Electronic Colloquium on Computational Complexity, Report No. 136 (2005)

Incremental branching programs

Anna Gal* Michal Koucky' Pierre McKenzie*
Univ. of Texas at Austin CWI, Amsterdam Université de Montréal

November 14, 2005

Abstract

In this paper we propose the study of a new model of restricted branching programs which we call
incremental branching programs. This is in line with the program proposed by Cook in [Co74] as an
approach for separating the class of problems solvable in logarithmic space from problems solvable in
polynomial time, focusing on the P-complete problem GEN. We show that our model captures and
possibly supersedes previously studied structured models of computation for GEN, namely marking
machines [Co74] and Poon’s extension [Po93] of jumping automata on graphs [CoRa80]. We show several
exponential lower bounds for variants of our model although we are unable to prove any strong lower
bounds for the most general variant of incremental branching programs. Some of our techniques also
yield exponential lower bounds without the incrementality restriction, under some other conditions. It
remains open if incremental branching programs are as powerful as unrestricted branching programs for
GEN problems.

1 Introduction

Is the complexity class L of the problems solvable in deterministic logarithmic space properly contained
in the class P of problems solvable in polynomial time? This question arose in the late 1960’s [Co71] and
remains open today. Attempts to better understand the complexity range between L and P have given rise to
beautiful results, both on the upper bound front (e.g. closure of nondeterministic logarithmic space—NL—
under complementation [Im88, Sz88], integer division in L [HABO02], undirected graph s-t-connectivity in L
[Re05]) and the lower bound front (a long line of research on time-space trade-offs for branching programs,
lower bounds for restricted branching programs, for bounded depth circuits, for proof systems, for monotone
circuits, etc.).

As is well known, L is captured by polynomial size branching programs. To separate L from P, it thus
suffices to identify a language in P that no polynomial size branching program can recognize.

In this paper we focus on the problem GEN, a P-complete problem having natural NL-complete and
L-complete subproblems [Co74, JoLa77, BaMc91]. We consider a restriction that all currently known size-
efficient branching programs solving GEN and its subproblems seem to possess. We then prove size lower
bounds for branching programs for GEN obeying this restriction.

Many restricted branching program models exist in the literature (see [We00] for an extensive account).
Our main restricted model, which we call incremental, differs from the branching program restrictions con-
sidered in the literature, in that incrementality is tied to a natural notion of progress associated with solving
GEN instances. Incremental branching programs in fact bear a closer resemblance to Cook’s marking ma-
chines [CoT4] and to Poon’s extension called node-named jumping automata on graphs (NNJAG) [Po93] of
Cook and Rackoff’s jumping automata on graphs [CoRa80].

*Dept. of Computer Science, University of Texas at Austin, Austin, TX 78712, USA. e-mail: panni@cs.utexas.edu. Supported
in part by NSF Grant CCF-0430695 and an Alfred P. Sloan Research Fellowship.

T Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands. On leave from Mathematical Institute of Czech Academy
of Sciences, Praha, Czech Republic. Part of this work was done while being a postdoctoral fellow at McGill University, Montréal,
Québec, Canada. Supported in part by NWO vici project 2004-2009, project No. 1M0021620808 of MSMT CR and grant
201/05/0124 of GA CR, Institutional Research Plan No. AV0Z10190503. e-mail: M.Koucky@cwi.nl

tDept. d’Informatique et recherche opérationnelle, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal (Québec),
H3C 3J7 Canada. e-mail: mckenzie@iro.umontreal.ca Supported by the NSERC of Canada and the (Québec) FQRNT

ISSN 1433-8092

We consider two types of incremental branching programs: syntactic and semantic, depending on where
the restriction is enforced. The distinction between syntactic and semantic restrictions is analogous of
the distinction between syntactic vs. semantic read-k-times branching programs in the literature (see e.g.
[BRS93, We00].) For syntactic incremental branching programs we require incrementality along all graph-
theoretic paths starting from the branching program source, while for semantic incremental programs we
only require incrementality along the paths that are actually traversed by some GEN instance.

Our results are the following (see sections 2 and 3 for the definition of GEN and the precise definitions
of our branching program models):

e We prove that size lower bounds for (deterministic and nondeterministic) syntactic incremental branch-
ing programs for GEN can be obtained from the pebbling-based lower bounds on marking machines of
[Co74, PTCT77], as well as from the monotone circuit depth lower bounds for a version of GEN by Raz
and McKenzie [RaMc99].

e We observe that conversely, size lower bounds for syntactic incremental branching programs imply
marking machine lower bounds. It is interesting to note that monotone circuit depth lower bounds for
certain GEN problems therefore imply marking machine lower bounds.

e We show a connection between deterministic syntactic incremental branching programs solving a
subproblem of GEN (the NL-complete problem GEN(3,4y5)) and NNJAG’s for solving graph s-t-
connectivity.

e We prove the following lower bounds on the size of syntactic incremental branching programs:

— the size of the smallest nondeterministic syntactic incremental branching programs solving n X n
GEN instances is 2/ logn)

— the size of the smallest deterministic syntactic incremental branching programs solving (size n
instances of) the NL-complete problem GEN (2,445 is n2°8m) (which is tight - see below.) We
obtain this lower bound using the NNJAG lower bounds for graph s-t-connectivity of Edmonds,
Poon and Achlioptas [EPA99).

e We observe that the currently best (to our knowledge) upper bounds for GEN and its various subprob-
lems can be achieved by syntactic incremental branching programs:

— GEN can be solved by deterministic syntactic incremental branching programs of size O(n2?2").

— the NL-complete problem GEN 5,.4,,5) can be solved by deterministic syntactic incremental branch-

ing programs of size n@(°gn)

— the L-complete problem GEN(y,4,) has O(n?) size deterministic syntactic incremental branching
programs.

These results show that while syntactic incrementality seems to be a serious restriction, currently we
do not know how to obtain more efficient branching programs without this restriction.

e The NL-complete problem GEN3,4,,) can be solved by O(n?) size nondeterministic syntactic incre-
mental branching programs. This result together with our lower bounds for deterministic syntactic
incremental branching programs for GEN (3,.,,5) gives a super-polynomial separation between the power
of deterministic and nondeterministic syntactic incremental branching programs.

We also consider situations where we can obtain lower bounds without requiring incrementality at all.

e We define a restriction on nondeterministic n-way branching programs that can be viewed as an analog
of monotonicity for Boolean (2-way) branching programs, and we prove that monotone nondetermin-
istic n-way branching programs for GEN require exponential size. For “monotone” programs, we get
exponential lower bounds without requiring incrementality. Informally, a program is monotone, if
one of the possible n answers (in our case the i x j = 1 answer) cannot be used in the program, (or
equivalently, this answer always leads directly to REJECT). This definition extends the definition of

monotone Boolean programs, where one of the possible answers (e.g. the x = 0 answer) cannot be
used. Note that just like in the case of Boolean branching programs, “monotonicity” makes more sense
in the nondeterministic framework.

e We can also obtain exponential lower bounds without any restrictions on the model itself, but instead
requiring correctness of the computation in a slightly stronger sense. We require the computation to
be meaningful on some graph theoretic paths that no GEN instance would follow, thus correctness in
the usual sense places no requirements on the computation along such paths. However, we place such
requirements only for the paths where the i % j = 1 answer may occur in addition to some other value
i* j = k. For paths with other inconsistencies we place no requirements.

The last two results involve requirements related to the “trivial” implications ¢xj5 = 1, and with respect to
the GEN problem it would seem that the handling of these implications should not influence the computation
significantly. Nevertheless, in our current results, dealing with these seemingly inconsequential implications
is the only obstacle preventing us from obtaining unrestricted lower bounds for GEN.

Cook [CoT4] suggested proposing and studying models of computation solving GEN problems that are
more powerful than marking machines. As our results show, our deterministic syntactic incremental branch-
ing programs are, in some sense, equivalent to marking machines. In the context of s-t-connectivity Edmonds
et al. [EPA99] state that defining an intermediate model between the NNJAG model and unrestricted branch-
ing programs seems hard. NNJAG’s are in some sense equivalent to our syntactic incremental branching
programs, when considering GEN 3,.5,5). Semantic incremental branching programs are potentially more
powerful than syntactic programs, and possibly provide an intermediate model between syntactic incremen-
tal and unrestricted branching programs. Unfortunately, we are unable to prove lower bounds in the semantic
case. Hence we would like to suggest studying the model of semantic incremental branching programs as the
next target in the quest for understanding the relationship between L and P:

e Are f(n)-size semantic incremental branching programs strictly more powerful than O(f(n))-size syn-
tactic incremental branching programs?

e Can unrestricted (n-way) branching programs for GEN be simulated by semantic incremental branching
programs without a significant size blowup?

