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Abstract. We introduce some operators defining new complexity classes

from existing ones in the Blum-Shub-Smale theory of computation over the

reals. Each one of these operators is defined with the help of a quantifier differ-

ing from the usual ones, ∀ and ∃, and yet having a precise geometric meaning.

Our agenda in doing so is twofold. On the one hand, we show that a number

of problems whose precise complexity was previously unknown are complete

in some of the newly defined classes. This substancially expands the catalog

of complete problems in the BSS theory over the reals thus adding evidence

to its appropriateness as a tool for understanding numeric computations. On

the other hand, we show that some of our newly defined quantifiers have a

natural meaning in complexity theoretical terms. An additional profit of our

development is given by the relationship of the new complexity classes with

some complexity classes in the Turing model of computation. This relationship

naturally leads to a new notion in complexity over the reals (we call it “gap

narrowness”) and to a series of completeness results in the discrete, classical

setting.

1 Introduction

Complexity theory over the real numbers developed quickly after the foundational
paper [6] by L. Blum, M. Shub, and S. Smale. Complexity classes other than PR

and NPR were introduced (e.g., in [11, 14, 15]), completeness results were proven
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†Partially supported by City University SRG grant 7001558.
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(e.g., in [11, 22, 28]), separations were obtained ([14, 21]), machine-independent
characterizations of complexity classes were exhibited ([8, 19, 23]), . . .

There are two points in this development which we would like to stress. Firstly,
all the considered complexity classes were natural versions over the real numbers
of existing complexity classes in the classical setting. Secondly, the catalogue of
completeness results is disapointingly small. For a given semialgebraic set S ⊆ R

n,
deciding whether a point in R

n belongs to S is PR-complete [22], deciding whether
S is non-empty (or non-convex, or of dimension at least d for a given d ∈ N) is NPR-

complete [6, 20, 28], and computing its Euler characteristic is FP
#PR

R
-complete [11].

That is, essentially, all.
Yet, there is plenty of natural problems involving semialgebraic sets: computing

local dimensions, deciding denseness, closedness, unboundedness, . . . . Consider, for
instance, the latter. We can express that S is unbounded by

∀K ∃x ∈ R
n (x ∈ S ∧ ‖x‖ ≥ K). (1)

Properties describable with expressions like this one are common in classical com-
plexity theory and in recursive function theory. Extending an idea by Kleene [25]
for the latter, Stockmeyer introduced in [31] the polynomial time hierarchy which is
build on top of NP and coNP in a natural way.1 Recall, a set S is in NP when there
is a polynomial time decidable relation R such that, for every x ∈ {0, 1}∗,

x ∈ S ⇐⇒ ∃y ∈ {0, 1}size(x)O(1)
R(x, y).

The class coNP is defined replacing ∃ by ∀. Classes in the polynomial hierarchy are
then defined by allowing the quantifiers ∃ and ∀ to alternate (with a bounded number
of alternations). If there are k alternations of quantifiers, we obtain the classes Σk+1

(if the first quantifier is ∃) and Πk+1 (if the first quantifier is ∀). Note that Σ1 = NP

and Π1 = coNP. The definition of these classes over R is straightforward [5, Ch. 21].
It follows thus from (1) that deciding unboundedness is in Π2

R
, the universal

second level of the polynomial hierarchy over R. On the other hand, it is easy to
prove that this problem is NPR-hard. But we do not have completeness for any of
these two classes.

A similar situation appears for deciding denseness. We can express that S ⊆ R
n

is Euclidean dense by

∀x ∈ R
n ∀ε > 0∃y ∈ R

n (y ∈ S ∧ ‖x− y‖ ≤ ε)

thus showing that this problem is in Π2
R
. But we can not prove hardness in this

class. Actually, we can not even manage to prove NPR-hardness or coNPR-hardness.
Yet a similar situation occurs with closedness, which is in Π3

R
since we express that

S is closed by
∀x∃ε > 0∀y (x 6∈ S ∧ ‖x− y‖ ≤ ε⇒ y 6∈ S)

1All along this paper we use a subscript R to differentiate complexity classes over R from discrete
complexity classes. To further emphasize this difference, we use sans serif to denote the latter.
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but the best hardness result we can prove is coNPR-hardness. It would seem that
the landscape of complexity classes between PR and the third level of the polynomial
hierarchy
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is not enough to capture the complexity of the problems above.
A main goal of this paper is to show that the two features we pointed out earlier

namely, a theory uniquely based upon real versions of classical complexity classes,
and a certain scarsity of completeness results, are not unrelated. We shall define a
number of complexity classes lying in between the ones in the picture above. These
new classes will allow us to determine the complexity of some of the problems we
mentioned (and of other we didn’t mention) or, in some cases, to decrease the gap
between their lower and upper complexity bounds as we know them today.

A remarkable feature of these classes is that, as with the classes in the polynomial
hierarchy, they are defined using quantifiers which act as operators on complexity
classes. The properties of these operators naturally become an object of study for
us. Thus, another goal of this paper is to provide some structural results for these
operators.

We next define the operators we will deal with in this paper. We denote by R
∞

the disjoint union tn≥0R
n. If x ∈ R

n ⊂ R
∞ we define its size to be |x| = n.

Our first new quantifier, H, captures the notion of “for all sufficiently small
numbers” and defines an operator of complexity classes as follows.

Definition 1.1 Let C be a complexity class of decision problems. We say that a
set A belongs to HC if there exists B ⊆ R × R

∞, B ∈ C, such that, for all x ∈ R
∞,

x ∈ A ⇐⇒ ∃µ > 0∀ε ∈ (0, µ) (ε, x) ∈ B.

Our second quantifier, ∀∗, captures the notion of “for almost all points.”

Definition 1.2 Let C be a complexity class of decision problems. We say that a
set A belongs to ∀∗C if there exist a polynomial p and a set B ⊆ R

∞ × R
∞, B ∈ C,

such that, for all x ∈ R
∞,

x ∈ A ⇐⇒ dim{z ∈ R
p(|x|) | (z, x) 6∈ B} < p(|x|).
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If C is a complexity class we denote by Cc the class of its complements, i.e., the
class of all sets A such that Ac ∈ C. Proceeding as usual, we define ∃∗C = (∀∗Cc)c.
We then note that A belongs to ∃∗C if and only if there exist a polynomial p and a
set B ⊆ R

∞ × R
∞, B ∈ C, such that, for all x ∈ R

∞,

x ∈ A ⇐⇒ dim{z ∈ R
p(|x|) | (z, x) ∈ B} = p(|x|).

Using these operators we may define many new complexity classes. Denote the
classes in the picture above by ∀ (for coNPR), ∃ (for NPR), ∀∃ (for Π2

R
), etc. Then,

notations such as ∃∗∀, H∀, or ∃∗H denote some of the newly created complexity
classes in an obvious manner. To avoid a cumbersome notation, we also write H

instead of HPR. We call the classes defined this way polynomial classes.
If C is closed under (many-one) reductions then so are HC, ∀∗C and ∃∗C. Sec-

tion 3 shows that all these newly defined classes possess complete problems. More
importantly, Sections 4 to 7 exhibit a number of natural complete problems in these
classes (and some in the already known classes ∀ and ∀∃). Also in these sections, for
some problems whose complexity remains open, we narrow the gap between their
known upper and lower bounds. As we shall see, many of the membership proofs of
these completeness results possess a simplicity that follows directly from the nature
of our newly defined operators. However, some other of these membership proofs
require trickier arguments (cf. §6.2–6.3).

Most of the problems considered in Sections 4 to 7 deal with semialgebraic sets
(as those mentioned before in this introduction). But several others deal with piece-
wise rational functions f : R

n → R
m, not necessarily total. Completeness results for

this kind of functions are, to the best of our knowledge, new.
In Section 9 we deal with the relationship between polynomial classes and clas-

sical complexity theory. This is a recurrent theme in real complexity and has drawn
the attention of researches in discrete complexity.2 The basic idea is the following.
Let S be a problem over R complete in a class C. A natural restriction of S is SZ,
the subset of S of those inputs describable over {0, 1}∗ (e.g., restricting coefficients
of input polynomials to be integer). In general, proofs of completeness of a problem
S in a class C do not use neither real constants nor iterated multiplications. There-
fore, such a proof for S induces a completeness proof for SZ in the class BP0(C).
This is the classical complexity class obtained by restricting — for problems in C—
inputs to be in {0, 1}∗ and machines over R to be constant-free. In this way, all our
completeness results induce completeness results in the classical setting. While some
of the classes BP0(C) may seem somehow arcane, others are quite natural (and have
been considered for a good while) and yet some other become increasingly relevant
due to the naturality of the problems which turn out to be complete on them.

Besides exhibiting completeness, several results deal with structural aspects of

2In the foreword to [5], R. Karp writes “It is interesting to speculate as to whether the questions
PR = NPR and PC = NPC are related to each other and to the classical P versus NP question.”
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the newly defined operators and classes. Among these are the inclusion

∃∗C ⊆ ∃C,

and, for any polynomial class C, the equality of classical classes

BP0(HC) = BP0(C).

This latter equality allows us to exhibit a number of problems featuring a remarkable
property, namely, that while we do not know the problem S to be complete in a real
complexity class C we can nevertheless prove that SZ is complete in BP0(C). We say
that S has a narrow gap for C. This is a purely structural notion of a narrowness
in the gap between the best upper and lower bounds we may know for S.

Section 10 provides a summary, exhibiting both a list of problems and complexity
bounds for them, and a diagram with an enhanced view of the universe between PR

and the third level of the polynomial hierarchy. Finally, we remark that a similar
classification has already been achieved in the so called additive BSS model, without
the need to introduce exotic quantifiers [12, 13]

2 Preliminaries

We assume some basic knowledge on real machines and complexity as presented, for
instance, in [5, 6].

(1) We recall, an algebraic circuit C over R is an acyclic directed graph where
each node has indegree 0, 1 or 2. Nodes with indegree 0 are either labeled as
input nodes or with elements of R (we shall call them constant nodes). Nodes with
indegree 2 are labeled with the binary operators of R, i.e. one of {+,×,−, /}. They
are called arithmetic nodes. Nodes with indegree 1 are either sign nodes or output

nodes. All the output nodes have outdegree 0. Otherwise, there is no upper bound
for the outdegree of the other kind of nodes. Occasionally, the nodes of an algebraic
circuit will be called gates.

An arithmetic node computes a function of its input values in an obvious manner.
Sign nodes also compute a function namely

sgn(x) =

{
1 if x ≥ 0
0 if x < 0.

For an algebraic circuit C , the size of C , is the number of gates in C . The depth

of C , is the length of the longest path from some input gate to some output gate.
To a circuit C with n input gates and m output gates is associated a function

fC : R
n → R

m. This function may not be total since divisions by zero may occur
(in which case, by convention, fC is not defined on its input).
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We say that an algebraic circuit is a decision circuit if it has only one output
gate whose parent is a sign gate. Thus, a decision circuit C with n input gates
computes a function fC : R

n → {0, 1}. The set decided by the circuit is

SC = {x ∈ R
n | fC (x) = 1}.

