In the case of permutations it is obvious that outputting the
randomizing hash functions is harmless, and thus the kth randomized iterate of a weak one-way
permutation is a strong one-way permutation. However, the case of regular functions requires our
analysis that shows that the randomized iterate of a regular one-way function remains hard to
invert when the randomizing hash functions are public. We also note that the proof for regular
functions has another subtlety. For permutations the randomized iterate remains a permutation
and therefore has only a single inverse. Regular functions, on the other hand, can have many
inverses. This comes into play in the proof, when an inverting algorithm might not return the right
inverse that is actually needed by the proof.

3The ω(1) factor stands for the logarithm of the required security. For example, if the security is 2O(n) then this
factor of order n.

4Loosely speaking, one can think of the security as the probability of finding an inverse to a random image f(x)
simply by choosing a random element in the domain.
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A major problem with the randomized iterate approach is that choosing fully independent
randomizing hash functions requires an input as long as that of Yao’s solution (an input of length
O(n·ω(1)/α(n))). What makes this approach appealing after all, is the derandomization of the hash
functions using space-bounded generators, which reduces the input length to only O(n log n). Note
that in this application of the derandomization, it is required that the bounded-space generator not
only approximate the collision-probability well, but also maintain the high probability of hitting
any failing-set.

We note that there have been several attempts to formulate such a construction, using all
of the tools mentioned above. Goldreich et al. [GIL+90] did actually consider following the GKL
methodology, but chose a different (though related) approach. Phillips [Phi93] gives a solution with
input length O(n log n) using bounded-space generators but only for the simple case of permutations
(where [GIL+90] has better parameters). Di Crescenzo and Impagliazzo [DI99] give a solution for
regular functions, but only in a model where public randomness is available (in the mold of [HL92]).
Their solution is based on pairwise-independent hash functions that serve as the public randomness.
We are able to combine all of these ingredients into one general result, perhaps due to our simplified
proof.

Additional Issues:

• On Non-Length-Preserving Functions: The paper focuses on length-preserving one-
way functions. We also demonstrate how our proofs may be generalized to use non-length
preserving functions. This generalization requires the use of a construction of a family of
almost pairwise-independent hash functions.

• The Results in the Public Randomness Model: Similarly to previous works, our results
also give linear reductions in the public randomness model. This model (introduced by
Herzberg and Luby [HL92]) allows the use of public random coins that are not regarded a
part of the input. However, our results introduce significant savings in the amount of public
randomness that is necessary.

Paper Organization: Section 2 includes the formal definitions and notations used throughout
this paper. In Section 3 we present our construction of pseudorandom generators from regular one-
way functions. In Section 4 we present our improvement to the HILL construction of pseudorandom
generators from any one-way function, for completeness we give in Appendix A a high-level overview
of the original construction. Finally, in Section 5 we present our hardness amplification of regular
one-way functions.

2 Preliminaries

2.1 Notations

A function µ : N→ [0, 1] is negligible if for every polynomial p we have that µ(n) < 1/p(n) for large
enough n. To denote that µ is negligible we simply write µ(n) ∈ neg(n).

Given a function f : {0, 1}∗ → {0, 1}∗, we denote by Dom(f) and Im(f) the domain and
image of f respectively. Let y ∈ Im(f), we denote the preimages of y under f by f−1(y). The

degeneracy of f on y is defined by Df (y)
def
= dlog

∣∣f−1(y)
∣∣e.

We denote by f : {0, 1}n → {0, 1}`(n), where ` is a function from N to N, the ensemble of
functions

{
fn : {0, 1}n → {0, 1}`(n)

}
n∈N

.
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Finally, ppt stands for probabilistic-polynomial time Turing machine.

2.2 Distributions and Entropy

We denote by Un the uniform distribution over {0, 1}n. Given a function f : {0, 1}n → {0, 1}`(n), we
denote by f(Un) the distribution over {0, 1}`(n) induced by f operating on the uniform distribution.
Let D be a distribution over some finite domain X, we use the following “measures” of entropy:

• The Shannon-entropy of D is H(D) =
∑

x∈X D(x) log 1
D(x) .

• The collision-probability of D is CP (D) =
∑

x∈X D(x)2.

• The min-entropy of D is H∞(D) = minx∈X log 1
D(x) .

Two distributions P and Q over Ω are ε-close (or have statistical distance ε) if for every A ⊆ Ω
it holds that |Prx←P (A)− Prx←Q(A)| ≤ ε.

By a Distribution Ensemble we mean a series {Dn}n∈N
where Dn is a distribution over {0, 1}n.

Let {Xn} and {Yn} be distribution ensembles. {Xn} and {Yn} are computationally-indistinguishable
if for every ppt M ,

|Pr[M(1n, Xn) = 1]− Pr[M(1n, Yn) = 1]| ∈ neg(n)

where the probability is taken over the distributions Xn and Yn, and the randomness of M .

2.3 Family Of Pairwise-Independent Hash Functions

Definition 2.1 (Efficient family of pairwise-independent hash functions) Let H be a collection of
functions where each function h ∈ H is from {0, 1}n to {0, 1}`(n). H is an efficient family of pairwise-

independent hash functions if |h| (i.e., the description length of h) and `(n) are polynomials in n,
each h ∈ H is a polynomially-computable function, and for all n, for all x 6= x′ ∈ {0, 1}n and all
y, y′ ∈ {0, 1}`(n),

Pr
h← H

[h(x) = y
∧

h(x′) = y′] =
1

22`(n)

There are various constructions of efficient families of pairwise-independent hash functions for
any values of n and `(n) whose description length (i.e., |h|) is linear in n (e.g., [CW77]). In this
paper we also make use of the special case in which `(n) = n (the hash is length preserving). In
such a case H is called an efficient family of pairwise-independent length-preserving hash functions.

In some cases we cannot afford to use hash functions whose description length is linear in the
input size but can afford a description that is linear in the output size. In such cases we use the
following relaxation of pairwise-independent hash functions.

Definition 2.2 (Efficient family of almost pairwise-independent hash functions) Let H be a col-
lection of functions where each function h ∈ H is from {0, 1}n to {0, 1}`(n). H is an efficient family

of δ-almost pairwise-independent hash functions if |h| and `(n) are polynomials in n, each h ∈ H is
a polynomially-computable function, and for all n, for all x 6= x′ ∈ {0, 1}n and all y, y′ ∈ {0, 1}`(n),

∣∣∣∣ Pr
h←H

[h(x) = y
∧

h(x′) = y′]− 1

22`(n)

∣∣∣∣ ≤ δ

Due to [CW77], [WC81] and [NN93] there exist constructions of efficient families almost pairwise-
independent hash functions for any values of n, δ and `(n) whose description length is O(log(n) +
`(n) + log(δ)).
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2.4 One-Way Functions

Definition 2.3 (One-way functions) Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable
function. f is one-way if for every ppt A, the function

µ(n) = Pr
x← {0,1}n

[A(1n, f(x)) ∈ f−1(f(x))]

is negligible. A one-way permutation is a one-way function that is a permutation over any input
length n.

Definition 2.4 (Regular one-way functions) Let f : {0, 1}∗ → {0, 1}∗ be a one-way function.
f is regular if there exist a function α : N→ N such that for every n ∈ N and every x ∈ {0, 1}n we
have: ∣∣f−1(f(x))

∣∣ = α(n)

In the special case that α is also polynomial-time computable, f is known-regular. In our paper we
do not require this property and our results hold for functions with unknown-regularity. Thus in
our paper when we say regular functions we actually mean unknown-regular functions.

Definition 2.5 (α-Weak one-way functions) Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time
computable function. f is α-weak one-way if for every ppt A,

Pr
x← {0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] < 1− α(n)

Few convention remarks: When the value of the security-parameter (i.e., 1n) is clear, we allow
ourselves to omit it from the adversary’s parameters list. Since any one-way function is w.l.o.g.
length-regular (i.e., inputs of same length are mapped to outputs of the same length), it can be
viewed as an ensemble of functions mapping inputs of a given length to outputs of some polynomial
(in the input) length. Therefore we can write: let f : {0, 1}n → {0, 1}`(n) be a one-way function,
where `(n) is some polynomial-computable function.

2.5 Hardcore predicates

Hard-core predicates have a major role in the construction of pseudorandom generators based on
one-way functions.

Definition 2.6 (Hardcore predicate) Let f : {0, 1}n → {0, 1}`(n) and b : {0, 1}n → {0, 1} be
a polynomial-time computable functions. We call b a hardcore predicate of f if the distribution
(f(Un), U1) and (f(Un), b(Un)) are computationally-indistinguishable.

It is custom to call the value b(x), the “hardcore-bit” of f(x). In our applications we use the general
hardcore predicate of Goldreich and Levin [GL89]. Let x, r ∈ {0, 1}n and denote br(x) = 〈x, r〉
mod 2 (that is br(x) is the inner product of x and r modulo 2). The proof of the following hardcore-
bit theorem is an immediate extension of the proof given in [GL89].

Theorem 2.7 Let f and g be functions defined over {Sn ⊆ {0, 1}n}n∈N
and suppose that for all

ppt algorithms A:
Pr

x←Sn

[A(f(x)) = g(x)] ∈ neg(n)
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Then for X and R uniformly chosen in Sn and {0, 1}n respectively we have that (f(X), R, U1) and
(f(X), R, bR(g(X)) are computationally indistinguishable. More precisely, let A be an algorithm
that distinguishes between the above distributions with probability ε(n) and running-time TA(n),

then there exist an algorithms that computes g(x) given f(x) over Sn with probability ε(n)
4 and

running-time O(n3TA(n)
ε(n)4 ) (see [Gol01]).

The following is a relaxation of the hard-core bit notion.

Definition 2.8 [δ-hard predicate] Let f : {0, 1}n → {0, 1}`(n) and b : {0, 1}n → {0, 1} be a
polynomial-time computable functions, and let δ be some real fraction. b is a δ-hard predicate

of f if for any ppt algorithm A the following holds,

Pr
x← Un

[A(f(x)) = b(x)] < 1− δ/2

2.6 Pseudorandom Generators

Definition 2.9 (Pseudorandom-Generator (PRG)) Let G : {0, 1}n → {0, 1}`(n) be a polynomial-
time computable function where `(n) > n. We say that G is a Pseudorandom-Generator if G(Un) is
computationally-indistinguishable from U`(n).

2.7 Bounded-Space Generators

Bounded-Space generators are pseudorandom generators against bounded-space adversaries. Such
generators plays a central role in derandomization tasks. We are interested in generator for the
following type of adversaries.

Definition 2.10 ((Bounded Width) Layered Branching Program (LBP)) A (S, t, `)-LBP
M is a directed graph with S · (t + 1) vertices, partitioned into t + 1 layers with S vertices in each
layer. Each vertex in the ith layer has exactly 2` outgoing labelled edges to the (i + 1)st layer, one
for every possible string h ∈ {0, 1}`. The vertices in layer t (the last layer) are labelled by 0 or 1.

Denote by Mx such a LBP with starting vertex x ∈ {1, . . . , S} in the 0th level. For a sequence
h1, . . . , ht ∈ B` we define the output of the LBP Mx(h1, . . . , ht) by a walk on the graph starting
at vertex x in layer 0 and advancing to the ith layer along the edge labelled by hi. Mx(h1, . . . , ht)
accepts if it reaches a vertex labelled by 1 and rejects otherwise.

Definition 2.11 A generator G : {0, 1}m → {0, 1}t·` is said to ε-fool a LBP M if for every
x ∈ {1, . . . , S} we have:

| Pr
h1,...,ht∈Ut·`

[Mx(h1, . . . , ht) accepts]− Pr
h̃∈Um

[Mx(G(h̃)) accepts]| < ε

Theorem 2.12 ([Nis92, INW94]) For every S, t, ` there exist a generator

BSG : {0, 1}O(`+(S+log( t
ε
)) log t) → {0, 1}t(S)·` running in time poly(S, t, `) that ε-fools every (S, t, `)-

LBP.

2.8 The Security of Cryptographic Constructions

Typically the proof of security for cryptographic constructions is based on reduction. In this
paradigm we use a presumably secure implementation of one primitive (or possibly several prim-
itives) in order to implement a second primitive. The proof of security for the second primitive
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relies on the security assumption for the original one. More precisely, we prove that any efficient
adversary that breaks the implementation of the second primitive can be used to efficiently break
the original primitive. Note that the meaning of “breaking a primitive” and, furthermore, the def-
inition of the success probability of an adversary in breaking the primitive, varies between different
primitives. For example, in the case of one-way functions the success probability is the fraction of
inputs on which the adversary manages to invert the function. Usually, there is a tradeoff between
the running-time of an adversary and its success probability (e.g., it may be possible to utterly
break a primitive by enumerating all possibilities for the secret key). Therefore, both the running-
time and success probability of possible adversaries are relevant when analyzing the security of a
primitive. A useful, combined parameter is the “time-success ratio” of an adversary which we next
define.