2 Preliminaries

2.1 GEN problems

We write [n] for {1,2,...,n}. When T C [n] X [n] X [n] and S C [n], we write (S)r for the closure of S
under T, defined as the smallest S’ D S such that the following holds for every (i,7,k) € [n] X [n] x [n]:
ifi e S and j € S and (i,4,k) € T then k € S’. We will work with the following problems:

Problem GEN

Given: A function g : [n] x [n] — [n] prescribing 79 C [n] x [n] x [n].
Determine: Whether n € ({1})7s.

Problem RELGEN

Given: An n3-length bit string prescribing a set T' C [n] x [n] x [n].
Determine: Whether n € ({1})7.

We will talk about n-GEN and n-RELGEN when only a particular value n is considered, this will be
necessary since we work in nonuniform models.

We will view n-RELGEN as a Boolean function of n3 variables (n-RELGEN : {0,1}"° — {0,1}), and
n-GEN as a function over n2 n-ary variables (n-GEN : [n]”” — {0,1}). Note that n-RELGEN is a monotone
Boolean function while the Boolean version of n-GEN (over n?log, n variables obtained by encoding the
values of the n? n-ary variables as log, n-length bit strings) is not monotone. We call an instance T’ of GEN
or RELGEN positive if n € ({1})r otherwise the instance T' is negative.

It is known that

e GEN (and thus RELGEN) is P-complete [CoT4, JoLa77],
¢ GEN(2,0us), namely the restriction of GEN in which i * j # 1 = 4 < 2, is NL-complete [BaMc91],

e GEN(1,,) namely the restriction of GEN in which i * j # 1 = 4 = 1, is L-complete [BaMc91].

Fix n > 0. We call [n] the set of n-GEN elements. Both an n-GEN instance and an n-RELGEN instance
define a set of triples (i, j, k) € [n]x [n] x [n] which we denote i*j = k even when k is not uniquely defined from
i and j. Recall that an n-GEN instance is defined by a function g : [n] x [n] — [n], thus the corresponding
set of triples T'9 has the property that for each pair (i,7) € [n] x [n] there is exactly one value k € [n] such
that (4, ,k) € T9. On the other hand, n-RELGEN instances may involve arbitrary sets 7' C [n] x [n] X [n],
including the possibility that some i * j is not assigned any value, that is (i,4, k) ¢ T for any k. (The name
RELGEN indicates that the underlying set of triples corresponds to a relation, rather than a function.)

2.2 Branching programs

Since n-GEN is defined over n-ary input variables, it is convenient for us to work with n-way branching
programs, first defined by Borodin and Cook [BoCo82]. We also need the nondeterministic extension of the
model defined by Borodin, Razborov and Smolensky [BRS93].

Definition 2.1 [BRS93] A nondeterministic n-way branching program is a directed acyclic rooted multi-
graph with a distinguished sink node labeled ACCEPT. The edges out of non-sink nodes are either unlabeled,
or labeled “x; = j” for some variable z; and j € [n]. Only inputs satisfying the statement on the label may
follow the labeled edges, all inputs are allowed to follow the unlabeled edges. An input x1, ...,z is accepted
by the program if there is at least one directed path leading from the root to the ACCEPT node, such that the
input T1,...,2¢ is allowed to follow it. (As there may be multiple edges between two nodes in a branching
program by a path we always understand a sequence of edges (v1,v2), (V2,v3), ..., (Vm—1,Vm) rather than just
a sequence of vertices v1,va,...,Um.) A nondeterministic n-way branching program computes a function
fin)t = {0,1} if f(x1,...,2) = 1 if and only if x1,..., 2 is accepted by the program. A deterministic
n-way branching program must satisfy the additional restrictions that it has no unlabeled edges, and there
are exactly n edges out of each non-sink node with the n possible labels x = j for 3 =1,...,n for the same
variable x.

The size of a branching program is the number of its nodes. If the program contains other sink nodes
in addition to the ACCEPT node, they are labeled REJECT. Note that deterministic programs comput-
ing non-constant functions have at least one REJECT node, but REJECT nodes may be omitted from
nondeterministic programs. Note also that the nondeterministic model defined above is usually called a
switching-and-rectifier network if the underlying graph is not required to be acyclic.

A path is called consistent if for every variable z; and for all values j1 # ja, the labels z; = j; and z; = jo
do not both appear on the path. Note that since no input will follow an inconsistent path, the correctness
of the program in itself gives no requirements for inconsistent paths.

Definition 2.1 contains as a special case (deterministic or nondeterministic) Boolean branching programs
if n = 2 (using the values 0 and 1 instead of 1 and 2, of course). Several slightly different definitions
of nondeterministic branching programs have appeared in the literature, in particular they may involve
introducing guessing nodes. The size necessary to compute a given function under these different definitions
remains polynomially related (see e.g. [Ra91]), note however that this is not automatically inherited in
various restricted versions of the models.

For an n-ary function f : [n]t — {0,1} let fyi : {0,1}1°%2™ — {0, 1} be the Boolean function obtained
from f by encoding its variables as binary strings. If f can be computed by n-way branching programs of size
s(n) then fi, can be computed by Boolean branching programs of size n-s(n). No size increase occurs in the
reverse direction. Thus, proving super-polynomial size lower bounds for deterministic or nondeterministic
n-way branching programs computing n-GEN would separate P from L or NL, respectively.

3 Definitions

For i € [n], we write X, (i) for the n-bit string 0°"110"~% (i.e. the characteristic vector of the singleton set
{i}), and we write x(¢) for x,(¢) when n is understood. Given an n-GEN instance g, we write x,(g) (or

x(g) when n is understood) for the length-n® n-RELGEN instance x(g(1,1))x(g(1,2))--x(g9(n,n)). Note
that for any n-GEN instance g, GEN(g) = RELGEN(x»(9g))-

An n-RELGEN instance w € {0, 1}”3 is considered as divided up into n? n-bit blocks denoted wj.; for
(i,7) € [n] x [n] and concatenated to form w. We will refer to the Boolean variables of n-RELGEN as w;_; k-

A triple of the form i % j = 1 for some ¢ and j is called a trivial triple (since the element 1 is always
trivially included in the closure ({1})7). For an n-RELGEN instance w € {0,1}"", we write TRIVEXT(w)
(for trivial extension) to mean w V (10"‘1)"27 that is, the n-RELGEN instance obtained from w by adding
to the set of triples represented by w all the trivial triples, setting w; ;1 = 1 for each i, j € [n].

A block w;,; is said to be heavy if two (or more) of its bits are 1.

3.1 Tight computation of GEN

Given a (deterministic or nondeterministic) n-way branching program P computing n-GEN, we denote by
MON(P) the nondeterministic Boolean branching program obtained from P as follows: replace each edge
label of the form i * j = k of P by the label w; ;; = 1.

Since MON(P) uses only edge labels of the form = = 1, it computes a monotone Boolean function, which
we denote by fmon(p)- Note that for any n-GEN instance g, we have

GEN(g) = RELGEN(x(9)) = fuon(p) (x(9))-

On the other hand, the fact that P computes n-GEN in itself does not place any requirements on the value
of fmon(p) over inputs w € {0, 1}"3 that are not of the form x(g) for any n-GEN instance g. In particular,
while we know that MON(P) computes a monotone Boolean function that agrees with RELGEN on inputs
of the form x(g), we have no reason to expect that MON(P) would actually compute n-RELGEN, or even
agree with n-RELGEN on any other inputs except what is implied by the monotonicity of fyion(p)-

It turns out that the following additional requirement on n-way branching programs computing n-GEN
is sufficient to obtain exponential lower bounds. We require that in addition to inputs of the form x(g),
mon(py agrees with RELGEN also on the trivial extensions TRIVEXT(x(g)). Since fymon(p) is monotone,
this is equivalent to just requiring that if fyoneey(x(g)) = 0 then fyonep)(TRIVEXT(X(g))) = 0 as well.
Thus, we just require that for any n-GEN instance g that has no accepting path in P, no path of P can
reach the ACCEPT node if the only edges used in addition to the edges that g could traverse are labeled by
trivial triples of the form 7% j = 1.

Definition 3.1 We say that a (deterministic or nondeterministic) n-way branching program P tightly com-
putes n-GEN if it computes n-GEN, and for any n-GEN instance g

if fmonepy(x(9)) =0 then fyon(p)(TRIVEXT(x(g))) = 0.

Definition 3.2 We say that a Boolean function f : {0,1}"" — {0,1} represents n-GEN if f(x(g)) =
RELGEN(x(g)) for any n-GEN instance g.

We say that a Boolean function f : {0, 1}”3 — {0, 1} tightly represents n-GEN if it represents n-GEN
and f(TRIVEXT(x(g))) = RELGEN(TRIVEXT(x(g))) for any n-GEN instance g.