(2) Subsets of R
n decidable by algebraic circuits are known as semialgebraic

sets. They are defined as those sets which can be written as a Boolean combination
of solution sets of polynomial inequalities {x ∈ R

n | f(x) ≥ 0}.
Semialgebraic sets will be inputs to problems considered in this paper. They will

be either given by a Boolean combination of polynomial equalities and inequalities
or by a decision circuit. If not otherwise specified, we mean the first variant.

Partial functions f : R
n → R

m computable by algebraic circuits are known as
piecewise rational. These are the functions f for which there exists a semialgebraic
partition R

n = S0 ∪ S1 ∪ . . . ∪ Sk and rational functions gi : Si → R
m, i = 1, . . . , k

such that gi is well-defined on Si and f|Si
= gi. Note that f is undefined on S0.

(3) The symbols H,∃∗ and ∀∗ can be considered as logical quantifiers in the
theory of the reals. If ϕ(ε) is a formula with one free variable ε and ψ(x) is one with
n free variables x1, . . . , xn we define

Hεϕ(ε)
def
≡ ∃µ > 0 ∀ε ∈ (0, µ) ϕ(ε)

∀∗xψ(x)
def
≡ ∀x0 ∀ε > 0∃x (‖x− x0‖ < ε ∧ ψ(x)) (2)

∃∗xψ(x)
def
≡ ∃x0 ∃ε > 0∀x (‖x− x0‖ < ε⇒ ψ(x)).

To explain this, write S = {x ∈ R
n | ψ(x) holds}. The second line expresses that S

is Euclidean dense in R
N , which is equivalent to dim(Rn − S) < n. The third line

expresses the fact that S is Zariski dense, which is equivalent to dimS = n.
The class Q1Q2 . . . Qk with Qi alternating between ∃ and ∀ is denoted by Σk

R

when Q1 = ∃ and by Πk
R

when Q1 = ∀. Also, Σ0
R

= Π0
R

= PR. The family of these
classes is known as the polynomial hierarchy and its union is denoted by PHR (cf. [5,
Ch. 21]).

By extension we will call polynomial classes all classes of the form Q1Q2 . . . Qk

with k ≥ 0 (in case k = 0 we mean PR) and Qi ∈ {∃,∀,∃∗,∀∗,H}. Note that if C is
a polynomial class then C ⊆ PHR.

(4) We close this section by recalling a completeness result. Let DimR be the
problem of, given a semialgebraic set S (given by a Boolean combination of polyno-
mial equalities and inequalities) and a number d ∈ N, deciding whether dimS ≥ d.
In [28] Koiran proved that DimR is NPR-complete.
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3 Standard complete problems for polynomial classes

The Circuit Evaluation problem CEvalR consists of deciding, given a decision circuit
C with n input gates and a point a ∈ R

n, whether a ∈ SC . It was proved in [22]
that CEvalR is PR-complete (for parallel logarithmic time reductions). The proof
of this result extends to yield complete problems in the classes considered thus far.

Let Q1, Q2, . . . , Qp−1 ∈ {∃,∀,∃∗,∀∗,H} and Qp ∈ {∃∗,∀∗,H}. We define
Standard(Q1Q2 . . . Qp) to be the problem of deciding, given a decision circuit C

with n1 + n2 + . . . + np input gates, whether

Q1x1 ∈ R
n1 Q2x2 ∈ R

n2 . . . Qpxp ∈ R
np C (x1, . . . , xp) = 1.

Here ni = 1 whenever Qi = H. Similarly, for Q1, Q2, . . . , Qp−1 ∈ {∃,∀,∃∗,∀∗,H}
and Qp = ∃ or Qp = ∀, we define Standard(Q1Q2 . . . Qp) to be the problems of
deciding, given a polynomial f in n1 + n2 + . . .+ np variables, whether

Q1x1 ∈ R
n1 Q2x2 ∈ R

n2 . . . Qpxp ∈ R
np f(x1, . . . , xp) = 0

and
Q1x1 ∈ R

n1 Q2x2 ∈ R
n2 . . . Qpxp ∈ R

np f(x1, . . . , xp) 6= 0,

respectively. From well known arguments present in [6, 22] it easily follows the
following result.

Proposition 3.1 For all Q1, Q2, . . . , Qp ∈ {∃,∀,∃∗,∀∗,H} the problem

Standard(Q1Q2 . . . Qp) is Q1Q2 . . . Qp-complete.

The standard complete problems for the classes PR, NPR, etc., are precisely
those introduced in [6, 22]. Taking p = 0 we have Standard(PR) = CEvalR.
Also, the problem Standard(∃) consisting of deciding whether a real polynomial
f has a real zero is what in the literature (cf. [5, 6, 11]) is denoted by FEASR.

We can further modify the standard complete problem when the innermost quan-
tifier Qp is ∃ or ∀. To do so, note that the existence of a root of a polynomial is
equivalent to the existence of a root in the open unit cube (−1, 1)n. This is so since
the mapping ψ(t) = t

1−t2
bijects (−1, 1) with R. Therefore, for f ∈ R[X1, . . . , Xn],

∃x ∈ R
n f(x1, . . . , xn) = 0 ⇐⇒ ∃t ∈ (−1, 1)n g(t1, . . . , tn) = 0,

where di = degxi
f and

g(t1, . . . , tn) := (1 − t21)
d1(1 − t22)

d2 · · · (1 − t2n)dnf(ψ(t1), . . . , ψ(tn)).

We will use a superscript “1” to denote the versions of the standard complete
problems for which the variables corresponding to the innermost quantifier are con-
strained to be in (−1, 1). For instance Standard

1(H∃) is the problem of deciding,
given f in n+ 1 variables, whether

∃µ > 0 ∀ε ∈ (0, µ) ∃x ∈ (−1, 1)n f(ε, x) = 0.
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The reasoning above shows that Standard(C) � Standard
1(C) for all polynomial

classes C and therefore, that Standard
1(C) is complete in C.

4 Piecewise rational functions

Besides semialgebraic sets, a natural input for machines over R are piecewise rational
functions (given by algebraic circuits). These are not necessarily total functions. We
say that C is certified to compute a total function when every division gate of C

is preceded by a sign gate making sure that the denominator of the division is not
zero. Note, however, that a circuit may compute a total function without being
certified to do so. Denote by Dom(fC ) the subset of R

n where fC is well-defined.
Consider the following problems (k > 0):

CertTotalR (Certified Totalness) Given a circuit C , decide whether the circuit
is certified to compute a total function.

TotalR (Totalness) Given a circuit C , decide whether fC is total.

InjR (Injectiveness) Given a circuit C , decide whether fC is injective on its do-
main, i.e., whether for all x, y ∈ Dom(fC ) if x 6= y then fC (x) 6= fC (y)).

SurjR (Surjectiveness) Given a circuit C , decide whether fC is surjective.

LipschitzR(k) (Lipschitz-k) Given a circuit C , decide whether fC is Lipschitz-k
on its domain, i.e., whether for all x, y ∈ Dom(fC ), ‖f(x)− f(y)‖ ≤ k‖x− y‖.

It is not difficult to see that CertTotalR ∈ PR. For the other problems we
have the following completeness results.

Proposition 4.1 (i) TotalR is ∀-complete.

(ii) InjR is ∀-complete.

(iii) LipschitzR(k) is ∀-complete.

(iv) SurjR is ∀∃-complete.

Proof. Given x ∈ R
n one can check in polynomial time whether fC is well-

defined on x. This shows that TotalR ∈ coNPR. To show the hardness let
f ∈ R[X1, . . . , Xn]. We associate to f a circuit C computing, for x ∈ R

n, 1
f(x) .

Clearly, f ∈ FEASR if and only if C 6∈ TotalR. This proves (i).
The memberships in parts (ii), (iii), and (iv) are obvious. For the hardness of

InjR, consider f ∈ R[X1, . . . , Xn]. We associate to f a circuit C with n + 1 input
gates and n+ 1 output gates computing the following

input x ∈ R
n, z ∈ R

if f(x) = 0 then return 0 ∈ R
n+1 else return (x, z)

8



Clearly, f ∈ FEASR if and only if C 6∈ InjR. This proves (ii).
For the hardness of LipschitzR(k) we consider again f ∈ R[X1, . . . , Xn]. We

associate to f a circuit C with n+ 1 input gates and n+ 1 output gates computing
the following

input x ∈ R
n, z ∈ R

if f(x) = 0 then return (0, sgn(z)) ∈ R
n+1 else return k(x, z)

If f ∈ FEASR then fC is not continuous and, a fortiori, not Lipschitz-k. Otherwise,
fC = kId and hence, C ∈ LipschitzR(k). This proves (iii).

For the hardness of SurjR consider f ∈ R[X1, . . . , Xn, Y1, . . . , Yr] and associate
to it a circuit C computing the following function F : R

n+r+1 → R
n+1,

(x, y, z) 7→





(x, z) if z 6= 0
(x, 0) if z = 0 and f(x, y) = 0
(x, 1) if z = 0 and f(x, y) 6= 0.

We have ∀x∃y f(x, y) = 0 if and only if fC = F is surjective. �

Remark 4.2 One can define a version of the problems InjR, LipschitzR(k) and
SurjR requiring fC to be total. Or yet one requiring C to be division-free. It follows
from the proof of Proposition 4.1 that these problems are also complete.

5 Quantifying genericity

In this section we deal with complexity classes defined using the quantifiers ∀∗ and
∃∗. A motivating theme is a series of problems related with the notion of denseness.
The first in the series are the following:

EAdhR (Euclidean Adherence) Given a semialgebraic set S and a point x, decide
whether x belongs to the Euclidean closure S of S.

EDenseR (Euclidean Denseness) Given a decision circuit C with n input gates,
decide whether SC = R

n.

ZAdhR (Zariski Adherence) Given a semialgebraic set S and a point x, decide

whether x belongs to the Zariski closure S
Z

of S.

ZDenseR (Zariski Denseness) Given a decision circuit C with n input gates,

decide whether SC

Z
= R

n.

Proposition 5.1 Both EAdhR and ZAdhR are ∃-hard.
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Proof. We reduce FEASR to these problems. For f ∈ R[X1, . . . , Xn] let Sf ⊆ R
n+1

be the semialgebraic set defined by

fh(x0, x) = 0 ∧ x0 6= 0,

where fh denotes the homogeneization of f and put s = (0, . . . , 0). Then f ∈ FEASR

if and only if Sf 6= ∅ and if this is the case, s is in the closure (Euclidean and, a
fortiori, Zariski) of Sf . �

It is customary to express denseness in terms of adherence. For instance, for
S ⊆ R

n,
S ∈ EDenseR ⇐⇒ ∀x ∈ R

n (x, S) ∈ EAdhR

and similarly for the Zariski topology. Therefore, one would expect at least NPR-
hardness (if not Π2

R
-completeness) for EDenseR and ZDenseR. The following two

results show a quite different situation.

