
Private Approximation of Search Problems∗

Amos Beimel† Paz Carmi Kobbi Nissim Enav Weinreb

Department of Computer Science
Ben-Gurion University, Beer-Sheva, Israel

Email: {beimel,carmip,kobbi,weinrebe}@cs.bgu.ac.il

November 29, 2005

Abstract

Many approximation algorithms have been presented in the last decades for hard search problems.
The focus of this paper is on cryptographic applications, where it is desired to design algorithms which
do not leak unnecessary information. Specifically, we are interested in private approximation algorithms
– efficient algorithms whose output does not leak information not implied by the optimal solutions to the
search problems. Privacy requirements add constraints on the approximation algorithms; in particular,
known approximation algorithms usually leak a lot of information.

For functions, [Feigenbaum et al., ICALP 2001] presented a natural requirement that a private algo-
rithm should not leak information not implied by the original function. Generalizing this requirement
to search problems is not straight forward as an input may have many different outputs. We present
a new definition that captures a minimal privacy requirement from such algorithms – applied to an in-
put instance, it should not leak any information that is not implied by its collection of exact solutions.
Although our privacy requirement seems minimal, we show that for well studied problems, as vertex
cover and maximum exact 3SAT, private approximation algorithms are unlikely to exist even for poor
approximation ratios. Similar to [Halevi et al., STOC 2001], we define a relaxed notion of approximation
algorithms that leak (little) information, and demonstrate the applicability of this notion by showing near
optimal approximation algorithms for maximum exact 3SAT which leak little information.

Key words. Secure computation, Private approximation, Solution-list algorithms, Vertex cover.

∗This work was partially supported by the Frankel Center for Computer Science.
†On sabbatical at the University of California, Davis.

Electronic Colloquium on Computational Complexity, Report No. 141 (2005)

ISSN 1433-8092

1 Introduction

Approximation algorithms are currently one of the main research fields in computer science. The design
of algorithms for approximating computationally hard problems has attracted substantial attention in the
last few decades, as did the research on proving hardness of approximation. Frequently, approximation
algorithms are applied to sensitive data, as in the distributed cryptographic setup of secure computation. In
this paper we study privacy issues related to approximation algorithms of search problems.

We consider an abstract client-server setting. This scenario, besides being interesting on its own sake,
is important since the multiparty distributed setting can be reduced to this model using secure function
evaluation protocols [21, 8]. In the client-server setting, the server S is willing to let the client C learn
a specific functionality f of its input. The standard requirement in this setting is that no other information
would be leaked to C. For concreteness, assume that S holds a graph G and consider the following examples:

1. If f(G) is the diameter of G then S can simply compute f(G) and send it to C. It is clear that C learns
f(G), but no other information about G.

2. If f(G) is the number of perfect matchings in G, then C and S have to settle for an approximation
f̂ . This raises the question of which approximation to use, as S is only willing to reveal f(G), but f̂
may leak some other information. This was the setting in the work by Feigenbaum et al. [6]. They
defined the notion of private approximation that combines two requirements: (i) approximation: f̂ is
an approximation to f , and (ii) functional privacy: f̂(G) can be simulated given f(G); In particular,
functional privacy implies that if f(x) = f(y) then f̂(x) and f̂(y) are indistinguishable. It turns
out that an efficient private approximation algorithm exists for the number of perfect matchings in a
graph [6].

3. A more general and more typical case is when C needs to learn a “solution” for an optimization
problem, rather than its optimization objective. For example, one is usually interested in finding a
vertex cover of minimum size in G, rather than just learning the size of the optimal vertex cover.
However, even if C and S are willing to settle for an approximation (i.e. finding a cover which is
not much larger than the minimum), it is not clear which cover C should learn – the framework of
private approximations of functions does not address this problem as there may be many solutions to
the search problem.

This more general case where one seeks not a computation of a function, but of a solution to a computational
problem is the focus of this work.

The generalization of the definition of (functional) private approximation to search problems is not
straight forward. As one input may have many different outputs, it is not clear in which cases we need f̂(x)
and f̂(y) to be indistinguishable. For our example of vertex cover, it seems that a minimal requirement is
that a private approximation algorithm should not distinguish between graphs G1, G2 that are equivalent
in the sense that they have exactly the same set of solutions, i.e., every minimum cover for G1 is also a
minimum cover for G2 and vice versa. Note that this is a rather weak requirement, as it does not restrict the
approximation algorithm with respect to non-equivalent graphs. Furthermore, as the number of equivalence
classes of graphs is exponential in |V |, there may be many equivalence classes that contain only a few
graphs. This is in sharp contrast with functional privacy that divides the graphs to only |V | equivalence
classes – as there are |V | possible answers to the functional problem.

Nevertheless, we show that vertex cover cannot be approximated privately even to an approximation
ratio as poor as n1−ε. A similar result is shown for Max Exact 3 SAT. This means that although our notion
of privacy is minimal and it seems that any reasonable notion of privacy for search problems should imply
it, there are natural problems for which it is too strong.

1

Our proof techniques for the impossibility results are different from those used for obtaining the inap-
proximability results for the functional version of the problem [12]. All our lower bounds have the same
structure, where a solution is constructed in an iterative manner. In each iteration a node is examined. If that
node appears in some optimal solution, we add it to the solution and remove it and its neighbors from the
graph. If there exists some optimal solution that does not include this node, we remove it from the graph.
When both conditions are met, we chose one of them arbitrarily. The crux of the algorithm is that the private
approximation algorithm is used for making the decision.

In view of the impossibility results, it is natural to seek for a relaxation of the definition. In the set-
ting of functional privacy, Halevi et al. [12] defined the notion of almost private algorithms that are al-
lowed to leak (little) information beyond what is leaked by the exact functionality. This notion falls el-
egantly within our definitional framework, where it is generalized to search problems. We say that an
algorithm leaks at most k bits if it refines each equivalence class by dividing it to at most 2k sub-classes. For
Max Exact 3 SAT, this relaxation results in a tremendous improvement, and there exists an approximation
algorithm for Max Exact 3 SAT with a near optimal approximation ratio of 7/8− ε that leaks only log log n
bits of information.