The following is immediate from the above definitions:

Proposition 3.3 An n-way branching program P computes n-GEN if and only if fyonp) represents n-
GEN, and an n-way branching program P tightly computes n-GEN if and only if fymonp) tightly represents
n-GEN.

Note that in models where inconsistent paths are excluded, for example in deterministic read-once branch-
ing programs, tight computation is automatically guaranteed.

Next we define two versions of the model that guarantee tight computation of GEN - without excluding
inconsistent paths in general: monotone nondeterministic n-way branching programs and syntactic incre-
mental branching programs.

3.2 Monotone nondeterministic n-way branching programs

In the case of nondeterministic Boolean branching programs, Definition 2.1 can easily be modified to define
monotone nondeterministic Boolean branching programs, by simply forbidding labels of the form z = 0
(using the values 0 and 1 instead of 1 and 2, of course), see e.g. [Ra91].

It is not clear what would be the analogous restriction for nondeterministic n-way branching programs
when n > 2. Here we consider a restriction on nondeterministic n-way branching programs that extends the
definition of monotone nondeterministic Boolean branching programs to n > 2. Similarly to the Boolean
case, we simply forbid one of the n possible values to be used in edge labels, in particular, we forbid edge
labels of the form y = 1. Just like in the Boolean case, not every n-ary function can be computed under this
restriction. Since the labels of the form y = 1 correspond to the trivial triples i * j = 1 in GEN instances, n-
GEN can be computed by monotone nondeterministic n-way branching programs. (Forbidding other subsets
of values would also be possible extensions of the Boolean definition; we chose i * j = 1, because the resulting
model can still compute GEN.) Moreover, we can match the current best upper bounds for various GEN
subproblems by monotone nondeterministic n-way branching programs without significant increase in size.
That is, so far we have no results separating the power of monotone and non-monotone nondeterministic
n-way branching programs for computing GEN.

3.3 Incremental branching programs

It seems natural for an n-way branching program solving n-GEN to try to find the elements in the closure
({1})7s “incrementally”, that is by asking questions i * j =? only for elements 4, j already known to be in
({1})7e. In fact all the constructions (known to us) that achieve the current best upper bounds for various
subproblems of GEN have this property. We formally define the incrementality property below.

Let P be a (deterministic or nondeterministic) branching program computing n-GEN. For each vertex u
of P, we will define the set A(u) (“available set”) of elements that have already been generated along every
path reaching w.

Given a path 7 from the root to some vertex u in P, let T™ be the set of triples that appear as edge
labels along 7. Let PATHS(u) denote the set of all graph theoretic paths in P starting from the root and

reaching u. Let
A= (] {1Dr=
wePATHS (u)

We obtain a potentially larger set, if we only require that its elements are generated along every path reaching
u that may be followed by some GEN instance. Recall that a path in P is consistent if for every pair (i, j)
and for all values k1 # ko, the labels i * j = k1 and i % j = ko do not both appear along the path. If 7
is consistent then 77 C TY9 for some n-GEN instance g. On the other hand, no GEN instance can follow
an inconsistent path. We denote by GENPATHS(u) the set of all consistent paths starting from the root and

reaching u. Let
r€GENPATHS (u)

Note that GENPATHS(u) C PATHS(u), and thus A(u) C AqpN(u).

Definition 3.4 A (deterministic or nondeterministic) n-way branching program for n-GEN is (semantic)
incremental if for every edge with label i j = k directed out of a node u the condition {i,j} C Aspn(u)
holds. The program is syntactic incremental if for every edge with label i * j = k directed out of a node u the
stronger condition {i,j} C A(u) holds.

Let P be a branching program that computes n-GEN and let 7 = (vg, v1), (v1,v2), ..., (e, ve41) be a
path in P. In particular, we allow ¢ = 0 so the path may consist of a single edge. We say that i € [n] is
useful for 7 if the last edge (ve,ver1) of 7 is labeled by i j = k or by j xi = k for some j, k € [n], and none
of the edges (vi, vi41) for t € {0,...,¢ — 1} is labeled by k % j = ¢ for any j, k € [n]. For a node u of P, let
U(u) be the set of elements that are useful for some path 7 starting in u and leading to an arbitrary node
of P. Notice, the program P is syntactic incremental if and only if U(u) C A(u) for every node u of P. We
denote by max U (P) the maximum size of U(u) for any node u in P.

4 Lower bounds derived from monotone circuit depth bounds

We will need the following well known statement. For completeness, we include a proof.

Proposition 4.1 Let f: {0,1}" — {0,1} be a monotone Boolean function computed by a monotone nonde-
terministic Boolean branching program of size s(t). Then f can be computed by a monotone Boolean circuit
with fan-in 2 AND/OR gates in depth O((logs s(t))?).

Proof. Let M be a monotone nondeterministic Boolean branching program computing f. For a given
input z € {0,1}! let G, be the directed graph obtained from M by keeping those edges whose labels are
satisfied by z. By definition, f(z) = 1 if and only if G, has a directed path from the root to the ACCEPT
node. This can be decided by monotone circuits in NC? using the adjacency matrix of the graph as input.
The adjacency matrix of G, can be determined from z as follows: for each pair of nodes (u, v) of the branching
program M, we set the matrix entry (u,v) to 1 if the edge (u,v) is unlabeled, to 0 if there is no edge from
u to v in M, and to z; if the edge is labeled by z; = 1 for some variable z;. Since M is monotone, no
other edge labels are possible. This gives a monotone circuit over the variables z; computing f with depth

O((log, 5(t))?). 1

4.1 Lower bounds in models without requiring incrementality

By the definitions of the previous section, every n-way branching program P computing GEN has an asso-
ciated monotone nondeterministic Boolean branching program MON(P) computing some function fyon(p)
that represents GEN. Thus, by Proposition 4.1, proving that every monotone function representing GEN
requires large monotone circuit depth would be sufficient to obtain lower bounds for unrestricted (determin-
istic or nondeterministic) n-way branching programs computing GEN. We can even define specific monotone
Boolean functions representing GEN such that monotone circuit depth lower bounds for them would imply
lower bounds for every monotone function representing GEN®. Unfortunately, we do not know how to prove
monotone circuit depth lower bounds for these functions.

However, the monotone circuit depth lower bounds of [RaMc99] for the RELGEN function are sufficient
to derive the following statement.

Theorem 4.2 For some v > 0 and any t large enough, any function f : {0,1}t — {0,1} that tightly
represents GEN requires monotone circuits of depth t7.

Proof. Let § > 0 be such that n-RELGEN requires monotone circuit depth n° (as proved in [RaMc99][Corollary
3.6]). Consider an n-RELGEN instance w € {0, 1}"3. We claim that a monotone projection can produce an
m-RELGEN instance w’ € {0,1}™", for m = n® + 2n, such that

1. no heavy block w

!/
%70

2. RELGEN(w) = RELGEN(w’) = f(TRIVEXT(w’)).

We conclude the proof of the theorem from the claim as follows. Suppose to the contrary that f can be
computed in monotone depth ¢7 for v = §/9. On input w € {0,1}"", we apply the monotone projection
above combined with another monotone projection computing TRIVEXT(w’) and we feed the result into the
circuit for f (over inputs of length ¢ = m3). This construction gives a monotone circuit with n® Boolean
inputs of depth (m?)Y < (n?1)37 < n® computing n-RELGEN, contradicting the fact that n-RELGEN
requires monotone depth n°.

It remains to prove the claim. To construct w’ we introduce dummy elements n+1,n4+2,...,m =n?+2n
that will simulate the effect of a heavy block w;,; without the need for heavy blocks in w’. The elements
n+1,n+2,...,2n will be generated from the RELGEN source 1 in all cases:

1 <14,5 <m, occurs in w’ and

wll*l = Xm(n + 1)

wll*(2n71) = Xm(2n).

IFor example, the n2-th slice function of n-RELGEN has this property. See e.g. [Be81, We87] for more on slice functions.

Then, for 1 <4,j < n, writing ¢;; = 2n+ (j — 1)n + ¢ for convenience, we coerce each former w;,; block into
generating the single element ¢;; (except for ¢11) for (1,1) # (4,7) € [n] x [n]:

/

wi, i = Xm(tij)

wEn+1)*(n+1) = Xm(t11)-

Finally, we make each ¢;; responsible, together with the elements n + 1,n + 2,...,n + n that are always
available, for generating the elements implied by the former w;.; as follows: for each 1 <, j,k < n we set
All the other w;*q blocks, 1 < p,q < m, are set to 0™. It should be clear that a monotone projection
{0,1}™ — {0,1}™ can produce w’. Relabeling the element n as the target (instead of m) for m-RELGEN,
we get RELGEN(w) = RELGEN(w').