Proposition 5.2 The problem EDenseR is ∀∗-complete and the problem ZDenseR

is ∃∗-complete.

Proof. For a circuit C , C ∈ Standard(∃∗) if and only if C ∈ ZDenseR (compare
the remarks following (2)). This shows the statement for ZDenseR. For EDenseR

we use the fact that a semialgebraic set S is Euclidean dense if and only if its
complement Sc is not Zariski dense. �

Corollary 5.3 ∃∗ ⊆ ∃ and ∀∗ ⊆ ∀.

Proof. The reduction in the NPR-completeness of FEASR shown in [6] (which we
mentioned as the basic argument in the proof of Proposition 3.1) proceeds as follows.
Given an NPR problem L, it firstly reduces an arbitrary input z to a decision circuit
C such that z ∈ L if and only if SC 6= ∅. Then, it reduces the circuit C (say, with n
input nodes) to a polynomial f in n+m variables satisfying that dimSC = dimZ(f)
and x ∈ SC if and only if ∃y ∈ R

m f(x, y) = 0. Here Z(f) denotes the set of zeros
of f .

To prove that ∃∗ ⊆ ∃ we consider the following algorithm solving Standard(∃∗).
Given a circuit C , compute an f as in (the second part of) the reduction above.
Then check whether dim(Z(f)) ≥ n. The latter can be done in NPR, cf. Section 2(4).

�

Remark 5.4 (i) It follows from Proposition 5.2 and Corollary 5.3 that ZDenseR

is ∃-hard if and only if ∃ = ∃∗. Also, EDenseR is ∃-hard if and only if ∃ ⊆ ∀∗.

(ii) The proof of hardness in Proposition 5.2 does not extend to semialgebraic sets
defined via formulas (instead of circuits) since the usual way to pass from
formulas to circuits adds variables (i.e., dimension of the ambient space) but
preserves the dimension of the semialgebraic set.
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(iii) We will extend Corollary 5.3 in Section 8 (see Theorem 8.2 therein).

A possible reason for the unexpected “low” complexity of EDenseR is the fact
that we are dealing with absolute denseness, i.e., denseness in the ambient space.
Consider the two following extensions of EDenseR.

ERDR (Euclidean Relative Denseness) Given semialgebraic sets S and V , decide
whether S is included in V .

LERDR (Linearly restricted Euclidean Relative Denseness) Given a semialgebraic
set V ⊆ R

n and points a0, a1, . . . , ak ∈ R
n, decide whether a0 + 〈a1, . . . , ak〉 is

included in V .

It is immediate that both ERDR and LERDR are in Π2
R
. It is an open problem

whether ERDR is Π2
R
-complete. For the intermediate problem LERDR, a complete-

ness result is easily shown.

Proposition 5.5 The problem LERDR is ∀∗∃-complete.

Proof. The membership to ∀∗∃ is easy. An input (V, a0, . . . , ak) is in LERDR iff

∀∗y1, . . . , yk ∀
∗ε∃x (x ∈ V ∧ ‖x− (a0 + y1a1 + · · · + ykak)‖

2 ≤ ε2).

For the hardness, we are going to reduce Standard(∀∗∃) to LERDR. Consider
f(x, y) =

∑
α fα(x)yα in the variables X1, . . . , Xn, Y1, . . . , Ym with degY (f) = d and

define Vf ⊆ R
n+m+1 by

f ′(x, y, y0) :=
∑

α

fα(x)y
d−|α|
0 yα = 0 ∧ y0 6= 0

and let Sf ⊆ R
n+m+1 be the linear space {y0 = 0, y = 0} spanned by a0 = 0, and

the ith coordinate vector ai for i = 1, . . . , n. We claim that ∀∗x∃y f(x, y) = 0 if and
only if Sf ⊆ Vf .

The “only if” part follows from the fact that, for all x ∈ R
n,

∃yf(x, y) = 0 ⇒ (x, 0) ∈ Vf ∩ {x = x}.

This is shown as Proposition 5.1.
For the “if” part, assume that ∃∗x∀yf(x, y) 6= 0. Then, there exist x ∈ R

n and
ε > 0 such that for every x in the ball B(x, ε) ⊂ R

n and every y ∈ R
m, f(x, y) 6= 0.

If Sf ⊆ Vf then, there exists a point (x′, y′, y′0) ∈ Vf such that d(x′,x) < ε. Since
(x′, y′, y′0) ∈ Vf , we have y′0 6= 0, and, taking y∗ = y′/y′0, we obtain

f(x′, y∗) =
∑

α

fα(x′)yα
∗ =

∑

α

fα(x′)(y′0)
−|α|(y′)α = (y′)−df ′(x′, y′, y′0) = 0

a contradiction since x′ ∈ B(x, ε). �
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Corollary 5.6 The problem ERDR is in ∀∃ and is ∀∗∃-hard.

Denseness problems also occur for piecewise rational functions. Consider the
following.

ImageZDenseR (Image Zariski Dense) Given a circuit C , decide whether the
image of fC is Zariski dense.

ImageEDenseR (Image Euclidean Dense) Given a circuit C , decide whether the
image of fC is Euclidean dense.

DomainZDenseR (Domain Zariski Dense) Given a circuit C , decide whether
the domain of fC is Zariski dense.

DomainEDenseR (Domain Euclidean Dense) Given a circuit C , decide whether
the domain of fC is Euclidean dense.

Proposition 5.7 (i) ImageZDenseR is ∃∗∃-complete.

(ii) ImageEDenseR is ∀∗∃-complete.

(iii) DomainZDenseR is ∃∗-complete.

(iv) DomainEDenseR is ∀∗-complete.

Proof. Membership is easy in all four cases. For the hardness in (i) and (ii), con-
sider a polynomial f ∈ R[X1, . . . , Xn, Y1, . . . , Yr] and associate to it the circuit C

computing the map

(x, y) 7→

{
x if f(x, y) = 0
0 if f(x, y) 6= 0.

Clearly, f ∈ Standard(∃∗∃) iff the image of fC is Zariski dense in R
r, and f ∈

Standard(∀∗∃) iff this image is Euclidean dense in R
r.

For (iii) and (iv) consider the map associating, to a decision circuit C a circuit
C ′ computing the function

x 7→

{
x if fC (x) = 1
1/0 if fC (x) 6= 1.

Then, C ∈ Standard(∃∗) iff C ′ ∈ DomainZDenseR and C ∈ Standard(∀∗) iff
C ′ ∈ DomainEDenseR. �
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6 Quantifying infinitesimals

We now deal with some complexity classes defined via the quantifier H. A first prop-
erty of H, which will be repeatedly used in what follows, is some kind of symmetry
which makes the operator H closed by complements.

Proposition 6.1 For all formulas ϕ(ε), ¬Hεϕ(ε) ⇐⇒ Hε¬ϕ(ε).

Proof. By definition, ¬Hεϕ(ε) ⇐⇒ ∀µ > 0 ∃ε ∈ (0, µ) ¬ϕ(ε). And this happens if
and only if 0 is an accumulation point of the set

S = {ε ∈ (0, 1] | ¬ϕ(ε)}.

But S is a semialgebraic subset of R and therefore has a finite number of connected
components. It follows that ¬Hεϕ(ε) if and only if ∃κ > 0 such that (0, κ) is included
in S, i.e.,

∃κ > 0 ∀ε ∈ (0, κ) ¬ϕ(ε).

We have thus proved ¬Hεϕ(ε) ⇐⇒ Hε¬ϕ(ε). �

Corollary 6.2 (i) ∃H∀ = ∃∀ and ∀H∃ = ∀∃.

(ii) ∃H∀∗ = ∃∀∗ and ∀H∃∗ = ∀∃∗.
(iii) ∃∗H∀ = ∃∗∀ and ∀∗H∃ = ∀∗∃.

(iv) ∃∗H∀∗ = ∃∗∀∗ and ∀∗H∃∗ = ∀∗∃∗.

Proof. The first equality in (i) is obvious. The second follows immediately from
Proposition 6.1.

Parts (ii)–(iv) follow in the same manner by noting that Hε is of the form ∃µ∀∗ε
or, alternatively, of the form ∃∗µ∀ε or, yet, of the form ∃∗µ∀∗ε. �

Remark 6.3 (i) Note that unlike for ∃,∀,∃∗ and ∀∗, the equality of operators
HH = H is not known to be true (and most likely, isn’t).

(ii) We believe that H is fundamentally simpler than the alternation of two quan-
tifiers. A feature suggesting this is the fact that the standard algorithms for
quantifier elimination applied to a sentence

∃µ∀ε ∈ (0, µ)∃(x1, ..., xn)ϕ(ε, x)

would have a much higher complexity than just applying quantifier elimination
to

∃(x1, ..., xn)ϕ(ε, x)

and inspecting the resulting formula in ε. We will add more on this in Re-
mark 9.9 below.

We now consider some problems whose complexity can be better understood in
terms of classes of the form HC.
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6.1 Local Topological properties

We define

UnboundedR (Unboundedness) Given a semialgebraic set S, is it unbounded?

LocDimR (Local Dimension) Given a semialgebraic set S ⊆ R
n, a point x ∈ S,

and d ∈ N, is dimx S ≥ d?

IsolatedR (Isolated) Given a semialgebraic set S ⊆ R
n and a point x ∈ R

n,
decide whether x is an isolated point of S.

ExistIsoR (Existence of isolated points) Given a semialgebraic set S ⊆ R
n, decide

whether there exist a point x isolated in S.

Proposition 6.4 The problem UnboundedR is H∃-complete.

Proof. The membership follows from the fact that, for a set S, S is unbounded if
and only if

∃µ > 0∀ε ∈ (0, µ)∃x ∈ R
n (ε‖x‖ ≥ 1 ∧ x ∈ S).

For the hardness, we reduce Standard
1(H∃) to UnboundedR. To do so, we asso-

ciate to f ∈ R[ε,X] the semialgebraic set

S := {(y, x) ∈ R × (−1, 1)n | g(y, x) = 0},

where g is the polynomial defined by g(Y,X) = Y 2 degε ff(1/Y 2, X). Then f ∈
Standard

1(H∃) if and only if S is unbounded. �

Corollary 6.5 The problem EAdhR is H∃-complete.

Proof. Again, the membership is easy. For the hardness, we reduce UnboundedR

to EAdhR. To do so, recall that the inversion (with respect to the unit sphere) is
the following homeomorphism

i : R
n − {0} → R

n − {0}, x 7→
x

‖x‖2
.

If f is a polynomial of degree d in n variables we define

f ′ := ‖X‖2df(‖X‖−2X).