Definition 2.13 (Time-success ratio) Let P be a primitive and let A be an adversary running
in time T (n) and breaking P with probability δ(n). The time-success ratio of A in breaking P is

defined as R(n) = T (n)
δ(n) , where n is the security-parameter 5 of the primitive.

Note that the smaller the R the better A is in breaking P .
A quantitative analysis of the security of a reduction is crucial for both theoretical and practical

reasons. Given an implementation of primitive P using primitive Q along with a proof of security,
let RP be the security-ratio of a given adversary w.r.t. P and let RQ be the security-ratio of the
adversary that the proof of security yields. A natural way to measure the security of a reduction
is by the relation between RP and RQ. Clearly, the smaller the RQ comparing to RP , the better
the performance of the adversary the reduction yields when trying to break Q comparing to the
performance of the adversary trying to break P .

The most desirable reductions is when RQ(n) ∈ nO(1)O(RP (n)). In such reductions, known as
linear-preserving reductions, we are guaranteed that breaking the constructed primitive is essentially
as hard as breaking the original one. Next we find the polynomial-preserving reductions when
RQ ∈ nO(1)O(RP (n)O(1)). Note that a linear/polynomial-preserving reduction typically means
that the inputs of Q and P are of the same length (up to a constant-ratio). The other side
of the scale is when RQ ∈ nO(1)O(RP (nO(1))). In such reductions, known as weak-preserving
reductions, we are only guaranteed that breaking P is as hard as breaking Q for polynomially
smaller security-parameter (e.g., polynomially smaller input length). For a more comprehensive
discussion about the above issues the reader may refer to [HL92]. This quantitative classification of
security preserving reduction partly motivates our focus on the input-length as the main parameter
that our reductions aim to improve. In particular, better space bounded generators would make
our reduction polynomial-preserving rather than weak-preserving (see Section 3.4.1).

3 Pseudorandom Generators from Regular One-Way Functions

The following discussion considers only length preserving regular one-way functions. We justify
this assumption and describe how to deal with all regular one-way functions in Appendix 3.4.2.

3.1 Some Motivation and the Randomized Iterate

Recall that the BMY generator simply iterates the one-way permutation f on itself, and outputs a
hardcore-bit of the intermediate step at each iteration. The crucial point is that the output of the

5It is convenient to define the security-parameter of a primitive as its input length. This is in particular the
convention for the primitives discussed in this paper.
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function is also uniform in {0, 1}n since f is a permutation. Hence, when applying f to the output,
it is hard to invert this last application of f , and therefore hard to predict the new hardcore-bit
(Yao shows [Yao82] that the unpredictability of bits implies pseudorandomness). Since the seed
is essentially just an n bit string and the output is as long as the number of iterations, then the
generator actually stretches the seed.

We want to duplicate this approach for general one-way functions, but unfortunately the situ-
ation changes drastically when the function f is not a permutation. After a single application of
f , the output may be very far from uniform, and in fact, may be concentrated on a very small and
easy fraction of the inputs to f . Thus reapplying f to this output gives no hardness guarantees at
all. In an attempt to salvage the BMY framework, Goldreich et. al. [GKL93] suggested to add a
randomization step between every two applications of f , thus making the next input to f a truly
random one. This modification that we call randomized iterates lies at the core of our work and is
defined next:

Definition 3.1 (The kth Randomized Iterate of f) Let f : {0, 1}n → {0, 1}n and let H be an
efficient family of pairwise-independent hash functions from {0, 1}n to {0, 1}n. For input x ∈ {0, 1}n
and h1, . . . , hk−1 ∈ H define the kth Randomized Iterate f k : {0, 1}n ×Hk → Im(f) recursively as:

fk(x, h1, . . . , hk) = f(hk(f
k−1(x, h1, . . . , hk−1)))

where f 0(x) = f(x). For convenience we denote by xk def
= fk(x, h1, . . . , hk).

6

Another handy notation is the kth explicit randomized iterate f̂k : {0, 1}n ×Hk → Im(f)×Hk

defined as:

f̂k(x, h1, . . . , hk) = (fk(h1, . . . , hk), h1, . . . , hk)

The application of the randomized iterate for pseudorandom generators is a bit tricky. On the
one hand, such a randomization costs a large number of random bits, much larger than what can
be compensated for by the hardcore-bits generated in each iteration. So in order for the output
to actually be longer than the input, we also output the descriptions of the hash functions (in

other words, use the explicit randomized iterate f̂k). But on the other hand, handing out the
randomizing hash gives information on intermediate values such as hi(x

i) and f might no longer be
hard to invert when applied to such an input. Somewhat surprisingly, the last randomized iterate
of a regular one-way function remains hard to invert even when the hash functions are known. This
fact, which is central to the whole approach, was proved in [GKL93] when using a family of n-wise
independent hash functions. We give a simpler proof that extends to pairwise-independent hash
functions as well.

Remark: In the definition randomized iterate we define f 0(x) = f(x). This was chosen for ease
of notation and consistency with the results for general OWFs (Section 4). For the regular OWF
construction it suffices to define f 0(x) = x, thus saving a single application of the function f .

3.2 The Last Randomized Iteration is Hard to Invert

In this section we formally state and prove the key observation mentioned above, that is, that
after applying k randomized-iterations of a regular one-way function f , it is hard to invert the last
iteration, even if given access to all of the hash functions leading up to this point.

6We make use the notation xk only when the values of h1, . . . , hk and x are clear by the presentation.
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Lemma 3.2 Let f be a length-preserving regular one-way function, H be an efficient family of
pairwise-independent length-preserving hash functions and xk be the kth randomized iterates of f
(Definition 3.1). Then for any ppt A and every k ∈ poly(n) we have:

Pr
(x,h1,...,hk)← (Un,Hk)

[A(xk, h1, . . . , hk) = xk−1] ∈ neg(n)

where the probability is also taken over the random coins of A.
More precisely, if such a ppt A succeeds with probability ε then there exists a probabilistic

polynomial time oracle machine MA that succeeds in inverting f with probability at least ε3/8(k+1)
with essentially the same running time as A.

We briefly give some intuition to the proof, illustrated with regard to the first randomized
iterate. Suppose that we have an algorithm A that always finds x0 given x1 = f1(x, h) and h. In
order to invert the one-way function f on an element z ∈ Im(f), we simply need to find a hash
h′ that is consistent with z, in the sense that there exists an x′ such that z = f 1(x′, h′). Now we
simply run y = A(z, h′), and output h′(y) (and indeed f(h′(y)) = z). The point is that if f is a
regular function, then finding a consistent hash is easy, simply because a random and independent
h′ is likely to be consistent with z. The actual proof follows this framework, but is far more involved
due to the fact that the reduction starts with an algorithm A that has only a small (yet polynomial)
success probability.
Proof: Suppose for sake of contradiction that there exists an efficient algorithm A that given
(xk, h1, . . . , hk) computes xk−1 with probability ε for some polynomial fraction ε(n) = 1/poly(n)

(for simplicity we simply write ε). In particular A inverts the last-iteration of f̂k with probability
at least ε, that is

Pr
(x,h1,...,hk)← (Un,Hk)

[f(h(A(f̂k(x, h1, . . . , hk)))) = fk(x, h1, . . . , hk)] ≥ ε

Our goal is to use this procedure A in order to break the one-way function f . Consider the procedure
MA for this task:

MA on input z ∈ Im(f):

1. Randomly (and independently) choose h1, . . . , hk ∈ H.

2. Apply A(z, h1, . . . , hk) to get an output y.

3. If f(hk(y)) = z output hk(y), otherwise abort.

The rest of the proof of Lemma 3.2 shows that M A succeeds with probability at least ε3/8(k+1)
on inputs z ∈ Im(f).

We start by focusing our attention only on those inputs for which A succeeds reasonably well.
Recall that the success probability of A is taken over the choice of inputs to A as induced by the
choice of x ∈ {0, 1}n and h1, . . . , hk ∈ H and the internal coin-tosses of A. The following Markov
argument implies that the probability of getting an element in the set that A succeeds on is not
very small:

Claim 3.3 Let SA ⊆ Im(f̂k) be the subset defined as:

SA =
{
(y, h1, . . . , hk) ∈ Im(f̂k) | Pr[f(hk(A(y, h1, . . . , hk))) = y] >

ε

2

}
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Then
Pr

(x,h1,...,hk)← (Un,Hk)
[f̂k(x, h1, . . . , hk) ∈ SA] ≥ ε

2
.

Proof: Suppose that Pr[f̂k(x, h1, . . . , hk) ∈ SA] < ε
2 . Then we have:

Pr[f(h(A(f̂k(x, h1, . . . , hk)))) = fk(x, h1, . . . , hk)] <

ε
2 · Pr[f̂k(x, h1, . . . , hk) 6∈ SA] + 1 · Pr[f̂k(x, h1, . . . , hk) ∈ SA] < ε

2 + ε
2 = ε

which contradicts the assumption about the success probability of A.

Now that we identified a subset of polynomial weight of the inputs that A succeeds upon, we
want to say that MA has a fair (polynomially large) chance to hit outputs induced by this subset.
This is formally shown in the following lemma.

Lemma 3.4 For every set T ⊆ Im(f̂k), if

Pr
(x,h1,...,hk)← (Un,Hk)

[f̂k(x, h1, . . . , hk) ∈ T ] ≥ δ

then
Pr

(z,h1,...,hk)← (f(Un),Hk)
[(z, h1, . . . , hk) ∈ T ] ≥ δ2/(k + 1),

We stress that the probability in the latter inequality is over z drawn from f(Un) and an indepen-
dently chosen h1, . . . , hk ∈ H.

Assuming Lemma 3.4 we may conclude the proof of Lemma 3.2. By Claim 3.3 we have
that Pr[(xk, h1, . . . , hk) ∈ SA] ≥ ε

2 . By Lemma 3.4 taking T = SA and δ = ε/2 we get that
Pr[(z, h1, . . . , hk) ∈ SA] ≥ ε2/4(k + 1). Thus MA has a ε2/4(k + 1) chance of hitting the set SA on
which it will succeed with probability at least ε/2. Altogether, M A succeeds in inverting f with
the polynomial probability ε3/8(k + 1), contradicting the one-wayness of f .

Proof: (of Lemma 3.4) The lemma essentially states that with respect to f̂k, any large subset of
inputs induces a large subset of outputs. Thus, there is a fairly high probability of hitting this
output set simply by sampling independent z and h1, . . . , hk. Intuitively, if a large set of inputs
induces a small set of outputs, then there must be many collisions in this set (a collision means that
two different inputs lead to the same output). However, we show that this is impossible by proving

that the collision-probability of the function f̂k is small. The proof therefore follows by analyzing

the collision-probability of f̂k. For every two inputs (x0, h1
0, . . . , hk

0) and (x1, h1
1, . . . , hk

1) to f̂k,
in order to have a collision we must first have that hi

0 = hi
1 for every i ∈ [k], which happens with

probability (1/ |H|)k. Now, given that hi
0 = hi

1 = hi for all i (with a random hi ∈ H), we require
also that xk

0 = fk(x0, h1, . . . , hk) equals xk
1 = fk(x1, h1, . . . , hk). If f(x0) = f(x1) (happens with

probability 1/ |Im(f)|) then a collision is assured. Otherwise, there must be an i ∈ [k] for which
xi−1

0 6= xi−1
1 but xi

0 = xi
1 (where x0 denotes the input x). Since xi−1

0 6= xi−1
1 , due to the pairwise-

independence of hi, the values hi(x
i−1
0 ) and hi(x

i−1
1 ) are uniformly random values in {0, 1}n, and

thus f(hi(x
i−1
0 )) = f(hi(x

i−1
1 )) happens with probability 1/ |Im(f)|. Altogether:

CP (f̂k(Un,Hk)) ≤ 1

|H|k
k∑

i=0

1

|Im(f)| ≤
k + 1

|H|k |Im(f)|
(1)
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On the other hand, we check the probability of getting a collision inside the set T , which is a lower
bound on the probability of getting a collision at all. We first request that both (x0, h1

0, . . . , hk
0) ∈

T and (x1, h1
1, . . . , hk

1) ∈ T . This happens with probability at least δ2. Then, once inside T , we
know that the probability of collision is at least 1/ |T |. Altogether:

CP (f̂k(Un,Hk)) ≥ δ2 1

|T | (2)

Combining (1) and (2) we get |T |
|H|k|Im(f)| ≥

δ2

k+1 .

But the probability of getting a value in T when choosing a random element in Im(f) × Hk is

exactly |T |
|H|k |Im(f)| . Thus Pr[(z, h1, . . . , hk) ∈ T ] ≥ δ2/(k + 1) as requested.