Interestingly, these algorithms for vertex cover and Max Exact 3 SAT fall into a class of approxima-
tion algorithms that we call solution-list algorithms, and provide a much stronger privacy guarantee. In-
tuitively, for every input size n, the solution-list algorithm deterministically computes a list of possible
outcomes. Upon seeing the actual input, the algorithm is restricted to output a solution from the list. For
Max Exact 3 SAT, our algorithm efficiently computes a list of length O(log n) assignments such that for
every exact 3 CNF formula φ there exists an assignment in the list that is a good approximation for φ, hence
a leakage of O(log log n) bits. For vertex cover, we obtain a solution-list algorithm that is also significant,
but not as dramatic as for Max Exact 3 SAT, and we obtain a tradeoff between the amount of leakage and
approximation quality – the multiplication of these quantities is roughly n.

We also show an impossibility result for approximating vertex cover while leaking at most O(log n)
bits. This suggests that the solution-list algorithm for the problem may be optimal. However, there is still
an exponential gap between the lower and upper bounds. Finding algorithmic techniques, possibly stronger
than solution-list, for private approximation algorithms is an open problem.

The notion of private solutions is applicable also to search problems in P . For many problems in P ,
there is an efficient private algorithm solving the search problem. One option is choosing the lexicographi-
cally first exact solution (e.g., for maximum matching and shortest path). Another option is constructing a
randomized algorithm that chooses a random exact solution according to some distribution. However, find-
ing a solution privately imposes additional constrains on the algorithm. We show that these constrains can
make the problem much harder. We present a search problem which can be easily solved without privacy
constrains, but cannot be efficiently and privately solved unless NP ⊆ P/poly.

1.1 Related Work

Feigenbaum et al. [6] initiated the discussion of private approximation of functions. They observed that
combining approximation algorithms and secure function evaluation protocols might result in protocols
that are not private as the result of the approximation algorithm might leak information. The definition
of functional privacy put forward by [6] is a simulation based definition, where the simulator’s input is
the exact value f(x) and its output distribution is computationally indistinguishable from f̂(x). Under
this definition, they provided a protocol for approximating the Hamming distance of two n-bit strings with
communication complexity Õ(

√
n), and polynomial solutions for approximating the permanent and other

natural #P problems. Other private approximation protocols published since include [16, 7, 14], the latter
providing a polylogarithmic communication approximation for the Hamming distance.

2

Inapproximability results for computing the size of a minimum vertex cover within approximation n1−ε

were proved by Halevi et al. [12]. Their proof uses a special sliding-window reduction that translates a SAT
instance φ to an instance G of vertex cover such that if φ is satisfiable then G has a vertex cover of size z,
and otherwise any vertex cover for G is of size at least z + 1. These techniques do not apply in our setting,
as the large number of equivalence classes does not allow a simple averaging argument, as used in [12].

The notion of almost private approximation was introduced in [12]. Their definition modifies that of [6]
by allowing the simulator to consult a deterministic predicate of the input. They showed that by this slight
compromise in privacy, one can get fairly good approximations for any problem that admits a good deter-
ministic approximation. For the functional version of vertex cover this yields an approximation ratio 4 (more
generally, there is a tradeoff between the leakage and approximation ratio). A similar relaxation of privacy
is the notion of additional information in secure two-party protocols by Bar-Yehuda et al. [3]. Related ideas
can be found in the study of knowledge complexity [11, 10, 4, 9, 20].

Organization. In Section 2 we define private algorithms for search problems. In Section 3 we provide
impossibility results for the minimum vertex cover and the maximum exact 3SAT search problems. In
Section 4 we discuss algorithms that leak (little) information and describe such algorithms for both search
problems. Later, in Section 5, we prove our strongest impossibility result, showing vertex cover cannot be
privately approximated even if a leakage of O(log n) bits is allowed. Finally, in Section 6, we present an
impossibility result for a search problem in P .

2 Definition of Private Algorithms with respect to Privacy Structure

There are two different aspects of private algorithms – the utility of the algorithm (what should be computed)
and the privacy requirement (what should be protected, that is, what information should not be revealed by
the computation). In computing functions this is quite straight forward, we want to compute (or approx-
imate) a function and we want to protect inputs with the same output. For search algorithms, we know
what should be computed. However, since these algorithms may output different outputs on the same input,
it is less clear what should be protected. We, thus, separate the specification of what we want to protect
from what we compute. In general, we require the output of the algorithm on certain pairs of inputs to be
indistinguishable. In this section we define the pairs of inputs that should be protected by a private algorithm.

Definition 2.1 (privacy structure) A privacy structure R ⊆ {0, 1}∗ × {0, 1}∗ is an equivalence relation
on instances. For 〈x, y〉 ∈ R, we use the notation x ≡R y.

We will only discuss privacy structures of the formR = ∪n∈NRn, whereRn is an equivalence relation
between instances of size n, such as graphs on n vertices or Boolean formulae over n variables. We say
that an algorithm A is private with respect to a privacy structure R if the results of executing A on two
R-equivalent inputs are computationally indistinguishable.

Definition 2.2 (Private Algorithm) Let R be a privacy structure. A probabilistic polynomial time algo-
rithm A is private with respect toR if for every polynomial-time algorithm D and for every positive polyno-
mial p(·), there exists some n0 ∈ N such that for every x, y ∈ {0, 1}∗ such that x ≡R y and |x| = |y| ≥ n0

|Pr[D(A(x), x, y) = 1]− Pr[D(A(y), x, y) = 1]| ≤ 1

p(|x|) .

That is, when x ≡R y, every algorithm D cannot distinguish if the input of A is x or y.

3

Example 2.3 Let f : {0, 1}∗ → N be a function. Define Rf = {〈x, y〉 : |x| = |y|, f(x) = f(y)}. The
relation Rf is the relation implicitly considered when discussing private computation of functions.