Then Z(f ′) \ {0} = i(Z(f) \ {0}) and {x ∈ R
n \ {0} | f ′(x) > 0} = i({x ∈ R

n \ {0} |
f(x) > 0}).

Now let S ⊆ R
n be a semialgebraic set given by a Boolean combination of

inequalities of the form f(x) > 0. Without loss of generality, 0 6∈ S. The set defined
by the same Boolean combination of the inequalities f ′(x) > 0 and the condition
x 6= 0 is the image i(S) of S and we have that S is unbounded if and only if 0
belongs to the closure of i(S) \ {0}. �
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Corollary 6.6 The problem LocDimR is H∃-complete.

Proof. The membership follows from the equivalence

dimx S ≥ d ⇐⇒ Hεdim(S ∩B(x, ε)) ≥ d

and the fact that DimR ∈ NPR. For the hardness we reduce EAdhR to LocDimR.
To do so, consider S ⊆ R

n and x ∈ R
n. If x ∈ S then take S ′ = R

n. Else, let
S′ = S ∪ {x}. Then, x ∈ S ⇐⇒ dimx S

′ ≥ 1. �

Corollary 6.7 The problem IsolatedR is H∀-complete.

Proof. Membership easily follows from the equivalence

x isolated in S ⇐⇒ x ∈ S ∧ dimx S < 1.

Hardness follows from the equivalence

x ∈ S ⇐⇒ x ∈ S ∨ x not isolated in S ∪ {x}

which reduces EAdhR to the complement of IsolatedR. �

Corollary 6.8 The problem ExistIsoR belongs to ∃∀ and is H∀-hard.

Proof. ExistIsoR ∈ ∃H∀ = ∃∀. For the hardness, we reduce IsolatedR to
ExistIsoR. To do so, let S ⊆ R

n be semialgebraic and assume w.l.o.g. that 0n ∈ S
(here 0n denotes the origin in R

n). Define S ′ ⊂ R
n+1 by

S′ = (S − {0n}) × R) ∪ {0n+1}.

If 0n is an isolated point of S, then 0n+1 is an isolated point (actually the only one)
of S′. Otherwise, S ′ has no isolated points. Since a description of S ′ can be computed
in polynomial time from a description of S it follows that IsolatedR � ExistIsoR.

�

6.2 Continuity

Complexity results for problems involving functions (instead of sets) and the quan-
tifier H are also of interest. Consider the following problems:

ContR (Continuity) Given a circuit C , decide whether fC is total and continuous.

Cont
DF
R

(Continuity for Division-Free Circuits) Given a division-free circuit C ,
decide whether fC is continuous.
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ContPoint
DF
R (Continuity at a Point for Division-Free Circuits) Given a

division-free circuit C with n input gates and a point x ∈ R
n, decide whether

fC is continuous at x.

LipschitzR (Lipschitz) Given a circuit C , decide whether fC is Lipschitz on its
domain, i.e., whether there exists k > 0 such that fC is Lipschitz-k.

Our main results concerning these problems are the following four propositions.

Proposition 6.9 ContR ∈ H
3∀ and is ∀-hard.

Proof. The fact that f is total can be checked in coNPR by Proposition 4.1. For
r > 0, let B(0, r) denote the closed ball of radius r and fr := f|B(0,r) the restriction
of f to that ball. Then,

fr is continuous ⇐⇒ fr is uniformly continuous

⇐⇒ HεHδ ∀x, y ∈ B(0, r) (‖x− y‖∞ < δ ⇒ ‖f(x) − f(y)‖∞ < ε) .

This last condition is in H
2∀. Since we have that

f is continuous ⇐⇒ Hρ f1/ρ is continuous

the membership follows. The hardness follows from the reduction in the proof of
Proposition 4.1(iii). �

Proposition 6.10 LipschitzR ∈ H∀ and it is ∀-hard.

Proof. The membership follows from Proposition 4.1(iii). For the hardness, the
reduction in Proposition 4.1(iii) does the job again. �

Lemma 6.11 Let f ∈ R[X1, . . . , Xn] be given by a division-free SLP of depth d
with constants a1, . . . , ak ∈ R whose absolute value is bounded by b ≥ 1. Let r ≥ 1.
Then, for all x, y ∈ R

n with ‖x‖∞, ‖y‖∞ ≤ r,

|f(x) − f(y)| ≤ C‖x− y‖∞

where C = (b+ r)r2d−12(d+1)2d

.

Proof. Let x, y ∈ R
n such that ‖x‖∞, ‖y‖∞ ≤ r. The polynomial F (Z) := f(y+Z) is

given by a division-free straight-line program of depth at most d+1 whose constants
have absolute value at most b+ r. Write

F (Z) =

2d∑

|α|=0

FαZ
α
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where |α| = α1 + . . .+ αn. Then we have, for z ∈ R
n such that ‖z‖∞ ≤ r,

|F (z) − F (0)| ≤
∑

α6=0

|Fα||z1|
α1 · · · |z1|

α1 ≤ ‖z‖∞r
2d−1‖F‖1.

On the other hand, by [10, Lemma 4.16],

log ‖F‖1 ≤ (d+ 1)2d log(b+ r)

(the statement there is for ai ∈ Z but the proof carries over). Altogether we obtain

|f(x) − f(y)| = |F (Z) − F (0)| ≤ r2d−12(d+1)2d log(b+r)‖x− y‖∞

as claimed. �

Proposition 6.12 Cont
DF
R ∈ H

2∀ and it is ∀-hard.

Proof. Let f : R
W → R

m be given by a division-free circuit C of depth d with
constants a1, . . . , ak ∈ R. Note that

f is continuous ⇐⇒ ∀r > 0 f|B(0,r) is uniformly continuous.

Fix r > 0. Uniform continuity of f|B(0,r) means that

∀ε > 0∃δ > 0∀x, y ∈ B(0, r) (‖x − y‖∞ < δ ⇒ ‖f(x) − f(y)‖∞ < ε).

We claim that this is in turn equivalent to

Hε∀x, y ∈ B(0, r)
(
‖x− y‖∞ <

ε

C
⇒ ‖f(x) − f(y)‖∞ < ε

)
, (3)

where C is as in Lemma 6.11. To prove this claim, assume that ϕ := f|B(0,r) is

continuous. There is a semialgebraic partition B(0, r) = S1 ∪ . . . ∪ Sp and there
are polynomials f1, . . . , fp, computable by division-free straight-line programs of
depth at most d and using constants from {a1, . . . , ak}, such that fi = ϕ on Si. By
the continuity of ϕ we get fi = ϕ on Si. Let x, y ∈ B(0, r). Define the function
s : [0, 1] → R

n given by s(t) := tx+ (1 − t)y. Denote by [x, y] the image of s, which
is a line segment. Finally, define Ii := s−1(Si). This yields a semialgebraic partition
of the interval

[0, 1] = I1 ∪ . . . ∪ Ip.

Since the Ii are semialgebraic, there exist points 0 = t0 < t1 < t2 < . . . < tN = 1
and integers j(1), . . . , j(N) ∈ {1, . . . , p} such that, for 1 ≤ i ≤ N ,

s(ti−1, ti) ⊆ Sj(i).
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Put xi := s(ti). Then {xi−1, xi} ⊆ Sj(i). By Lemma 6.11,

‖ϕ(x) − ϕ(y)‖∞ ≤
N∑

i=1

‖ϕ(xi) − ϕ(xi−1)‖∞ ≤
N∑

i=1

C‖xi − xi−1‖∞ = C‖x− y‖∞

since ϕ(xi) = fj(i−1)(xi) and ϕ(xi−1) = fj(i−1)(xi−1). This proves one implication
in the claim. The converse is trivial.

Now note that condition (3) is of the type H∀. Hence, the continuity of f can
be expressed as (take r = 1

ρ)

HρHε∀x, y

(
‖x‖∞ ≤

1

ρ
∧ ‖y‖∞ ≤

1

ρ
∧ ‖x− y‖∞ ≤

ε

C
⇒ ‖x− y‖∞ ≤ ε

)
.

An upper bound on C can be computed in polynomial time.
This proves the membership to H

2∀. The ∀-hardness follows, one more time,
from the reduction in Proposition 4.1(iii). �

Proposition 6.13 ContPoint
DF
R

is H∀-complete.

Proof. Let C be a division-free circuit with n input gates and x ∈ R
n. Let r =

2‖x‖∞. Denote by ϕC the function computed by C . We first show that checking
whether ϕC is continuous at x can be decided in H∀.

Let d be the depth of C , a1, . . . , ak ∈ R be its constants, and b ≥ 1 a bound for
their absolute value. We claim that ϕC is continuous at x if and only if

∃µ > 0 ∀ε ∈ (0, µ) ∀y ∈ R
n

(
‖x− y‖∞ ≤

ε

C
⇒ ‖ϕC (x) − ϕC (y)‖∞ ≤ ε

)
.

Here C is as in Lemma 6.11.
The “if” direction is obvious. For the “only if” direction note that there ex-

ists a semialgebraic partition R
n = S1 ∪ . . . ∪ Sp and polynomials f1, . . . , fp ∈

R[X1, . . . , Xn], computable by division-free straight-line programs of depth at most
d and using constants from {a1, . . . , ak}, such that the restriction of ϕC to Si is fi,
for i ≤ p. Let R = {i ≤ p | x ∈ Si} and let µ > 0 be such that µ

C ≤ r
2 and, for

all i 6∈ R, dist∞(x, Si) >
µ
C . Note that since ϕC is continuous at x, for all i ∈ R,

fi(x) = ϕC (x).
Now let ε ∈ (0, µ) and y ∈ R

n such that ‖x − y‖∞ ≤ ε
C . Since ε < µ we have

‖x− y‖∞ < µ
C and therefore, there exists i ∈ R such that y ∈ Si. It follows that

‖ϕC (x) − ϕC (y)‖∞ = ‖fi(x) − fi(y)‖∞ ≤ ε,

where the last inequality is a consequence of Lemma 6.11 (which we can apply since
‖y‖∞ ≤ µ

C + ‖x‖∞ ≤ r). This proves the claim. Since C can be computed in
polynomial time, the membership of ContPoint

DF
R to H∀ follows.
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For the hardness, let S ⊆ R
n be semialgebraic and x ∈ R

n. We define the
function f on R

n by f(y) := 1 if y ∈ S − {x} and f(y) := 0 otherwise. Clearly, f is
continuous at x if and only if x 6∈ S. The hardness follows from Corollary 6.5. �

Remark 6.14 (i) Note that the usual definition of continuity easily yields
ContR ∈ ∀H∀. This suggests that is unlikely that ContR will be H

3∀-
complete since in this case we would have H

3∀ ⊆ ∀H∀.

(ii) A result like Proposition 6.10 holds as well for a version of LipschitzR requiring
fC to be total or C to be division-free (cf. Remark 4.2). In contrast, we do
not know whether a version of ContR requiring fC to be continuous on its
domain is in H

3∀.