Remark: The proof of Lemma 3.4 is where the regularity of the one-way function is required. The
proof fails for general OWFs where the preimage size of different elements may vary considerably.
More accurately, the collision-probability at the heart of this lemma remains considerably small
only as long as the last element in a sequence of applications is at least as heavy as all the elements
along the sequence. While for regular functions this requirement is always true, for general OWFs
this occurs with probability that deteriorates linearly (in the length of the sequence). Thus using
a long sequence of iterations is likely to lose the hardness of the original OWF.

3.3 A Pseudorandom Generator from a Regular One-Way Function

After showing that the randomized-iterations of a regular one-way function are hard to invert, it is
natural to follow the footsteps of the BMY construction to construct a pseudorandom generator.
Rather than using simple iterations of the function f , randomized-iterations of f are used instead,
with fresh randomness in each application. As in the BMY case, a hardcore-bit of the current input
is taken at each stage. Formally:

Theorem 3.5 Let f : {0, 1}n → {0, 1}n be a regular length-preserving one-way function and let H
be an efficient family of pairwise-independent length preserving hash functions, let G be:

G(x, h1 . . . , hn, r) = (br(x
0), . . . , br(x

n), h1, . . . , hn, r),

where:

• x ∈ {0, 1}n and h1 . . . , hn ∈ H.

• Recall that x0 = f(x) and for 1 ≤ i ≤ n xi = f(hi(x
i−1)).

• br(x
i) denotes the GL-hardcore bit of xi.

Then G is a pseudorandom generator.

Note that the above generator does not require the knowledge of the preimage size of the regular
one-way function. The generator requires just n + 1 calls to the underlying one-way function f
(each call is on an n bit input). The generator’s input is of length m = O(n2) and it stretches the
output to m + 1 bits.
Proof: First notice that the generator G indeed stretches a m bit string into a m + 1 bit string.
Since all of h1, . . . , hn ∈ H and r appear in the output as well, the only difference is that the n bits
of x are replaced by n + 1 hardcore bits.
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The proof of pseudorandomness follows from the unpredictability property of this generator.
Yao showed [Yao82] using a hybrid argument that a sequence is pseudorandom if and only if it is
hard to predict the next bit of the sequence for every prefix of the sequence. We show that the se-
quence G(x, h1, . . . , hn) has this property in the following reordering: (r, h1, . . . , hn, b(xn), . . . , b(x0))
(for ease of notation we omit the subscript r from the hardcore bits, thus b(x) = br(x)). Since
(r, h1, . . . , hn) is a truly random string then the unpredictability property holds vacuously for these
bits. It is left to show that for every k, one cannot predict b(xk−1) given (r, h1, . . . , hn, b(xn), . . . , b(xk)).
Suppose there exists such a predictor B with Pr[B(r, h1, . . . , hn, b(xn), . . . , b(xk)) = b(xk−1)] >
1
2 + 1/poly(n) for some polynomial poly(·). Then there is also a B ′ for predicting b(xk−1) given
(r, h1, . . . , hk, x

k). The algorithm B ′ does the following:

1. Choose random h̄k+1, . . . , h̄n ∈ H.

2. Generate x̄k+1, . . . , x̄n from (xk, h̄k+1, . . . , h̄n).

3. Output B(r, h1 . . . , hk, h̄k+1, . . . , h̄n, b(x̄n), . . . , b(x̄k+1), b(xk))

Choosing (h̄k+1, . . . , h̄n) independently from (h1, . . . , hk) generates a series (x̄k+1, . . . , x̄n) that
has the same distribution as (xk+1, . . . , xn). Thus the procedure B ′ succeeds in predicting b(xk−1)
with the same success probability as B, i.e., with probability at least 1

2 + 1/poly(n). This yields a
contradiction since by Lemma 3.2, it is computationally hard to find xk−1 given (xk, h1, . . . , hk) and
due to the Goldreich-Levin Theorem (Theorem 2.7), it is also impossible to predict a hardcore-bit
of this value with a polynomial advantage.

3.4 An Almost-Linear-Input Construction from a Regular One-Way Function

The pseudorandom generator presented in the previous section (Theorem 3.5) stretches a seed of
length O(n2) by one bit. Although this is an improvement over the GKL generator, it still translates
to a rather high loss of security, since the security of the generator on m bits relies on the security
of regular one-way function on

√
m bits. In this section we give a modified construction of the

pseudorandom generator that takes a seed of length only m = O(n log n).
Notice that the input length of the generator is dominated by the description of the n indepen-

dent hash functions h1, . . . , hn. The idea of the new construction is to give a derandomization of the
choice of the n hash functions. Thus h1, . . . , hn are no longer chosen independently, but are chosen
in a way that is sufficient for the proof to go through. The derandomization uses generators against
bounded-space distinguishers, and specifically we can use the generator of Nisan [Nis92], (or that
of Impagliazzo, Nisan and Wigderson [INW94]). An important observation is that calculating the
randomized iterate of an input can be viewed as a bounded-space algorithm, alternatively presented
here as a bounded-width layered branching-program. More accurately, at each step the branching
program gets a random input hi and produces xi+1 = f(hi(x

i)). We will show that indeed when
replacing h1, . . . , hn with the output of a generator that fools related branching programs, then the
proof of security still holds (and specifically the proof of Lemma 3.4).

For our application we use the bounded-space generator with parameters t = n, S = 2n and
` = 2n (or more generally, ` is taken to be the description length of a hash function in H). Finally,
the error is chosen to be ε = 2−n. The generator therefore stretches O(n log n) bits to n · 2n bits.
Denote the bounded-space generator by BSG : {0, 1}cn log n → {0, 1}2n2

where c is a universal
constant. For convenience denote ñ = cn log n.
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3.4.1 The New Pseudorandom Generator

Theorem 3.6 For any regular length-preserving one-way function f , let G′ be:

G′(x, h̃, r) = (br(x
0), . . . , br(x

n), h̃, r),

where:

• x ∈ {0, 1}n and h̃ ∈ {0, 1}ñ.

• (h1, . . . , hn) = BSG(h̃).

• Recall that x0 = f(x) and for 1 ≤ i ≤ n, xi = f(hi(x
i−1)).

• br(x
i) denotes the GL-hardcore bit of xi.

Then G′ is a pseudorandom generator.

Proof outline: The proof of the derandomized version follows in the steps of the proof of Theorem
3.5. We give a high-level outline of this proof, focusing only on the main technical lemma that
changes slightly.

The proof first shows that given the kth randomized iterate xk and all of the randomizing hash
functions, it is hard to compute xk−1 (analogously to Lemma 3.2), only now this also holds when
the hash functions are chosen as the output of the bounded-space generator. The proof is identical
to the proof of 3.2, only replacing appearances of (h1, . . . , hk) with the seed h̃. Again, the key to
the proof is the following technical lemma (slightly modified from Lemma 3.4).

Lemma 3.7 For every set T ⊆ Im(f)× {0, 1}ñ, if

Pr
(x,h̃)← (Un,Uñ)

[(xk, h̃) ∈ T ] ≥ δ

then
Pr

(z,h̃)← (f(Un),Uñ)
[(z, h̃) ∈ T ] ≥ δ2/(k + 2)

where probability is over z ∈ f(Un) and an independently chosen h̃ ∈ {0, 1}ñ.

Once we know that xk−1 is hard to compute, we deduce that one cannot predict a hardcore-bit
br(x

k−1) given xk and the seed to the bounded-space generator. From here, the proof follow just
as the proof of Theorem 3.5 in showing that the output of G′ is an unpredictable sequence and
therefore a pseudorandom sequence.

Proof: (of Lemma 3.7) Denote by g : {0, 1}n × {0, 1}ñ → Im(f) × {0, 1}ñ the function taking
inputs of the form (x, h̃) to outputs of the form (xk, h̃) (recall that xk is the kth randomized iterate
of f under seed h̃). We proceed by giving bounds on the collision-probability of g. For every two
inputs to g, (x0, h̃0) and (x1, h̃1), in order to have a collision we must first have that h̃0 = h̃1

which happens with probability 1/2ñ. Now, given that h̃0 = h̃1 (with a random h̃), we analyze the
probability of the event that xk

0 = fk(x0, h1, . . . , hk) equals xk
1 = fk(x1, h1, . . . , hk).

Consider the following (S, t, `)-LBP for the input pair (x0, x1):

• Input: The LBP starts at a node labelled by (x0, x1).
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• Layer i (for i ∈ [n]): Get random input hi ∈ H and move from node (xi−1
0 , xi−1

1 ) to the node
labelled (xi

0, x
i
1) with xi

0 = f(hi(x
i−1
0 )) and xi

1 = f(hi(x
i−1
1 )).

• The LBP accepts if xn
0 = xn

1 and rejects otherwise.

The LBP described above has parameters S = 2n, t = n and ` = 2n. Furthermore, it ac-
cepts with probability that is exactly the desired collision probability, that is, the probability
that fk((x0, h1, . . . , hk)) = fk((x1, h1, . . . , hk)) over any distribution on (h1, . . . , hk). For every
pair (x0, x1) with x0 6= x1 this probability over random (h1, . . . , hn) was bounded in the proof of
Lemma 3.4 by:

Pr
h1,...,hn ←H

[fk(x0, h1, . . . , hk) = fk(x1, h1, . . . , hk)] ≤
k

|Im(f)|
Since the generator fools the above LBP, then replacing the random inputs h1, . . . , hk with the

output of the bounded-space generator does not change the probability of acceptance by more than
ε = 2−n. Therefore:

Pr
h1,...,hn ← BSG(Uñ)

[fk(x0, h1, . . . , hk) = fk(x1, h1, . . . , hk)] ≤
k

|Im(f)| +
1

2n
≤ k + 1

|Im(f)|
When taking the probability over random (x0, x1) we also add the probability that x0 = x1. Thus:

Pr
x0,x1 ← Un,h1,...,hn ← BSG(Uñ)

[fk(x0, h1, . . . , hk) = fk(x1, h1, . . . , hk)] ≤
k + 1

|Im(f)| +
1

2n
≤ k + 2

|Im(f)|

When the above is plugged into the calculation of the collision-probability of f̂k, we get:

CP (f̂k(Un, Uñ)) ≤ k + 2

2ñ |Im(f)| (3)

On the other hand, we check the probability of getting a collision inside the set T . We first request
that both (x0, h̃0) ∈ T and (x1, h̃1) ∈ T , which happens with probability at least δ2. Then once
inside T , we know that the probability of collision is at least 1/ |T |. Altogether:

CP (f̂k(Un, Uñ) ≥ δ2 1

|T | (4)

Combining (3) and (4) we get:
|T |

2ñ |Im(f)| ≥
δ2

k + 2

But the probability of getting a value in T when choosing a random element in Im(f)× {0, 1} ñ is

exactly |T |
2ñ|Im(f)| . Thus Pr[(z, h̃) ∈ T ] ≥ δ2/(k + 2) as requested.

Remark: It is tempting to think that one should replace Nisan/INW generator in the above
proof with the generator of Nisan and Zuckerman [NZ96]. That generator may have seed of size
O(n) (rather than O(n log n)) when S=2n as in our case. Unfortunately, with such a short seed,
that generator will incur an error ε = 2−n1−γ

for some constant γ, which is too high for our proof
to work. In order for the proof to go through we need that ε < poly(n)/ |Im(f)|. Interestingly,
this means that we get a linear-input construction when the image size is significantly smaller than
2n. In order to achieve a linear-input construction in the general case, we need better generators
against LBPs (that have both short seed and small error).
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The Overall Time-Success Ratio: Combining all of the reductions involved from breaking
the security of the generator to inverting the one-way function (that is, a hybrid argument, the
Goldreich-Levin proof and Lemma 3.2) we get the following time-success ratio (see Section 2.8):
Given a distinguisher for G′ that runs in time TD(m) and has polynomial success ε(m) (where m
is the seed length to the generator), then there exists an algorithm for inverting the underlying f

on n bits, that runs in time O( n7 log4 n
ε4(n log n)

TD(n log n)) and has success Ω( ε3(n log n)

n4 log4 n
).

3.4.2 Dealing with Non Length-preserving Functions

The pseudorandom generators presented in this section assumed that the underlying regular one-
way function is length-preserving. We mention that this is not a necessity and outline how any
regular one-way function can be used. For the simple case that f is shrinking, simply padding
the output to the same length is sufficient. The more interesting case is of a length-expanding
one-way function f . The important point is that we want the generator to be almost linear in
the length of the input to f rather than its output. In Appendix B we show how to transform
an expanding one-way function f from {0, 1}n to {0, 1}`(n) (for simplicity we write just `) into a
length preserving one-way function from {0, 1}2n to {0, 1}2n. However, this construction does not
maintain the regularity of the one-way function (it maintains only an approximate regularity).

