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Abstract

We prove several new results regarding the relationship between probabilistic time,
BPTime (t), and alternating time, ΣO(1)Time (t). Our main results are the following:

1. We prove that BPTime (t) ⊆ Σ3Time (t · poly log t). Previous results show that
BPTime (t) ⊆ Σ2Time

(

t2 · log t
)

(Sipser and Gács, STOC ’83; Lautemann, IPL
’83) and BPTime (t) ⊆ ΣcTime (t) for a large constant c > 3 (Ajtai, Adv. in
Comp. Complexity Theory ’93).

2. We prove that BPTime (t) 6⊆ Σ2Time
(

o(t2)
)

with respect to some oracle. This
complements our result (1), and shows that the running time of the Sipser-Gács-
Lautemann simulation is optimal, up to a log t factor, for relativizing techniques.
(All the results in (1) relativize.)

This result is obtained as a corollary from a new circuit lower bound for ap-

proximate majority : poly(n)-size depth-3 circuits for approximate majority have
bottom fan-in Ω(log n).

3. We prove that solving QSAT3 ∈ Σ3Time (n · poly log n) requires time n1+Ω(1) on
probabilistic Turing machines using space n.9, with random access to input and
work tapes, and two-way sequential access to the random-bit tape. This is the
first lower bound of the form t = n1+Ω(1) on a model with random access to the
input and two-way access to the random bits.

4. We prove that solving QSAT3 ∈ Σ3Time (n · poly log n) requires time n1+Ω(1) on
Turing machines with an input tape and a sequential work tape that is initialized
with random bits. This is the first lower bound on a probabilistic extension of
the off-line Turing machine model with one work tape.

∗Research supported by NSF grant CCR-0133096, US-Israel BSF grant 2002246, ONR grant N-00014-
04-1-0478.
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1 Introduction

Understanding the power of probabilistic computation is a central problem in Theoretical
Computer Science, and one for which little is known. Essentially, the only non-trivial upper
bound that we have on the power of probabilistic computation is the result that probabilistic
polynomial time is in the second level of the polynomial-time hierarchy, i.e. BPP ⊆ ΣP

2 , which
was proven in ’83 by Sipser and Gács [Sip], and independently by Lautemann [Lau].1 The
results in [Sip, Lau] actually show that probabilistic time t = t(n) with error 1/3 can be
simulated deterministically, using two quantifiers, with a quadratic blow-up in the running
time, i.e. BPTime (t) ⊆ Σ2Time (t2 · poly log t). To the knowledge of the author, there has
been no result on whether this quadratic blow-up is necessary. In this paper, we present
the first such result: We prove a new circuit lower bound which implies that this quadratic
blow-up is necessary for relativizing techniques (such as those in [Sip, Lau]). Specifically,
we show that BPTime (t) 6⊆ Σ2Time (o(t2)) with respect to some oracle. (Our results are
formally presented in the next section.)

The above result naturally raises the question of whether the quadratic blow-up in the
running time of the simulation can be avoided at some higher level of the polynomial-time
hierarchy. An involved result by Ajtai [Ajt2] implies that this is indeed possible at some
level, namely that BPTime (t) ⊆ ΣcTime (t) for some constant c. Ajtai does not bound
the constant c, and an analysis of his proof only gives a large constant c � 3. In this
work, we show that there is a quasilinear-time simulation at level c = 3, i.e. we show that
BPTime (t) ⊆ Σ3Time (t · poly log t). Our techniques relativize and thus c = 3 is optimal for
them, as implied by our oracle result stated in the preceding paragraph. Table 1 summarizes
the results discussed so far.

On the flip side of the coin, there is the challenge of proving lower bounds on the running
time of probabilistic algorithms for some ‘natural’ problem. Of course, it is unknown how
to prove superlinear time lower bounds on general computational models (such as multi-
tape Turing machines). This is already true for deterministic computation, and probabilistic
computation only makes the challenge harder. However, there has been progress in proving
lower bounds on restricted models of computation. In this paper we consider two such
models, both well-studied, and we prove new lower bounds on them.

The first model we consider is that of probabilistic random-access Turing machines using
little space, say at most n.9. The works [BSSV, AKR+, DvM] prove lower bounds on this
model; in particular, Allender et al. [AKR+] and Diehl and van Melkebeek [DvM] prove time
lower bounds t = n1+Ω(1) on this model, but their results hold only for machines with one-
way access to the random bits. We prove a t = n1+Ω(1) lower bound for solving QSAT3 ∈
Σ3Time (n · poly log n) on machines with two-way (sequential) access to the random bits.
To the best of our knowledge, this is the first lower bound of the form t = n1+Ω(1) on a
probabilistic model with random access to the input and two-way access to the random bits.
(We elaborate on this model in Section 1.2.)

We then consider the model of Turing machines with two tapes, i.e. the read-only input

1It is actually known that BPP ⊆ MA ⊆ SP
2 ⊆ ΣP

2 [Can, RS]. See [GZ] for discussion of these inclusions.
These strengthenings are not directly relevant to our work which, unlike [Can, RS, GZ], focuses on the
running time of the simulation.
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Table 1: Results on simulating probabilistic time by alternating time.

Previous Results

Inclusion Oracle Reference

BPTime (t) ⊆ Σ2Time (t2 · log t) Holds for every oracle [Sip, Lau]

BPTime (t) ⊆ ΣO(1)Time (t) Holds for every oracle [Ajt2]

Our Results

Inclusion Oracle Reference

BPTime (t) ⊆ Σ3Time (t · poly log t) Holds for every oracle Th. 1

BPTime (t) 6⊆ Σ2Time (o(t2)) Holds for some oracle Th. 3

tape and one work tape with no space restrictions. Maass and Schorr [MS] prove a lower
bound of the form t ≥ n1.22 for solving SAT ∈ Σ1Time (n · poly log n) on this model (inde-
pendently rediscovered in [vMR]). We prove that a bound of the form t = n1+Ω(1) holds, for
solving QSAT3 ∈ Σ3Time (n · poly log n), even if the work tape is initialized with random
bits and the machine allowed to err with small probability. To the best of our knowledge,
this is the first lower bound on a probabilistic extension of the two-tape Turing machine
model.

1.1 Our Results on Simulating Probabilistic Time by Alternating

Time

We now describe our results regarding simulating probabilistic time by deterministic alter-
nating time. Our main results are summarized and compared to previous work in Table
1.

On the positive side, we show the following new quasilinear-time simulation of BPTime (t),
which holds in any reasonable model of computation that can compute Fourier transforms
in time O(n · poly log n) (see, e.g., [CLRS]).

Theorem 1. BPTime (t) ⊆ Σ3Time (t · poly log t) for every constructible function t = t(n).

Since BPTime (t) is closed under complement, we obtain the following corollary, which
plays a crucial role in our lower bounds discussed in sections 1.2 and 1.3 below.

Corollary 2. If Σ3Time (n) ⊆ BPTime (n · poly log(n)) then the quasilinear alternating hi-
erarchy collapses to the third level, i.e.

⋃

c ΣcTime (n · poly log(n)) = Σ3Time (n · poly log(n)).

On the negative side, we prove the following quadratic lower bound on the running time of
Σ2 simulations that relativize, i.e. hold with respect to any oracle. We note that all previous
simulations [Sip, Lau, Ajt2, Can, RS], as well as ours (Theorem 1), relativize.

Theorem 3. For every constructible function t = t(n), BPTime (t) 6⊆ Σ2Time (o(t2)) with
respect to some oracle.
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Table 2: Results on the complexity of computing Approximate Majority on n bits.

Previous Results

Complexity of Approximate Majority Uniformity Reference

Computable by depth-3 poly(n)-size circuits non-uniform [Ajt1]

with bottom fan-in O(logn)

Computable by depth-O(1) poly(n)-size circuits Dlogtime-uniform [Ajt2]

Our Results

Complexity of Approximate Majority Uniformity Reference

Not computable by depth-3 2n.1
-size circuits non-uniform Th. 4

with bottom fan-in (log n)/2

Computable by depth-3 poly(n)-size circuits P-uniform Th. 20

Theorem 3 shows that, for relativizing techniques, the running time of the Sipser-Gács-
Lautemann [Sip, Lau] Σ2 simulation of BPTime (t) is optimal (up to logarithmic factors),
and that consequently the level of our quasilinear-time simulation in Theorem 1 is also
optimal, in the sense that it cannot be reduced to 2. For completeness, let us point out that
Stockmeyer [Sto] proves that BPP 6⊆ PNP ⊆ ΣP

2 with respect to some oracle. His result is
incomparable to our Theorem 3 which addresses the running time of Σ2 simulations.