6.3 Basic semialgebraic sets

A basic semialgebraic set is the solution set of a system of polynomial equalities and
inequalities. It thus has the form

S = {f = 0, h1 ≥ 0, . . . , hp ≥ 0, g1 > 0, . . . , gq > 0},⊆ R
n (4)

where we assumed there is only one equality for notational simplicity. (We can
always reduce to this case by adding the squares of the equalities; actually we could
even replace f = 0 by f ≥ 0,−f ≥ 0). Clearly, arbitrary semialgebraic sets can be
written as finite unions of basic semialgebraic sets.

Now consider the following problems:

BasicClosedR (Closedness for basic semialgebraic sets) Given a basic semialge-
braic set S, is it closed?

BasicCompactR (Compactness for basic semialgebraic sets) Given a basic semi-
algebraic set S, is it compact?

Our last result in this section is the following.

Theorem 6.15 The problems BasicClosedR and BasicCompactR are H∀-

complete.

To prove the membership, we will use two ideas. One is the stereographic pro-
jection and the other is a characterization of closedness for basic semialgebraic sets
(cf. Lemma 6.16 below).

The stereographic projection

π : Sn − {(0, . . . , 0, 1)}
∼
→ R

n, (x, t) 7→ y

given by the equations yi = xi/(1 − t), is a homeomorphism. In the following we
denote the “north pole” (0, . . . , 0, 1) by N .
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For a polynomial f ∈ R[X1, . . . , Xn] the inverse image π−1(Z(f)) of its zero set
Z(f) is given by (1 − t)deg(f)+1f(x

t ) = 0 together with the conditions ‖x‖2 + t2 = 1
and t < 1. If instead of Z(f) we consider the set {f > 0} (or {f ≥ 0}), its preimage
in Sn − {N} is given by {(1 − t)deg(f)+1f(x

t ) > 0} (or {(1 − t)deg(f)+1f(x
t ) ≥ 0}),

again with the extra conditions ‖x‖2 + t2 = 1 and t < 1. Note that if we exclude the
latter condition we obtain the desired preimage plus the north pole N . In particular,
if S ⊆ R

n is a basic semialgebraic set, both π−1(S) and π−1(S) ∪ {N} are basic
semialgebraic sets.

We now focus on characterizing closedness. Let S be a basic semialgebraic set
given as in (4). Define

KS := {f = 0, h1 ≥ 0, . . . , hp ≥ 0}

and, for ε > 0,

Sε = {f = 0, h1 ≥ 0, . . . , hp ≥ 0, g1 ≥ ε, . . . , gq ≥ ε}.

Note that Sε ⊆ Sε′ ⊆ S for 0 < ε′ < ε and that S = ∪ε>0Sε.

Lemma 6.16 Let S be a basic semialgebraic set with KS bounded. Then

S is closed ⇐⇒ ∃ε > 0 Sε = S.

Proof. The “⇐” direction is trivial since Sε is closed for all ε ∈ R.
For the “⇒” direction, let KS = K1 ∪K2 ∪ . . .∪Kt be the decomposition of KS

into connected components. Then

S = KS ∩ {g1 > 0, . . . , gq > 0} =

t⋃

τ=1

Sτ

where Sτ := Kτ ∩ {g1 > 0, . . . , gq > 0}. Note that Sτ = S ∩ Kτ . Hence S closed
implies Sτ closed for all τ ≤ t.

On the other hand, Sτ is open in Kτ . Since Kτ is connected we either have
Sτ = ∅ or Sτ = Kτ . Put T := {τ | Sτ = Kτ}. Then S =

⋃
τ∈T Kτ . Hence, for all

τ ∈ T and all x ∈ Kτ , g1(x) > 0, . . . , gq(x) > 0. Put

ε := min
τ∈T

1≤i≤r

min
x∈Kτ

gi(x).

Then ε > 0 and we have Sε = S. �

The proof of Theorem 6.15 follows from Lemmas 6.17 and 6.20 below.

Lemma 6.17 The problems BasicClosedR and BasicCompactR are in H∀.
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Proof. We begin with BasicClosedR. Note that Lemma 6.16 shows that, for basic
semialgebraic sets S with bounded KS, S is closed ⇐⇒ Hε(Sε = S) and the right-
hand side is in H∀. So, it is enough to show we can reduce the general situation to
one with bounded KS. To do so, let

S = {f = 0, h1 ≥ 0, . . . , hp ≥ 0, g1 > 0, . . . , gq > 0} ⊆ R
n.

Consider S̃ := π−1(S) ∪ {N} where π is the stereographic projection. Then, S̃ is a

basic semialgebraic set, it satisfies that K
eS is bounded, and that

S is closed in R
n ⇐⇒ S̃ is closed in R

n+1.

This shows the membership of BasicClosedR to H∀. The membership of
BasicCompactR follows from the one of BasicClosedR and that of UnboundedR

to H∃ (Proposition 6.4). �

For the hardness we need the following two auxiliary results.

Lemma 6.18 Let T ⊆ (0,∞) × (0,∞) be a semialgebraic set given by a Boolean

combination of inequalities of polynomials of degree strictly less than d and let

(0, 0) ∈ T . Then there exists a sequence of points (tν , εν) in T such that

lim
ν→∞

εdν
tν

= 0.

Proof. We may assume without loss of generality that T is basic, hence given by
inequalities h1 ≥ 0, . . . , hp ≥ 0, g1 > 0, . . . , gq > 0, t > 0, ε > 0. Moreover, since
we study a local property at (0, 0) and (0, 0) 6∈ T , we may assume without loss of
generality that q = 0 and, for all i, that (0, 0) is a point on the real algebraic curve
Z(hi), which is not isolated.

By [7, §9.4], Z(hi)∩B(0, ρ) is a disjoint union of its half-branches Ci1, . . . , Cimi

passing through (0, 0), for sufficiently small ρ > 0. It is known that each Ciµ\{(0, 0)}
is homeomorphic to the open interval (0, 1).

Without loss of generality, we may assume that Ciµ∩{ε = 0} is finite (otherwise,
hi vanishes on the line {ε = 0} and, by dividing hi by an appropriate power of ε,
we can remove this line from Z(hi) without altering T ). Similarly, we may assume
that Ciµ ∩ {t = 0} is finite.

Thus we may choose ρ small enough so that Ciµ ∩ {ε = 0} = Ciµ ∩ {t = 0} =
{(0, 0)}, for all i, µ, and Ciµ ∩Cjν = {(0, 0)} for all i, j, µ, ν such that Ciµ 6= Cjν .

Without loss of generality, there exist (t, ε) ∈ T ∩ B(0, ρ) and i ≤ p such that
hi(t, ε) = 0 (otherwise, T would be a neighborhood of (0, 0) in (0,∞)2 and we were
done). Hence (t, ε) ∈ Ciµ for some µ ≤ mi. We have Ciµ \ {(0, 0)} ⊆ {ε > 0} since
Ciµ \ {(0, 0)} is connected and thus it does not intersect the line {ε = 0}. For the
same reason, Ciµ \ {(0, 0)} ⊆ {t > 0}.
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We claim that
Ciµ \ {(0, 0)} ⊆ T. (5)

Otherwise, there is a point (t1, ε1) ∈ Ciµ ∩ {t > 0, ε > 0}, which is not in T . The
latter implies the existence of j 6= i such that hj(t1, ε1) < 0. But hj(t, ε) ≥ 0
and Ciµ \ {(0, 0)} is connected. Hence there exists a point (t2, ε2) in Ciµ \ {(0, 0)}
such that hj(t2, ε2) = 0. This in turn implies that (t2, ε2) ∈ Cjν for some ν, hence
Ciµ ∩ Cjν 6= {(0, 0)}. On the other hand, we have Ciµ 6= Cjν. This contradicts the
choice of ρ and the claim is proved.

The half-branches of (real) algebraic curves can be described by means of Puiseux
series, cf. [4, §13] or [9]. Hence there exists a convergent real power series ϕ(x) =∑

k≥1 akx
k and a positive integer N , called ramification index, such that (after

possibly decreasing ρ)

Ciµ = {(t, ϕ(t1/N )) | 0 ≤ t < ρ}.

Moreover, it is known that N can be bounded by the degree of the defining equa-
tion hi, hence N < d.

Choose now a sequence tν > 0 converging to zero and put εν := ϕ(t
1/N
ν ). By (5),

the points (tν , εν) lie in T and we have limν→∞ εNν /tν = limν→∞ ϕ(t
1/N
ν )/t

1/N
ν = a1.

The assertion follows now from N < d. �

It will be convenient to use the notation Bn := (−1, 1)n for the open unit ball
with respect to the maximum norm and to write ∂Bn := {x ∈ R

n | ‖x‖∞ = 1} for
its boundary.

Lemma 6.19 To f ∈ R[ε,X1, . . . , Xn] of degree d and N = (nd)cn we assign the

semialgebraic set

S :=

{
(ε, x, y) ∈ (0,∞) ×Bn × R | f(ε, x) = 0 ∧ y

n∏

k=1

(1 − x2
k) = εN

}
.

There exists c > 0 such that for all f we have

Hε∀x ∈ Bn f(ε, x) 6= 0 ⇐⇒ S is closed in R
n+2.

Proof. For the direction “⇒” assume there exists µ > 0 such that f(ε, x) 6= 0 for all
(ε, x) ∈ (0, µ)×Bn. In order to show that S is closed, consider a sequence (εν , xν , yν)
in S converging to (ε, x, y). Since f(εν , xν) = 0, we have εν ≥ µ for all ν and thus
ε ≥ µ. On the other hand, by taking the limit, we get y

∏n
k=1(1 − x2

k) = εN . Since
ε 6= 0 we conclude that x ∈ Bn. Therefore, the limit point (ε, x, y) indeed lies in S.

For the direction “⇐” we assume that Hε∃x ∈ Bn f(ε, x) = 0. Then there
exists a sequence (εν , xν) ∈ (0,∞) × Bn converging to some point (0, x) such that
f(εν , xν) = 0 for all ν. We are going to show that the sequence (yν) defined by yν :=
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εNν
∏n

k=1(1− x2
k)

−1 converges to 0. Then the sequence (εν , xν , yν) in S converges to
the point (0, x, 0), which does not lie in S, and therefore, S is not closed.

If x ∈ Bn, then it is clear that yν converges to 0. Assume now that x ∈ ∂Bn.
We consider the following semialgebraic set

Z :=

{
(t, ε, x) ∈ (0,∞) × (0,∞) ×Bn | f(ε, x) = 0, t =

n∏

k=1

(1 − x2
k)

}

defined by a conjunction of polynomial inequalities of degree at most
max{2n,deg f}. By assumption, we have (0, 0, x) ∈ Z. Consider now the image
T ⊆ (0,∞) × (0,∞) of Z under the projection (t, ε, x) 7→ (t, ε). Then we have
(0, 0) ∈ T .