For the regular case we suggest a different solution. Rather than changing the underlying one-
way function to be length preserving, we change the randomizing hash functions to be shrinking.
That is, given a regular one-way function f : {0, 1}n → {0, 1}`, define the randomized iterate of
this function with respect to a family of hash functions from {0, 1}` to {0, 1}n. The randomized
iterate is now well defined, and moreover, we can show that the collision probability hardly changes.
Previously the only way to introduce a new collision was during the application of f (a collision
happened with probability 1/Im(f) in each iteration). In the new construction a collision can
also be introduced when applying a hash function. But such a collision during hashing happens
with probability only 2−n (by the pairwise independence of the hash). Thus the overall collision
probability at most doubles and the proof of security follows.

The only problem with this approach is that the description of such hash functions is too long
(it is O(`) instead of O(n)). This is overcome by using an efficient family of almost pairwise-
independent hash functions from ` bits to n bits with error 2−n (see Definition 2.2), which requires
a description of only O(n) bits.

4 Pseudorandom Generator from Any One-Way Function

Our implementation of a pseudorandom generator from any one-way function follows the route of
the HILL construction, but takes a totally different approach in the implementation of its initial
step. The resulting construction is more efficient and more secure than the original one.

The “pseudo-entropy” of a distribution is at least k if it is computationally-indistinguishable
from some distribution that has entropy k. The basic building block of the HILL generator is a
“pseudo-entropy pair”.7 Informally, the latter is a pair of a function and predicate on the same input
with the following property: The pseudo-entropy of the predicate’s output when given the output of
the function is noticeably larger than the real (conditional) entropy of this bit. In their construction
[HILL99] exploit this gap between real and pseudo entropy to construct a pseudorandom generator.
We show that the first explicit randomized iterate of a one-way function together with a standard

7We note that [HILL99] used this notion implicitly without giving it an explicit definition.
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hardcore predicate forms a pseudo-entropy pair. Moreover, this new PEP has better properties
than the original implementation and hence “plugging” it as the first step of the HILL construction
results in a better overall construction. Let us now turn to a more formal discussion. We define
the pseudo-entropy pair as follows:

Definition 4.1 [Pseudo-entropy pair (PEP)] Let δ and γ be some positive functions over N and
let g : {0, 1}n → {0, 1}`(n) and b : {0, 1}n → {0, 1} be polynomial-time computable functions. (g, b)
is a (δ, γ)-PEP if

1. H(b(Un) | g(Un)) ≤ δ(n).

2. b is a (δ(n) + γ(n))-hard predicate of g.

[HILL99] show how to construct a (δ, α)-PEP, where δ ∈ [0, 1] is some unknown value and α is any
fraction noticeably smaller than 1

2n , using any one-way function.8 They then present a construction
of a pseudorandom generator using a (δ, 1

O(n) )-PEP where δ is known. To overcome this gap, the

HILL generator enumerates all values for δ (up to an accuracy of Ω( 1
n)), runs the generator with

every one of these values and eventually combines all generators using an XOR of their outputs.
This enumeration costs an additional factor of n to the seed length as well as n3 times more calls
to the underlying one-way function.

In the rest of this section we prove that the first explicit randomized iterate of a one-way function
can be used to construct a ( 1

2 , α)-PEP, where α is any fraction noticeably smaller than 1
2n . We

note that the [HILL99] and ours implementations of a PEP have the same efficiency (constant
number of calls to the underlying one-way function). Therefore the resulting construction achieved
by combining our PEP with the other parts of the HILL construction is more efficient and has
better security9 than the original construction (the efficiency improves by a factor of n3 and the
security by a factor of n). We note that in order to use our PEP instead of the original one a
somewhat generalize of the other parts of the HILL construction is needed. For completeness we
present in Appendix A a high-level overview of this generalized version. For comparison, we also
present there the PEP used by [HILL99].

4.1 A Pseudo-Entropy Pair Based On The Randomized Iterate

For a given one-way function f , we have defined (Definition 3.1) its first explicit randomized iterate

as f̂1(x, h) = (f(h(f(x))), h). In Section 4.1.1 we present an “extended” version of the above
function with the following properties: First, it maintains some hardness of the original one-way
function. The hardness is maintained in a sense that with probability 1

2 + 1
2n it is hard to compute

the value of x0 = f(x) given the output. Second, we show that with probability 1
2 the value of x0

can be determined w.h.p. from the output. Notice the gap between the computational-knowledge
and information about x0 given the output element. In Section 4.1.2 we show how to take advantage
of this gap, in a straight forward manner, to achieve a PEP for the above randomized iterate.

8[HILL99] actually prove somewhat stronger result. Not only that the predicate of their PEP is (δ +α)-hard, but
the hardness comes from the existence of a “hardcore-set” of density δ + 1

2n
. Where the latter is a subset of the input

such that the value of b is computationally unpredictable over it. This additional property was used by [HILL99]
original implementation of pseudorandom generator, but it is not required by the implementation presented in this
paper (see Appendix A). We stress that our PEP, presented next, also has such a hardcore-set

9The proof of security of the reduction to the underlying one-way function has better parameters, see Section 2.8
for a discussion on the security of cryptographic reductions.
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4.1.1 The Extended Randomized Iterate Of Any One-Way Function

For simplicity we assume that the one-way function is length-preserving, the adaptation to any
one-way function is similar to the one done in Section 3. 10 We use the following extended version
of the first explicit randomized iterate:

Definition 4.2 (The Extended Randomized Iterate) Let f : {0, 1}n → {0, 1}n be a one-way
function, let m = d3 log(n) + 8e, and let H and HE be two families of pairwise-independent hash
functions from {0, 1}n to {0, 1}n and {0, 1}n to {0, 1}m respectively. We define g, the extended

randomized iterate of f , as:

g(x, h, hE) = (f̂1(x, h), hE(f(x)), hE)

where x ∈ {0, 1}n, h ∈ H and hE ∈ HE.

Remark: We note that while the role of HE in the above construction and the role of H in the
HILL PEP (see Appendix A.4) are syntactically similar, their actual role is different. In the above
construction the purpose of using HE is to reveal a small amount of information (i.e., O(log(n)))
about f(x), which in turn slightly reduces the uncertainty of f(x) when given g(x, h, hE). Thus HE

is used to widen the gap between the real and the pseudo-entropy of f(x) given g(x, h, hE). This

extra information is not of major importance and indeed even without using HE (i.e. using f̂1

instead of g), we can still construct a PEP, though parameters will not be as good. On the other
hand, in the HILL PEP there are settings where the hash function reveals a significant amount of
information (i.e., Ω(n)) about the input of the function. Thus, removing the hash function alto-
gether guarantees no gap between the real and the pseudo-entropy, and in particular the resulting
pair is not likely to be a PEP.

In the rest of this section we show (Lemma 4.3) that with probability 1
2 + 1

2n it is hard to
compute the value of x0 = f(x) given a random output g(x, h, hE). While on the other hand we
show (Lemma 4.6) that in the same settings the value of x0 is information-theoretically determined
with probability at least 1

2 .

Lemma 4.3 Let f , H, HE and g be as in Definition 4.2 and let

G
def
=

{
(x, h, hE) ∈ ({0, 1}n ×H×HE) | Df (x0) ≤ Df (x1)

}

where x0 = f(x) and x1 = f(h(x0)). Then,

1. |G|
|{0,1}n×H×HE | ≥

1
2 + 1

2n .

2. For every ppt A,
Pr

(x,h,hE)← G
[A(x1, h, hE(x0), hE) = x0] ∈ neg(n)

where the probability is also taken over the random coins of A. More precisely, any algorithm
that given (x1, h, hE(x0), hE) computes x0 over G with probability ε can be used to construct

an algorithm that inverts f over {0, 1}n with probability ε3

64n23m and the same order of running-
time.

10A different approach would be to assume w.l.o.g. that the one-way function is length-preserving. This assumption
is justified by Corollary B.2 that states that any one-way function can be modified to be a length-preserving with
the same (up to constant factor) security ratio.
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(Proving 1): Note that for a random (x, h) it holds that x0 and x1 are two independent instances
of a random variable distributed over Im(f). Hence Df (x0) and Df (x1) are two independent
instances of a random variable distributed over [n] and thus by symmetry,

Pr
(x,h,hE)← (Un,H,HE)

[Df (x0) � Df (x1)] = Pr
(x,h,hE)← (Un,H,HE)

[Df (x0) 
 Df (x1)] (5)

Since the collision-probability of a random variable is minimal when the distribution is uniform,

Pr
(x,h,hE)← (Un,H,HE)

[Df (x0) = Df (x1)] ≥ 1

n
(6)

Combining Equations 5 and 6 we get the following,
|G|

|{0,1}n×H×HE | = Pr(x,h,hE)← (Un,H,HE)[Df (x0) ≤ Df (x1)] ≥ 1
2 + 1

2n as claimed.

(Proving 2): Let A be an algorithm that given g(x, h, hE ) computes x0 with probability ε over
G. In particular A inverts the last-iteration of g with probability at least ε over G, that is

Pr
(x,h,hE)← G

[f(h(A(g(x, h, hE )))) = g(x, h, hE)] ≥ ε

Therefore, there exists an algorithm A′ that with probability at least ε′
def
= ε/2m inverts the last-

iteration of g without even seeing the second part of the output (i.e., without seeing (hE(f(x)), hE)).

(A′ on input f̂1(x, h) chooses a random value for (hE , hE(f(x))) and returns A(f̂1(x, h), hE(x0), hE)).

In other words, A′ inverts with noticeable success probability the last-iteration of f̂1 over

G′
def
=

{
(x, h) ∈ ({0, 1}n ×H) | Df (x0) ≤ Df (x1)

}
(i.e., G′ is the restriction of G to f̂1 domain).

We now use algorithm A′ to invert f , consider the following procedure for this task:

MA′

on input z ∈ Im(f):

1. Choose a random h ∈ H.

2. Apply A′(z, h) to get an output y.

3. If f(h(y)) = z output h(y), otherwise abort.

We prove that MA′

succeeds in inverting f with probability bounded away from zero. We focus
on the following set of outputs, which A′ inverts their last-iteration with bounded-away from zero
probability.

SA′ =
{

(y, h) ∈ Im(f̂1) | Pr[f(h(A′(y, h)) = y] > ε′/2
}

as in Claim 3.3 it holds that Pr(x,h)← G′ [f̂1(x, h) ∈ SA′ ] ≥ ε′/2. Moreover, since the density of G′

is big (note that following Lemma 4.3[1], the density of G′ w.r.t. f̂1 input domain is at least 1
2), it

follows that Pr(x,h)← (Un,H)[f̂1(x, h) ∈ SA′

∧
(x, h) ∈ G′] ≥ ε′/4. We now make use of the following

Lemma (similar to Lemma 3.4), that relates sets of outputs of f̂1 to sets of outputs of f .

Lemma 4.4 For every set T ⊆ Im(f̂1), if

Pr
(x,h)← (Un,H)

[f̂1(x, h) ∈ T
∧

(x, h) ∈ G′] = δ
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then
Pr

(z,h)← (f(Un),H)
[(z, h) ∈ T ] ≥ δ2/4n

To conclude the proof of Lemma 4.3, take T = SA′ and δ = ε′/4, and Lemma 4.4 yields that

Pr(z,h)← (f(Un),H)[(z, h) ∈ SA′ ] ≥ ε′2

32n . On each of these inputs A′ succeeds with probability ε′/2,

thus altogether MA′

succeeds with probability ε′3

64n = ε3

23m64n
in inverting f .