The separation in Theorem 3 is obtained as a corollary from a new circuit lower bound
for Approximate Majority. Approximate Majority is a promise problem [ESY] where the
task is computing Majority on a given bit string that is promised to have either at least a
2/3 fraction of bits set to 1, or at most a 1/3 fraction of bits set to 1. In this paper we prove
the following new lower bound on the bottom fan-in of depth-3 (unbounded fan-in) circuits
for Approximate Majority, where the bottom fan-in is defined to be the fan-in of the gates
adjacent to the input bits.

Theorem 4. Let C be a depth-3 circuit computing approximate majority on n bits. If the
bottom fan-in of C is at most log(n)/2 then the size of C is at least 2n.2

, for big enough n.

We point out that in ’83 Ajtai [Ajt1] gave a striking probabilistic construction of non-
uniform polynomial-size depth-3 circuits for approximate majority.2 Ajtai’s circuits have
bottom fan-in O(log n), which is optimal up to constant factors by Theorem 4. To provide
a more complete picture of the complexity of approximate majority, in this paper we also
exhibit a uniform counterpart of Ajtai’s circuits, i.e. we show that approximate majority is
computable by uniform polynomial-size depth-3 circuits. Table 2 summarizes our results on
approximate majority and compares them to Ajtai’s.

2While Ajtai [Ajt1] does not explicitly bound the depth of his circuits, it can be verified easily that it
equals 3.
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1.2 Our Results on Time-Space Lower Bounds

We now discuss our results on time-space lower bounds for probabilistic machines. We prove
a new time-space lower bound for simulating Σ3Time (n) and, in particular, for solving
QSAT3, the problem of deciding the validity of a given Boolean first-order formula with at
most 2 quantifier alternations.3 The computational model on which we prove this negative
result is that of a probabilistic Turing machine that can access the tape cells on the input
and work tapes by writing a logarithmic-sized index on an associated index tape (random
access), while it can only move to adjacent tape cells on the random-bit4 tape in one time
step (sequential access).

In what follows we define our computational model, and then state our lower bound.

Definition 5. We denote by
←→
BPTiSp (t, s) the set of languages accepted by probabilistic

Turing machines, with two-sided error, that run simultaneously in time t and space s, with
random access to input and work tapes, and two-way sequential access to the random-bit
tape.

Theorem 6. For every constant ε > 0, Σ3Time (n) 6⊆ ←→BPTiSp
(

n1+o(1), n1−ε
)

.

Theorem 6 is the first lower bound of the form t = n1+Ω(1) on a probabilistic computa-
tional model with random access to the input tape and two-way access to its random bits
(for a function computable in, say, linear space). We now elaborate on the strength of models
with two-way access to random bits, and then compare our result to the previous ones.

On one-way vs. two-way access to random bits: To appreciate the difference between
one-way access and two-way access to random bits, consider log-space computation (L). If
one extends L by allowing one-way access to random bits, then one gets a complexity class
(BPL) that is contained in P. On the other hand, if one allows for two-way access to random
bits, then one gets a richer complexity class (BP · L), the power of which is essentially
unknown, and conceivably contains NEXP. To further appreciate this difference, we refer
to a paper by Nisan [Nis2] which shows that every probabilistic logspace algorithm with
one-way access to the random bits can be simulated by a probabilistic logspace algorithm
with two-way access to the random bits with zero error (i.e., BPL ⊆ ZP · L).

An example where two-way access to random bits can be proven to give more power
than one-way access is the language of palindromes: it can be recognized in linear time on
a sequential one-tape Turing machine with two-way access to the random-bit tape, while it
requires time Ω(n · log n) if we only allow one-way access to the random-bit tape.5

The above discussion begs the question of how large a time bound one can prove on
probabilistic computational models with two-way access to the random bits. Our Theorem
6 is a qualitatively new answer to this question.

3The results for QSAT3 will not be stated explicitly but follow from techniques in [FLvMV].
4It will be always clear from the context whether the word ‘random’ refers to the machine’s ability of

addressing tape cells by writing down their index, or to the machine being probabilistic.
5The linear-time upper bound can be obtained as follows: On input xy, we accept iff 〈x, u〉 = 〈yR, u〉,

where 〈., .〉 denotes inner product, yR the reverse of y, and u the random bits. The lower bound can be derived
from the fact that palindromes requires Ω(log n) communication for randomized private-coin protocols; see
[KN], Example 3.1.
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Comparison with Previous Lower Bounds: Beame et al. [BSSV] prove that there is
a function in P that requires time Ω(n

√

log(n/s)/ log log(n/s)) on non-uniform randomized
branching programs using space at most s. Since branching programs are more powerful
than random-access machines, their lower bound applies to our model (Def. 5), but the
time lower bound of Ω(n

√
log n) they achieve is weaker than our n1+Ω(1) bound. Allender

et al. [AKR+] prove an n1+Ω(1) time lower bound on probabilistic random-access machines
that have one-way access to random bits and use space at most n1−ε, for a function in the
counting hierarchy (not believed to be in the polynomial-time hierarchy). In recent and
interesting work, Diehl and van Melkebeek [DvM] prove that probabilistic random-access
machines that have one-way access to random bits and use space at most nε require time at
least nc−ε to simulate ΣcTime (n), for every constant c ≥ 2.6

1.3 Our Results on Time Lower Bounds

We now discuss our results about time lower bounds on probabilistic machines. We prove a
new lower bound on a probabilistic extension of the two-tape Turing machine model (i.e. a
Turing machine with a read-only input tape and one sequential-access work tape with no
space restrictions). Our probabilistic extension, denoted BPTime1 (t), is obtained by initial-
izing the work tape of the machine with random bits, and allowing the machine to err with
small probability.

Theorem 7. Σ3Time (n) 6⊆ BPTime1

(

n1+o(1)
)

.

Theorem 7 is the first lower bound on a probabilistic extension of the two-tape Turing
machine model. In fact, as we point out in Appendix 5, our lower bound applies to a
single model that simultaneously extends BPTime1

(

n1+o(1)
)

and the previously considered
←→
BPTiSp

(

n1+o(1), n1−ε
)

(Def. 5).

1.4 Organization

This paper is organized as follows. In Section 2 we present the proof that BPTime (t) ⊆
Σ3Time

(

t · log2 t
)

(Theorem 1). In Section 3 we prove our lower bound for approximate
majority (Theorem 4), and discuss why it implies our oracle separation in Theorem 3. In
Section 4 we prove our time-space lower bound (Theorem 6). These sections (2, 3, and 4)
can be read independently.

Section 5 contains the proof of our time lower bound on Turing machines (Theorem
7). Section 6 discusses the dependence of our results on the error probability ε of the
BPTime (t) machines, while we set ε = 1/3 in the rest of the paper. In Section 7 we show
that approximate majority is computable by uniform polynomial-size circuits of depth 3.
Finally, we mention a few open problems in Section 8.

6In [DvM] they also point out that their space bound becomes n.25−ε on machines running in time n1+ε.
This space bound (for the particular case of machines running in time n1+ε) later has been improved to
n.5−ε (for simulating Σ2Time (n)) and to n1−ε (for simulating Σ3Time (n)). These improvements have been
obtained by Diehl and van Melkebeek (personal communication, Oct. 2005), and independently by us.
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2 BPTime (t) ⊆ Σ3Time (t · poly log t)

In this section we prove our result that BPTime (t) ⊆ Σ3Time (t · poly log t), i.e. Theorem 1.
We start with an informal overview of the techniques, and then proceed with a formal proof.

Overview of Techniques: Let us focus on the case t = n and review Lautemann’s proof of
BPTime (n) ⊆ Σ2Time (n2 · log n), as this is the starting point of our argument. Let M(x; u)
be a probabilistic machine using n random bits u. Lautemann’s approach is to guess n ‘shifts’
w1 ∈ {0, 1}n, w2 ∈ {0, 1}n, . . . , wn ∈ {0, 1}n and check if for every u ∈ {0, 1}n we have

(

M(x; u⊕ w1) = 1
)

∨

(

M(x; u⊕ w2) = 1
)

∨

. . .
∨

(

M(x; u⊕ wn) = 1
)

. (1)

Noting that we use two quantifiers, each ranging over at most n2 bits, and that the
computation in Equation 1 takes time n2, we have that this is a Σ2Time (n2) simulation.
The proof of correctness is a counting argument, which we omit.7

There are two reasons why this simulation takes at least quadratic time. The first is that
the computation in Equation (1) runs M for n times (over fixed random bits). Since M
runs in time O(n), this takes at least time n2. The second reason is that we initially guess
n2 = |w1, w2, . . . , wn| bits.