By efficient quantifier elimination, the projection T can be described by a
Boolean combination of polynomial inequalities of degree at most N = (ndeg f)cn,
for some fixed c > 0, cf. [30, Part III].

We apply now Lemma 6.18 to obtain a sequence (tν , εν , xν) in Z such that

lim
ν→∞

εNν
tν

= lim
ν→∞

yν = 0.

This completes the proof. �

Lemma 6.20 The problems BasicClosedR and BasicCompactR are H∀-hard.

Proof. Lemma 6.19 allows us to reduce Standard(H∀) to BasicClosedR. Indeed,
a description of the set S in its statement can be obtained in polynomial time from
a description of f . The exponent N is exponential in the size of f , so we should use
the sparse representation for the polynomial y

∏n
k=1(1 − x2

k) = εN . Alternatively,
we may reduce the degree N by introducing the variables z1, . . . , zlog N (we assume
N is a power of 2) and replacing y

∏n
k=1(1 − x2

k) = εN by the equalities

z1 = ε2, zj = z2
j−1 (j = 2, . . . , logN), y

n∏

k=1

(1 − x2
k) = zlog N .

This defines a basic semialgebraic set S ′ homeomorphic to S which is definable, with
dense representation, in size polynomial in the size of f .

For the hardness of BasicCompactR note that, for a given basic semialgebraic
set S ⊆ R

n, S is closed if and only if S̃ := π−1(S) ∪ {N} is compact. Since a
description of the basic semialgebraic set S̃ can be obtained in polynomial time from
such a description for S, we see that BasicClosedR reduces to BasicCompactR.

�
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Remark 6.21 A question naturally arising is whether Theorem 6.15 can be ex-
tended to characterize the complexity of deciding closedness for arbitrary semialge-
braic sets. Lemma 6.20 immediately yields H∀-hardness for this problem. But the
characterization in Lemma 6.16 does not extend to this case. On the other hand,
noting that S is closed if and only if

∀x∃ε > 0∀y (x 6∈ S ∧ ‖x− y‖ ≤ ε⇒ y 6∈ S)

shows that the problem is in ∀H∀. While the gap between the best lower (H∀) and
upper (∀H∀) bounds thus obtained for closedness is smaller than that mentioned in
Section 1 (i.e., ∀ against ∀∃∀) this is still an unsatisfying situation.

We can also consider the problems of deciding, for an arbitrary semialgebraic
set S, whether S is compact, or whether it is open. It is not difficult to see that
both problems are polynomially equivalent to the closedness one. The gap between
H∀ and ∀H∀ being thus also the best we can exhibit for these problems, we can say
that the complexity of openness remains an open problem.

7 The classes H, H
k, and ∃∗H

We now turn our attention to classes where H is in the innermost position, e.g., H

and ∃∗H. Consider the problem

SOCSR(1) (Smallest Order Coefficient Sign) Given a division-free straight-line
program Γ in one input variable X, decide whether the smallest-order coeffi-
cient of fΓ (the polynomial in X computed by Γ) is positive.

This problem is related to several well studied problems. For instance, if one
replaces the word “positive” by “zero” in the definition of SOCSR(1), we obtain
the one-variable version of the problem SLP0R of deciding whether the polynomial
computed by a straight-line program Γ is identically zero. This is an archetype of
problem solvable with randomization. The corresponding problem for constant-free
straight-line programs is also called Arithmetic Circuit Identity Test (ACIT), see
[1, 24].

Proposition 7.1 The problem SOCSR(1) is H-complete for Turing reductions.

Proof. The membership follows from the fact that Γ ∈ SOCSR(1) if an only if ∃µ >
0 ∀ε ∈ (0, µ) fΓ(ε) > 0. The problem Standard(H) consisting of deciding whether,
given a decision circuit C in a single variable X, Hε C (ε) = 1 is H-complete. We
are going to Turing-reduce Standard(H) to SOCSR(1). Without loss of generality,
we may assume that the circuit C is division-free. Recall that the node preceding
the output node of C is a sign node. Now consider an algorithm performing the
computation of C symbolically on an input variable X. When it reaches a sign
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node ν it queries SOCSR(1) with input the straight-line program corresponding
to the arithmetic computations performed by C before reaching node ν (sign tests
excluded).

The output of this algorithm is 1 if and only if Hε C (ε) = 1. �

The next problem is related to a familiar notion in geometry. When, for a
set S ⊂ R

n and a linear function ` : R
n → R we have S ∩ {` < 0} = ∅ and

dim(S ∩ {` = 0}) = n − 1 we say that S is supported by the hyperplane {` = 0}.
The problem LocSuppR consists of deciding a local version of this notion.

LocSuppR (Local Support) Given a nonzero linear equation `(x) = 0 and
a circuit C with n input nodes, decide whether there exists a point
x0 ∈ R

n and δ > 0 such that SC ∩ {` < 0} ∩ B(x0, δ) = ∅ and

dim
(
SC ∩ {` > 0} ∩ {` = 0} ∩B(x0, δ)

)
= n− 1.

Proposition 7.2 The problem LocSuppR is ∃∗H-complete.

Proof. Towards the proof of the hardness, we define an auxiliary problem
Standard

+(∃∗H) consisting of deciding, given a circuit C with n+ 1 input gates,
whether

∃∗x ∈ R
n

Hε (C (ε, x) = 1 ∧ C (−ε, x) = 0).

By definition, Standard
+(∃∗H) ∈ ∃∗H. In addition, Standard

+(∃∗H) is ∃∗H-
hard. Indeed, given a circuit C with n + 1 input variables (ε, x1, . . . , xn) we can
construct in polynomial time a circuit C + with the same input nodes doing the
following

if ε < 0 return 0, else return C (ε, x)

and, clearly, C ∈ Standard(∃∗H) if and only if C + ∈ Standard
+(∃∗H).

Now we claim that, for a circuit C with n+ 1 input variables (ε, x1, . . . , xn),

C ∈ Standard
+(∃∗H) ⇐⇒ ({ε = 0},C ) ∈ LocSuppR.

In order to see this, suppose that C ∈ Standard
+(∃∗H). Then there exist x ∈ R

n

and δ > 0 such that for all y ∈ B(x, δ), there exists µy > 0 satisfying

SC ∩ ((−µy, 0) × {y}) = ∅ and ((0, µy) × {y}) ⊆ SC .

By the theorem on the cylindrical decomposition of semialgebraic sets (cf. [7, §2.3]
or [3, §5.1]), we may assume that µy is a continous function of y in a suitable closed

ball B(x′, δ′) contained in B(x, δ). By taking the minimum of µy over this closed
ball, we may therefore assume that µy can be chosed independently of y. Hence we

25



obtain

C ∈ Standard
+(∃∗H)

⇐⇒ ∃x ∃δ > 0 ∃µ > 0 (SC ∩ ((−µ, 0) ×BRn(x, δ)) = ∅ ∧ (0, µ) ×BRn(x, δ) ⊆ SC )

⇐⇒ ∃x ∃δ > 0

(
SC ∩ {ε < 0} ∩ BRn+1((0, x), δ) = ∅ ∧

dim
(
SC ∩ {ε > 0} ∩ {ε = 0} ∩ BRn+1((0, x), δ)

)
= n− 1

)

⇐⇒ ({ε = 0},C ) ∈ LocSuppR.

The ∃∗H-hardness of LocSuppR follows from the claim.
For the membership, let `(x) = `1x1 + `2x2 + · · · + `nxn + c be a linear function

such that, w.l.o.g. `n 6= 0, and C be a circuit with n input nodes. A point x ∈ R
n is in

{` = 0} if and only if xn = ϕ(x1, . . . , xn−1) = −(`1x1 +`2x2 + · · ·+`n−1xn−1+c)/`n.
Therefore, by the reasoning above with ` taking the role of ε, we have (`,C ) ∈
LocSuppR if and only if

∃∗x ∈ R
n−1

Hε
(
C

(
(x, ϕ(x))+ε(`1, . . . , `n)

)
= 1 ∧ C

(
(x, ϕ(x))−ε(`1, . . . , `n)

)
= 0

)

and this shows membership. �

We noted in Remark 6.3 that, unlike for ∃,∀,∃∗ and ∀∗, the equality HH = H is
not known to be true. Denote by H

k the class HH . . .H, k times. Proposition 7.1
readily extends to H

k. To do so, for a polynomial f =
∑

α fαX
α in the variables

X1, . . . , Xk, where α = (α1, . . . , αk) and Xα = Xα1
1 · . . . · Xαk

k , define its smallest

order coefficient (w.r.t. the ordering X1 � X2 � . . . � Xk) to be the coefficient fα∗

where α∗ is defined by

α∗
k = min{β | ∃α1, . . . , αk−1 f(α1,...,αk−1,β) 6= 0}

α∗
k−1 = min{β | ∃α1, . . . , αk−2 f(α1,...,αk−2,β,α∗

k
) 6= 0}

...

α∗
1 = min{β | f(β,α∗

2,...,α∗
k
) 6= 0}.

The k variables version of SOCSR(1) is the following,

SOCSR(k) (Smallest Order Coefficient Sign, k variables) Given a division-free
straight-line program Γ in k input variables X1, . . . , Xk, decide whether the
smallest-order coefficient of fΓ is positive.

This notion of smallest order coefficient is at the center of the work on ordered
fields developed by Artin and Schreier [2] to solve Hilbert’s 17th problem. Consider
a (necessarily transcendental) ordered extension K1 = R(α1) of R. By replacing α1

by 1/α1 we may assume that α1 is finite (in the sense that there exists b ∈ R such
that |α1| < b). The completeness of R then implies that there exists a1 ∈ R such
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that a1 − α1 is an infinitesimal (i.e., 1/(a1 − α1) is not finite). By replacing α1 by
a1 − α1 we can assume that α1 is an infinitesimal. Repeating k times this process
we obtain a finitely generated ordered extension K = R(α1, . . . , αk) of R in which,
for all i ≤ k, αi is an infinitesimal w.r.t. R[α1, . . . , αi−1]. We can denote this by
writing α1 � α2 � . . . � αk.

Comparing elements in K reduces to computing the sign of elements in this field,
a task which itself reduces to computing signs of elements in R[α1, . . . , αk]. If f is
such an element, this can be done by looking at the coefficients of f : f = 0 if and only
if all its coefficients are zero and, otherwise, f > 0 if and only if its smallest order
coefficient is positive. If f is given explicitly its sign can be then trivially computed.
Buth this is not so if f is given by a (division-free) straight-line program. In this
case, we have already remarked that deciding whether f = 0 is precisely the problem
SLP0R and that this problem can be solved using randomization. We now observe
that to decide whether f > 0 amounts to decide whether f ∈ SOCSR(k).

The following result is proved as Proposition 7.1.