Proof: (of Lemma 4.4) Divide the outputs of the function f into n slices according to their preimage
size. The set T is divided accordingly into n subsets. For every i ∈ [n] define the ith slice
Ti = {(z, h) ∈ T | Df (z) = i}. We divide G′ into corresponding slices as well, define the ith slice as
Gi =

{
(x, h) ∈ G′ | Df (f1(x, h)) = i

}
(note that since Gi ⊆ G′, for each (x, h) ∈ Gi it holds that

Df (f(x)) ≤ Df (f1(x, h)) = i). The proof of Lemma 4.4 follows the argument for the case of regular
functions (Lemma 3.4) but works on each slice separately. We compute the collision-probability of

f̂1 when restricted to Gi. Denote this as:

CP (f̂1(Un,H)
∧

Gi) = Pr
(x1,x2,h1,h2)← (U2n,H2)

[f̂1(x1, h1) = f̂1(x2, h2)
∧

(x1, h1), (x2, h2) ∈ Gi]

We first give an upper-bound on this collision-probability (we note that the following upper-bound
also holds when only one of the input pairs, e.g. (x1, h1), is required to be in Gi). Recall that

f̂1(x, h) = (f(h(f(x))), h)), hence in order for a collision to happen we must have h1 = h2 which
happens with probability 1

|H| along with a collision in the first part of the output. We divide the
collisions in the first part of the output into two types: The first type is a collision that happens
either in the inputs or after the first invocation of f (i.e, x1 = x2 or f(x1) = f(x2)), and the second
type is a collision that happened only in the output (i.e., f(x1) 6= f(x2) and f1(x2, h) = f1(x1, h)).
Since it is required that (x1, h1) ∈ Gi it holds that Df (f(x1)) ≤ Df (f1(x1, h)) = i and therefore∣∣f−1(f(x1))

∣∣ ≤ 2i. Thus, the probability for a first-type collision is at most 2i−n. If f(x1) 6= f(x2)
then by the pairwise independence of H it follows that given the value of f 1(x1, h) = f(h(f(x1))),
the value of h(f(x2)) is uniformly distributed in {0, 1}n and thus the value of f 1(x2, h) is a random
element in f(Un). Thus, the probability that f 1(x2, h) = f1(x1, h) is at most 2i−n as well (since∣∣f−1(f1(x1, h))

∣∣ ≤ 2i). Altogether:

CP (f̂1(Un,H)
∧

Gi) ≤
1

|H|
(
2i−n + 2i−n

)
=

2i−n+1

|H| (7)

We now give a lower-bound for the above collision-probability. The probability of getting a collision
inside Gi together with being in Ti is clearly a lower-bound on the above collision-probability. For

each slice, denote δi = Pr[f̂1(x, h) ∈ Ti
∧

(x, h) ∈ Gi]. In order to have this kind of collision, we
first request that both inputs are in Gi and yield outputs in Ti, which happens with probability
δ2
i . Then once inside Ti we required that both outputs collide, which happens with probability at

least 1
|Ti| . Altogether:

CP (f̂1(Un,H)
∧

Gi) ≥ δ2
i

1

|Ti|
(8)

Combining Equations 7 and 8 we get:

|Ti| 2i−n−1

|H| ≥ δ2
i

4
(9)

When taking a random output z and an independent h, the probability of hitting an element in
Ti is at least 2i−n−1/ |H| (since each output in Ti has preimage at least 2i−1). But this means
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that Pr[(z, h) ∈ Ti] ≥ |Ti| 2i−n−1/ |H| ≥ (by Equation 9) δ2
i /4. Finally the probability of hitting

T is Pr[(z, h) ∈ T ] =
∑

i Pr[(z, h) ∈ Ti] ≥
∑

i δ
2
i /4. Since

∑
i δ

2
i ≥ (

∑
i δi)

2/n and (by definition)∑
i δi = δ, it holds that Pr[(z, h) ∈ T ] ≥ δ2/4n as claimed.

We are now about to prove the second property of g. That is, we prove that with probability
at least 1

2 , the value of x0 = f(x) is information-theoretically determined by the output of g. Let
us start with some intuition. Given an output element z = g(x, h, hE) we define its zero-iterations
as all elements y = f(x) such that g(x, h, hE) = z. We call a zero-iteration y “dominating”
if conditioned on g(x′, h, hE) = z, the probability that f(x′) = y is close to one. When z has
such a dominating zero-iterations, it holds w.h.p. that this is its originating zero-iteration. The
proof follows by showing that a random output element has such a dominating zero-iteration with
probability at least 1

2 .
In more detail, we call a zero-iteration y of z = g(x, h, hE) “heavy” if Df (y) ≥ Df (f1(x, h))

and make the following observations. When ”ignoring” the second part of g’s output, the “random

nature” of the first part (i.e., f̂1(x, h) = (f(h(f(x))), h)) implies that an output element is not likely
to have too many heavy zero-iterations (though it might have lots of non-heavy ones). Therefore,
the additional information given in the second part of g about its zero-iterations (i.e., hE(f(x)))
leaves, if any, only a single heavy zero-iteration and eliminates most of the non-heavy ones. Thus,
conditioning that an output element has a heavy zero-iteration (which happens with probability at
least 1

2 , due to a symmetry argument), it has w.h.p. only a single heavy zero iteration. Moreover,
the above single heavy-zero-iteration is also a dominating one. Let us now turn to a more formal
discussion.

Definition 4.5 (Zero-Iteration) Let z = (z1, h, z2, hE) ∈ Im(g) and let y = f(x) ∈ Im(f). We
say that y is a zero-iteration of z if g(x, h, hE) = z, where y is a heavy-zero-iteration of z if it is
a zero-iteration and Df (y) ≥ Df (z1). Finally, y is a α-dominating-zero-iteration of z if it is a
zero-iteration and

Pr(x,h,hE)← (Un,H,HE)[g(x, h, hE) = z
∧

f(x) = y]

Pr(x,h,hE)← (Un,H,HE)[g(x, h, hE) = z]
≥ α

Lemma 4.6 Let z be a random element in Im(g) conditioned that it has a heavy-zero-iteration.
Then with probability at least 1 − 1

4n it has a single heavy-zero-iteration which is a (1 − 1
16n2 )-

dominating-zero-iteration.

Proof: Let (z1, z2) ∈ Im(f)× {0, 1}m and x ∈ {0, 1}n, by the definition of g and Df ,

Pr
(h,hE)← (H,HE)

[g(x, h, hE) = (z1, h, z2, hE)] ≤ 2Df (z1)−n−m

Now let x′ ∈ {0, 1}n such that f(x′) 6= f(x) and let Sx′,z1,z2 be the set of pairs (h, hE) ∈ H ×HE

that map x′ to (z1, h, z2, hE) (i.e., g(x′, h, hE) = (z1, h, z2, hE)). By the pairwise independence of H
and HE, the above equation still holds even when we restrict ourselves to (h, hE) ∈ Sx′,z1,z2 . That
is,

Pr
(h,hE)← Sx′,z1,z2

[g(x, h, hE) = g(x′, h, hE)] ≤ 2Df (z1)−n−m

and since the above is true for any x such that f(x) 6= f(x′),

Pr
(h,hE)← Sx′,z1,z2

,x← Un

[g(x, h, hE ) = g(x′, h, hE)
∧

f(x) 6= f(x′)] < 2Df (z1)−n−m (10)
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Let Ix′,h,hE
be the indicator random-variable that equals one if Prx← Un [g(x, h, hE) = g(x′, h, hE)

∧
f(x) 6=

f(x′)] < 8n2Df (f1(x′,h))−n−m. By Markov’s inequality and Equation 10 we get,

Pr
(h,hE)← Sx′,z1,z2

[Ix′,h,hE
] ≥ 1− 1

8n
(11)

The uniform distribution over H×HE might be viewed as the distribution induced by choosing a
random subset Sx′,z1,z2 ⊂ H×HE according to its density (i.e., Sx′,z1,z2 is chosen with probability∣∣Sx′,z1,z2

∣∣ / |H ×HE |) and then choosing a uniform pair (h, hE) in Sx′,z1,z2
. Since Equation 11 holds

for any subset Sx′,z1,z2
and the above observation, it follows that,

Pr
(h,hE)← (H,HE)

[Ix′,h,hE
] ≥ 1− 1

8n

By a symmetry argument we have that the probability that a random output has a heavy-zero-
iteration is at least 1

2 . Thus, by averaging over all x′ ∈ {0, 1}n,

Pr
(x′,h,hE)← (Un,H,HE)

[Ix′,h,hE
| g(x′, h, hE) has a heavy-zero-iteration] ≥ 1− 1

4n

Conditioned on Ix′,h,hE
, we have that for any zero-iteration y of g(x′, h, hE) other than f(x′) it

holds that Prx← Un [f(x) = y] ≤ Prx← Un [g(x, h, hE) = g(x′, h, hE)
∧

f(x) 6= f(x′)] < 8n2Df (f1(x′,h))−n−m.
On the other hand by the definition of Df we have that Prx← Un [f(x) = y] ≥ 2Df (y)−n−1 and there-
fore Df (y) ≤ Df (f1(x′, h)) + log(8n) − m + 1 < Df (f1(x′, h)) (recall that m = d3 log(n) + 8e).
Thus any zero-iteration other than f(x′) is not a heavy-zero-iteration of f 1(x′, h) and therefore,

Pr
(x′,h,hE)← (Un,H,HE)

[Ix′,h,hE

∧
f(x′) is the only heavy-zero-iteration of g(x′, h, hE) (12)

| g(x′, h, hE) has a heavy-zero-iteration] ≥ 1− 1

4n

Hence, with probability 1− 1
4n over a random choice of z = g(x′, h′, h′E) conditioned that z has

a heavy-zero-iteration,

Pr(x,h,hE)← (Un,H,HE)[g(x, h, hE ) = g(x′, h′, h′E)
∧

f(x) = f(x′)]

Pr(x,h,hE)← (Un,H,HE)[g(x, h, hE) = g(x′, h′, h′E)]
=

Prx← Un [f(x) = f(x′)]
Prx← Un [g(x, h′, h′E) = g(x′, h′, h′E)]

=

Prx← Un [f(x) = f(x′)]
Prx← Un [g(x, h′, h′E) = g(x′, h′, h′E)

∧
f(x) 6= f(x′)] + Prx← Un [f(x) = f(x′)]

≥

Prx← Un [f(x) = f(x′)]

8n2Df (f1(x′,h))−n2−m + Prx← Un [f(x) = f(x′)]
≥ 2Df (f(x′))−n−1

8n2Df (f1(x′,h))−n2−m + 2Df (f(x′))−n−1
≥

2Df (f(x′))−n−1

8n2Df (f(x′))−n2−m + 2Df (f(x′))−n−1
=

1

16n2−m + 1
≥ 1

1
16n2 + 1

≥ 1− 1

16n2

where the first inequality is by Equation 12, the second inequality is since (by definition) Prx← Un [f(x) =
f(x′)] ≥ 2Df (f(x′))−n−1 and the third inequality in since Df (f(x′)) ≥ Df (f1(x′, h)) (recall that f(x′)
is a heavy-zero-iteration of z = g(x′, h′, h′E) = (f1(x′, h), h′E(f(x′)), h′E)).
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4.1.2 Constructing A Pseudo-Entropy Pair

The following theorem states that (a slightly modified version of) g along with the appropriate
predicate is a ( 1

2 , α)-PEP for any α that is noticeably smaller than 1
2n , where the modification is

just in order to incorporate the GL hardcore predicate randomness in the input of g.

Theorem 4.7 Let H, HE and g be as in Definition 4.2. For r ∈ {0, 1}n let g′(x, h, hE , r) =
(g(x, h, hE), r) and let b(x, h, hE , r) = br(f(x)), where br is the Goldreich-Levin predicate (see
Theorem 2.7). Let Un,H,HE and Rn be random variables uniformly distributed over {0, 1}n,H,HE

and {0, 1}n respectively, then the following hold:

1. H(b(Un,H,HE , Rn) | g′(Un,H,HE , Rn)) ≤ 1
2 .

2. b is a
(

1
2 + α

)
-hard predicate of g′, for any α that is noticeably smaller than 1

2n .

Hence (g′, b) is a ( 1
2 , α)-PEP, for any α that is noticeably smaller than 1

2n .

(Proving 1): Let β be the probability that a random output element of g has a (1 − 1
16n2 )-

dominating-zero-iteration. Hence,

H(b(Un,H,HE , Rn) | g′(Un,H,HE , Rn)) = H(b(Un,H,HE , Rn) | (g(Un,H,HE), Rn))

≤ βH(
1

16n2
, 1− 1

16n2
) + (1− β) < β(

1

16n2
(1− 1

16n2
))1/2 + (1− β) < 1− β(1− 1

4n
)

where the second inequality is due to the fact that H(p, q) ≤ (pq)1/ ln 4 < (pq)1/2. The proof of
Lemma 4.3[1] also yields that the probability that x0 is “heavier” than x1 is at least 1

2+ 1
2n and there-

fore, the probability that z has a heavy-zero-iteration is at least 1
2+ 1

2n . Where Lemma 4.6 states that
conditioned that z has a heavy-zero-iteration, z has a (1− 1

16n2 )-dominating-zero-iteration with prob-
ability at least 1− 1

4n . Hence β ≥ 1
2 + 1

2n − 1
4n and thus H(b(Un,H,HE , Un) | g′(Un,H,HE , Rn)) <

1− (1
2 + 1

4n)(1 − 1
4n) < 1

2 .

(Proving 2): By Lemma 4.3 it is hard to compute x0 given g(x, h, hE) over 1
2 + 1

2n fraction of
g’s inputs. Hence, by Theorem 2.7 is hard to predict the Goldreich-Levin predicate invoked on x0

with probability non-negligibly better than 1
2 + 1

2n . Thus, b is a
(

1
2 + α

)
-hard predicate of g′ for

any α that is noticeably smaller than 1
2n .