To see that RELGEN(w’) = f(TRIVEXT(w')), define w” from w’ by adding selectively to each all-zero
block wy,,, the trivial triple p x ¢ = 1. Clearly, RELGEN(w") = RELGEN(w’). Now by construction, w’
contained no heavy block, so that w” = y.,(g) for some m-GEN instance g, thus f(w”) = RELGEN (w").
Since f tightly represents GEN, RELGEN (w") = f(TRIVEXT(w")). But TRIVEXT(w”) = TRIVEXT(w'),

proving the claim. |

Remark 4.3 In the proof of theorem 4.2, w” could not have been constructed monotonely from w’. This is
what keeps us from getting the statement for any function representing GEN, which would give unrestricted
branching program lower bounds for GEN.

By Propositions 3.3 and 4.1, Theorem 4.2 yields the following.

Theorem 4.4 For some ¢ > 0 and all n large enough, any (deterministic or nondeterministic) n-way
branching program that tightly computes n-GEN has size 2™ .

As noted at the end of Section 3.1, tight computation is automatically guaranteed in read-once deter-
ministic branching programs, thus we automatically get the following corollary.

Corollary 4.5 For some e > 0 and all n large enough, any read-once deterministic n-way branching program
computing n-GEN has size 2" .

We also obtain the following.

Proposition 4.6 Any monotone nondeterministic n-way branching program computing n-GEN computes
n-GEN tightly.

Proof. We just need to prove that for any n-GEN instance g such that GEN(g) = 0, no path can reach the
ACCEPT node if the only edges used in addition to the edges that g could traverse are labeled by trivial
triples of the form 7xj = 1. But a monotone nondeterministic n-way branching program has no edges labeled
by trivial triples at all, so this cannot happen. |

By Theorem 4.4 this yields the following.

Theorem 4.7 For some € > 0 and all n large enough, any monotone nondeterministic n-way branching
program computing n-GEN has size 2" .

4.2 Lower bounds for syntactic incremental branching programs

Proposition 4.8 Any (deterministic or nondeterministic) syntactic incremental n-way branching program
computing n-GEN computes n-GEN tightly.

The statement will follow from the following much stronger statement.

Proposition 4.9 Let P be a (deterministic or nondeterministic) syntactic incremental n-way branching
program computing n-GEN. Then, for every w € {0, 1}”3 such that RELGEN(w) = 0, fmon(p)(w) =0 as
well.

First we prove the following claim.

Claim 4.10 Any incremental branching program (syntactic or semantic), can be transformed preserving both
incrementality and correctness and without increasing the size of the program so that the following holds: all
edges having the ACCEPT node as their endpoint are labeled i x j = n for some pair (i, 7).

Proof. First suppose that there is an edge (u,v) with label i x j = n but its endpoint v is not the ACCEPT
node. Since the program is incremental, we know that for any n-GEN instance g that can traverse this edge,
n € ({1})7rs must hold. Thus, we can redirect this edge such that its new endpoint is the ACCEPT node.
Thus, we can assume without loss of generality, that all edges labeled i * j = n have the ACCEPT node
as their endpoint. Now suppose that there is an edge (v, ACCEPT) with label i x j = k for some k # n.
If no n-GEN instance can traverse this edge, we can simply delete it from the program, or in the case of
deterministic programs redirect it to a REJECT sink. Otherwise, if some n-GEN instance g traverses this
edge, then GEN(g) = 1 and thus n € ({1})7s must hold, and thus n € AggN(u) must hold as well. But that
is only possible if n appears in some edge label along a path from the root to w, which is a contradiction. To
see that the above transformations preserve incrementality, note that for any given vertex w, we may have
only removed some of its incoming edges but never added any new incoming edge (except for the ACCEPT
or REJECT node). Thus the sets A(u) and Aggn(u) may have only increased.

Proof.(of Proposition 4.9) Let w € {0,1}"" such that RELGEN(w) = 0. First assume that w has no
heavy blocks. This is possible in two cases: either w = x(g) for some n-GEN instance g or w can be
extended to x(g) of some n-GEN instance g by adding trivial triples to the empty blocks of w. In the first
case, fpon(p)(w) = 0 must hold since fyon(py(x(9)) = RELGEN(x(g)) holds for every g. In the second
case, RELGEN(w) = 0 implies RELGEN(x(g)) = 0 since x(g) is obtained from w by adding only trivial
triples and thus fyon(p)(x(g9)) = 0, since RELGEN(x(9)) = fmon(p)(x(g)) for every g. Since fyonep) is
monotone, fyron(p)(x(g)) = 0 implies that fyron(p)(w) = 0 as well. Note that the above argument actually
holds for any n-way program, we did not use incrementality yet. The harder case is when w has heavy
blocks. In this case, the paths of MON(P) that w can follow may correspond to inconsistent paths in P.
By the claim, we can assume that all the edges reaching the ACCEPT node of P have labels of the form
i %7 = n. Thus, any graph theoretic path of P that reaches ACCEPT includes an edge with label i % j = n.
In a syntactic incremental branching program, this means that n € A(ACCEPT), which implies that no
path followed by w can reach the accept node, thus fyjon(p)(w) = 0 must hold. |

By Theorem 4.4 this yields the following.

Corollary 4.11 Any (deterministic or nondeterministic) syntactic incremental n-way branching program
computing n-GEN has size 2™ for some € > 0.

5 Syntactic incremental branching programs and pebbling

In this section we study the relationship of syntactic incremental branching programs to previously studied
computational models of marking machines and jumping automata on graphs. Marking machines were
defined by Cook [Co74] as a model for computing GEN. Jumping automata on graphs were defined by Cook
and Rackoff [CoRa80] as a computational model for solving graph s-t-connectivity; Poon [P093] defined
an extension of this model called node-named jumping automata on graphs (NNJAG). We show in this
section that syntactic incremental branching programs can be efficiently simulated by marking machines and
NNJAG’s, and vice versa.

An instrumental tool in these efficient simulations is the relationship that exists between max U (P) and
size(P) of a branching program P. We establish that relationship in the Symmetrization Lemma. Because
of the efficient simulations, known lower bounds for marking machines and node-named jumping automata
on graphs provide us with lower bounds on the size of various types of syntactic incremental branching
programs.

5.1 Marking machines

Marking machines were defined by Cook in [Co74]. We adapt his definition to our terminology while using a
slightly different set of rules for moves of a marking machine than Cook uses in his original definition. (Note
that the results in [Co74] hold with respect to this set of rules as well.) The rules we state are analogous
to the pebbling rules of the games on graphs introduced by Paterson and Hewitt [PaHe70]. We discuss
the difference between these rules more in the Appendix. A marking machine M operates on an instance
T C [n] x [n] x [n] of n-GEN. Each configuration of M is one of the subsets of [n]; it identifies the set of
marked elements of [n]. The initial configuration of M is the empty set. At each step of a computation, M
(nondeterministically) changes its configuration C to C” in one of the following ways: M marks the element
1, ie., C' = CU{1}, or M removes a mark from an arbitrary element r € C, i.e., C' = C'\ {r}, or it marks
an element z ¢ C provided that (z,y,z) € T for some z,y € C, i.e., C' = CU{z}. A configuration C is
accepting if n € C. M accepts input T iff there is a sequence of configurations Cy, C1, ..., C),, where Cy is
the initial configuration, C; follows from C;_; by a legal move and C,, is an accepting configuration. We
call the sequence Cy, C,...,C,, an accepting computation. We say that M accepts T using only ¢ markers
if there is an accepting computation of M on T in which all configurations are of size at most £.

We first establish the relationship between incremental branching programs and marking machines. As
the main measure of size of marking machines is the number of marks used it should not come as a surprise
that this measure relates to max U(+) of branching programs.

Proposition 5.1 1. If P is a (deterministic or nondeterministic) syntactic incremental n-way branching
program computing n-GEN then there is a marking machine M that accepts every positive instance of
n-GEN using at most maxU(P) markers.

2. If M is a marking machine M that accepts every positive instance of n-GEN using at most £ mark-
ers then there is a nondeterministic syntactic incremental n-way branching program P of size 1 +

2
(Zle (?)) that computes n-GEN.

Proof. Both of the parts are easy to prove. For the first part. Let w1, us, ..., u, be an accepting path of
P on an instance T of n-GEN. Then inserting steps that remove markers when appropriate into the sequence
0,U(u1),U(uz),...,U(um,) we get an accepting computation of M on T that uses at most max U (P) markers.
To see that the sequence obtained this way is indeed a legal sequence of steps for marking machines, it is
enough to observe that in a syntactic incremental branching program, for any edge (u,v) with label ixj = k
U()\U(u) C {k} and also {i,j} C U(u).