We next recall the definition of search problem and define the privacy structure associated with it.

Definition 2.4 A bivariate relation Q is polynomially-bounded if there exists a constant c such that |w| ≤
|x|c for every 〈x,w〉 ∈ Q. The decision problem for Q is, given an input x, decide if there exists a w such
that 〈x,w〉 ∈ Q or not. The search problem for Q is, given an input x, find a w such that 〈x,w〉 ∈ Q if such
w exists.

Search problems are the more common algorithmic task of finding a solution to a problem (rather than de-
ciding whether the problem has a solution or not). To define private solution or private approximation of
a search problem, one must determine the privacy structure the algorithm should respect. It is a minimal
requirement to demand that if two inputs have the same set of answers to the search problem, the approxi-
mation algorithm should not enable to distinguish between them.

Definition 2.5 (Privacy Structure of a Search Problem) The privacy structureRQ related to a relation Q
is defined as follows: x ≡RQ

y iff

• |x| = |y|, and

• 〈x,w〉 ∈ Q iff 〈y, w〉 ∈ Q for every w.

That is, x ≡RQ
y if they have the same set of solutions.

We give two examples of privacy structures, for specific relations, that would be the focus of this paper.

Example 2.6 Let minVC be the minimum vertex cover relation, that is, 〈G,C〉 ∈ minVC if C is a minimum
vertex cover in G. In this case, RminVC contains all pairs of graphs G1 = 〈V,E1〉, G2 = 〈V,E2〉 for which
C ⊆ V is a minimum vertex cover for G1 iff it is a minimum vertex cover for G2.

Example 2.7 An exact 3CNF formula is a CNF formula that contains exactly three different literals in each
clause. Let maxE3SAT be the maximum exact three SAT relation, that is, 〈φ, a〉 ∈ maxE3SAT if φ is an
exact 3CNF formula over n variables, and a is an assignment to the n variables that satisfies the maximum
number of clauses in φ. In this case, the privacy structure RmaxE3SAT contains all pairs of exact 3CNF
formulae φ1, φ2 over n variables for which an assignment a satisfies the maximum number of clauses in φ1

iff it satisfies the maximum number of clauses in φ2.

3 Impossibility Results for Private Approximation

3.1 Impossibility Results for Private Approximation of Vertex Cover

In this section we show that private approximation of the vertex cover search problem with respect toRminVC

(defined in Example 2.6) is a hard task. We start with defining private approximation of vertex cover, and
then prove impossibility results for both the deterministic and the randomized settings.

Definition 3.1 (Private Approximation of Vertex Cover) An algorithmA is a private c(n)-approximation
algorithm for minVC if: (i)A runs in polynomial time. (ii)A is a c(n)-approximation algorithm for minVC,
that is, for every graph G with n vertices, it returns a vertex cover whose size is at most c(n) times the size
of the smallest vertex cover of G. (iii) A is private with respect toRminVC.

4

v2

v3

v1 v2

v5v4

(b)

v6

v5v4

v6

(a)

v3

v1

Figure 1: A pair of graphs equivalent underRminVC.

To illustrate our definitions, we present a private (n/ log n)-approximation algorithm for the vertex cover
problem. This algorithm is based on the polynomial algorithm of [19] that returns a minimum vertex cover
if the size of the vertex cover is at most log n. Actually, in this case there are at most n such covers, and the
algorithm can efficiently compute all of them. Thus, we can define any rule to choose one of them (e.g., the
lexicographically first or uniform distribution). To approximate minVC we do the following:

If there is a cover of size at most log n, return the lexicographically first minimum vertex cover.
Otherwise, return the entire set of vertices.

We show impossibility results for privately approximating vertex cover in the deterministic and in the
randomized setting.

Theorem 3.2 Let ε > 0 be a constant. IfP 6= NP , then there is no deterministic private n1−ε-approximation
algorithm for the search problem of minVC.

Theorem 3.3 Let ε > 0 be a constant. IfRP 6= NP , then there is no randomized private n1−ε-approximation
algorithm for the search problem of minVC.

3.1.1 Relevant And Critical Vertices

The framework for proving Theorems 3.2 and 3.3 is the following: We assume the existence of the appro-
priate private approximation algorithm and derive a greedy algorithm that solves vertex cover exactly. The
following definitions are central for both the deterministic and the randomized case.

Definition 3.4 (Critical Vertices and Relevant Vertices) Let G = 〈V,E〉 be a graph and v ∈ V be a
vertex of G. We say that v is critical for G if every minimal vertex cover of G contains v. We say that v is
relevant for G if there exists a minimal vertex cover of G that contains v.

Observation 3.5 Every vertex is relevant or non-critical (or both).

Example 3.6 To illustrate the relation RminVC we show a pair of graphs that are equivalent under the rela-
tion. One way to create such a pair is to pick a graph and identify a vertex that is critical for this graph. For
example, vertex v3 in Figure 1(a) is a critical vertex. To get the second graph we connect the critical vertex
to some other vertex. In Figure 1(b), vertex v3 is connected to v6. It is easy to verify that the set of minimum
covers in both graphs is {{v3, v2} , {v3, v5}}. The equivalence can also be derived from Claim 3.9 below.

We reduce the design of a greedy algorithm for vertex cover, to solving the following problem.

5

Definition 3.7 (The Relevant / Non-Critical Problem) Input: A graph G = 〈V,E〉 and a vertex v ∈ V .
Output: One of the following: (i) v is relevant for G. (ii) v is non-critical for G.

Algorithm Greedy Vertex Cover

INPUT: A graph G = 〈V, E〉.
OUTPUT: A minimal vertex cover of G.

1. If V = ∅ return ∅.
2. Pick a vertex v ∈ V and execute Algorithm Relevant-Non-Critical on G and v.

3. If the answer is “RELEVANT”:

(a) Run Greedy Vertex Cover on the graph G\ {v}. Denote the answer by Cv .

(b) Return Cv ∪ {v}.

4. If the answer is “NON-CRITICAL”:

(a) Let N(v) be the neighbors of v in G.