Let us focus on the first problem, that is, the fact that computing Equation (1) requires
quadratic time. This problem cannot be avoided using relativizing techniques: Our negative
result (Theorem 3) shows that every relativizing Σ2 simulation must run M at least Ω(n)
times, and thus must have total run time at least n2. As a first step towards our quasilinear
Σ3 simulation, we observe that the computation in Equation (1) is an OR over n evaluations
of M ; thus, we can use another quantifier for this OR, and then run M once.

To obtain a Σ3 simulation that runs in quasilinear time, we still have to solve the second
problem, the quantification over w1, w2, . . . , wn. As it turns out, the only property of these
wi’s that is used in Lautemann’s proof is a hitting property, i.e. for any ‘big’ set A ⊆ {0, 1}n,
the probability over random w1, w2, . . . , wn that none of the wi’s lands in A is exponentially
small in n. It is well known that there are more ‘randomness-efficient’ ways to generate
wi’s with this property (see, e.g., [Gol]). In particular, it is possible to generate such wi’s
using a hitting generator with a seed of length |σ| = O(n). We use this approach: instead
of guessing n2 bits for w1, w2, . . . , wn, we only guess O(n) bits σ and let wi := G(σ)i, where
G(σ) = G(σ)1 ·G(σ)2 · · ·G(σ)n ∈ ({0, 1}n)n for an appropriate generator G.

However, for our simulation we need a generator that runs in quasilinear time in the
sense that given σ and i we need to compute the i-th output G(σ)i = wi ∈ {0, 1}n of the
generator in quasilinear time. Well-known generators based on random walks on expander
graphs achieve seed length O(n) (see, e.g., [Gol]), but we do not know how to compute any
of them in less than quadratic time.8

7Actually, this approach requires that the error probability of M is at most 1/n2. We can achieve this
by paying an extra O(log n) factor in the running time, if M starts off with error 1/3. We ignore this issue
to simplify the exposition.

8Concurrently with our work, Diehl and van Melkebeek show how to compute walks on the Margulis-
Gabber-Galil expander graph [Mar, GG, JM] in quasilinear time (personal communication, Oct. 2005).
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Instead, we use a generator by Nisan [Nis1] which has slightly worse seed length |σ| =
O(n · log n), but which on the other hand can be computed in time O(n · poly log n): to
compute one output of the generator we only have to evaluate log n pairwise independent
hash functions h : {0, 1}n → {0, 1}n. Using hash functions based on convolution or finite
field arithmetic, one can compute each such hash function in time O(n ·poly log n) using the
Fast Fourier Transform.

We now restate the main result of this section, and then formally prove it.

Theorem (1, restated). BPTime (t) ⊆ Σ3Time (t · poly log t) for every constructible function
t = t(n).

The proof of Theorem 1 uses as a component a hitting generator by Nisan.

Lemma 8 ([Nis1], Theorem 3). For every r and k ≤ 2r, there exists a generator

Nk : {0, 1}l → ({0, 1}r)k , Nk(σ) = Nk(σ)1 ·Nk(σ)2 · · ·Nk(σ)k,

such that:

1. Nk has seed length l = |σ| = O(r log k).

2. For every set A ⊆ {0, 1}r we have

∣

∣

∣

∣

∣

Pr
σ

[∀i ≤ k : Nk(σ)i ∈ A]−
( |A|

2r

)k
∣

∣

∣

∣

∣

≤ 4−r.

3. Given a seed σ and i ≤ k we can compute Nk(σ)i ∈ {0, 1}r in time (r ·poly log r) log k.

Proof. Items (1) and (2) in Lemma 8 are proven in Nisan’s paper [Nis1]. To prove Item
(3), we note that computing one r-bit output of the generator requires computing log k
pairwise independent hash functions. Using hash functions based on convolution or finite
field arithmetic one can compute each such hash function in time O(r · poly log r) using the
Fast Fourier Transform (see, e.g., [Nis1] Section 2.2 for the definition of hash functions based
on convolution, and Theorem 30.8 in [CLRS] for the use of the Fast Fourier Transform to
compute convolution).

Proof of Theorem 1. We prove BPTime (n) ⊆ Σ3Time (n · poly log n), the inclusion for generic
time bound t = t(n) then follows by a standard padding argument (see, e.g., [Pap]). Let M
be an algorithm in BPTime (n) and let us write M(x; u) for algorithm M on input x and
random bits u.

Claim 9. Let M be an algorithm in BPTime (n). There is an algorithm M ′ that accepts
the same language as M such that: M ′ has error probability at most 1/n2, M ′ uses O(n)
random bits, and given x, u we can compute M ′(x; u) in time O(n · log n).
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We postpone the proof of Claim 9 and we proceed with the proof of the theorem. (Note
that if one is willing to have M ′ use O(n logn) random bits, instead of O(n), then one
can obtain such a M ′ by simply taking the majority of O(log n) repetitions of M(x) with
independent random bits. Using this instead of Claim 9 and proceeding with the proof gives
a simulation with worse running time, but still n ·poly log n. However, the better parameters
achieved here are used later in Section 7.)

Let M ′ be the algorithm from Claim 9 and let r = r(n) = O(n) be the number of random
bits used by M ′ on input of length n. Let Nk : {0, 1}l → ({0, 1}r)k be the generator from
Lemma 8 with k = r. Note that the seed length of Nk is |σ| = l = O(r log k) = O(n · log n).

Now consider the Σ3 machine that accepts input x if and only if

∃σ ∈ {0, 1}l ∀u ∈ {0, 1}r ∃i ≤ k : M ′ (x; Nk(σ)i ⊕ u) = 1,

where ⊕ denotes bitwise xor.
Correctness: Assume M ′(x) = 1. We must show that the Σ3 machine accepts. Consider

Pr
σ

[∃u ∈ {0, 1}r ∀i ≤ k : M ′ (x; Nk(σ)i ⊕ u) = 0]. (2)

We show that this probability is less than 1 and therefore that the machine accepts. By a
union bound this probability (2) is at most

2r · Pr
σ

[∀i ≤ k : M ′ (x; Nk(σ)i) = 0].

(Note we removed ⊕u because this just shifts the space of random bits of the algorithm and
does not change the probability.) Since M ′(x) = 1, and M ′ has error at most 1/n2, we get
by Lemma 8 that the probability is at most (recall k = r)

2r
(

(1/n2)k + 4−r
)

< 1.

Now assume that M ′(x) = 0. Fix any seed σ, we must show that ∃u ∈ {0, 1}r ∀i ≤ k :
M ′ (x; Nk(σ)i ⊕ u) = 0, and thus the machine rejects. Consider

Pr
u

[∃i ≤ k : M ′ (x; Nk(σ)i ⊕ u) = 1.

Again, we show that this probability is less than 1 and therefore that the machine accepts.
By a union bound this probability is at most

k · Pr
u

[M ′ (x; u) = 1].

(Note again we removed Nk(σ)i⊕ because this just shifts the space of random bits of the
algorithm and does not change the following analysis.) Since M ′ has error at most 1/n2 this
probability is at most k/n2 = r/n2 = O(n · log n)/n2 < 1.

Complexity: The machine uses three quantifiers, each on at most O(n · log n) bits, by
inspection. Each computation branch only runs M ′ (x; Nk(σ)i ⊕ u) once. Nk(σ)i can be
computed in time (r · poly log r) · log k = n · poly log n by Lemma 8, and for given x, u′,
M ′(x; u′) can be computed in time O(n · log n) by Claim 9.

8



Proof sketch of Claim 9. We use the O(n) random bits of M ′ to encode a walk w1, w2, . . . , wl

of length l = O(log n) on an expander graph of 2O(n) vertices. We then define M ′(x; u) :=
Majj≤lM(x; wj). The bound on the error probability of the algorithm follows by the Chernoff
Bound for random walks on expander graphs [Gil]. Using the expander graph in [Mar] (the
expansion of which is analyzed in [GG, JM]), we can compute all the wi’s in time O(n · log n):
computing wi from wi−1 amounts to a constant number of additions, which can be done in
time O(n).

3 Lower Bound for Approximate Majority

In this section we prove our lower bound on the bottom fan-in of (unbounded fan-in) depth-
3 circuits computing approximate majority. At the end of the section we compare our
techniques to previous ones, and informally discuss why our lower bound implies our oracle
separation in Theorem 3.