For the second part, we will construct a branching program P that simulates the computation of M. P
will consists of t = 1 + Zle (") layers of nodes. For every 1 < i < t and every non-empty set S C [n]
of size at most ¢ the i-th level will contain a node labeled (S,4). The ¢-th level will contain only the node
ACCEPT. Let (S,7) be at level 1 <i <t —1. For each p,g € SU{1}, k € [n] and S" C SU {k}, |9 < ¢,
there is an edge from (S,) leading to (S’,7 + 1) that is labeled by p x ¢ = k. Furthermore, from each node
(S,t) there are edges leading to ACCEPT that are labeled by p x ¢ = n, for all p,q € SU {1}. The initial
node of P is ({1},1). It is straightforward to verify that if M accepts all positive instances of GEN using at
most ¢ markers then P computes n-GEN. |

The previous proposition means that lower bounds on the number of markers needed by a marking
machine to solve arbitrary instances of n-GEN imply lower bounds on max U(P) for syntactic incremental
branching programs computing n-GEN. Such lower bounds can be further translated into lower bounds on
the size of these branching programs as the following lemma indicates.

Lemma 5.2 (Symmetrization lemma) Let k,n > 2 be integers. Let P be a nondeterministic syntactic
incremental kn-way branching program that computes kn-GEN. Then there is a nondeterministic syntactic
incremental n-way branching program P’ that computes n-GEN and such that size(P') < size(P) and
max U(P’) <2+ log, size(P).

Proof. For an n-GEN instance T C [n] x [n] x [n] define a kn-GEN instance T* C [kn] x [kn] x [kn] as
follows. If (x,y,2) € T, where z < n then (z,y,2) € T*, if (z,y,n) € T then (x,y,kn) € T* and finally
for all z,y,2z € [kn] if z > n or y > n then (v,y,1) € T*. For a permutation 7 : [kn] — [kn] such that

10

7(1) = 1 and 7(kn) = kn, let 7(T*) be the kn-GEN instance such that for any z,y,z € [kn], (z,y,2) € T*
iff (m(z),7(y), 7(2)) € 7(T*). Notice, if u is a vertex of P such that U(u) N 7({n,...,kn —1}) # 0 then u
cannot be reached on any instance m(T*) that is obtained from some n-GEN instance T. This is because
U(u) C A(u), but no element of 7({n,...,kn — 1}) can be generated along any path that can be followed
by some instance of the form 7(T%).

Consider a vertex u in P and a permutation 7 : [kn] — [kn] such that 7(1) = 1 and 7(kn) = kn, taken
uniformly at random from among all such permutation. It is straightforward to verify that Pr.[U(u) C
7({1,...,n—1,kn})] < H‘Z—Z(lu)‘_2(n —1—i)/(kn — 1 —4) < k~IV@I+2 where for the first inequality we
assume that U(u) can contain both elements 1 and kn. Let ¢ = 2 + log,, size(P). Pr,[there is u in P such
that |U(u)| > £ and U(u) N7w({n,n+1,...,kn —1}) = 0] < size(P) - k~*+1D+2 < 1/k. Hence, there exists
a permutation 7 : [kn] — [kn] such that 7(1) = 1 and w(kn) = kn and for all vertices u in P, if |U(u)| > ¢
then U(u) Nw({n,n+1,...,kn—1}) # 0. Fix such a permutation 7. Clearly, for any instance T' of n-GEN,
P on 7(T*) cannot reach any vertex u with |U(u)| > £. Hence, we construct P’ from P by relabeling all
edges labeled by i xj = q to 7~ (i) x 7~ () = 7 1(q), then removing all edges that refer to elements in
{n,...,kn—1} and finally relabeling all occurrences of kn to n. We also remove all nodes in P’ that cannot
be reached on some instance of n-GEN. Clearly, P’ is still syntactic incremental and it computes n-GEN.
Furthermore, for any node w in P’, the size of U(u) in P’ is at most the size of U(u) in P since removing
edges cannot increase the number of useful elements. Hence, all vertices v in P’ have |U(u)| < ¢. |

A similar symmetrization lemma holds for deterministic syntactic incremental branching programs.

In [Co74] Cook proves that there are instances of n-GEN that cannot be accepted by marking machines
with o(y/n) markers. This was later improved by Paul et al. in [PTC77):

Proposition 5.3 ([PTC77]) There is a constant ¢ > 0 such that for all n > 2 there is an instance T of
n-GEN that cannot be accepted by any marking machine using less than en/logn markers.

Note that [PTC77] gives a bound on the number of pebbles in a pebbling game on graphs, but this easily
translates into marking machine lower bounds for GEN.
The previous three claims give us the following corollary.

Theorem 5.4 There is a constant ¢ > 0 such that for all n large enough if a nondeterministic syntactic
incremental n-way branching program P solves n-GEN then it has size at least 2¢"/ 1087,

Proof. Assume that for every constant ¢ > 0 and infinitely many n, there is a nondeterministic incremen-
tal n-way branching program of size less than 2°"/1°8" that computes n-GEN. Hence, for infinitely many
m = |n/2], there is a branching program P of size less than 2¢(2m+1)/10g2m that solves 2m-GEN. By the
symmetrization lemma there is a nondeterministic syntactic incremental m-way branching program P’ of
size less than 2¢(2m+1)/10g2m that computes m-GEN and such that max U(P’) < 2+ ¢(2m 4 1)/ log 2m. For
m large enough, 24 c¢(2m+1)/log2m < 3+2em/logm < 3cm/ logm. Hence, by the first part of Proposition
5.1, for all ¢ > 0 and infinitely many m there is a marking machine M that accepts all positive instances of
m-GEN using at most 3cm/ logm markers. However, this is a contradiction to Proposition 5.3.

5.2 Jumping automata on graphs

Graph s-t-connectivity is the major complete problem for the class of problems solvable in nondeterministic
logarithmic space. We define it as follows.

Problem STCONN

Given: A directed graph G on vertices {1,...,n} with each vertex having out-degree two, where
self-loops are allowed.

Determine: Whether there is a path from vertex 1 to vertex n.

By n-STCONN we denote the sub-problem of STCONN restricted to graphs on n vertices. Given an
instance G of n-STCONN we define an instance geng of n + 1-GEN(2,44) in the following way: we let
geng(1,1) =2, geng(2,1) = 1 and furthermore if (4, 1) and (7, j2) are the two edges outgoing from vertex i
in G, then we let geng(1,i+ 1) = j1 + 1 and geng(2,i+ 1) = jo + 1. Clearly, 1 is connected to n in G iff
n+1e€ <{1}>T96"G-

11

Extending the definition of Cook and Rackoff [CoRa80], Poon [P093] defined node-named jumping au-
tomata on graphs (NNJAG) as a computational model to solve STCONN. A (deterministic) NNJAG J is
a finite state automaton with p distinguished pebbles, ¢ states and a transition function ¢. (p,q and § can
non-uniformly depend on n.) The input to J is an instance G of STCONN. A configuration of J is the pair
(s,II) where s is the current state and II is a mapping II : [p] — [n] specifying the current position of each
pebble on the input graph G. The initial configuration of J is a specific state sy with all pebbles placed on
the vertex 1. When J is in the configuration (s,II) the transition function determines the next move of J
based on the state s and the mapping II. A move can be either a walk or a jump. A walk (r,i,s") consists
of moving the pebble r along the i-th edge that comes out of the vertex II(r) in G and then assuming state
s'. A jump (r,r’,s") consists of moving pebble r to the vertex II(r') and assuming state s’. J accepts graph
G if it ever enters an accepting state during its computation on G. NNJAG solves n-STCONN if on every
instance G of n-STCONN, J accepts G iff there is a path from vertex 1 to vertex n in GG. The size of a
NNJAG J is the number of its possible configurations, i.e., gn?.

We first establish the simulation lemma between NNJAG’s and incremental branching programs.

Proposition 5.5 1. For any deterministic syntactic incremental n?-way branching program P that com-
putes nQ—GEN(gTowS) there is a NNJAG of size at most 5n* - size(P)? that solves n-STCONN.

2. If J is an NNJAG solving n-STCONN then there is a deterministic syntactic incremental n-way branch-
ing program P of size at most O(n? + n3(size(J))?) that computes n-GEN(2;ous) -

Proof. For the proof of the first part, consider a deterministic syntactic incremental n2-way branching
program P that computes nQ—GEN(gmwS). Using the technique from the proof of the Symmetrization Lemma
we can build a deterministic syntactic incremental n + 1-way branching program P’ that computes n + 1-
GEN (2r0ws) Whose size is at most size(P) and for which maxU(P’) < 2 +log,, size(P). We will construct a
NNJAG J solving n-STCONN with p = 2+ max U (P’) pebbles and with the set of states consisting of nodes
of P’ (main states) with additional four intermediate states for each main state. NNJAG J on input G will
simulate the computation of P’ on geng. Whenever J will be in a main state u, the pebbles will be located
at all vertices J(u) = {i — 1; ¢ € U(u) and ¢ > 2} U {1} so that the first pebble will be located at vertex 1.
Notice |J(u)| < p. The initial state of J is the starting node of P’ with all the pebbles placed at vertex 1.
The accepting state of J is the ACCEPT node of P’. A step of computation of P’ will be simulated in five
steps of computation of machine J. Let u be a main state of J and let i x j =7 be the query asked by P’ at
node w. If 5 > 1 then J proceeds as follows.