5 Hardness Amplification Of Regular One-Way Functions

In this section we present an efficient hardness amplification of any regular weak one-way function.
As mentioned in the introduction (Section 1.2), the key to hardness amplification lies in the fact
that every α-weak one-way function has a failing-set for every efficient algorithm. This is a set of
density almost α that the algorithm fails to invert f upon. Sampling sufficiently many independent
inputs to f is bound to hit every failing set and thus fail every algorithm. Indeed, the basic hardness
amplification of Yao [Yao82] does exactly this. Since independent sampling requires a long input,
we turn to use the randomized iterate, which together with the derandomization method, reduces
the input length to O(n log n).

As a first step, we show that f̂m (the mth explicit randomized iterate of f) is a strong one-way
function (for the proper choice of m). The basic intuition is that every iteration of the randomized
iterate gives a random element in Im(f) and thus these iterations are bound to hit every significantly
large failing-set. However, the proof is more subtle than this. Details follow:
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5.1 The Construction

We show that the mth explicit randomized iterate of an α(n)-weak (unknown) regular one-way
function, where m equals d 4n

α(n)e, is a (strong) one-way function. For simplicity we assume that
the underlying weak one-way function is length-preserving, where the adaptation to any regular
one-way function is the same as in Section 3.

Theorem 5.1 Let f : {0, 1}n → {0, 1}n be a regular α(n)-weak one-way function, let m = d 4n
α(n) e

and let f̂m and H be as in Definition 3.1. Then f̂m is a one-way function.
More precisely, let ns = nm, let Tf (n) be the computing-time of f and let A be an algorithm

that inverts f̂m with probability ε(ns) and running-time TA(ns). Then, algorithm A can be used to
construct an algorithm that inverts f with probability 1− α/2 − 2−n and running-time
O

(
(Tf (n) + TA(ns))n

11/α(n)7ε(ns)
6
)
.

Proof: Let A be an algorithm that inverts f̂m with probability ε(ns), that is Pr
ẑ ← f̂m(Un,Hm)

[A(ẑ) ∈
f̂m
−1

(ẑ)] > ε. (For clarity we write ε and α instead of ε(ns) and α(n), and mark the output elements

of f̂m with ̂ ). We prove that the existence of A implies the existence of an efficient algorithm BA

that inverts f with non-negligible success probability over any set of density α/2. Thus BA has no
failing-set of density α/2 w.r.t. f , a contradiction to the hardness of f . Formally,

Definition 5.2 (Failing-Set) Let g : {0, 1}n → {0, 1}`(n) and let δ be some positive function
over N. We say that {Sn ⊆ Im(g({0, 1}n)}n∈N

is a δ-failing-set of g w.r.t. an algorithm D, if
Prx← Un [f(x) ∈ Sn] ≥ δ(n) and,

Pr
y ← g(Un)

[D(y) ∈ g−1(y) | y ∈ Sn] ∈ neg(n)

We first prove (in Lemma 5.3) that f has a α
2 -failing-set for any efficient algorithm. Then we

prove (in Lemma 5.4) that the existence of A implies the existence of an efficient algorithm BA

that inverts f with non-negligible probability over any set of density α/2, thus the algorithm BA

has no α
2 -failing-set and a contradiction is derived.

Lemma 5.3 Let g be an γ-weak one-way function, then for any ppt D there exists a γ
2 -failing-set

of g.
More precisely, let Tg(n) and TD(n) be the running-time of g and D respectively. Given that

D inverts g with probability δ over any subset of density γ/2, then algorithm D can be used to
construct an algorithm that inverts g with success probability 1 − γ/2 − 2−n and running-time
O(nTg(n)TD(n)/δ).

Proof: For a fixed n, Let L ⊆ Im(g) be the set of elements that D inverts with probability less
than δ (i.e., for each y ∈ L it holds that Pr[D(y) ∈ g−1(y)] < δ). By the definition of D if follows
that Prx← Un [g(x) ∈ L] < γ/2. Now let MD be the algorithm that on input y ∈ Im(g) invokes D
on input y repeatedly n/δ times and checks for success. Hence, M D inverts any input y ∈ Im(g)\L
with probability 1− 2−n and thus, MD inverts g with probability 1−γ/2− 2−n. Contradicting the
hardness of g.

We next show how to use the inverting algorithm A to construct an algorithm BA that has
no α

2 -failing-set of f . For a given i ∈ [m] let MA
i be the following procedure for inverting the

last-iteration of f̂ i:
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MA
i on input (y, h1 . . . , hi) ∈ Im(f̂ i):

1. Choose uniformly and independently at random hi+1, . . . , hm ∈ H and let w =
fm−i(y, hi+1, . . . , hm).

2. Apply A(w, h1, . . . , hm) to get an output (x, h′1, . . . , h
′
m).

3. If f i(x, h1, . . . , hi) = y output f i−1(x, h1, . . . , hi−1), otherwise abort.

and let BA be the following procedure for inverting f :

BA on input y ∈ Im(f):

1. Choose a random h1, . . . , hm ∈ H.

2. For each i ∈ [m] set xi = MA
i (y, h1, . . . , hi).

3. If there exists an i such that f(xi) = y output xi, otherwise abort.

Lemma 5.4 BA inverts f over any set of density α/2 with probability Ω( ε6

m7 ) and running-time
O(m2(Tf (n) + TA(ns))).

Note that combining Lemma 5.3 and Lemma 5.4 yields the existence of an algorithm that inverts
f with probability 1 − α/2 − 2−n and running-time O

(
(Tf (n) + TA(ns))nm10/ε6

)
, which proves

Theorem 5.1.

Proof: [of Lemma 5.4] The heart of the proof is in the following lemma that states that for any
sufficiently dense subset S ⊆ Im(f) there exists an index i such that M A

i inverts the last-iteration

of f̂ i over S ×Hi with non-negligible success probability.

Lemma 5.5 For any subset S ⊆ Im(f) of density, w.r.t. f(Un), at least α/2, there exists an index
i ∈ [m] such that the following holds,

Pr
ẑ=(w,h1,...,hi)← f̂ i(Un,Hi)

[MA
i inverts the last-iteration of ẑ | w ∈ S] > ε2/16m2

Let S ⊆ Im(f) be a subset of density β ≥ α/2 w.r.t. f(Un). For each i ∈ [m] let Li ⊆ S ×Hi

be the set of elements that algorithm MA
i inverts their last iteration with probability at least ε2

32m2 .

Claim 5.6 ∃i ∈ [m] such that Li is of density βε2

32m2 w.r.t. f̂ i(Un,Hi).

Proof: By Lemma 5.5 there exists an i ∈ [m] such that the following holds (all of the following

probabilities are over ẑ = (w, h1, . . . , hi) ← f̂ i(Un,Hi)),

Pr[f(hi(M
A
i (ẑ))) = w | w ∈ S] > ε2/16m2
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On the other hand,

Pr[f(hi(M
A
i (ẑ))) = w | w ∈ S] =

Pr[f(hi(M
A
i (ẑ))) = w

∧
ẑ ∈ Li | w ∈ S] + Pr[f(hi(M

A
i (ẑ))) = w

∧
ẑ ∈ Li | w ∈ S] ≤

Pr[ẑ ∈ Li | w ∈ S] +
ε2

32m2

where the last inequality is by the definition of Li. Thus Pr[ẑ ∈ Li | w ∈ S] > ε2

32m2 and therefore

Pr[ẑ ∈ Li] ≥ Pr[ẑ ∈ Li | w ∈ S] · Pr[w ∈ S] >
βε2

32m2

Let j ∈ [m] be the index guaranteed by the above claim to have

Pr
ẑ=(w,h1,...,hj)← f̂j(Un,Hj)

[ẑ ∈ Lj ] ≥ Pr[ẑ ∈ Lj | w ∈ S] · Pr[w ∈ S] >
βε2

32m2

By Lemma 3.4 (letting T = Lj) we have that,

Pr
(w,h1,...,hj)← (f(Un),Hj)

[(w, h1, . . . , hj) ∈ Lj] ≥ (
βε2

64m2
)2/(j + 1) ∈ Ω(

β2ε2

m4
)

and thus conditioning on w ∈ S,

Pr
(w,h1,...,hj)← (f(Un),Hj)

[(w, h1, . . . , hj) ∈ L | w ∈ S] ∈ Ω(
βε2

m4
) = Ω(

αε2

m4
)

Since MA
j inverts each of the elements of Lj with probability ε2

32m2 , then

Pr
(w,h1,...,hj)← (f(Un),Hj)

[MA
j inverts the last-iteration of (w, h1, . . . , hj) | w ∈ S] ∈ Ω(

αε6

m7
)

Finally, since BA enumerates all possible i ∈ [m], it inverts f over S with probability O( αε6

m7 ).
Note that each invocation of MA

i involves m invocation of f and one invocation of A, hence the
running-time of BA is O(m2(Tf (n) + TA(ns))).

Proof: [of Lemma 5.5] Through the rest of this section we allow ourselves to view f̂m and fm

also as functions over Im(f) × Hm rather than over {0, 1}n × Hm, where fm(y, h1, . . . , hm) for
y ∈ Im(f) stands for fm(x, h1, . . . , hm) for some x ∈ f−1(y). (Note that the above is well defined
since for any x, x′ ∈ f−1(y) it holds that fm(x, h1, . . . , hm) = fm(x′, h1, . . . , hm)).

By Lemma 3.4 the collision-probability of f m equals m
|Im(f)| , actually the proof yields the fol-

lowing: For any y 6= y′ ∈ Im(f)

Pr
(h1,...,hm)←Hm

[fm(y, h1, . . . , hm) = fm(y′, h1, . . . , hm)] =
m

|Im(f)| (13)

For any ẑ = (w, h1, . . . , hm) ∈ Im(f̂m) we define the set Bẑ =
{
y ∈ Im(f) | f̂m(y, h1, . . . , hm) = ẑ

}
.

Therefore, for any y ∈ Im(f),

Ex
(h1,...,hm)←Hm

[
∣∣∣Bf̂m(y,h1,...,hm)

∣∣∣] =

1 +
∑

y′ 6=y∈Im(f)

Ex
(h1,...,hm)←Hm

[fm(y′, h1, . . . , hm) = fm(y, h1, . . . , hm)] < m + 1
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where the inequality is due to Equation 13. Hence, by Markov’s inequality Pr
ẑ ← f̂m(Un,Hm)

[|Bẑ| >
4m/ε] < ε/2, and since we assumed that A is inverts f̂m with probability ε,

Pr
ẑ ← f̂m(Un,Hm)

[A(ẑ) ∈ f̂m
−1

(ẑ)
∧
|Bẑ| ≤ 4m/ε] > ε/2 (14)

Now let S ⊆ Im(f) be a set of density α/2. By the pairwise independence of H (actually a one-
wise family suffices), we have that for any y ∈ Im(f), i ∈ [m] and h1, . . . , hi−1 ∈ H, it holds
that Prhi ←H[f i(y, h1, . . . , hi) ∈ S] ≥ α/2. Since each h is chosen independently, then for any
y ∈ Im(f) it holds that Pr(h1,...,hm)←Hm [∃i ∈ [m] such that f i(y, h1, . . . , hi) ∈ S] > 1 − 2−2n

(recall that m = d 4n
α e). Hence by a union bound,

Pr
ẑ=(w,h1,...,hm)← f̂m(Un,Hm)

[∀y ∈ Bẑ ∃i ∈ [m] such that f i(y, h1, . . . , hi) ∈ S] > 1− |Bẑ| 2−2n ≥ 1− 2−n

Combining the above Equation and Equation 14 we have that,

Pr
ẑ=(w,h1,...,hm)← f̂m(Un,Hm)

[A(ẑ) ∈ f̂m
−1

(ẑ)
∧
|Bẑ| ≤ 4m/ε

∧
∀y ∈ Bẑ ∃i ∈ [m] such that f i(y, h1, . . . , hi) ∈ S]

> ε/2 − 2−n > ε/4

Let A(ẑ)1 be the first output element of A(ẑ). Clearly if A(ẑ) ∈ f̂m
−1

(ẑ) then f(A(ẑ)1) ∈ Bẑ.
Thus,

Pr
ẑ=(w,h1,...,hm)← f̂m(Un,Hm)

[A(ẑ) ∈ f̂m
−1

(ẑ)
∧
|Bẑ| ≤ 4m/ε

∧
∃i ∈ [m] such that f i(A(ẑ)1, h1, . . . , hi) ∈ S]

> ε/4

and by an averaging argument there exists an index k ∈ [m] such that,

Pr
ẑ=(w,h1,...,hm)← f̂m(Un,Hm)

[A(ẑ) ∈ f̂m
−1

(ẑ)
∧
|Bẑ| ≤ 4m/ε | fk(A(ẑ)1, h1, . . . , hk) ∈ S] > ε/4m

Since we have required that Bẑ is small (i.e., less than 4m/ε) and since by the regularity of f any
elements in Bẑ happens with the same probability, then

Pr
ẑ=(w,h1,...,hm)← f̂m(Un,Hm),y ← Bẑ

[f(A(ẑ)1) = y | f i(A(ẑ)1, h1, . . . , hi) ∈ S] > ε/4m · ε/4m = ε2/16m2

or equivalently,

Pr
(x,h1...,hm)← (Un,Hm)

[f(A(f̂m(x, h1 . . . , hm))1) = f(x) | f i(x, h1 . . . , hi) ∈ S] > ε2/16m2

To conclude, we note that the above probability is a lower-bound on the probability of the following

event: MA
i inverts the last-iteration of f̂ i(x, h1 . . . , hi) conditioned that f i(x, h1 . . . , hi) ∈ S.