Let us begin by formally defining approximate majority and restating our main result.

Definition 10. Approximate Majority is the following promise problem:
ApprMajY ES := {x : at least 2|x|/3 bits of x are set to 1},
ApprMajNO := {x : at most |x|/3 bits of x are set to 1}.

Theorem (4, restated). Let C be a depth-3 circuit computing approximate majority on n
bits. If the bottom fan-in of C is at most log(n)/2 then the size of C is at least 2n.2

, for big
enough n.

We now explain the proof of Theorem 4. It is convenient to work with the following
distribution, which generates x ∈ ApprMajNO with sufficiently high probability (for our
purposes).

Definition 11. Let Dn be the distribution on {0, 1}n that sets each bit to 1 independently
with probability 1/3.

The core of the proof of Theorem 4 is the following lemma.

Lemma 12. Let ϕ be a DNF on n variables with terms of size at most k. If ϕ(x) = 1 for

every x ∈ {0, 1}n with at least 2n/3 bits set to 1, then Prx∈Dn[ϕ(x) = 0] ≤ e−
n

3·k2·3k .

Before we explain the intuition for the proof of Lemma 12, let us see why it implies
Theorem 4.

Proof of Theorem 4 assuming Lemma 12. First note that Prx∈Dn[x ∈ ApprMajNO] ≥ 1/3 by
the standard Central Limit Theorem,9 and therefore we have that Prx∈Dn[C(x) = 0] ≥ 1/3.

Assume that the output gate of C is an AND gate (otherwise we can negate the circuit
and carry through essentially the same argument as below for approximate majority with
YES and NO swapped). So C =

∧

i ϕi, where each ϕi is a OR-AND depth-2 circuit, i.e. a
DNF. Note that, by definition of AND, for every x ∈ ApprMajY ES we have ϕi(x) = 1 for

9Alternatively, one can change the parameter 1/3 in the distribution Dn to any other smaller constant,
and prove, using Markov inequality, a bound which is enough to obtain our results modulo different constants.
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all i, while for random x ∈ Dn we have that with probability at least 1/3 there is an i such
that ϕi(x) = 0. By an averaging argument we can fix a DNF ϕ = ϕi such that: (1) for every
x ∈ ApprMajY ES we have ϕ(x) = 1; (2) Prx∈Dn[ϕ(x) = 0] ≥ 1/(3 · |C|), where |C| is the size
of the circuit C, i.e. the number of its gates. Note that if C has bottom fan-in at most k
then the same holds for the subcircuit ϕ fixed above, i.e. ϕ is a DNF with term size at most
k. By Lemma 12, we have

1

3 · |C| ≤ e−n/(3·k2·3k) = e−nΩ(1)

,

and so we conclude |C| ≥ enΩ(1)
. In fact, |C| ≥ 2n.2

, because 3k = n(log2 3)/2 ≈ n.792.

Overview of the Proof of Lemma 12: The proof of Lemma 12 is an inductive argument
inspired by a recent switching lemma by Segerlind et al. [SBI], which we discuss later in this
section. A similar argument is also a component of a technically intricate lower bound on
the round complexity of protocols for two-party random selection [SV].

Let us define a covering of a DNF ϕ as a subset Γ of the variables such that each term in
ϕ contains at least one variable, possibly negated, in Γ. For example, the smallest covering of
the DNF ϕ(x1, x2, x3, x4) := (x1x2x3)OR(¬x1)OR(x2x4) is Γ := {x1, x2}. To prove Lemma
12 we then argue as follows. Consider the smallest covering Γ of ϕ. There are two cases:
Either |Γ| > n/(3k) or |Γ| ≤ n/(3k). (Recall k = (log n)/2 is the maximum term size of ϕ.)

Case |Γ| > n/(3k): In this case ϕ must contain at least |Γ|/k = n/poly log(n) disjoint
terms, where disjoint means that no two terms share a variable. Such terms can be found
greedily, using the fact that the terms are of size at most k. Now, the probability that
ϕ(x) = 0 for random x ∈ Dn is at most the probability that all these n/poly log(n) terms
evaluate to 0. Since the terms are disjoint, this can be bound by raising to the power
of n/poly log(n) the probability that a single term is 0. But since terms have at most
k = (log n)/2 variables, the probability that a term is 0 can be shown to be at most (1−1/nε),
for a constant ε < 1. Thus we have

Pr
x∈Dn

[ϕ(x) = 0] ≤
(

1− 1

nε

)n/poly log(n)

= 2−nΩ(1)

,

which proves Lemma 12.
Case |Γ| ≤ n/(3k): In this case by an averaging argument we fix the variables in Γ and

obtain a new DNF ϕ′ such that Prx∈Dn[ϕ′(x) = 0] ≥ Prx∈Dn [ϕ(x) = 0]. Then we iterate the
argument on ϕ′ (i.e. we consider the size of the smallest covering of ϕ′, etc.).

We keep iterating the argument until we obtain a DNF ϕ′ whose smallest covering has
size at least n/(3k), or a DNF ϕ′ that computes a constant function. By construction,
Prx∈Dn [ϕ′(x) = 0] ≥ Prx∈Dn[ϕ(x) = 0], so we only need to worry about the case ϕ′ ≡ 0
(otherwise Lemma 12 is proven as stated above). We rule out the case ϕ′ ≡ 0 by exhibiting
x ∈ ApprMajY ES such that ϕ(x) = 0, which contradicts the hypothesis of Lemma 12. To
construct such an x, note that each iteration assigns values to the variables in a covering of
the DNF, and so at each iteration the term size of the DNF decreases (since each term has at
least one variable in the covering). Therefore we iterate the argument at most k times. Since
each iteration fixes at most n/(3k) variables, in the end we have fixed at most k·n/(3k) = n/3

10



variables. By setting all the remaining variables to 1 we set at least 2n/3 variables to 1 and
thus we have x ∈ ApprMajY ES such that ϕ(x) = ϕ′(x) = 0, which contradicts the hypothesis
of Lemma 12 and concludes this proof sketch.

We now present the formal proof of Lemma 12.

Proof of Lemma 12. We define a covering Γ of a DNF ϕ to be a subset of variables such that
each term in ϕ contains at least one variable in Γ (possibly negated). Consider the following
procedure:

Procedure(ϕ)
If ϕ computes a constant function then stop.
Remove all terms in ϕ that compute the constant function 0 (e.g. x1 ∧ ¬x1).
Let Γ be a minimum-size covering of the terms of ϕ.
If |Γ| ≥ n/(3 · k) then stop.
Partition the v variables of ϕ(x) into x = y

⋃

z, where y = Γ and z
⋂

Γ = ∅.
Fix an assignment y = a such that Prz∈Dv−|Γ| [ϕ(a · z) = 0] ≥ Prx∈Dv [ϕ(x) = 0].
(Such an assignment exists by an averaging argument.)
Consider the new DNF ϕ′(z) := ϕ(a · z) obtained by hardwiring a in ϕ.
Repeat the procedure on the DNF ϕ′.

Claim 13. The procedure stops after at most k iterations.

Proof. At each iteration we fix the variables y in a covering Γ of ϕ. Since by definition of
covering each term of ϕ contains a variable from Γ, this decreases the maximum term size
of ϕ. When the term size is 0 then the DNF is a constant and we stop.

The procedure constructs a sequence of DNFs ϕ = ϕ1, ϕ2, . . . , ϕt, where DNF ϕi is on ni

variables. We have t ≤ k by the above claim. Also, by construction we have

Pr
x∈Dn

[ϕ(x) = 0] = Pr
x∈Dn1

[ϕ1(x) = 0] ≤ Pr
x∈Dn2

[ϕ2(x) = 0] ≤ . . . ≤ Pr
x∈Dnt

[ϕt(x) = 0]. (3)

To finish the proof, we simply analyze what happens when the procedure stops. If the
procedure stops at the i-th iteration because ϕi computes a constant function, we argue as
follows: If ϕi(x) = 1 for every x then Prx∈Dni [ϕi(x) = 0] = 0, and by Equation (3) we have
Prx∈Dn [ϕ(x) = 0] ≤ 0, which proves the lemma.

If ϕi(x) = 0 for every x then notice that at each iteration we fix at most n/(3k) variables,
and therefore by Claim 13 ϕi equals ϕ with at most k · n/(3k) = n/3 variables fixed. By
setting all the remaining variables to 1, we have found an input x̂ with at least 2n/3 bits set
to 1 such that ϕ(x̂) = 0, which contradicts the hypothesis of the lemma.