1. In state u, let IT be the current mapping of the pebbles to vertices of G. Pick a pebble r such that
there is another pebble 7' with II(r') = II(r). Jump pebble r to vertex 1, i.e., to the location of pebble
1, and assume state u;.

2. In state u1, jump pebble 1 to the location of pebble II71(j — 1) and assume state us.
3. In state ug, walk pebble 1 along the i-th edge leaving vertex j — 1 and go to state ug.

4. In state ug, let II' be the current mapping of the pebbles. Let v be the node of P that is reached from
u via the edge labeled by i * j = (II')~*(1) + 1. While there is a pebble r # 1 such that IT'(r) ¢ J(v)
jump r to vertex 1 and stay in state uz. If there is no such a pebble do the following. If II'(1) € J(v)
then jump a pebble r, for which there is another pebble 7’ such that II'(r) = II'(+’), to the location of
pebble 1 and assume state uq. If II'(1) ¢ J(v) assume state uq and do not move any pebble.

5. In state uq, jump pebble 1 to vertex 1 and assume state v.

If j =1 and i =1, let v be the node of P’ that is reached from u by the edge labeled 1 %1 = 2. Then J
in state u is going to move no pebbles and will just assume state v. Similarly, if j =1 and ¢ = 2 then J is
going to move from state u to a state v that is reached from u via the edge labeled 2x1 =1 in P’.

Clearly, all the moves described above are legal NNJAG moves that depend only on the current state of
J and mapping of the pebbles. It is straightforward to verify that J on G simulates a computation of P’ on
geng, hence J accepts G iff P accepts geng. As the size of J is 5 - size(P’) - n2tmaxU(P) < 5p4 . gize(P)2,
J is the required NNJAG.

12

A statement similar to the second part of our claim is implicitly proven in [EPA99]. Edmonds et al. sim-
ulate NNJAG’s by pebble redundant NNJAG’s and then by branching programs. The resulting branching
programs can be seen to be syntactic incremental under an appropriate notion of incrementality. In our con-
text the proof is much simpler, since the argument in [EPA99] was aimed at proving a different statement.
We present a direct proof below.

Let g be an instance of n-GEN(g,445). The syntactic incremental branching program P will have two
parts. The first part will try to decide whether n € ({1})7s, under the assumption that 2 ¢ ({1})rs. The
second part of P will decide whether n € ({1})7s provided that 2 € ({1})7s.

If 2 & ({1})79, then g can be treated as an instance of n-GEN 1,4, by considering only its first row. The
first part of the program P that we construct, on an instance g of n-GEN g4, checks if either 2 or n is
generated by just the first row of g. This can be done in size O(n?) as described in Theorem 6.6. Note also
that 2 € ({1})7y if and only if it is generated by just the first row. If 2 & ({1})74¢, then P rejects or accepts
based on whether or not n is generated by just the first row. If 2 € ({1})79, P will enter the starting node
vo of the second part of P, i.e., all edges of the first part of P establishing that 2 € ({1})7s will lead to the
node vg.

The second part of P will simulate the computation of J on a graph G, an instance of n-STCONN with
the property that n € ({1})7s iff n is reachable from 1 in G. The graph G is determined by the instance
g. The simulation is straightforward if J has the property that the graph of its configurations has no loops,
and it works correctly also on every multi-graph of out-degree two, i.e., a graph with possible multiple edges
between vertices (the two edges leaving a vertex may lead to the same vertex). We will argue below that
we can modify J so that this is the case. Let us assume for now that J has the required property, i.e., it
has no loops and works correctly on multi-graphs. We let G have vertices {1,...,n} and if i x 1 = j; and
i %2 = jo in g then we let the first edge from 7 in G lead to j; and the second edge lead to j. Clearly, G is
of out-degree two and n € ({1})7s iff n is reachable from 1 in G.

The second part of the program P starting at vy is constructed as follows. The name of each node of
P specifies some state of J together with some mapping of currently pebbled vertices of the input graph.
This specifies a configuration of the NNJAG J. Since J is deterministic, this also specifies a move, which
can either be a jump or a walk. In case it is a walk, it involves a specific vertex i of G and one of the edges
leaving the given vertex. Since we consider only graphs of outdegree two, in our case this will give a pair of
the form either 7 * 1 or ¢ % 2. We will think of this pair as the question associated with the given node of the
program P, thus the n edges leaving the given node will be labeled ix1 =k for k=1,...,n (or ix2 = k for
k =1,...,n, respectively). For each edge there is exactly one node (that is, a pebble location/state pair)
which corresponds to the configuration of J following the corresponding move, and we use that node as the
endpoint of the given edge. If the move of J corresponding to a given node of P is a jump, we put in n
edges labeled 1x1 =k for £ =1,...,n all leading to the same node of P corresponding to the configuration
of J after the jump. It is easy to see that the program constructed this way is syntactic incremental, since
the moves of J only involve vertices of its input graph that are already pebbled. It remains to modify P
so that all edges leading to an accepting configuration of J will lead to the node ACCEPT, and edges to
rejecting configurations will lead to REJECT. The program constructed this way will always correspond to
simulating J on a (multi-)graph G of out-degree two, and since n € ({1})7¢ if and only if there is a path
from 1 to n in G, the program will be correct.

It remains to argue that we can modify J so that it will compute correctly on multi-graphs and its
configuration graph will have no loops. This modification increases the size of J to at most O(n?(size(J))?).

It is standard to eliminate loops of the computation by at most squaring the number of configurations:
this can be achieved by adding a time step counter to the name of each configuration. To deal with multiple
edges, we note that for any graph G of out-degree two where at least one of the edges from the vertex 1
leads to another vertex, the following graph G’ has no multiple edges, and n is reachable from 1 in G’ if and
only if n is reachable from 1 in G. Let the first edge from i lead to j; and the second edge from i lead to js
in G. If j; # jo, we put in the same two edges for 7 in G’. If j; = jo # 1 then we let the first edge from ¢ in
G’ lead to j; and the second edge lead to 1. Otherwise j; = jo = 1 and we let the first edge of G’ to lead to
vertex 1 and the second one will form a self loop at i. Clearly, G’ is of out-degree two and has the desired
properties.

We modify J so that it would compute on a graph G as if it were computing on the corresponding graph
G’'. We equip J with three additional auxiliary pebbles. We will leave one of them at vertex 1 during the

13

whole computation. Using one of the auxiliary pebbles we can first verify that at least one edge from the
vertex 1 leads to another vertex in G. If not J immediately rejects (assuming 1 # n). Otherwise J computes
as before with the following modifications.

For each configuration where the next move of J on G is a walk involving the second edge out of some
vertex ¢ we invoke the following subprogram. We jump two auxiliary pebbles to the vertex ¢ and move one of
these pebbles along the first edge from 7 and the other one along the second edge from . If the two auxiliary
pebbles do not coincide we move the pebble r that J would move originally along the second edge. If the
two auxiliary pebbles coincide but they are not at vertex 1 we jump the pebble r to the vertex 1, i.e., the
location of the third auxiliary pebble. Otherwise all the three auxiliary pebbles coincide and we keep pebble
r at vertex 7. In all three cases J assumes the state that it would originally assume. It is clear from the
construction that the modified .J will compute on G as if J would compute on G’. Also, our modification
multiplies the number of states of J by a factor of at most five and increases the number of pebbles by three,
hence it increases the size of J by only the allowed amount. |

There is a long sequence of lower bounds for various types of jumping automata on graphs. The strongest
one was obtained by Edmonds, Poon and Achlioptas.

Proposition 5.6 [EPA99] If NNJAG J solves n-STCONN then J has size at least n¥1°8™).
As a corollary we obtain a lower bound for syntactic incremental branching programs.

Theorem 5.7 There is a constant ¢ > 0 such that for all n large enough if a deterministic syntactic
incremental n-way branching program P solves n-GEN ,0us) then it has size at least nclogn,

We should note here that Edmonds et al. in fact prove a lower bound for probabilistic NNJAG’s. (A
probabilistic NNJAG is defined as a probability distribution over deterministic NNJAG’s where its size is
the size of the largest NNJAG with a non-zero probability under that distribution. See [EPA99] for more
details.) Their lower bound thus implies also a lower bound for appropriately defined probabilistic syntactic
incremental branching programs.

6 Upper bounds

In this section we state and prove several upper bounds on the size of incremental branching programs.

Theorem 6.1 n-GEN can be computed by nondeterministic syntactic incremental branching programs and
by monotone nondeterministic n-way branching programs of size 2"~ 4+ 1.