(b) Run Greedy Vertex Cover on the graph G\({v}∪N(v)). Denote the answer by CN(v).

(c) Return CN(v) ∪N(v).

Figure 2: A greedy algorithm using Algorithm Relevant-Non-Critical Vertex to find a minimum
vertex cover.

In Figure 2, we describe a greedy algorithm for vertex cover given an access to an algorithm that solves
the Relevant / Non-Critical problem. In subsequent sections, we solve the latter using oracle access to
private approximation algorithms for vertex cover. The following claim asserts the correctness of the greedy
algorithm.

Claim 3.8 If Algorithm Relevant-Non-Critical is polynomial and correct then Algorithm Greedy
Vertex Cover is polynomial and correct.

Proof: The proof is by induction on |V |. The algorithm is trivially correct for V = ∅. Now suppose
V 6= ∅, and we start from the case where v is relevant. In this case, there is a minimal cover C for G that
contains v. Denote d = |C|, and note that the set C\ {v} is a cover of size d− 1 for the graph G\ {v}. By
the induction hypothesis, the set Cv is a minimal cover for G\ {v}. We claim that Cv ∪ {v} is a minimal
cover for G. First note that it is indeed a cover of G as any edge adjacent to v is covered by v, and all the
rest are covered by Cv . Since Cv is a minimal cover of G\ {v}, it is of size at most d − 1. Therefore, the
size of Cv ∪ {v} is d, and it is a minimal cover of G.

In the other case, v is not critical for G. Thus, there is a minimal cover C ′ for G that does not contain
v, and, therefore, contains all vertices in N(v). Denote d′ = |C ′| and h = |N(v)|. In this case the set
C ′\N(v) is a cover of size d′− h of the graph G\(N(v)∪ {v}). By the induction hypothesis, the set CN(v)

is a minimal cover for G\N(v). We claim that CN(v) ∪N(v) is a minimal cover for G. First note that it is
indeed a cover of G as any edge adjacent to N(v)∪{v} is covered by N(v), and all other edges are covered
by CN(v). Since CN(v) is a minimal cover of G\N(v), it is of size at most d′ − h. Therefore, the size of
CN(v) ∪N(v) is d′, and it is a minimal cover of G.

It is straight forward to verify that if Relevant-Non-Critical is polynomial, then the greedy
algorithm is polynomial. 2

6

3.1.2 Combinatorial Claims

The following combinatorial claims will be helpful in designing algorithms for the Relevant / Non-Critical
problem in both the deterministic and the randomized settings. Intuitively, a private approximation algorithm
must be “sensitive” to small changes in the set of minimum vertex covers of its input graph. We study the
connection between the RminVC relation and the set of critical and relevant vertices in a graph.

Claim 3.9 Let G = 〈V,E〉 be a graph, u, v ∈ V such that (u, v) /∈ E, and G∗ = 〈V,E∗〉, where E∗ =
E ∪ (u, v). If u is critical for G, then G ≡RminVC G∗.

Proof: We first show that every minimum vertex cover of G is a minimum vertex cover of G∗. Let C be a
minimal cover of G. As u is critical for G, we get that u ∈ C . Therefore, C covers the edge (u, v) and thus
it is a cover of G∗. Note that every cover of G∗ is also a cover of G, and thus C is a minimal cover of G∗.

For the other direction, let C∗ be a minimal cover of G∗. Let c be the size of a minimal cover of G. As
u appears in at least one minimal cover of G, which is also a cover of G∗, the size of C∗ is at most c. On the
other hand, as E⊆E∗, the set C∗ is also a cover of G and thus the size of C∗ is exactly c. Therefore, C∗ is
a minimal cover of G. 2

We will later see that if a vertex u is not in the result of the private approximation algorithm A, then
it is non-critical for the input graph G. However, if the vertex cover size of the input graph is large, the
approximation algorithm may return the entire set V as its result. To avoid this, we add a large set of isolated
vertices to G. (The size of this set is a function of the approximation ratio.) The mere fact that an isolated
vertex is non-critical for G is of-course not helpful. Nevertheless, we gain information by connecting this
isolated vertex to the vertex v and running A on the new graph. It will also be helpful to consider duplicating
the graph G and connecting the isolated vertex to both copies of the original vertex v.

Definition 3.10 (The Graphs G2 and G i
∧

) Let G = 〈V,E〉 be a graph, v ∈ V be a vertex, I be a set

of vertices, and i ∈ I . The graph G2 is defined as G2 = 〈V2, E2〉 where V2
def
= (V × {1, 2}) ∪ I and

E2
def
= {(〈u, j〉, 〈w, j〉) : (u,w) ∈ E, j ∈ {1, 2}} . The graph G i

∧
is defined as G i

∧
= 〈V2, E i

∧
〉 where E i

∧

def
=

E2 ∪ {(〈v, j〉, i) : j ∈ {1, 2}} .

The graphs G2 and G i
∧

are illustrated in Figure 3. The following claims summarize the properties of G2

and G i
∧

.

Claim 3.11 If v is critical for G, then G2 ≡RminVC G i
∧

.

Proof: Since G2 contains two separate copies of G and v is critical for G, the vertices 〈v, 1〉 and 〈v, 2〉
are critical for G2. Hence, by Claim 3.9, adding the edges (〈v, 1〉, i) and (〈v, 2〉, i) does not change the set
of minimal vertex covers of the graph. 2

Claim 3.12 If v is not relevant for G then i is critical for G i
∧

.

Proof: Assume towards contradiction that i is non-critical for G i
∧

. Hence, there must be a minimal cover

C i
∧

of G i
∧

that contains 〈v, 1〉 and 〈v, 2〉. The intersection of C i
∧

with each copy of G contains a cover of

G that contains the appropriate copy of v. As v is not relevant for G, these covers are not optimal. Let c

be the size of a minimum vertex cover of G. Then
∣

∣

∣
C i
∧

∣

∣

∣
≥ 2(c + 1) = 2c + 2. On the other hand, let C

be a minimum cover of G of size c. Then the set (C × {1, 2}) ∪ {i} is a cover of G i
∧

of size 2c + 1, in

contradiction to the minimality of C i
∧

. Hence, i is critical for G i
∧

. 2

7

I
v′

I
v′

GG

(v, 1) (v, 2) (v, 1)

G G

(v, 2)

G2 G v′

∧

Figure 3: The graphs G2 and G v′

∧
.