5.2 An Almost-Linear-Input Construction

In this section we derandomize the randomized iterate used in Section 5.1 to get a (strong) one-way
function with input length O(n log n). We use the bounded-space generator of either [Nis92] or
[INW94] (see Theorem 2.12).

29



Theorem 5.7 Let f , m and fm be as in Theorem 5.1, let BSG be a generator against (2n, n+1, 2n)-
LBP with seed length ñ ∈ O(n log n) and error 2−2n. Define f ′ : {0, 1}n×{0, 1}ñ → {0, 1}n×{0, 1}ñ
as

f ′(x, h̃) = (fm(x, h1, . . . , hm), h̃)

where x ∈ {0, 1}n, h̃ ∈ {0, 1}ñ and h1, . . . , hm = BSG(h̃). Then f ′ is a one-way function.

Proof idea: The proof of the derandomized version follows the proof of Theorem 5.1. In the proof
we used the following properties of the family H.

1. Collision-probability - for any y 6= y ′ ∈ Im(f) and k ∈ {0, . . . ,m}

Pr
(h1,...,hk)←Hk

[fk(y, h1, . . . , hk) = fk(y′, h1, . . . , hk)] =
k

|Im(f)|

2. Hitting - for all y ∈ Im(f) and S ⊆ Im(f) of density α/2

Pr
(h1,...,hm)←Hm

[∃i ∈ [m] such that fm(y, h1, . . . , hm) ∈ S] > 1− 2−2n

Note that the above two properties can be verified by an (2n, n+1, 2n)-LBP. Thus, when choosing
the h’s as the output of a 2−2n-error BSG against (2n, n + 1, 2n)-LBP’s, the above properties hold
with deviation at most 2−2n. Going through the proof of Theorem 5.1, it is not hard to verify that
the proof remains valid also when the above deviations are taking into account. (See the proof of
Theorem 3.6 for a more detailed proof on a similar derandomization).

The Overall Time-Success Ratio: Combining the above and Theorem 5.1 we get the fol-
lowing: Let ns = ñ + n, let Tf (n) be the computing-time of f and let A be an algorithm

that inverts f̂m with probability ε(ns) and running-time TA(ns). Then, algorithm A can be
used to construct an algorithm that inverts f with probability 1 − α/2 − 2−n and running-time
O

(
(Tf (n) + TA(ns))n

8/α(n)7ε(ns)
6
)
.
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Appendix

A Using a Pseudo-Entropy Pair to Implement a Pseudorandom

Generator

Following is a high-level overview of the reduction between a pseudo-entropy pair (PEP) (Definition
4.1) and a pseudorandom generator (Definition 2.9). This overview is mainly based on [HILL99],
though it proves a more general statement than the original one. Specifically, the original proof of
[HILL99] was tailored for the specific PEP used in their paper and the proof here is modified to
enable the use of any PEP. For this modification we also generalize the [HILL99] “uniform extrac-
tion lemma” ([HILL99, Lemma 6.5]) and give it a new proof based on the Holenstein’s “uniform
hardcore lemma” [Hol05, Lemma 2.5]. 11 We note that the latter might be of an independent
interest.

Throughout this section we use somewhat different terminology than the one used by [HILL99]
and in particular the notion of the pseudo-entropy pair was only implicit in [HILL99]. We also
use general explicit-extractors (see Definition A.3) rather than the efficient family of pairwise-
independent hash functions that was used as an extractor in several steps in the original construc-
tion.

A.1 High-Level Overview

The pseudo-entropy of a distribution is at least k if it is computationally-indistinguishable from
some samplable distribution that has entropy k. Informally, a pseudo-entropy pair (PEP) is a pair
of function and predicate (g, b) such that the conditional pseudo-entropy of the distribution b(x)
when given g(x), is noticeably larger than the conditional entropy of this distribution. Namely,
(g, b) is a (δ, γ)-PEP, if the conditional pseudo-entropy of b given g is at least δ + γ while the
conditional entropy is not more than δ.12 The reduction is achieved in three steps as follows.

11The fact that [HILL99, Lemma 6.5] can be proved using [Hol05, Lemma 2.5], was mentioned in the oral presen-
tation of [Hol05].

12For some technical reasons, it does not suffice that b has a conditional pseudo-entropy δ + γ, but rather we need
that b is a (δ + γ)-hard predicate of g (see Definition 2.8).
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A.1.1 Using a Pseudo-Entropy Pair to Implement a False-Entropy Generator

A “false-entropy generator” is a function where the pseudo-entropy of the output’s distribution is
noticeably larger than it’s real entropy. The basic idea of the construction is to use extractor in
order to extract the conditional pseudo-entropy of b and then concatenate the extractor’s output to
g. More precisely, let (g, b) be a (δ, γ)-PEP, for the proper value of m we let gm be a concatenation
of m independent copies of g and let Ext be an extractor for min-entropy (δ + γ/2)m with output

length (δ + γ/4)m. We let g′(x)
def
= (gm(x1, . . . , x

m), Ext(b(x1), . . . , b(xm))) and look at the condi-
tional distribution of the extractor’s input (i.e., b(x1), . . . , b(xm)) given the value of gm(x1, . . . , x

m).
When choosing m properly, we are guaranteed by the computational unpredictability of b (recall
that b is a (δ +γ)-hard predicate of g) that the latter (conditional) distribution is computationally-
indistinguishable from some distribution with min-entropy (δ + γ/2)m. (The latter claim is the
crux of this step, further details are given in Section A.2). Thus, the output of the extractor seems
uniform to any efficient algorithm that possess (b(x1), . . . , b(xm)). Therefore, the output distribu-
tion of g′ is computational-indistinguishable from the output distribution of gm concatenated with
the uniform distribution over strings of length (δ + γ/4)m. Hence, the output pseudo-entropy of
g′ is at least the output entropy gm plus (δ + γ/4)m, which is larger than the output entropy of g ′

(i.e., at most the output entropy of gm plus δm) and thus g′ is a false-entropy generator. Since the
above implementation diverts from the original one, we describe it fully in Section A.2.

A.1.2 Using a False-Entropy Generator to Implement a Pseudo-Entropy Generator

A “pseudo-entropy generator” is a function whose output’s pseudo-entropy is noticeably larger than
its input’s (unconditional) entropy. The basic idea of the construction is similar to the one used in
the previous section. Let g be a false-entropy generator and let ` be the conditional entropy of g’s
input given its output. For the proper value of m we let gm be a concatenation of m independent
copies of g. We use an extractor in order to extract (a bit less than) `m bits from the input of gm

and then concatenate the extractor’s output to the output of gm. Thus, the output distribution
of the new primitive is indistinguishable (information-theoretically) from the output distribution
of gm concatenated with the uniform distribution over strings of length `m. Therefore, the new
primitive output pseudo-entropy is more than its (unconditional) input entropy.

In the above step, however, we encounter an additional difficulty in comparison to the first step
of the reduction (see Section A.1.1). Namely the value of ` (i.e., the conditional entropy of g’s
input) is not given and might not be efficiently computable. Note that if we underestimate `, that
is we extract too few bits, then the output pseudo-entropy of the new primitive might be less than
the its input entropy. On the other hand, if we extract too many bits, then the pseudo-entropy
of the underlying false-entropy generator might disappear altogether and thus the pseudo-entropy
of the new primitive is simply its input entropy.13 It turns out, however, that a rather “rough”
estimation of the value of ` suffices (i.e., an estimation that can be expressed using logarithmic
number of bits). Such a construction that requires a short hint to go through was called a mildly
non-uniform construction in [HILL99]. Combining the above non-uniform construction with the
reduction to pseudorandom generator’s (see Section A.1.3), gives a mildly non-uniform construction
of a pseudorandom generator. The non-uniform pseudorandom generator is then used to construct
a uniform one by the following “combiner”.

1. For each possible value of the non-uniform advice construct a candidate pseudorandom gen-

13Consider for example the extreme case where we extract all the (unconditional) entropy of the input, clearly the
output of the new primitive is easily distinguished from any distribution with more entropy.
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erator.

2. Increase the output length of each candidate using the standard transformation of Goldreich
and Micali (c.f. [Gol01, Theorem 3.3.3]), such that the output of each candidate is longer
than the total input length of all the candidates.

3. Combine the outputs of all generators into one output using an XOR of the outputs to get a
uniform pseudorandom generator.

Note that the above enumeration requires an altogether longer input as well as sequential applica-
tions of the underlying one-way function and thus reduces the efficiency and security of the resulting
construction.

Remark: Note that in the [HILL99] implementation of a PEP (see Section A.4), the upper-bound
of the (real) conditional entropy of b given g (i.e., δ) is unknown (unlike in the PEP presented in
this paper, see Section 4.1.2, where it is guaranteed to be 1

2). Thus, when the HILL PEP is used
in the first step of the reduction (see Section A.1.1), it yields a mildly non-uniform false-entropy
generator. We stress that in such a case the two non-uniform hints (in the two different steps of the
HILL construction) are different hints.14 Therefore, each such non-uniformity should be resolved
separately or alternatively the non-uniformity used is of double length. In particular, the deterio-
ration in the security and efficiency of the resulting pseudorandom generator is accumulated (i.e.,
doubled).

A.1.3 Using a Pseudo-Entropy Generator to Implement a Pseudorandom Generator

In the final step of the reduction, an extractor is applied to the output of the pseudo-entropy
generator. The resulting output distribution is computationally-indistinguishable from the uniform
distribution of strings of length longer than the input length. Therefore, we have constructed a
pseudorandom generator. Again, in the actual construction we consider the concatenation of many
independent copies of the pseudo-entropy generator.

Remark: In each of the above steps a concatenation of many independent copies of the underlying
primitive is required. It turns out that doing this repetition only once, say in the first step, suffices
for all the other steps as well.

A.2 A False-Entropy Generator from a Pseudo-Entropy Pair

As previously mentioned, the first step of the [HILL99] reduction from pseudorandom generator to a
PEP (that is, a false-entropy generator using a PEP) was tailored for their specific implementation
and does not suit the general definition of a PEP (Definition 4.1) used in this paper. Following is
a new reduction that suits any PEP. We start with some definitions.

14Let f : {0, 1}n → {0, 1}`(n) be the underlying one-way function of the HILL PEP, and let Rn be the random
variable defined by Df (f(Un)). The two non-uniform hints required by the first and second steps of the HILL
construction are the expectation of Rn and the expectation of R2

n respectively. Interestingly, when using our new
PEP (Section 4.1.2) to construct the false-entropy generator, the only non-uniform hint needed is the expectation of
R2

n (where now Rn is defined w.r.t. the one-way function used in our construction).
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Definition A.1 (Pseudo-Entropy) Let {Xn} be a distribution ensemble and let k be a posi-
tive function over N. The pseudo-entropy of {Xn} is at least k, if there exists a polynomial-time
samplable distribution ensemble {Yn} which is computationally-indistinguishable from {Xn} and
H(Yn) ≥ k(n).

Definition A.2 (False-entropy generator) Let g : {0, 1}n → {0, 1}`(n) be a polynomial-time
computable function. g is a false-entropy generator if the pseudo-entropy of g(Un) is noticeably
larger than n.

Definition A.3 (explicit strong extractors) [NZ96] A polynomial-computable function Ext :
{0, 1}n × {0, 1}d → {0, 1}m is an explicit (k, ε)-strong extractor if for every distribution X over
{0, 1}n with H∞(X) ≥ k, the distribution (Ext(X,Y ), Y ) is ε-close to (Um, Y ) where Y is uniform
over {0, 1}d.

We find that the presentation of the construction and proof is clearer when taking the second
parameter of the PEP to be a specific real function (this parameter measures the gap between
real and pseudo entropy). In particular, we use the function 1

3n that fits both the HILL and our
constructions. The extension to the general case is straightforward.