Otherwise, the procedure stops at the i-th iteration because every covering of ϕi has size
at least n/(3k). Therefore there is a set S of at least n/(3k2) disjoint terms, where disjoint
means that no two terms share a variable. To see why this is true, let S be a maximal set
of disjoint terms. The union of the variables in the terms in S is a covering of ϕi of size at
most |S| ·k: if it were not a covering, we could add a term to S, contradicting its maximality.
Thus |S| ≥ (n/3k)/k.

11



Then we can bound Prx[ϕ(x) = 0] as follows:

Pr
x∈Dn

[ϕ(x) = 0] ≤ Pr
x∈Dni

[ϕi(x) = 0] ≤
(

1− 1

3k

)n/(3k2)

≤ e−
n

3·k2·3k ,

where the first inequality follows by Equation (3), and the second follows by considering the
terms on disjoint sets of variables in ϕi. Specifically, we notice that the probability that any
of them is 0 is at most (1 − 1/3k). This holds because in the procedure we always remove
terms computing the constant function 0, and thus each term must be 1 under at least one
assignment of its (at most k) variables. This assignment is picked under the distribution
Dni with probability at least 1/3k. Moreover, these events are independent for the n/(3 · k2)
terms with disjoint variables.

Why one cannot use previous techniques to prove our circuit lower bound: A
standard approach to prove lower bounds for constant-depth circuits is to use a switch-
ing lemma (see, e.g., [H̊as]). H̊astad’s switching lemma [H̊as] cannot be used directly to
prove lower bounds for the promise problem Approximate Majority. This is because to
apply this lemma to a circuit with bottom fan-in k, we need to assign values to at least
a (1 − 1/k) fraction of the variables. The switching lemma would assign 0 to roughly
half of this fraction of variables, and so as soon as k ≥ 3, we would produce an input
x 6∈ ApprMajY ES

⋃

ApprMajNO.
Recently, Segerlind et al. [SBI] proved a new switching lemma that assigns values to much

fewer variables than does H̊astad’s switching lemma. One can apply this switching lemma
[SBI] to prove that small depth-3 circuits for approximate majority on n bits require bottom
fan-in at least Ω(

√
log n); however, we were unable to apply their results to circuits with

bigger bottom fan-in, such as (log n)/2. Our proof is also conceptually simpler than a proof
based on the switching lemma.

3.1 Oracle Separation

In this section we review why our circuit lower bound for approximate majority in Theorem
4 implies our oracle separation in Theorem 3. We start with some intuition, and then give
a more formal proof.

The connection between Approximate Majority and simulating BPTime (t): Con-
sider simulating a probabilistic machine M ∈ BPTime (t) by a machine in Σ2Time (t′). Given
an input x, by definition of BPTime (t) we are promised that either Pru[M(x; u) = 1] ≥ 2/3
or Pru[M(x; u) = 1] ≤ 1/3. This corresponds to an approximate majority instance Y of
exponential length |Y | = 2|u|, where the i-th bit of Y is M(x; i). Thus, intuitively, the task
of the Σ2 machine is to distinguish Y ∈ ApprMajY ES from Y ∈ ApprMajNO. It is well
known from [FSS] that the Σ2 computation can be seen as an unbounded fan-in circuit of
depth 3: the two quantifiers give rise to the first two levels of the circuit (OR-AND). After
its quantifications, the Σ2 simulation is followed by a deterministic computation running in
time t′. Since computing M(x; u) for fixed (x; u) takes (deterministic) time t, the Σ2 com-
putation can depend on at most k := t′/t evaluations of M . We can write this part of the
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Σ2 computation as a depth-2 (AND-OR) circuit with bottom fan-in k. Finally, by collapsing
the top AND gate of this circuit with the AND arising from the second quantifier, we obtain
a circuit of depth 3 with bottom fan-in k = t′/t.

The above sketch can be shown to be exact for relativizing simulations, using the standard
convention that the oracle tape is erased after each query (see, e.g., [BDG]). We stress that
this convention is natural: it is intuitively capturing the fact that the Σ2Time (t′) machine
cannot run the code of the BPTime (t) machine more than t′/t times, since each execution
of the latter runs in time t. Finally, we would like to point out that our result in Theorem
3 also applies to simulations of BPTime (t) by Σ2Time (t′) that are black-box (as opposed to
relativizing), because black-box simulations relativize (folklore).

Proof of Theorem 3 assuming Theorem 4. The overall structure of the proof follows stan-
dard arguments (see e.g., [FSS], or Theorem 14.5 in [Pap]). Fix a time bound t = t(n).
Consider the collection of oracles A where for every A ∈ A and for every integer m, the
fraction of strings of length m in the oracle A is at least 2/3 or at most 1/3. For A ∈ A we
consider the language

LA :=

{

0n : Pr
x:|x|=t(n)

[x ∈ A] ≥ 2/3

}

.

For every A ∈ A we have that LA ∈ BPTime (t) with oracle access to A: on input 0n, we
simply query the oracle at a random x of length t(n) and return its answer.

On the other hand, we show that there is A ∈ A such that LA 6∈ Σ2Time (o(t2)) with ora-
cle access to A. The construction of A proceeds by diagonalization. Consider an enumeration
M1, M2, . . . of Σ2Time (o(t2)) machines. We assume that these machines only make oracle
queries of length t(n), on input of length n. This assumption can be removed by standard
arguments, e.g. by considering ‘sufficiently sparse’ input lengths. We make this assumption
because it simplifies the proof while preserving all the main ideas, and also because it holds
for all known simulations (in particular all those in Table 1).

At stage i we fix a finite initial segment of the oracle A in such a way that LA 6= MA
i .

Stage i works as follows. Let Mi run in time t′ = o(t2). By standard techniques from [FSS]
the machine Mi gives rise to an unbounded fan-in circuit of depth 3 as follows. The input to
the circuit is the truth table of length T = T (n) := 2t of the oracle (as well as the bit-wise
complement of this truth table). The top and the middle fan-ins of the circuit are 2O(t′(n))

(where the top fan-in is defined as the fan-in of the output gate), while the bottom fan-in
is k = k(n) := t′(n)/t(n) = o(t2/t) = o(t). The bottom fan-in corresponds to the maximum
number of oracle queries the machine makes on any computation path. Since each query is
of length t and the oracle tape is erased after each query (see, e.g., [BDG]), the machine can
only ask t′(n)/t(n) queries.

We are now in the apply our Theorem 4. For sufficiently large n, a circuit with the above
parameters cannot compute approximate majority on T = 2t bits. (Note that the bottom
fan-in of the circuit is k = o(t) = o(log T ).) Therefore we can augment the oracle A in such
a way that LA 6= MA

i , while still keeping A ∈ A.
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4 Time-Space Lower Bound

In this section we prove our time-space lower bound (Theorem 6). We start with an informal
overview of the techniques, and then proceed with a formal proof sketch.

Overview of Techniques: Our time-space lower bound for Σ3Time (n) is inspired by
an interesting recent paper by Diehl and van Melkebeek [DvM] which, among other results,

proves that Σ3Time (n) 6⊆ −→BPTiSp (n1+ε, nε) for some constant ε, where
−→
BPTiSp (t, s) denotes

the class of problems that can be solved simultaneously in time t and space s on a probabilistic
random-access Turing machine with one-way access to its random bits. It is convenient for
this exposition to think of the approach in [DvM] as giving a sublinear-time Σ3 simulation of−→
BPTiSp (n1+ε, nε), in other words, proving that

−→
BPTiSp (n1+ε, nε) ⊆ Σ3Time (o(n)). Their

result that Σ3Time (n) 6⊆ −→BPTiSp (n1+ε, nε) then follows by a standard time hierarchy for
alternating time.10 To prove this simulation one argues as follows. First one derandomizes

the
−→
BPTiSp (n1+ε, nε) machine using a pseudorandom generator by Nisan [Nis1] that has

seed length nε. This gives
−→
BPTiSp (n1+ε, nε) ⊆ BPnε

TiSp (n1+ε, nε), where ‘BPnε

’ means
‘using at most nε random bits.’ (Note we do not specify anymore if the machine has one-
way or two-way access to its random bits, because now the machine simply could copy
its nε random bits onto a random-access work tape.) Second, one replaces the nε random
bits by two quantifiers, using Lautemann’s result [Lau] discussed in Section 1. For this
replacement, Lautemann’s result needs to quantify over (nε)2 bits, and thus one obtains
BPnε

TiSp (n1+ε, nε) ⊆ ∃n2ε∀n2ε
TiSp

(

n1+O(ε), nε
)

. By using another quantifier to speed up

the running time of the simulation (cf. [vM]), one gets
−→
BPTiSp (n1+ε, nε) ⊆ Σ3Time (o(n)).