3.1.3 Impossibility Result for Deterministic Private Approximation

In this section we show an algorithm that solves the Relevant / Non-Critical problem, given an oracle access
to a deterministic private approximation algorithm for minVC.

Claim 3.13 Let A be a deterministic private approximation algorithm for minVC, let G = 〈V,E〉 be a
graph, and denote W = A(G). Then for any two different vertices v1, v2 ∈ V \W , the vertex v1 is not
critical for G (and, similarly, v2 is not critical).

Proof: As v1 and v2 are not in W , and W is a cover of G, we infer that (v1, v2) /∈ E. Let E∗ =
E ∪ {(v1, v2)}, and define G∗ = 〈V,E∗〉. We now consider a hypothetical execution of the algorithm A on
G∗ and denote W ∗ = A(G∗). The set W ∗ must cover the edge (v1, v2) and thus W ∗ 6= W .

If v1 is critical for G, then, by Claim 3.9, the sets of minimum-size vertex cover of G and G∗ are equal.
However, since A is deterministic and private, and W 6= W ∗, the set of minimal vertex covers of G and G∗

must be different. Therefore, v1 is not critical for G. 2

In Figure 4, we present the algorithm Relevant-Non-Critical. It takes a graph G = 〈V,E〉
and a vertex v ∈ V as inputs, and uses a private n1−ε-approximation algorithm A to solve the Relevant /
Non-Critical problem.

The correctness of the algorithm Relevant-Non-Critical steams from the following claims:

Claim 3.14 If W2 6= W v′

∧
, then v is not critical for G.

Proof: Assume towards contradiction that v is critical for G. By Claim 3.11, the graphs G2 and G v′

∧
have the same set of minimal vertex covers. Hence, from the privacy of A, we get that W2 = A(G2) =
A(G v′

∧
) = W v′

∧
, contradicting W2 6= W v′

∧
. 2

Claim 3.15 If W2 = W v′

∧
, then v is relevant for G.

Proof: As W2 = W v′

∧
, and v′ /∈ W2, we get v′ /∈ W v′

∧
. Hence, by Claim 3.13, the vertex v′ is not critical

for G v′

∧
. Applying Claim 3.12, we infer that v is relevant for G. 2

To conclude the proof of Theorem 3.2, we show that there is a vertex we can choose in step (4) of the
algorithm.

8

Algorithm Relevant-Non-Critical

INPUT AND OUTPUT: See Definition 3.7.

1. Let I be a set of vertices of size (4n)1/ε − 2n.

2. Construct the graph G2 from G and I as in Definition 3.10.

3. ExecuteA on G2 and denote W2 = A(G2).

4. Choose any vertex v′ ∈ I\W2 (there must be at least two such vertices as the approximation algo-
rithm cannot return all the set I).

5. Construct G v′

∧

from G, I , and v′ as in Definition 3.10.

6. ExecuteA on G v′

∧

and denote W v′

∧

= A(G v′

∧

).

7. If W2 6= W v′

∧

return “NOT CRITICAL.” Else return “RELEVANT.”

Figure 4: Algorithm Relevant-Non-Critical Vertex for a private deterministic A.

Claim 3.16 Let ε > 0. There is a vertex v ′ ∈ I such that v′ ∈ I \W2.

Proof: Let N = |I| + 2n = (4n)1/ε be the number of vertices in G2. The size of the minimum vertex
cover of G2 is twice the size of the minimum vertex cover of G, thus, it is at most 2n. Since A is an
N1−ε-approximation algorithm for vertex cover, the size of A(G2) is at most

2n ·N1−ε = 2n · ((4n)1/ε)1−ε =
(4n)1/ε

2
< (4n)1/ε − 2n = |I|.

Consequently, there is at least one vertex v ′ ∈ I \W . 2

In Appendix A, we prove Theorem 3.3, that is, we generalize the impossibility results to randomized
private algorithms. We also extend the techniques described in this section to get an impossibility result with
respect to a weaker notion of private approximation defined in Section 4 (see Theorem 4.9).

3.2 Impossibility Results for Private Approximation of Max E3SAT

Similar results are obtained for private approximation of Max E3SAT as stated in the following theorem:

Theorem 3.17 Let ε > 0 be a constant.

1. If P 6= NP , then there is no deterministic private 1/n1−ε-approximation algorithm for the search
problem of maxE3SAT.

2. If RP 6= NP , then there is no randomized private 1/n1−ε-approximation algorithm for the search
problem of maxE3SAT.

See Appendix B for a proof of the deterministic case. The proof of the probabilistic case follows, with
similar modifications as in Appendix A.

9

4 Algorithms that Leak Little Information

As demonstrated in the previous section, in some cases it is impossible to design an efficient algorithm
which is private with respect to a privacy structure R. However, letting R′ be a refinement of R, we view
a private algorithm with respect to R′ as a private algorithm with respect to R that leaks information. The
amount of information leaked is quantified according to the relation between R and R′.

Definition 4.1 (k-Refinement) Let R and R′ be two privacy structures over {0, 1}∗. We say that R′ is a
k-refinement of R if R′⊆R and every equivalence class of R is a union of at most 2k equivalence classes
of R′.

Definition 4.2 Let R be a privacy structure. A probabilistic polynomial time algorithm A leaks at most k
bits with respect to R if there exists a privacy structure R′ such that (i) R′ is a k-refinement of R, and (ii)
A is private with respect to R′.

4.1 Solution-List Algorithms

Solution-list algorithms are algorithms whose outcome is always in a small predetermined set. With respect
to privacy, solution-list algorithms are valuable as they leak only a few bits with respect to any privacy
structure – at most logarithmic in the number of their possible outcomes.