Proof. For each S C {2,...,n — 1} we create a node labeled by S. The program will consist of these
2"=2 nodes and a sink node labeled ACCEPT. The node labeled by S will have an outgoing edge labeled
i % j = k for each triple such that {i,7} C SU{1} and k ¢ SU{1}. (For S #) the edges labeled 1 %1 =k
can be omitted.) Each edge with label i x j = n goes to ACCEPT. An edge labeled i * j = k out of the node
labeled by S goes to the node labeled S U {k}.

We did not use labels of the form 7+ j = 1, thus the program is monotone. Let us denote by ug the node
with label S. We have A(ug) = S U {1} for each S, thus the program is syntactic incremental.

Theorem 6.2 n-GEN can be computed by deterministic syntactic incremental branching programs of size

O(n?2"72).

Proof. The previous construction can be modified to obtain a deterministic program as follows. Replace
the node labeled S by a group of nodes labeled < S, i, j >, for pairs {i,j} C SU{1} (omitting the pair (1,1)
for S # 0). Order the nodes within each group in an arbitrary way. The group corresponding to the empty
set consists of a single node labeled < @, 1,1 >, and this node will be the root. Each edge with label ixj =n
goes to ACCEPT. Out of the node with label < S,4,j > the edges labeled i x j = k where k ¢ SU{1} go to
the first node of the group corresponding to S U{k}. For all but the last node of each group, send the edges
with label i % 7 = k to the next node of the same group if k € SU {1}. For the last node of each group, the
edges labeled i j = k with k € SU {1} go to REJECT. For each node u whose label starts with S we have

A(u) = S U {1}, thus the program is syntactic incremental. |

14

Theorem 6.3 1n-GEN 3,045 can be computed by nondeterministic syntactic incremental branching programs
and by monotone nondeterministic n-way branching programs of size O(n?).

Proof. The program has n layers of nodes. The first and last layer consists of a single node: the root
on the first layer, and the ACCEPT node on the last layer. The second layer has n — 2 nodes called ¢4
and w(23), ..., W2n-1)- Layersl =3,...,n — 1 have 2n — 5 nodes each, called #;, w 3),. .., w(yn—1) and
’U,([)3), v 7u(l,n—1)-

There are n — 1 edges leaving the root labeled 1 * 1 = k going to nodes wa) for k = 3,...,n — 1, the
edge 1 x 1 =2 goes to ta, and 1% 1 =n goes to ACCEPT. The nodes w j) for | < n — 2 have n — 1 edges
labeled 1% j = k going to nodes w41 for k= 3,...,n —1, the edge 1 * j = 2 goes to t(;41), and 1 xj =n
goes to ACCEPT.

There are 3(n — 1) edges leaving each node t; for I <n—2, labeled 1x2 =k, 2+x1 =k and 2x2 = k going
to t(;41) if k = 2 and going to the node w4 for k=3,...,n — 1, and to the ACCEPT node if k = n.

For [=3,...,n—2,and j = 3,...,n — 1, there will be 2(n — 1) edges leaving the node u), labeled
lxj=kand2xj=Ffor k=2,...,n. The edges with labels 1 j = k and 2 x j = k go to the node u (41 1)
for k=3,...,n—1, and to ¢4y if k = 2. All edges labeled i xj = n go to ACCEPT. For the last layer, each
node u(,_1) and wg,_1 ;) has only two outgoing edges labeled 1% j = n and 2 x j = n going to ACCEPT.
The node t(,_1) has 3 outgoing edges labeled 12 = n, 2% 1 = n and 2 * 2 = n going to ACCEPT. The
program is clearly syntactic incremental. Since we never use labels of the form ¢ * j = 1, the program is also
monotone.

It remains to prove that the program is correct. To see this, we represent each n-GEN (3,4,5) instance
g by a graph G, with n nodes. There will be an edge going from node j to node k with label 1% j = k
(2xj5=k)if (1,4,k) € T9 ((2,4,k) € T9, respectively). There is a path from the node 1 to the node n in
Gy if and only if n € ({1})7. Moreover, if there is at least one path from 1 to n, then a path from 1 to
n of length at most n visiting each node at most once must also exist. Thus, for any positive instance g,
such a path can be found in G,. But notice that for any path 7 of G, from 1 to n visiting each node i at
most once the program we constructed must contain a path from the root to the ACCEPT node with the
exact same sequence of edge labels as 7, and g can follow this path in the branching program. Thus our
program accepts every positive instance g. On the other hand, since the program is syntactic incremental
and all edges adjacent to the ACCEPT node have labels of the form i * j = n, the program must reject every
negative instance g.

Together with Theorem 5.7, this gives a super-polynomial separation between the power of determinis-
tic and nondeterministic syntactic incremental branching programs. The following theorem shows, that a
stronger (e.g. exponential) separation is not possible.

Theorem 6.4 If P is a nondeterministic syntactic incremental branching program that computes n-GEN
then there is a deterministic syntactic incremental branching program P’ of size at most size(P)©(ogsize(P))
that computes n-GEN.

Proof. Let P be a nondeterministic syntactic incremental branching program that computes n-GEN. By
standard techniques we can convert it into an equivalent nondeterministic syntactic incremental branching
program of size m € O(n - (size(P))?) computing n-GEN that has at most two edges outgoing from every
node. Hence, we assume P has this form. We will view P as a graph. Let g be an instance of n-GEN.
Deciding whether P accepts g is the same as deciding whether there is a path from the initial node to the
accepting node of P in which all the edges that are labeled inconsistently with g are removed.

Cook and Rackoff’s results [CoRa80] imply that there is a deterministic NNJAG J that has O(m?)
internal states and uses O(logm) pebbles and that on any directed graph G of size m with all vertices of
out-degree at most two computes so that every vertex in G that is reachable by a path from vertex 1 contains
a pebble (is pebbled) at some point during the computation. (Here the definition of behavior of NNJAG’s is
extended so that if an NNJAG requests a walk of a pebble along a non-existent edge then the pebble stays
at its current location and only the internal state of the NNJAG changes.) From properties of NNJAG’s it
follows that if a vertex u of G is pebbled during a computation of an NNJAG on G then there is a path
in G from vertex 1 to u so that some pebble is walked along every edge of this path at some point of the
computation prior to pebbling wu.

15

Our deterministic syntactic incremental branching program P’ on an input instance g of n-GEN will
simulate J on P in which all edges that are inconsistent with the input instance g are removed. In the
names of its nodes P’ will record the internal state of J, positions of its pebbles on P and the number of
steps it computed so far. Let J have ¢ internal states and use p pebbles. The set of nodes of P’ will be
[gmP 4+ 1] x [g] x [m]P? U {ACCEPT,REJECT}. Let v¢ be the initial node of P and sg be the initial state of
J. Node (1, sg, vg, vo, - - . , Ug) is the initial node of P’. ACCEPT is the accepting node of P’.

Let edges of P’ be defined as follows. Let 1 < ¢ < gmP. Let J in state s with pebbles located at u1, ..., u,
walk a pebble r along d-th outgoing edge from node u, and assume state s’. Assume that the d-th outgoing
edge from node u, in P is labeled by ixj = k, and that it leads to a node v. If v ZACCEPT then there is an
edge labeled ixj = k in P’ leading from node (¢, s, u1,...,up) tonode (t+1,8", w1, ..., Ur—1,0, Upj1,...,Up)
and for all k' € [n] \ {k}, there are edges labeled i x j = k' from (¢, s,u1,...,up) to (¢ + 1,8, u1,...,up).
If v =ACCEPT then let there be an edge labeled i x j = k leading from (¢, s, u1,...,u,) to ACCEPT and
let for all ¥’ € [n]\ {k}, there be edges labeled i x j = k' from (¢,s,u1,...,up) to (t + 1,8, u1,...,up).
Assume now that the d-th outgoing edge from node w, in P is unlabeled and that it leads to a node v.
Then for all k € [n], there will be an edge labeled by 1 x 1 = k going from (¢, s, u1,...,u,) to node U where
U= ({+1,8u1,...,U—1,0,Upy1,...,up) if v # ACCEPT, and U = ACCEPT otherwise. If there is
no d-th outgoing edge from w, then for all k& € [n], there will be an edge labeled by 1 x 1 = k going from
(t,s,u1,...,up) tonode (t+1,8",u1,...,up). If J in state s with pebbles located at nodes u1, ..., u, jumps
a pebble r to pebble 1’ and assumes state s’ then for all k € [n], let there be an edge labeled 1x1 = k leading
from (¢,s,u1,...,up) to (t+ 1,8, u1,...,Upr—1,Up, Upq1,...,Up). All other edges in P’ lead to REJECT.

Clearly, the size of P’ is at most ¢>m?P 4 2 < size(P)9Uo8512¢(P) a5 n < size(P). The fact that P’
computes n-GEN follows from the fact that P computes n-GEN and J traverses all nodes of P reachable on
an input instance of n-GEN.