We now explain the difficulties we encounter in the proof of our result that Σ3Time (n) 6⊆←→
BPTiSp

(

n1+o(1), n1−ε
)

. Following the above outline, our task is to show the following simula-

tion:
←→
BPTiSp (n1+ε, n1−ε) ⊆ Σ3Time (o(n)). The main difficulty that we face in this extension

to machines with two-way access to random bits is that in this setting only generators much
weaker than Nisan’s [Nis1] are known. Specifically, we use a generator by Impagliazzo et
al. [INW], which raises two problems. The first problem is that, regardless of the amount of
space used by the machine, this generator always has seed length |σ| � √n (as opposed to
nε). This is problematic because, as explained above, the approach in [DvM] is to replace
the random bits for the seed σ of the generator by alternations. However, Lautemann’s
approach would need to quantify over |σ|2 � n bits, which would prevent us from obtaining
a sublinear-time simulation. We solve this problem using our quasilinear-time simulation of
probabilistic time (Theorem 1) instead of Lautemann’s simulation.

The second problem is that we do not know how to compute the generator of [INW] in
less than time |σ|2 � n. Again, this seems to prevent us from obtaining a sublinear-time
simulation. In fact, the argument in [DvM] directly exploits the fact that Nisan’s generator
[Nis1] is computable quickly. We solve this problem as follows. First we notice that the
generator in [INW] can be computed time-efficiently using alternations. Then we apply

our Corollary 2, which shows that our assumption (Σ3Time (n) ⊆ ←→BPTiSp
(

n1+o(1), n1−ε
)

⊆
10This is a simplification of the techniques in [DvM]: in [DvM] they obtain the stronger result that

Σ3Time (n) 6⊆ −→BPTiSp
(

n3−ε, nε
)

using a more involved argument.
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BPTime
(

n1+o(1)
)

) implies a time-efficient collapse of the alternating-time hierarchy to the
third level.

We now restate our time-space lower bound and then prove it.

Definition (5, restated). We denote by
←→
BPTiSp (t, s) the set of languages accepted by proba-

bilistic Turing machines, with two-sided error, that run simultaneously in time t and space s,
with random access to input and work tapes, and two-way sequential access to the random-bit
tape.

Theorem (6, restated). For every constant ε > 0, Σ3Time (n) 6⊆ ←→BPTiSp
(

n1+o(1), n1−ε
)

.

We use the following generator by Impagliazzo, Nisan, and Wigderson.

Lemma 14 ([INW], Theorem 4). For every sufficiently small constant ε > 0 and sufficiently
large n, there exists a pseudorandom generator G : {0, 1}m1−δ → {0, 1}m1+δ

, with m =
m(n) := n2 and δ = ε/4, that satisfies the following:

• Pseudorandomness: Let M be a machine in
←→
BPTiSp (t, m1−ε) where t = t(n) = m1+o(1).

For every fixed x ∈ {0, 1}n,
∣

∣

∣
Pru∈{0,1}t [M(x; u) = 1]− Pr

σ∈{0,1}m1−δ [M(x; G(σ)) = 1]
∣

∣

∣
≤

1/9.

• Complexity: Given a seed σ ∈ {0, 1}m1−δ
and the index i ≤ m1+δ to an output bit,

the i-th output bit of G(σ) is computable simultaneously in time poly(m) and space
O(m1−δ).

Remark 15 (Remark on the proof of Lemma 14). In [INW] they sketch a proof that one
can fool Turing machines running simultaneously in time t and space s using a generator G
with seed length O(

√
t · s · log t). We now explain why this implies Lemma 14 above.

First note that in our case t = t(n) = m1+o(1) and s = m1−ε. When t ≤ m1+δ then the

generator in [INW] has seed length O(
√

m1+δ+1−ε · log m) = O(m1−3·ε/8 · log m) ≤ m1−ε/4 =
m1−δ for sufficiently large m.

In [INW], they only argue that the generator fools Turing machines (as opposed to←→
BPTiSp (t, s)). However, their proof is only exploiting that the machine has sequential access
to the random-bit tape, and that the state of the machine can be described by s bits, both of

which hold in our model
←→
BPTiSp (t, s). In particular, their proof does not rely on Turing

machines being a uniform model of computation, and thus their generator works even after
we hardwire an arbitrary input x.

Finally, the authors of [INW] claim without proof (Section 4 in [INW]) that the generator
can be computed “in polynomial time and polylog space in the size of the output of the
generator.” We do not see how to do that when the seed is polynomially related to the size of
the output of the generator. However, it is not too hard to see that, given a seed, the generator
is computable simultaneously in polynomial time and linear space (details omitted).
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Notation for the proof of Theorem 6: The proof of Theorem 6 involves a series of
inclusions between complexity classes. To reason about these classes, it is convenient to give
the following definitions. We denote by TiSp (t, s) the set of (languages accepted by) Turing
machines running simultaneously in time t and space s, with random access to input and work
tapes (cf. [vM, FLvMV]). For a complexity class C (e.g. TiSp (t, s)) and a function f = f(n)
we define the class BPfC to be the set of languages L for which there exists M(x; u) ∈ C such
that x ∈ L ⇒ Pru∈{0,1}f [M(x; u) = 1] ≥ 2/3, and x 6∈ L ⇒ Pru∈{0,1}f [M(x; u) = 1] ≤ 1/3,
where the complexity of M is measured in terms of |x| (as opposed to |x| + |u|). We
analogously define ∃fC (namely x ∈ L⇔ ∃u ∈ {0, 1}f : M(x; u) = 1), and ∀fC.

Proof of Theorem 6. We assume that Σ3Time (n) ⊆ ←→BPTiSp
(

n1+o(1), n1−ε
)

, and derive a
contradiction to the time hierarchy for alternating time, namely Σ3Time (m) ⊆ Σ3Time (o(m))
(see, e.g., Section 3.1 in [vM]). Let m = m(n) := n2 (any m = n1+Ω(1) would do). We have
the following contradiction:

Σ3Time (m) ⊆ ←→
BPTiSp

(

m1+o(1), m1−ε
)

(4)

⊆ BPm1−δ

TiSp
(

poly(m), m1−δ
)

(5)

⊆ ∃m1−δ/2∀m1−δ/2∃m1−δ/2

TiSp
(

poly(m), m1−δ/2
)

(6)

⊆ ΣO(1)Time
(

m1−δ/4
)

(7)

⊆ Σ3Time (o(m)) (8)

contradiction. (9)

Inclusion (4) holds by assumption plus a padding argument (see, e.g., [Pap]).
Inclusion (5) follows by using the INW generator from Lemma 14. More specifically, let M

be a machine in
←→
BPTiSp

(

m1+o(1), m1−ε
)

and let G : {0, 1}m1−δ → {0, 1}m1+δ
be the generator

from Lemma 14. Now consider the machine M ′ that uses m1−δ random bits σ, and simulates
the machine M , but whenever M accesses the i-th random bit, M ′ computes on the fly the
i-th output bit of G(σ) and uses that instead. By reusing the same space to compute G(σ)
every time M accesses a random bit, and because G is computable simultaneously in time
poly(m) and space O(m1−δ) by Lemma 14, we have that M ′ ∈ BPm1−δ

TiSp
(

poly(m), m1−δ
)

.
Also, for every input x we have M(x) = M ′(x) by the pseudorandomness property of INW
in Lemma 14 (assuming without loss of generality that the error probability of M is a
sufficiently small constant).

Inclusion (6) follows by (a variant of) Theorem 1. Specifically, it is easy to check that
Theorem 1 can be extended to obtain the following inclusion, which implies Inclusion (6):
For any t = t(n) and r = r(n) ≤ t(n) polynomially related to n, we have

BPrTiSp (t, r) ⊆ ∃r′∀r′∃r′TiSp (t′, r′) ,

where r′ = r · poly log(n) and t′ = t · poly log(n).
Inclusion (7) follows by the fact, usually credited to [Nep], that one can trade alterna-

tions for time in sublinear-space computations. More formally, one can prove the following
inclusion (see e.g. [vM], Section 3.2):

TiSp (t, s) ⊆ Σ2kTime
(

(t · sk)1/(k+1)
)

.
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(The number of alternations in the above inclusion can be reduced to k+1 from 2k [FLvMV].
This gives a better constant for the Ω(1) term in our lower bound n1+Ω(1).)