Definition 4.3 (Solution-List Algorithm) We say that a deterministic algorithm A is a K(n)-solution-list
algorithm if for every n ∈ N

|{ y : ∃x ∈ {0, 1}n such that A(x) = y }| ≤ K(n).

I.e. a solution-list algorithm is an algorithm such that for every input size n “chooses” its outputs from a set
of at most K(n) possible outcomes.

We define the universal relation, denoted U∗ = ∪n∈NU∗
n, as the privacy structure where every two

instances of the same size are equivalent. Note that any privacy structure is a refinement of U∗, hence if an
algorithm is private with respect to U ∗ it is also private with respect to any privacy structure,1 and similarly,
if an algorithm leaks at most k bits with respect to U ∗ then so is the case with respect to any privacy structure.

Observation 4.4 Any K(n)-solution-list algorithm leaks at most log K(n) bits with respect to U ∗.

4.2 Solution-List Algorithms for Max E3SAT

In this section we present a (7/8 − ε)-approximation algorithm for maximum satisfiability on exact 3CNF
formulae that leaks little information, i.e., O(log log n) bits. The algorithm is a solution-lists algorithm
as defined in Definition 4.3. The approximation in our algorithm is nearly optimal, as by the result of
Håstad [13], there is no polynomial-time (7/8 + ε)-approximation algorithm for this problem2 (unless P =
NP).

We start with a simple motivating example. Consider the following simple algorithm for the Max-SAT
problem:

If 0n satisfies at least half of the clauses in φ, then return 0n. Otherwise, return 1n.

1An algorithm A is private with respect to U∗ if only the instance size may be learned from its outcome.
2Any (7/8 + ε)-approximation solution-list algorithm that uses poly(n) solutions would imply NP ⊆ P/poly even if the list

cannot be efficiently constructed.

10

For every clause, either 0n or 1n satisfy the clause. Thus, 0n or 1n satisfy at least half of the clauses in
φ, and this is a 1/2-approximation of Max-SAT. Since there are only two possible answers, this algorithm
leaks at most one bit.

Claim 4.5 There is a 7/8-approximation algorithm for maxE3SAT that leaks at most O(log n) bits with
respect to RmaxE3SAT. Furthermore, for every ε > 0, there is a (7/8 − ε)-approximation algorithm for
maxE3SAT that leaks at most O(log log n) bits with respect toRmaxE3SAT.

Proof: We first describe the 7/8-approximation algorithm. Towards this goal, we construct for every n a
list of poly(n) assignments such that for every exact 3CNF formula with n variables there is an assignment
in the list that satisfies at least 7/8 of the clauses of the formula. Furthermore, there is an efficient algorithm
that generates this list. Thus, the 7/8-approximation algorithm, with input φ – a formula with n variables,
constructs this list, and chooses the first assignment in the list that satisfies the most clauses in φ.

We next explain how to construct the list, using ideas of the randomized 7/8-approximation algorithm
of Johnson [15]. Fix a clause with three different literals. If we pick an assignment at random, then with
probability at least 7/8 it satisfies the clause. Now, fix any exact 3CNF formula. If we pick an assignment
at random, then the expected fraction of satisfied clauses is at least 7/8. Thus, there exists at least one
assignment that satisfies a fraction of at least 7/8 of the clauses in the formula. This is true even if we pick
the assignments from a 3-wise independent space. As there is a 3-wise independent space of size O(n3),
this implies the existence of the list. To generate the assignments we can use any of the constructions of
3-wise independent spaces, e.g., the construction based on polynomials (see, e.g., [17, 1, 5]).

We next describe the (7/8 − ε)-approximation algorithm. As in the previous case, it suffices to show
how to efficiently construct, for every n and ε > 0, a list of poly(log n

ε) assignments such that for every exact
3CNF formula with n variables there is an assignment in the list that satisfies at least 7/8−ε of the clauses of
the formula. To construct the list, notice that if we pick an assignment from an ε-biased 3-wise independent
space, then the probability that a given clause is satisfied is at least 7/8 − ε. Thus, the expected fraction of
satisfied clauses is at least 7/8− ε, and there exists at least one assignment that satisfies a fraction of at least
7/8 − ε of the clauses in the formula. There are ε-biased 3-wise independent spaces of size poly(log n

ε). To
generate the assignments we can use any of the constructions of [18, 2]. 2

Claim 4.6 Every solution-list algorithm for maxE3SAT that achieves approximation ratio better than 1/2
uses at least log n− 1 solutions.

Proof: Assume a solution-list algorithm for maxE3SAT, and let a1, . . . , at, where t < log n − 1, be its
list of possible output assignments on formulae over n variables x1, . . . , xn. To each variable xi we assign
a label that is the concatenation of the truth values assigned to xi by the t assignments 〈a1(xi), . . . , at(xi)〉.
As there are at most 2t different labels and n/2t > 2, there exist three distinct variables xi1 , xi2 , xi3 that
share the same label. I.e. for all 1 ≤ j ≤ t it holds that aj(xi1) = aj(xi2) = aj(xi3).

Consider the formula φ = (xi1 ∨ xi2 ∨ xi3) ∧ (¬xi1 ∨ ¬xi2 ∨ ¬xi3). It is easy to see φ is satisfied
by exactly those assignment which do not assign the same truth value to all three variables xi1 , xi2 , xi3 .
However, as this is not the case for any of the t assignments, each of them satisfies exactly one clause in φ,
achieving approximation factor at most 1/2. 2

4.3 Solution-List Algorithms for Vertex Cover

In this section we present search algorithms for minimum vertex cover. These algorithms are significant, but
not as dramatic as the algorithms for Max Exact 3 SAT. For any 0 < ε < 1, there is an n1−ε-approximation
algorithm that leaks O(nε) bits. The algorithms are solution-lists algorithms, and we will prove that no
solution-list algorithm can do better for this problem.