Proposition 7.3 The problem SOCSR(k) is H
k-complete for Turing reductions.

Remark 7.4 Let SOCSR(∗) be the union of SOCSR(k) for k ≥ 1. Similarly, let
H
• be the class resulting from allowing a polynomial time machine to use the quan-

tifier H (in the same way PATR is defined by allowing a polynomial time machine to
use the quantifiers ∃ and ∀ [15]). Then, SOCSR(∗) is H

•-complete and the hierarchy

PR ⊆ H ⊆ H
2 ⊆ H

3 ⊆ . . . ⊆ H
•

collapses if and only if SOCSR(∗) ∈ H
k for some k ≥ 1.

8 Some inclusions of complexity classes

Koiran [28] describes an efficient method to express generic quantifiers ∃∗ using
instead existential quantifiers. We briefly recall this method in the following.

Recall that FR denotes the set of first order formulas over the language of the
theory of ordered fields with constant symbols for real numbers. Let F (u, a) ∈ FR

be a formula with free variables u ∈ R
s (viewed as parameters) and a ∈ R

k (viewed
as instances). Let F̃ (u, y1, . . . , yk+s+2) denote the following formula derived from F

∃a ∈ R
k ∃ε > 0

k+s+2∧

i=1

F (u, a + εyi). (6)

Hereby, each variable yi is in R
k. Let W (F ) denote the set of witness sequences

for F , that is, the set of points y = (y1, . . . , yk+s+2) ∈ R
k(k+s+2) satisfying the

property
∀u ∈ R

s
(
∃∗a ∈ R

k F (u, a) ⇐⇒ F̃ (u, y1, . . . , yk+s+2)
)
. (7)

Koiran [28] proved the following result.
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Theorem 8.1 (i) W (F ) is Zariski dense in R
k(k+s+2), for any F (u, a) ∈ FR.

(ii) Suppose that F is in prenex form with free variables u ∈ R
s, a ∈ R

k and

n bounded variables, w alternating quantifier blocks, and m atomic predicates

given by polynomials of degree at most d ≥ 2 with integer coefficients of bit

size at most `. Then a point in W (F ) can be computed by a straight-line

program of length (k + s + n)O(w) log(md) + O(log `), which is division-free,

has 1 as its only constant and no inputs.

This theorem implies the following inclusion of complexity classes.

Theorem 8.2 Let C be a polynomial class. Then ∃∗C ⊆ ∃C and ∀∗C ⊆ ∀C.

Proof. It suffices to prove that ∃∗C ⊆ ∃C. Let the polynomial class C be defined by
the sequence of quantifiers Q1, . . . , Qp, where Qi ∈ {∃,∀,∃∗,∀∗,H}. It is sufficient to
show that the standard complete problem Standard(∃∗C) belongs to ∃C. And with-
out loss of generality we can assume that Qp ∈ {∃∗,∀∗,H} so that Standard(∃∗C)
is the problem of deciding, given a circuit C with k+ n1 + · · · + np input gates and
constants u ∈ R

s, whether ∃∗a ∈ R
k F (u, a), where F (u, a) denotes the formula

Q1x1 ∈ R
n1 . . . Qpxp ∈ R

np C (a, x1, . . . , xp, u) = 1.

According to Theorem 8.1, a witness sequence ỹ = (ỹ1, . . . , ỹk+s+2) ∈ R
k(k+s+2) in

W (F ) can be computed by a constant-free, division-free, straight-line program of
length polynomial in size(C ) without input gates. From (6) and (7), we see that
∃∗a ∈ R

k F (u, a) is equivalent to

∃a ∈ R
k ∃ε > 0

k+s+2∧

i=1

F (u, a+ εỹi).

We next show that the problem to decide
∧k+s+2

i=1 F (u, a + εỹi) for given u, a and ε
is in the class C.

This can be shown by induction on p. Suppose first that p = 1, that is, F (u, a)

is in the class Q1. Then, introducing additional variables x
(i)
1 for 1 ≤ i ≤ k + s+ 2,

we see that
∧k+s+2

i=1 F (u, a+ εỹi), i.e.,

k+s+2∧

i=1

Q1x1 ∈ R
n1 C (a+ εỹi, x1, u)

is equivalent to

Q1x
(1)
1 ∈ R

n1 . . . Q1x
(k+s+2)
1 ∈ R

n1

k+s+2∧

i=1

C (a+ εỹi, x
(i)
1 , u)
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(if Q1 = H we do not even need to introduce additional variables). Since ỹi is

computed in time polynomial in size(C ), the computation of C (u, a + εỹi, x
(i)
1 ) is

also done in time polynomial in size(C ). Hence
∧k+s+2

i=1 F (u, a+ εỹi) can be decided
in the class Q1.

The induction step can be settled similarly, which concludes the proof. �

Corollary 8.3 (i) We have ∃∗∀∗ ⊆ ∃∀∗ ⊆ ∃∀ and ∃∗∀∗ ⊆ ∃∗∀ ⊆ ∃∀.

(ii) We have ∃∗∃ = ∃. In particular, ImageZDenseR is ∃-complete.

Proof. This follows immediately from Theorem 8.2. �

The next observation will be of great use in the next section.

Proposition 8.4 We have ∃ ⊆ H
2∃∗ and ∀ ⊆ H

2∀∗.

Proof. It suffices to prove the first statement. To do so, let f ∈ R[X1, . . . .Xn]. Then

∃x f(x) = 0 ⇐⇒ Hδ ∃x
(
‖x‖2 ≤ δ−1 ∧ f(x) = 0

)

⇐⇒ HδHε∃x
(
‖x‖2 ≤ δ−1 ∧ f(x)2 < ε2

)

⇐⇒ HδHε∃∗x
(
‖x‖2 < δ−1 ∧ f(x)2 < ε2

)

the second equivalence by the compactness of closed balls. This shows that
Standard(∃) can be solved in H

2∃∗. �

9 Exotic quantifiers in the discrete setting

It is common to restrict the input polynomials in the problems considered so far
to polynomials with integer coefficients, or to constant-free circuits (i.e., circuits
which use only 0 and 1 as values associated to their constant nodes). The resulting
problems can be encoded in a finite alphabet and studied in the classical Turing
setting. In general, if L denotes a problem defined over R or C, we denote its
restriction to integer inputs by LZ. This way, the discrete problems Isolated

Z
R,

Surj
Z
R, Cont

Z
R, etc. are well defined.

Another natural restriction (considered e.g. in [17, 26, 27]), now for real ma-
chines, is the requirement that no constants other than 0 and 1 appear in the
machine program. Complexity classes arising by considering such constant-free ma-
chines are indicated by a superscript 0 as in P0

R
, NP0

R
, etc.

The simultaneous consideration of both these restrictions leads to the notion of
constant-free Boolean part.
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Definition 9.1 Let C be a complexity class over R. The Boolean part of C is the
discrete complexity class

BP(C) = {S ∩ {0, 1}∞ | S ∈ C}.

We denote by C0 the subclass of C obtained by requiring all the considered ma-
chines over R to be constant-free. The constant-free Boolean part of C is defined as
BP0(C) := BP(C0).

Some of the classes BP0(C) do contain natural complete problems. This raises
the issue of characterizing these classes in terms of already known discrete com-
plexity classes. Unfortunately, there are not many real complexity classes C for
which BP0(C) is characterized in such terms. The only such result that we know
is BP0(PARR) = PSPACE, proved in [16]. An obvious solution (which may be
the only one) is to define new discrete complexity classes in terms of Boolean
parts. In this way we define the classes PR := BP0(PR), NPR := BP0(NPR) and
coNPR = coBP0(NPR) = BP0(coNPR).

While never explicited as a complexity class (to the best of our knowledge) the
computational resources behind PR have been around for quite a while. A constant-
free machine over R restricted to binary inputs is, in essence, a Random Acess
Machine (RAM). Therefore, PR is the class of subsets of {0, 1}∗ decidable by a
RAM in polynomial time.

The main result of this section is the following.

Theorem 9.2 Let C be a polynomial class. Then

BP0(HC) = BP0(C).

From this theorem, Corollary 5.3, and Proposition 8.4 the following immediately
follows.

Corollary 9.3 (i) For all k ≥ 1, BP0(Hk) = PR.

(ii) For all k ≥ 1, BP0(∃∗) = BP0(Hk∃∗) = BP0(Hk∃) = BP0(∃) = NPR.

Corollary 9.4 (i) For all k ≥ 1, the problem SOCSR(k)Z is PR-complete.

(ii) The discrete versions of the following problems are NPR-complete: FEASR,

DIM(d), EAdhR, ZDenseR, UnboundedR, LocDimR, ImageZDenseR,

DomainZDenseR.

(iii) The discrete versions of the following problems are coNPR-complete:

EDenseR, IsolatedR, BasicClosedR, BasicCompactR. TotalR,

InjR, DomainEDenseR, ContR, Cont
DF
R , ContPoint

DF
R , LipschitzR(k),

LipschitzR.
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Proof. The claimed memberships follow from the definition of BP0, Corollary 9.3,
and a cursory look to the membership proofs for their real versions which show that
the involved algorithms are constant-free.

For the hardness part we first remark that, for any polynomial class C, the
problem Standard(C)Z is hard for BP0(C). This follows by inspecting the original
reduction for CEvalR as given in [22] and noting that, when restricted to binary
inputs, it can be performed by a Turing machine in polynomial time. Since this
reduction is extended to arbitrary polynomial classes by adding quantifiers, our
remark follows. We next note that the reductions shown in this paper for all the
problems above also can be performed by a Turing machine in polynomial time when
restricted to binary inputs. This finishes the proof. �

Thus, based on Theorem 9.2, we obtain in Corollary 9.4 the completeness for
the discrete problems Cont

Z
R, Cont

DF,Z
R

, and Lipschitz
Z
R even though we do not

have completeness results for the corresponding real problems. This suggests that
we are not far away from completeness and this situation deserves a proper name.

Definition 9.5 We say that a problem S has a narrow gap for the class C when
S is C-hard and there is a complexity class C ⊆ D satisfying that S ∈ D and
BP0(C) = BP0(D).

We turn now to the proof of Theorem 9.2, which uses a few facts from various
sources.

The separation sep(h) of a nonzero univariate polynomial h ∈ C[Y ] is defined as
the minimal distance between two distinct complex roots of h, or ∞ if h does not
have two distinct roots. We denote by ‖h‖ the Euclidean norm of the coefficient
vector of h.

A proof of the following lower bound on the separation can be found in [29].

Lemma 9.6 Let h ∈ Z[Y ] be a nonconstant integer polynomial of degree D. Then

sep(h) ≥
1

D(D+2)/2‖h‖D−1
.

The easy proof of the next lemma is left to the reader.