Inclusion (8) follows by a collapse similar to Corollary 2. Specifically, by assumption

we have that Σ3Time (n) ⊆ ←→BPTiSp
(

n1+o(1), n1−ε
)

⊆ BPTime
(

n1+o(1)
)

. Since proba-

bilistic time is closed under complement, by Theorem 1 we get that BPTime
(

n1+o(1)
)

⊆
Π3Time

(

n1+o(1)
)

. Combining the two things we get

Σ3Time (n) ⊆ Π3Time
(

n1+o(1)
)

. (10)

Intuitively, this means that whenever we have a computation with three quantifiers we can
complement them only paying a subpolynomial blow up in the running time, which gives
the collapse. More formally, consider a computation in ΣO(1)Time

(

m1−δ/4
)

. We can assume

that 1−δ/4 ≥ 2/3 without loss of generality, and thus the ΣO(1)Time
(

m1−δ/4
)

machine runs

in time m1−δ/4 ≥ n4/3 ≥ n. Consequently, Equation (10) implies that

Σ3Time
(

m1−δ/4
)

⊆ Π3Time
(

(m1−δ/4)1+o(1)
)

by padding. Applying this padded Equation (10) a constant number of times and collapsing
adjacent quantifiers, we obtain that ΣO(1)Time

(

m1−δ/4
)

collapses to Σ3Time (m′), where

m′ is m1−δ/4 raised, a constant number of times, to an exponent that is 1 + o(1), and so
m′ = m(1−δ/4)(1+o(1)) = m1−Ω(1) = o(m).

The contradiction (9) is obtained by diagonalization (see, e.g., Section 3.1 in [vM]).

5 Lower Bound on Stronger Computational Models

In this section we prove our time lower bound on two-tape Turing machines (Theorem 7).
Rather than working directly in the model BPTime1 (t) (introduced in Section 1.3), which
is incomparable to the previously considered space-bounded model (Def. 5), we proceed
by extending the space-bounded model so that it includes BPTime1 (t) as a special case,

and we prove a lower bound on this stronger model. Specifically, we extend
←→
BPTiSp (t, s)

(Def. 5) by allowing machines to write on the random-bit tape, and denote this exten-

sion by
←→
BPwTiSp (t, s). By ignoring the space-bounded random-access tapes, we see that←→

BPwTiSp (t, s) includes the model BPTime1 (t) as a special case. Let us formally define←→
BPwTiSp (t, s) and then state our lower bound.

Definition 16. We denote by
←→
BPwTiSp (t, s) the extension of

←→
BPTiSp (t, s) obtained by al-

lowing machines to write on the random-bit tape. In other words, we denote by
←→
BPwTiSp (t, s)

the set of languages accepted by probabilistic Turing machines, with two-sided error, running
in time t, which have the following tapes:

• A random-access input tape,

• several random-access work tapes for at most s bits, and

• one sequential-access two-way read-write tape that is initially filled with random bits.
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Theorem 17. For every constant ε > 0, Σ3Time (n) 6⊆ ←→BPwTiSp
(

n1+o(1), n1−ε
)

, and in

particular QSAT3 6∈
←→
BPwTiSp

(

n1+o(1), n1−ε
)

.

The outline of the proof of Theorem 17 is similar to that of the proof of Theorem 6
(cf. Section 4). The two main differences are: (1) we need to observe that the INW generator
in Lemma 14 also works if the machine is allowed to write on the random-bit tape, and (2)
we need to show that it is still possible to simulate the machine using small space (and
quantifiers). The observation (1) is in Remark 18 below, and the simulation (2) is proved
in Claim 19 using ideas from a simulation by Maass and Schorr [MS] which was recently
rediscovered by van Melkebeek and Raz [vMR].

Remark 18 (On the pseudorandomness property of the INW generator). We point out
that the INW generator in Lemma 14 also fools machines that are allowed to write on the

sequential two-way random bits tape, i.e.
←→
BPwTiSp (t, s) machines. While this extension is

not explicitly stated in [INW], it can be obtained using the techniques in [INW]. Roughly,
their communication-complexity simulation in the proof of Theorem 5 in [INW] (which is only
stated for machines with one tape) can be extended to machines with several space-bounded
work tapes, by having Alice and Bob also communicate all the contents of the random-access
work tapes (details omitted).

Proof of Theorem 17. The outline of the proof follows closely that of the proof of Theorem
6. Let m = m(n) := n2. We have the following contradiction:

Σ3Time (m) ⊆ ←→
BPwTiSp

(

m1+o(1), m1−ε
)

(11)

⊆ BPm1−Ω(1)∃m1−Ω(1)

TiSp
(

poly(m), m1−Ω(1)
)

(12)

⊆ ∃m1−Ω(1)∀m1−Ω(1)∃m1−Ω(1)

TiSp
(

poly(m), m1−Ω(1)
)

(13)

⊆ ΣO(1)Time
(

m1−Ω(1)
)

(14)

⊆ Σ3Time (o(m)) (15)

contradiction. (16)

Inclusions (11), (13)-(15), and the final contradiction 16 can be obtained exactly as in the
proof of Theorem 6. The next claim proves Inclusion (12) and thus concludes the proof of
the theorem.

Claim 19. Let M(x; u) be a machine in
←→
BPwTiSp

(

m1+o(1), m1−ε
)

where ε > 0 is any fixed

constant and m = m(n) := n2. Let G : {0, 1}m1−δ → {0, 1}m1+δ
be the generator from Lemma

14. Then the language {(x; σ) : M(x; G(σ)) = 1} is in ∃m1−Ω(1)
TiSp

(

poly(m), m1−Ω(1)
)

. In
particular,

←→
BPwTiSp

(

m1+o(1), m1−Ω(1)
)

⊆ BPm1−Ω(1)∃m1−Ω(1)

TiSp
(

poly(m), m1−Ω(1)
)

.

Proof. Let t = m1+o(1) be the running time of the machine M , s = m1−ε the random-access
space used by M , and let us denote by τ the (two-way) read-write sequential tape of M , which
we will initially fill with the pseudorandom bits G(σ). We assume that τ has tape squares
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numbered as 0, 1, 2, . . ., and that M starts with the head on tape square 0 (the same proof
carries through for the case where τ has tape squares numbered as . . . ,−2,−1, 0, 1, 2, . . .).

We use the idea of crossing sequences, (see, e.g., [vMR] for background). Let us divide τ
in consecutive blocks where the first block is of size d and all the others are of size b := m1−ε/3.
The parameter d will be specified later. Note b and d completely specify this subdivision in
blocks. For fixed b, d, let us define a crossing to be a pair (a → a′, S) where a is an index
to a block in τ , a′ = a ± 1 and S completely specifies the state of the machine M except
the contents of τ . More specifically, S specifies the content of the random-access tapes, the
position of the head on the input tape, and the internal state of the machine. As usual, we
think of crossing (a→ a′, S) as meaning that M is crossing the boundary of block a towards
block a′ while being in state S (but let us stress again that S does not specify the content
of τ).

Consider the computation M(x; G(σ)) that runs in time t. Since different values of
d ∈ {0, 1, . . . , b− 1} give rise to disjoint sets of blocks, it is not hard to see that there must
exist d < b such that the number of crossings induced by the computation M(x; G(σ)) is at
most t/b = m1+o(1)−1+ε/3 ≤ mε/2.

Simulation: We simulate the machine M as follows: First we guess a shift d and a
sequence of t/b crossings. Then we check consistency of the computation. For this, let
us divide the space of the simulation in two parts: a current-block part of b bits and a
current-state part of s bits (jumping ahead, note b + s = m1−ε/3 + m1−ε = m1−Ω(1)).

As a base case, we initialize the bits in current-block with G(σ)0 ·G(σ)1 · · ·G(σ)d−1, and
we simulate the machine, using current-state as its random-access space and current-block as
the first block of τ , until it crosses the block boundary towards block 1 (which starts at tape
square d). (If the machine never crosses this boundary then the simulation is easy.) When
that happens, we look at the first crossing (a′ → a′′, S ′) in the guessed list and check that
a′ = 0, a′′ = 1, and current-state equals S ′.

Next, for every block number i, we proceed as follows. First we initialize the bits in
current-block with G(σ)d+ib · G(σ)d+ib+1 · · ·G(σ)d+ib+(b−1). Then we scan, in order, the list
of guessed crossings. Whenever we encounter a crossing of the form (a → i, S) we do
the following. We copy S on current-state and we simulate M (using current-state as the
random-access space of M) until it crosses the block boundary towards block a′. Then we
look at the next crossing (α → α′, S ′) in the guessed list and check that α = i, α′ = a′ and
current-state equals S ′. We continue in this way until the list is over.