It remains to argue that P’ is syntactic incremental. To see that let us consider a query “ixj =7 asked
at some node (t,s,u1,...,up). Let m be an arbitrary path from the initial node of P’ to (¢,s,u1,...,up).
Because of the properties of J and the construction of P’ there must be paths 71, ..., 7, in P that lead from
the initial vertex of P to nodes uq, ..., u, so that P’ asks all the queries that appear as labels along paths
1, ..., Tp. Since the query “ixj =7” is indeed a query of P at one of the nodes u;,...,u, and P is syntactic
incremental, both 7 and j must be in ({1})p~ U---U{{1})7=. Hence, it also must be in ({1})7~. Thus, P’
is syntactic incremental.

Note that the above construction is similar to the simulation of NNJAG’s by branching programs in
[EPA99], but it involves some additional ideas to obtain the relationship between deterministic and nonde-
terministic syntactic incremental branching programs. |

A similar relation between determinism and nondeterminism holds also for semantic incremental branch-
ing programs. We obtain as a corollary:

Theorem 6.5 n—GEN(Qmws) can be computed by deterministic syntactic incremental branching programs of
size nOUogn)

Theorem 6.6 1n-GEN(1,,,) can be computed by deterministic syntactic incremental branching programs of
size (n —2)% + 3.

Proof. The construction is similar to the construction in the proof of Theorem 6.3, in fact in some sense
it is a subprogram of it. Now we have (n — 2) layers of (n — 2) nodes each for I,k = 2,...,n — 1, in addition
to the root u(;,1), an ACCEPT and a REJECT node. Out of each non-sink node u; ;), we have exactly n
outgoing edges, labeled 1% j =k, for k=1,...,n. If | <n — 2, the edges for k =2,...,n — 1 go to w41,k
(at the next layer). All edges with label 1% j = k for k # n from the last layer go to REJECT, and all edges
with label 1% j = 1 (from any layer) go to REJECT. All edges with label 1 x j = n (from any layer) go to

ACCEPT. 1

References

[BaMc91] D. BARRINGTON AND P. McKENZIE, Oracle branching programs and Logspace versus P, Infor-
mation and Computation 95 (1991), pp. 96-115.

16

[Be81] S.J. BERKOWITZ, On some relationships between monotone and non-monotone circuit complexity,
manuscript, University of Toronto, Computer Science Department (1981).

[BoCo82] A. BORODIN AND S.A. COOK, A time-space trade-off for sorting on a general sequential model
of computation STAM J. on Computing 11, 2 (1982), pp. 287-297.

[BRS93] A. BORODIN, A. RAZBOROV AND R. SMOLENSKY, On lower bounds for read-k-times branching
programs. Computational Complezity 3 (1993) pp. 1-18.

[Co71] S.A. CooK, Characterizations of pushdown machines in terms of time-bounded computers, J. of the
Association for Computing Machinery 18 (1), pp. 1971.4-18

[Co74] S.A. CooK, An observation on time-storage trade-off, J. Computer and Systems Science 9(3) (1974),
pp. 308-316.

[CoRa80] S.A. Cook AND C.W. RACKOFF, Space lower bounds for maze threadability on restricted ma-
chines, STAM J. on Computing 9, (1980), pp. 636-652.

[EPA99] J. EpMONDS, C.K. POON AND D. AcHLIOPTAS, Tight lower bounds for st-connectivity on the
NNJAG model, SIAM J. on Computing 28, 6 (1999), pp. 2257-2284.

[HAB02] W. HEsSE, E. ALLENDER AND D. A. Mix BARRINGTON, Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Computer and Systems Science 65(4) (2002), pp.
695-716.

[Im88] N. IMMERMAN, Nondeterministic space is closed under complementation. SIAM J. on Computing
17,5 (1988), pp. 935-938.

[JoLa77] N.D. JONEs AND W.T. LAASER, Complete problems for deterministic polynomial time, Theoret-
ical Computer Science 3 (1977), pp. 105-117.

[KaWi88] M. KARCHMER AND A. WIGDERSON, Monotone circuits for connectivity require super-
logarithmic depth, Proc. of the 20th ACM Symp. on the Theory of Computing (1988), pp. 539-550.
Full version in: STAM J. on Disc. Math. 3, no. 2 (1990) pp. 255-265.

[PTC77] W. J. Paur, R. E. TARJAN AND J. R. CELONI, Space bounds for a game on graphs, Mathematical
Systems Theory 10,(1977), 239-251.

[PaHe70] M.S. PATERSON AND C.E. HEWITT, Comparative schematology, Record of Project MAC Confer-
ence on Concurrent Systems and Parallel Computations (June 1970), pp. 119-128, ACM, New Jersey,
December 1970.

[Po93] C.K. POON, Space bounds for graph connectivity problems on node-named JAGs and node-ordered
JAGs Proc. of the 34th IEEE Symp. on the Foundations of Computer Science (1993), pp. 218-227.

[Ra91] A. RAZBOROV, Lower bounds for deterministic and nondeterministic branching programs, Proceed-
ings of the 8th FCT, Lecture Notes in Computer Science, 529 (1991) pp. 47-60.

[RaMc99] R. Raz AND P. MCcKENZIE, Separation of the monotone NC hierarchy, Combinatorica
19(3)(1999), pp. 403-435.

[Re05] O. REINGOLD, Undirected ST-connectivity in log-space. Proc. of the 37th ACM Symp. on the Theory
of Computing (2005), pp. 376-385.

[Sa70] W.J. SAvITCH, Relationships between nondeterministic and deterministic tape complexities, J. Com-
puter and Systems Science 4(2) (1970), pp. 177-192.

[Sz88] R. SZELEPCSENYI, The method of forced enumeration for nondeterministic automata. Acta Infor-
matica, 26(3) (1988), pp. 279-284.

[We87] I. WEGENER, The complexity of Boolean functions, Wiley-Teubner, 1987.

[We00] I. WEGENER, Branching programs and binary decision diagrams, STAM Monographs on Discrete
Mathematics and Applications, 2000.

17

7 Appendix

7.1 Cook vs Paterson and Hewitt rules

In this section we discuss the difference between marking machines that follow the marking rules of Cook
[Co74] and those that follow the pebbling rules of Paterson and Hewitt [PaHe70]. There are three types of
moves of a marking machine: 1. mark the source element 1; 2. remove a mark from some marked element;
3. the inductive move. The definition of Cook differs from the definition of Paterson and Hewitt in the
inductive move. We use the inductive move of Paterson and Hewitt which on a relation 7" may mark a new
element z of the universe if there exist two marked elements x and y such that (z,y,2) € T. The inductive
move of Cook also marks the new element z if there are two marked elements = and y such that (z,y,2) € T
but at the same time it removes a mark from either x or y. Hence the inductive move of Cook corresponds
to moving the mark from either x or y to z.

We claim that the rules of Paterson and Hewitt [PaHe70] result in more efficient marking machines than
the ones defined by Cook [Co74]. We call the marking machines that follow the rules of Paterson and Hewitt
fat, and we call the machines that follow the rules of Cook slim. For every n > 2 we present here a relation
T, on [2n] such that the target element 2n can be marked by a fat marking machine using only 4 marks
whereas slim marking machines need at least n marks.

For n > 2, let T, be the ternary relation on [2n] which contains the following elements: (1,1,2),(1,1,3)
and (2n —2,2n—1,2n) are in T, and for every 1 <i<n—1, (2i,2i+1,2i+2) and (2¢,2i+1,2i+ 3) are in
T,,. (This relation corresponds to a layered graph with n + 1 levels each of size at most two, where edges go
from one level to the next.) If is straightforward to verify that a fat marking machine needs only four marks
to mark the target element 2n. However, we claim that a slim marking machine requires at least n marks
to mark 2n.

Claim 7.1 Forn > 2, on T, a slim marking machine needs at least n marks to mark the element 2n.

Proof. Let n > 2 and let Cy, Cs, ..., C; be an accepting computation of a slim marking machine on T,.
Let C be an arbitrary configuration of this computation. Let 1 < m < n. We say that layers m,...,n
are full in C if at least n + 1 — m elements among {2m,2m + 1,...,2n} are marked in C. Clearly, layers
n,...,n are full (is full) in C;. Let 1 < m be the smallest integer such that layers m, ..., n are full in some
configuration of the accepting computation. We claim that m = 1.

For a contradiction assume that m > 1. The only way how the number of marked elements among

{2m,2m + 1,...,2n} can increase is by moving there a mark from elements {2m — 2,2m — 1}. Let C; be
the first configuration when layers m,...,n are full. Then in C;_; both elements 2m — 2 and 2m — 1 are
marked. But that means that layers m — 1,m, ..., n are full in a contradiction to the minimality of m. The

statement now follows.

18

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