Lemma 9.7 Let C be a division-free and constant-free algebraic decision circuit

of size N in n variables. There exist K ≤ N2N polynomials g1, . . . , gK of degree

at most 2N and coefficient bit-size at most O(2N ) such that SC = G(x1, . . . , xn),
where G is a Boolean combination of equalities and inequalities of g1, . . . , gK .
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Let C be a polynomial class and Standard(C) its standard complete problem
as defined in Section 3. The standard problem Standard

Z(C) := Standard(C)Z

is obtained by requiring that the circuit C (or the polynomial f) given as input
in Standard(C) has no real constants (respectively, has integer coefficients). The
reductions in Proposition 3.1 show that Standard

Z(C) is BP0(C)-complete.

Proof of Theorem 9.2. Let C = Q1Q2 . . . Qw where Qi ∈ {∃,∀,∃∗,∀∗,H} for
i ≤ w. Assume that Qw ∈ {∃∗,∀∗,H}. In this case, an input for the problem
Standard

Z(HQ1Q2 . . . Qw) is a constant-free algebraic decision circuit C and this
input is in Standard

Z(HQ1Q2 . . . Qw) if and only if

HεQ1x1Q2x2 . . . Qwxw (ε, x1, x2, . . . , xw) ∈ SC .

Here xi ∈ R
ni for some ni ≥ 1.

The problem Standard
Z(HQ1Q2 . . . Qw) is BP0(HC)-complete. It is therefore

sufficient to prove that this problem belongs to the class BP0(C).
Let N be the size of C . By Lemma 9.7, SC = G(ε, x1, x2, . . . , xw) where G is a

Boolean combination of equalities and inequalities of polynomials g1, . . . , gK where
K ≤ N2N and the degree and coefficient bit-size of these polynomials is at most
O(2N ). Now consider the formula

Q1x1Q2x2 . . . QwxwG(ε, x1, x2, . . . , xw).

with free variable ε.
We may replace the generic quantifiers (or H) by usual quantifiers as in (2). Then,

by a well-known result on the efficient quantifier elimination over the reals [30, Part
III], this formula is equivalent to a quantifier-free formula in disjunctive normal form

I∨

i=1

Ji∧

j=1

(hij∆ij0), (8)

with
∑I

i=1 Ji ≤ 2NO(1)
atomic predicates involving (nonzero) polynomials hij of

degree at most 2NO(1)
and integer coefficients of bit size at most 2NO(1)

.
The polynomial h :=

∏
i,j hij has degree at most 2NO(1)

2NO(1)
= 2NO(1)

and

satisfies log ‖h‖ ≤ 2NO(1)
. By Lemma 9.6, the separation µ := sep(h) of h satisfies

µ ≥ 2−2NO(1)

.
Let S ⊆ R be the semialgebraic set defined by the formula (8). Note that every

connected component of S, which is not a point, has length at least µ, and the
same is true for the complement R−S. Therefore, the following algorithm works in
BP0(C) and solves Standard

Z(HQ1Q2 . . . Qw).

input C

compute an upper bound U := 22NO(1)

on µ−1

if Q1x1Q2x2 . . . QwxwG( 1
2U , x1, x2, . . . , xw) then accept

else reject.
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This proves that BP0(HC) = BP0(C) in the case that Qw ∈ {∃∗,∀∗,H}. The
other cases are simpler. �

We finish with some comments and remarks following from Theorem 9.2.

Remark 9.8 We have just seen that, for all k ≥ 1, BP0(Hk) = PR and thus
SOCSR(k)Z ∈ PR. We now note that, in contrast, we do not know the equality
BP0(H•) = PR —or, equivalently, the membership SOCSR(∗)Z ∈ PR— to hold.

Remark 9.9 We suggested in Remark 6.3(ii) that we believe that H is fundamen-
tally simpler than the alternation of two quantifiers. In some aspects, it is even
simpler than a single quantifier. Indeed, consider the problem of deciding whether,
given a decision circuit C with n input gates, there exists x ∈ {0, 1}n such that
x ∈ SC . This problem is complete in the class DNPR which captures the complexity
of problems where nondeterminism restricted to {0, 1} suffices (e.g., the real versions
of the travelling salesman problem or the knapsack problem) [18]. It also belongs
to BP0(∃[1]), where ∃[1] ⊆ NPR is the class of problems decidable with only one
nondeterministic guess in R. This is so since we can guess a real number z ∈ [0, 1]
such that the first n bits of its binary expansion encode the candidate x ∈ {0, 1}n.

On the other hand, we believe unlikely that the discrete version of problems in
DNPR (many of them known to be NP-complete) can be solved in PR, which would
be the case if ∃[1] ⊆ H since BP0(H) = PR.

10 Summary

In this section we try to give a summary of our main results “at a glance.” Firstly,
we consider the landscape of complexity classes in the lower levels of PHR emerging
from the previous sections. This is done in the following diagram. Here all upward
lines mean inclusion. In addition, a dashed line means that the Boolean parts of the
two classes coincide. Note that not all possible classes below Σ3

R
or Π3

R
are in the

diagram. We restricted attention to those which have played a visible role in our
development (e.g., because of having natural complete problems).

Boxes enclosing groups of complexity classes do not have a very formal meaning.
They are rather meant to convey the informal idea that some classes are “close
enough” to be clustered together (for instance, because of having the same constant-
free Boolean part).
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Next we summarize complexity results for a number of natural problems over R.
Recall,

FEASR (Polynomial feasibility) Given a polynomial f ∈ R[X1, . . . , Xn], decide whether
there exists x ∈ R

n such that f(x) = 0.

DimR(d) (Semialgebraic dimension) Given a semialgebraic set S and d ∈ N, decide
whether dimS ≥ d.

ConvexR (Convexity) Given a semialgebraic set S, decide whether S is convex.

Euler
∗ (Modified Euler characteristic) Given a semialgebraic set S, decide whether it is

empty and if not, compute its modified Euler characteristic χ∗(S).

EAdhR (Euclidean Adherence) Given a semialgebraic set S and a point x, decide whether
x belongs to the Euclidean closure S of S.

EDenseR (Euclidean Denseness) Given a decision circuit C with n input gates, decide
whether SC = Rn.
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ERDR (Euclidean Relative Denseness) Given semialgebraic sets S and V , decide whether
S is included in V .

LERDR (Linearly restricted Euclidean Relative Denseness) Given a semialgebraic set
V ⊆ R

n and points a0, a1, . . . , ak ∈ R
n, decide whether a0 + 〈a1, . . . , ak〉 is included

in V .

ZAdhR (Zariski Adherence) Given a semialgebraic set S and a point x, decide whether

x belongs to the Zariski closure S
Z

of S.

ZDenseR (Zariski Denseness) Given a decision circuit C with n input gates, decide

whether SC

Z

= Rn.

UnboundedR (Unboundedness) Given a semialgebraic set S, is it unbounded?

LocDimR (Local Dimension) Given a semialgebraic set S ⊆ Rn, a point x ∈ S, and
d ∈ N, is dimx S ≥ d?

IsolatedR (Isolated) Given a semialgebraic set S ⊆ Rn and a point x ∈ Rn, decide
whether x is an isolated point of S.

ExistIsoR (Existence of isolated points) Given a semialgebraic set S ⊆ Rn, decide
whether there exist a point x isolated in S.

BasicClosedR (Closedness for basic semialgebraic sets) Given a basic semialgebraic
set S, is it closed?

BasicCompactR (Compactness for basic semialgebraic sets) Given a basic semialgebraic
set S, is it compact?

SOCSR(k) (Smallest Order Coefficient Sign, k variables) Given a division-free straight-
line program Γ in k input variables X1, . . . , Xk, decide whether the smallest-order
coefficient (w.r.t. the ordering X1 � X2 � . . . � Xk) of fΓ (the polynomial in X
computed by Γ) is positive.

LocSuppR (Local Support) Given a circuit C with n input nodes and a linear equation
`(x) = 0, decide whether there exists x0 ∈ Rn and δ > 0 such that SC ∩ {` <
0} ∩ B(x0, δ) = ∅ and dim(SC ∩ {` = 0} ∩ B(x0, δ)) = n− 1.

TotalR (Totalness) Given a circuit C , decide whether fC is total.

InjR (Injectiveness) Given a circuit C , decide whether fC is injective.

SurjR (Surjectiveness) Given a circuit C , decide whether fC is surjective.

ImageZDenseR (Image Zariski Dense) Given a circuit C , decide whether the image of
fC is Zariski dense.

ImageEDenseR (Image Euclidean Dense) Given a circuit C , decide whether the image
of fC is Euclidean dense.

DomainZDenseR (Domain Zariski Dense) Given a circuit C , decide whether the domain
of fC is Zariski dense.

DomainEDenseR (Domain Euclidean Dense) Given a circuit C , decide whether the
domain of fC is Euclidean dense.
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ContR (Continuity) Given a circuit C , decide whether fC is continuous.

Cont
DF
R (Continuity for Division-Free Circuits) Given a division-free circuit C , decide

whether fC is continuous.

ContPoint
DF
R (Continuity at a Point for Division-Free Circuits) Given a division-free

circuit C with n input gates and x ∈ Rn, decide whether fC is continuous at x.

LipschitzR(k) (Lipschitz-k) Given a circuit C , and k > 0, decide whether fC is Lipschitz-
k, i.e., whether for all x, y ∈ Rn, ‖f(x) − f(y)‖ ≤ k‖x− y‖.

LipschitzR (Lipschitz) Given a circuit C , decide whether fC is Lipschitz, i.e., whether
there exists k > 0 such that fC is Lipschitz-k.

The following is a table with the main previously known results (we emphasize
on completeness) for the problems in the list above.

Problem Complete in

CEvalR PR

FEASR ∃
DIM(d) ∃

ConvexR ∀

Euler
∗ FP

#P
R

R

The following table does the same for the results shown in this paper.
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Problem Complete Lower Upper Discrete version

in bound bound complete in

SOCSR(k) H
k

PR

ZDenseR ∃∗ NPR

DomainZDenseR ∃∗ NPR

EDenseR ∀∗ coNPR

DomainEDenseR ∀∗ coNPR

ImageZDenseR ∃ NPR

TotalR ∀ coNPR

InjR ∀ coNPR

LipschitzR(k) ∀ coNPR

ZAdhR ∃ ?

EAdhR H∃ NPR

UnboundedR H∃ NPR

LocDimR H∃ NPR

IsolatedR H∀ coNPR

ContR ∀ H
3∀ coNPR

Cont
DF
R ∀ H

2∀ coNPR

ContPoint
DF
R H∀ coNPR

LipschitzR ∀ H∀ coNPR

LocSuppR ∃∗H BP0(∃∗H)
ExistIsoR H∀ ∃∀

BasicClosedR H∀ coNPR

BasicCompactR H∀ coNPR

LERDR ∀∗∃ BP0(∀∗∃)

ImageEDenseR ∀∗∃ BP0(∀∗∃)
ERDR ∀∗∃ ∀∃

SurjR ∀∃ BP0(∀∃)
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