Finally, we check that the last crossing corresponds to the accepting state of M . (Without
loss of generality we can assume that M , if it accepts, it does so by entering its accepting
state while crossing a block boundary.)

Correctness: It is easy to verify that the simulation accepts if and only if M does.
Complexity: Note that each crossing can be specified by O(m1−ε) bits, and therefore we

guess at most O(m1−ε+ε/2) = m1−Ω(1) bits total. The rest of the computation can be done
simultaneously in time poly(m) and space m1−Ω(1). To see this, note that the INW generator
is computable in these resources by Lemma 14, while the rest of the simulation only uses
space for the current-block part of b bits and the current-state part of s bits, which sum up
to b + s = m1−ε/3 + m1−ε = m1−Ω(1). (The simulation is easily seen to run in polynomial
time.)
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The ‘in particular’ part of the claim follows by the first part of the claim plus the pseudo-
randomness property of the INW generator in Lemma 14 (cf. remark 18). (I.e. we use m1−Ω(1)

random bits for the seed σ of the INW generator G.)

6 On the Error Parameter

In this section we discuss the dependence of our results on the error probability ε of the
BPTime (t) machines.

While we proved our results only for BPTime (t) machines with error ε = 1/3, our results
immediately generalize to any constant error 0 < ε < 1/2. In fact, they also apply to more
general error parameters ε = ε(t) as we now discuss. For this discussion, let ε−ApprMaj
denote the promise problem of computing Majority on an input bit string whose fraction
of 1’s is promised to be either at least 1 − ε or at most ε. (Note that the previously con-
sidered approximate majority equals 1/3−ApprMaj.) For the case where the error ε is
shrinking (e.g. ε := 1/t2) it is possible to generalize our Theorem 4 to show that computing
ε−ApprMaj on n bits requires bottom fan-in at least Ω(log(n)/ log(1/ε)), which implies that
any relativizing Σ2 simulation of BPTime (t) must have running time at least Ω(t2/ log(1/ε))
(e.g. Ω(t2/ log t) when ε = 1/t2). In particular, polynomially small error does not give
polynomial savings in the running time, and even in this case our results show that the
running time of previous simulations [Sip, Lau] is optimal up to polylogarithmic factors for
relativizing techniques.

On the other hand, for large error ε = 1/2 − α where α = o(1), one can use H̊astad’s
switching lemma [H̊as] to argue that small depth-3 circuits for ε−ApprMaj need bottom fan-
in at least Ω(1/α) (details omitted). Again, this implies that any relativizing Σ2 simulation
of BPTime (t) must have running time at least Ω(t/α) (which is only better than Theorem
3 when α = o(1/t)). This latter bound is met, up to a polynomial factor, by first applying
standard error reduction techniques to bring the error down to, say, ε = 1/3, and then
plugging in previous results [Sip, Lau].

7 Uniform Depth-3 Circuits for Approximate Majority

In this section we prove the following theorem regarding the complexity of computing ap-
proximate majority.

Theorem 20. Approximate majority is computable by P-uniform polynomial-size circuits of
depth 3.

Recall (from Section 1.1) that Ajtai [Ajt1] gives a probabilistic construction of non-
uniform polynomial-size depth-3 circuits for approximate majority. Thus our Theorem 20 is
a uniform counterpart of Ajtai’s result.

The proof of Theorem 20 makes use of the following hitting generator (see Section 2 for
a discussion of hitting generators).
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Lemma 21. For every n there exists a polynomial-time computable generator

Z : {0, 1}O(n) → ({0, 1}n)k , Z(σ) = Z(σ)1 · Z(σ)2 · · ·Z(σ)k,

with k = O(n/ logn), such that for every set A ⊆ {0, 1}n of size |A| ≤ 2n/n2 we have

Pr
σ

[∀i ≤ k : Z(σ)i ∈ A] ≤ 4−n.

Proof sketch of Lemma 21. Use the input σ to encode a random walk (started at a random
vertex) of length c · n/ log n on an nO(1)-regular expander graph on 2n vertices with second
largest eigenvalue λ = 1/n2, for a constant c to be determined later.11 Note that one can
encode such a walk using (c · n/ log n) · log nO(1) = O(n) bits. Kahale [Kah] shows that the
probability that all the t steps of the random walk fall inside a fixed set of density µ := 1/n2

can be bounded as

µ · (µ + (1− µ) · λ)t−1 ≤ (1/nΩ(1))c·n/ log n ≤ 4−n,

where the last inequality holds by choosing a sufficiently large constant c.

We now proceed with the proof of Theorem 20.

Proof of Theorem 20. The main ideas of the proof are the same as those of the proof of
Theorem 1. It is convenient to think of an approximate majority instance of length N as
M(0) ·M(1) · · ·M(N), where M(i) is the i-th bit of the instance.

Let Z : {0, 1}O(n) → ({0, 1}n)k be the hitting generator from Lemma 21, where k =
O(n/ logn). We decide approximate majority by checking whether the following equation is
true:

∃σ ∈ {0, 1}O(n) ∀u ∈ {0, 1}n ∃i ≤ k : M ′ (Z(σ)i ⊕ u) = 1, (17)

where ⊕ denotes bitwise xor, and M ′ denotes the machine with error 1/n2 from Claim 9,
which we think of as an approximate majority instance with amplified gap (i.e., either at
least a 1− 1/n2 fraction of input bits is set to 1, or at most a 1/n2 fraction of input bits is
set to 1).

Correctness: The proof of correctness is the same as that of Theorem 1.
Computable by uniform poly(N)-size circuits of depth 3: We note that the computation of

M ′ (G(σ)i ⊕ u) is the majority of O(log n) evaluations of M , and therefore the computation
of

∃i ≤ k : M ′ (G(σ)i ⊕ u) = 1

only depends on k ·O(log n) = O(n) evaluations of M . We write this computation as a CNF
of size 2O(n) = poly(N). We then collapse the output AND of this CNF with the second
quantifier in Equation (17). Finally, since the first two quantifiers in Equation (17) range
over O(n) bits, they give rise to gates with fan-in 2O(n) = poly(N), and thus the whole
computation in Equation (17) can be written as a poly(N)-size circuit of depth 3.

It is easy to check that the circuit can be constructed in time poly(N). (Note that the
generator Z in Lemma 21 is computable in time poly(n) = poly log N .)

11Such an expander G can be obtained by taking a λ-biased set S ⊆ {0, 1}n of size poly(n) [NN, AGHP] and
setting G := ({0, 1}n, {(x, y) : x− y ∈ S}). Alternatively, we can take a O(log n) power of a constant-degree
expander.
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On Depth-3 Circuits vs. Σ3 time: The above proof of Theorem 20 is similar to the
proof of Theorem 1 (which is the result that BPTime (t) ⊆ Σ3Time (t · poly log t)), and thus
it is worth pointing out why the two results (Theorem 20 and Theorem 1) actually are
incomparable.

The depth-3 circuit in the above proof of Theorem 20 is P-uniform, i.e. it can be con-
structed in time polynomial in its size. P-uniformity is too loose to obtain Theorem 1 for
which one needs the circuit to satisfy the following stronger uniformity condition: given the
indices to two gates in the circuit, it is possible to decide whether the two gates are connected
in time quasilinear in the length of their indices. It is conceivable that the circuit does satisfy
this stronger uniformity condition, but this does not seem straightforward to us.

Conversely, the circuit obtained in Theorem 1 (i.e. BPTime (t) ⊆ Σ3Time (t · poly log t))
does satisfy the above stronger uniformity condition, but has superpolynomial size and depth
4. (The circuit has depth 4 because the 3 alternations are followed by a computation that
depends on several evaluations of the BPTime (t) machine. This computation gives rise to
another layer of gates in the circuit.)

8 Open Problems

In this section we list a few open problems.

1. Prove an n1+Ω(1) time lower bound on probabilistic Turing machines using space O(log n)
with random access to both the input tape and the random-bit tape (for a function
computable in linear space). Our results (Theorem 17) only apply to models with
sequential access to the random-bit tape.

2. Prove a superlinear time lower bound on probabilistic Turing machines with random-
access to the input, two-way sequential access to the work tape with no space restric-
tions, and one-way access to the random-bit tape (for a function computable in linear
space). Our results (Theorem 17) only apply to the weaker model where the work tape
is initialized with random bits.
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