11

Claim 4.7 For every 0 < ε < 1, there is an n1−ε-approximation algorithm for the minimum vertex cover
problem which leaks at most 2nε bits.

Proof: The algorithm proceeds as follows:

INPUT: A graph G with n vertices.

1. Let `← 2nε.

2. Partition the n vertices into ` fixed sets, V1, . . . , V`, each of size n/` = n1−ε/2.

3. Use any 2-approximation algorithm for VC, and get a cover C .

4. Let C ′ ← ⋃

{i:Vi∩C 6=∅} Vi.

5. Return C ′.

The algorithm first finds a small cover. Then, if Vi contains at least one vertex in this cover, the algorithm
returns the entire set Vi. This implies that the size of C ′ is at most |C|n1−ε/2, and since |C| is at most twice
the size of the minimum vertex cover, this algorithm is an n1−ε-approximation algorithm.

Notice that the algorithm has 2` possible outputs (it only chooses which of the sets Vi is in its output).
That is, this is a solution-list algorithm with a list of size 2`, thus, it leaks at most ` = 2nε bits. 2

The private algorithms for maxE3SAT and for minVC that we presented are solution-list algorithms. For
maxE3SAT, the algorithm generated the entire list, and chooses the best candidate in the list. For minVC
this is not possible as the size of the list is big. The algorithm generates a “good” candidate from the list
without generating the entire list.

We next claim that any solution-list algorithm for minVC cannot use a shorter list than the algorithm we
presented (up-to a constant factor).

Claim 4.8 Any solution-list algorithm that n1−ε-approximates minVC, uses at least 2nε/6 solutions.

Proof: Assume that there is a list of covers that n1−ε-approximates minVC, that is, for every graph with
n vertices and minimum vertex cover of size d, there exists a cover of size at most n1−εd in the list. We
construct a “big” family of graphs, and show that every cover in the list covers “few” graphs in the family,
thus the size of the list must be “big.”

Consider the following family of graphs. Each graph is defined by a subset I of size d
def
= nε/6. The

graph GI contains all edges between I and V \ I . Notice that the number of graphs in this family is
(

n

d

)

≥ (n/d)d. (1)

The set I of size d is a cover of the graph GI . Since we assume that the list n1−ε-approximates minVC,
there is a cover in the list that covers GI and contains at most n1−εd = n1−εnε/6 = n/6 vertices. However,
every vertex cover of GI contains either all vertices in I (and possibly vertices from V \ I) or all vertices of
V \ I (and possibly vertices from I). Since |V \ I| = n− d > n/6, this cover must contain I . The number
of graphs in the family that a given cover of size at most n/6 covers is at most

(

n/6

d

)

≤
(

en/6

d

)d

. (2)

12

Thus, by (1) and (2), the number of covers in the list is at least

(n/d)d

(en/6d)d
≥ 2d = 2nε/6.

2

We emphasize that Claim 4.8 applies only to solution lists algorithms, and does not even imply that
there is no polynomial n1−ε-approximation algorithms that leaks o(nε) bits.3 The next theorem, however,
introduces a general impossibility result, stating that every such algorithm must leak Ω(log n) bits. The
theorem is proves in Section 5.

Theorem 4.9 Let ε > 0 be a constant. If RP 6= NP , then there is no randomized n1−ε-approximation
algorithm for the search problem of minVC that leaks at most ε

8 log n bits.

5 Impossibility Result for Vertex Cover Approximation that Leaks log n Bits

In this section we show it is unlikely that there is an efficient approximation algorithm for minVC that leaks
log n bits of information. Specifically, if there is such an n1−ε-approximation algorithm A that leaks at most
ε
8 log n bits, thenRP = NP . In this section we assume that A is deterministic. Dealing with a randomized
A is done using similar ideas to the proof of Theorem 3.3 in Appendix A.

As in the proof of Theorem 3.2, we assume the existence of such an approximation algorithm and deduce
an algorithm that solves vertex cover. Again, we do this by designing an algorithm that solves the Relevant
/ Non-Critical problem (see Definition 3.7), and thus, by Claim 3.8, solves vertex cover. This algorithm,
given the input G and v, and an oracle access to an approximation algorithm A that leaks k bits, applies A
on a set of inputs, and decides whether v is relevant or non-critical for G according to the results. Note that
the Relevant/Non Critical algorithm for the (perfectly) private case is not applicable; here, even
assuming A is deterministic, the fact that A(G1) 6= A(G2) does not directly imply that G1 and G2 are not
equal under RminVC. However, as A leaks at most k bits, if there are 2k + 1 graphs with different outputs,
then at least two of them are not equivalent.

Our inputs for the Relevant/Non Critical algorithm are generally constructed from a number
of copies of the original input graph G and big set of isolated vertices I . In each such graph we connect
the different copies of the input vertex v with vertices from I , and sometimes connect two different vertices
from I . We will use the following notation to address these graphs.

Definition 5.1 Let G = 〈V,E〉 be a graph, I be a set of vertices, t,m be indices such that 0 ≤ t ≤ m, and
i1, . . . , im, j1, . . . , j2t ∈ I be distinct vertices. The graph

Gj1j2
∨
i1

···
j2t−1j2t

∨
it

it+1

∧ ···
im
∧

is defined as follows: the vertices of the graph are (V × {1, . . . , 2m}) ∪ I , and the edges of the graph are
E = Em ∪E∨ ∪E∧, where

Em = {(〈u, `〉, 〈w, `〉) : (u,w) ∈ E, ` ∈ {1, . . . ,m}} ,

E∨ = {(i`, j2`−1), (i`, j2`) : ` ∈ {1, . . . , t}} , and

E∧ = {(〈v, 2` − 1〉, i`), (〈v, 2`〉, i`) : ` ∈ {t + 1, . . . ,m}} .
Informally, the graph has 2m copies of G (see Figure 5). It has t “vees,” where the `th vee is associated

with copies 2`− 1 and 2` of G. It has m− t “wedges,” where the `th wedge connects i` to the copies of v
in copies 2`− 1 and 2` of G, for t < ` ≤ m.