Construction A.4 (Constructing a False-entropy-generator using a PEP) Let (f, b) be a

(δ, 1
3n)-PEP. Let r = 8(δn3 + n2

12 ), let d ∈ θ(n) and let Ext : {0, 1}8n3 × {0, 1}d → {0, 1}r+d be an

explicit (8(δn3 + n2

6 ), 2−n)-strong extractor.15 We define g as:

g(x1, . . . , x8n3 , y) = (f(x1), . . . , f(x8n3), y, Ext(b(x1), . . . , b(x8n3), y))

where x1, . . . , x8n3 ∈ {0, 1}n and y ∈ {0, 1}d.

Lemma A.5 There exists a samplable distribution ξ with the following properties.

1. H(ξ) ≥ H(g(U8n4+d)) + 2
3n2.

2. ξ and g(U8n4+d) are computationally indistinguishable.

Hence, g is a false-entropy generator.

Proof: Let ξ be the output distribution of the following function:

g′(x1, . . . , x8n3 , y, z) = (f(x1), . . . , f(x8n3), y, z) (15)

where x1, . . . , x8n3 ∈ {0, 1}n, y ∈ {0, 1}d and z ∈ {0, 1}r . Clearly ξ is polynomial-time samplable,
we prove that it also fulfills the other properties of Lemma A.5.

(Proving 1): Since ξ and g(U8n4+d) are identical when excluding the last r bits, then their
entropy only varies in the additional entropy of the last r bits. In ξ the last r bits are uniformly
and independently chosen and thus have entropy r. On the other hand, the additional entropy in
the last r bits of g(U8n4+d) is no more than the conditional entropy of the bits (b(x1), . . . , b(x8n3))
when given the first part of g(U8n4+d) (i.e., (f(x1), . . . , f(x8n3))). Since (b(x1), . . . , b(x8n3)) is a
concatenation of independent random-variables, the above additional entropy equals 8n3 times the
additional entropy of b(x) given f(x). Finally, since (f, b) is a (δ, 1

3n)-PEP, the above additional

entropy is no larger than δ8n3 and thus H(ξ)−H(g(U8n4+d)) ≥ r − δ8n3 = 8n2

12 = 2
3n2.

15For example we take the extractor of [SZ99].
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(Proving 2): Let L ⊆ {0, 1}n be any subset of density δ + 1
3n , therefore the expectation of the

number of inputs in {x1, . . . , x8n3} that hit L is 8(δn3 + n2

3 ). By a Chernoff bound it holds that the

probability that at least 8(δn3 + n2

6 ) out of {x1, . . . , x8n3} are in L is more than 1−2e−n. The proof
is concluded by applying the uniform extraction lemma (Lemma A.6) that is stated and proved in
the next section. The Lemma implies that no ppt can distinguish between g(U8n4+d) and ξ with
probability (non-negligibly) better than 2e−n + 2−n < 3 · 2−n.

A.3 A Uniform Extraction Lemma

The following lemma is a generalization of the (uniform version) of Yao’s XOR lemma. Given m
independent “δ-hard” bits (i.e., it is hard to predict each bit with probability better than 1−δ/2), we
would like to extract approximately δm pseudorandom bits out of them. The version we present
here generalizes [HILL99, Lemma 6.5]). In particular the original lemma required the hardcore
predicate to have a hardcore-set (i.e., a subset of inputs such that the value of the predicate is
unpredictable (computationally) over this subset), where in the following lemma this property is
no longer required. In addition, the original lemma was tailored for the specific function and
predicate it was used with, where the following lemma suits any hard predicate. Finally, the
original lemma is stated using an efficient family of pairwise-independent hash functions, where
the following lemma is stated using explicit extractors. The lemma is proven using Holenstein’s
“uniform hardcore lemma” [Hol05].

Lemma A.6 [A uniform extraction lemma] Let f : {0, 1}n → {0, 1}`(n) be a polynomial-time
computable function, let δ be some polynomial fraction and let b : {0, 1}n → {0, 1} be a δ-hard
predicate of f . Let m, k, r ∈ N and let ρ be the probability that when taking m independent samples
in {0, 1}n less than k samples are in some fixed set of density δ. Let Ext : {0, 1}m×{0, 1}d → {0, 1}r
be a (k, ε)-strong-extractor.16 Finally, let

D = (f(x1), . . . , f(xm), y, Ext(y, b(x1), . . . , b(xm))),

ξ = (f(x1), . . . , f(xm), y, z),

where x1, . . . , xm ∈ {0, 1}n, y ∈ {0, 1}d and z ∈ {0, 1}r . Then no ppt can distinguish between D
and ξ with probability (non-negligibly) better than ρ + ε.

Proof: Informally, [Hol05, Lemma 2.5] states that given a δ-hard predicate b : {0, 1}n → {0, 1}
and an inverting algorithm M , there exists some samplable subset S ⊆ {0, 1}n of density δ such
that the following holds: M cannot predict b over S (with success probability better than flipping a
random coin) even when given access to χS , the characteristic function of S. More precisely, there
is no ppt algorithm M that for any subset S ⊆ {0, 1}n of density δ, the algorithm gets χS and
outputs a circuit that given f(x), predicts b(x) with probability noticeably better than 1

2 . Where
the probability is over a uniform choice of x in S and the random coins of M .

We assume towards a contradiction that there exists an efficient algorithm A that distinguishes
between D and ξ with probability non-negligibly better than ρ + ε and use this algorithm to
contradict [Hol05, Lemma 2.5]. W.l.o.g. let A be an efficient algorithm such that, Prx← D[A(x)]−
Prx← ξ[A(x)] > ρ + ε + ν for some polynomial fraction ν(n) = 1/poly(n) (for simplicity we simply

16Ext can be a strong-extractor, a Renyi entropy extractor or even a bit-fixing source extractor. For more details
on different type of extractors c.f. [Sha02].
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write ν). For a given set S ⊆ {0, 1}n of density δ, we define the following, not necessarily efficiently
computable, predicate Q : {0, 1}n → {0, 1}.

Q(x) =

{
U1 x ∈ S,

b(x) otherwise.

For any i ∈ {0, . . . ,m}, the ith hybrid of D is defined as:

Di = (f(x1), . . . , f(xm), y, Ext(y, b(x1), . . . , b(xi), Q(xi+1), . . . , Q(xm))),

where x1, . . . , xm ∈ {0, 1}n and y ∈ {0, 1}d. Note that Dm is simply D. On the other hand, D0

is ε-close to ξ as long as at least k of the random inputs are in S. Thus altogether the statistical
difference between D0 and ξ is at most ρ + ε. Hence, by a standard hybrid argument we deduce
that there exists a j ∈ {0, . . . ,m− 1} such that A distinguishes between Dj and Dj+1 with success
probability ν/m. Moreover, Since Dj and Dj+1 are identical given that xj+1 /∈ S, it follows that A
achieves this distinguishing probability between Dj and Dj+1 also when it is given that xj+1 ∈ S.
Finally, note that the only difference between Dj and Dj+1 given that xj+1 ∈ S is whether the
(j + 1)th input to Ext is b(xj) or a random input.

Having the above we are ready to define an oracle aided algorithm that contradicts [Hol05,
Lemma 2.5]. We will use the characteristic function χS in order to sample Dj, note that in the
non-uniform model χS is not needed since we could simply hardwire into the algorithm a good
sample of Dj. Also note that the circuit returned by the following algorithm does not predict b(x)
given f(x), but rather distinguishes between (f(x), b(x)) and (f(x), U1). The two tasks, however,
are equivalent due to standard reduction.

MA with oracle χS:

1. Using χS, find a j ∈ {0, . . . ,m− 1} such that, with probability at least 1 − 2−n, A
distinguishes between Dj and Dj+1 with success probability at least ν/2m.

2. Sample B, an instance of Dj (again using χS).

3. Return the circuit that on input (y, b) replaces f(xj+1) and b(xj+1) in B by y and
b respectively and outputs A(B).

Hence, the output circuit of MA distinguishes between (f(x), b(x)) and (f(x), U) with proba-
bility at least ν/m− 2−n.

A.4 The HILL Implementation of a Pseudo-Entropy Pair

Construction A.7 (The HILL PEP) Let f : {0, 1}n → {0, 1}`(n) be a one-way function and let
b be a hardcore predicate of f (note that by Theorem 2.7 such a predicate is guaranteed to exist).
Let H be an efficient family of pairwise-independent hash functions from {0, 1}n to {0, 1}n. Let
fH(x, h, i) = (f(x), hi+2dlog(n)e(x), h, i) and bH(x, h, i) = b(x), where x ∈ {0, 1}n, h ∈ H, i ∈ [n]
and hk(x) stands for the first k bits of h(x).

[HILL99] have, implicitly, proved that (fH , bH) is a (p + 1
2n , α)-PEP, where

p
def
= Pr(x,i)← (Un,[n])[Df (f(x)) < i] and α is any fraction noticeably smaller than 1

n . The proof
goes by showing that it is hard to predict the hardcore-bit of an input element (x, h, i) ∈ Im(fH)
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whenever i ≤ Df (f(x)). Roughly speaking, the reason is that in such a case, (hi+2dlog(n)e(x), h, i)
does not contain any noticeable information about x. Thus, it is essentially as hard to predict
bH(x, h, i) = b(x) given fH(x, h, i) as it is to predict b(x) given f(x). Since the probability that
i = Df (x) is 1

n , it follows that for any α noticeably smaller than 1
n it holds that bH is a (p+α)-hard

predicate of fH .
On the other hand, by the pairwise independence of H, whenever i ≥ Df (x) there is almost no

entropy (i.e., less then 1/2n) in bH(x, h, i) given fH(x, h, i). Thus, the entropy of bH(x, h, i) given
fH(x, h, i) is not more than p + 1

2n .

B Length Preserving One-Way Functions

We prove the folklore fact that when given a one-way function it can be assumed w.l.o.g. that it
is a length-preserving one. More precisely, we prove that any one-way function can be used to
construct a length-preserving one-way function with the same (up to linear factor) security-ratio.

Lemma B.1 Let f : {0, 1}n → {0, 1}`(n) be a one-way function and let H be an efficient family of
2−2n-almost pairwise-independent hash functions from {0, 1}`(n) to {0, 1}2n. Define f ′ as follows:

f ′(xa, xb, h) = (h(f(xa)), h)

where xa, xb ∈ {0, 1}n and h ∈ H. Then f ′ is a length-preserving one-way function.
More precisely, if a ppt A inverts f ′ with probability ν(n) over the choice of (x, h) and the

randomness of A, then there exists a ppt that inverts f with probability at least ν(n)− 2−n+1.

Proof: The function f ′ is length preserving as both input and output are of length 2n + log |H|.
Suppose A inverts f ′ with probability ν, note that xb is a dummy input (used just for padding) so
the success of A is taken over (xa, h) and A’s randomness. Define BA as follows:

BA on input y ∈ Im(f):

1. Choose a random h ∈ H.

2. Apply A(h(y), h) to get an output (xa, xb, h).

3. If f(xa) = y output xb, otherwise abort.

The ppt BA is sure to succeed on any choice of (y, h) so that A succeeds on (h(y), h) and in
addition there exists no z ∈ Im(f) such that h(z) = h(y) (h does not introduce any collision to
y). Denote by GA the set that A succeeds on and by Col the set of (y, h) such that there exists
z ∈ Im(f) such that h(z) = h(y). Thus:

Pr
x← Un

[BA inverts f(x)] ≥ Pr
(x,h)← (Un,H)

[(h(f(x)), h) ∈ GA

∧
(f(x), h) /∈ Col]

= Pr
(x,h)← (Un,H)

[(h(f(x)), h) ∈ GA]−

Pr
(x,h)← (Un,H)

[(h(f(x)), h) ∈ GA

∧
(f(x), h) ∈ Col]

≥ Pr
(x,h)← (Un,H)

[(h(f(x)), h) ∈ GA]− Pr
(x,h)← (Un,H)

[(f(x), h) ∈ Col]
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For all y, z ∈ Im(f) the almost pairwise-independence of h yields that the probability that
h(z) = h(y) is at most 2−2n+1. Since the size of Im(f) in {0, 1}`(n) is at most 2n+1 then a union
bound over all possible z ∈ Im(f) gives that for any y:

Pr
h←H

[∃z ∈ Im(f) such that h(z) = h(y)] ≤ 2−n+1

Therefore, by an averaging argument:

Pr
(x,h)← (Un,H)

[(f(x), h) ∈ Col] ≤ 2−n+1

Putting it together we get that:

Pr
x← Un

[BA inverts f(x)] ≥ ν(n)− 2−n+1

Since the length of the representation of the hash functions in the 2−2n-almost pairwise-independent
family is O(n) bits then we get the following useful corollary:

Corollary B.2 Let f : {0, 1}n → {0, 1}`(n) be a one-way function, then there exists a length-
preserving one-way function with the same (up to constant factor) security-ratio as f .
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