3It can be proved that the algorithm we presented leaks Ω(nε) bits.

13

v. . .v v v v v v v

j1 j2tj2t−1

G G

it

G G

. . .

i1

G G

it+1

G G

im

j2

Figure 5: The graph Gj1j2
∨

i1
···

j2t−1j2t
∨

it

it+1

∧ ···

im
∧

.

We next present two combinatorial lemmas, whose role is similar to the Lemmas 3.11 and 3.12 in the
case where A was perfectly private.

Claim 5.2 Let 1 ≤ t ≤ m, and i1, . . . , im, j1, . . . , j2t, i
′
t+1, . . . , i

′
m ∈ I be distinct vertices. Furthermore,

let
H

def
= Gj1j2

∨
i1

···
j2t−1j2t

∨
it

it+1

∧ ···
im
∧

and H ′ def
= G

j1j2
∨
i1

···
j2t−1j2t

∨
it

i′
t+1

∧ ···
i′m
∧

.

If v is critical for G, then H ≡RminVC H ′.

Proof: By Claim 3.11, the graphs H and H ′ are unions of graphs the are equivalent, thus, H and H ′ are
equivalent. 2

Claim 5.3 Let 1 ≤ t′ < t ≤ m, and i1, . . . , im, j1, . . . , j2t ∈ I be distinct vertices. Furthermore, let

H
def
= G

j1j2
∨
i1

···

j
2t′−1

j
2t′

∨
i
t′

···
j2t−1j2t

∨
it

it+1

∧ ···
im
∧

and H ′ def
= G

j1j2
∨
i1

···

j
2t′−1

j
2t′

∨
i
t′

i
t′+1

∧ ···
im
∧

.

If v is non-relevant for G, then H ≡RminVC H ′.

Proof: Note that the vertices i1, . . . , im are critical for both H and H ′: It is straight forward that i` is

critical for
j2`−1j2`

∨
i`

. By Claim 3.12, vertex i` is critical for
i`∧. Therefore, the two graphs have the same set of

minimum vertex covers, hence they are equivalent under RminVC. 2

In both claims we have the same graph H . In the Claim 5.2, the graph H ′ has the same “vees” as H ,
however, the “wedges” have different vertices from I (namely, i′1, . . . , i

′
t−1). In Claim 5.3, the sequence of

i’s is the same in H and H ′, however, there are “vees” in H ′ in some places where there are “wedges” in H .

5.1 Handling One Bit Leakage

To simplify our presentation, we first present Algorithm Relevant/Non Critical – one bit
leakage in Figure 5.4 . This algorithm assumes that the deterministic algorithm A leaks at most one bit.
This case is simpler and describes some of the ideas used for the log n bits leakage case.

14

Algorithm Relevant/Non Critical – one bit leakage

INPUT: A graph G = 〈V, E〉 and a vertex v ∈ V .
OUTPUT: One of the following: (i) The vertex v is relevant for G. (ii) The vertex v is not critical for G.

1. ExecuteA on all the graphs of the form G i1
∧

i2
∧

, where i1, i2 ∈ I .

(a) If these executions result in more than two different answers, return “Non Critical,”

(b) Else, remove from I all the vertices that appeared in any of the above results.

2. Pick i1, j1, j2 ∈ I and executeA on all the graphs of the form Gj1j2
∨

i1

i2
∧

, where i2 ∈ I\ {i1, j1, j2}.

(a) If these executions result in more than two different answers, return “Non Critical.”

(b) Else, return “Relevant.”

Figure 6: Algorithm Relevant/Non Critical – one bit leakage.

Claim 5.4 Algorithm Relevant/Non Critical – one bit leakage is correct.

Proof: By Claim 5.2, if v is critical for G, then all graphs considered in step (1) of the algorithm are
equivalent. As A leaks at most 1 bit, there can be at most 2 different answers on equivalent graphs. Hence,
if there are more than two different answers in step (1), vertex v is non critical for G. Similarly, if there are
more than two different answers in step (2), vertex v is non critical for G. Thus, if the algorithm outputs
“Non critical,” vertex v is non critical for G, and the algorithm is correct.

Else, fix any i2, j3, j4 ∈ I , and note that:

1. A(G i1
∧

i2
∧

) does not contain any of {i1, j1, j2}, and does not contain any of {i2, j3, j4}.

2. A(Gj1j2
∨
i1

i2
∧

) contains at least one of {i1, j1, j2}, and does not contain any of {i2, j3, j4}.

3. A(Gj1j2
∨
i1

j3j4
∨
i2

) contains at least one of {i2, j3, j4}.

Thus, these 3 results of A are all different. However, by Claim 5.3, if vertex v is not relevant for G, then the
three graphs are equivalent. Since A leaks at most one bit, there cannot be three different answers on three
equivalent graphs. Thus, if the algorithm outputs “Relevant,” vertex v is relevant for G, and the algorithm is
correct. 2

Similarly to the case where A is perfectly private, it is enough to set |I| = O((4n)1/ε − 2n) to ensure
there are enough vertices in I that are not returned by A (see Claim 3.16). As I is polynomial in n, the
number of calls to A in the algorithm is polynomial.

Theorem 5.5 Let ε > 0. If P 6= NP , then there is no deterministic n1−ε-approximation algorithm for
vertex cover that leaks at most 1

5.2 Handling log n-Bits Leakage

We next want to accommodate a deterministic algorithm A that leaks log n bits. Using a similar algorithm
as in the one bit leakage case with graphs that contains more copies of G, we can handle Algorithms A that

15

leaks more bits. However, if A leaks ω(1) bits, the number of executions of A will be too big. To reduce
the number of calls to A, we choose the vertices from I at random.

In Figure 7, we present Algorithm Relevant/Non Critical– log n bits leakage, which
assumes that Algorithm A is a deterministic n1−ε-approximation algorithm that leaks at most ε

8 log n bits.
Algorithm Relevant/Non Critical – log n bits leakage is a randomized algorithm which
returns a correct answer with probability at least 1−δ, for some 0 < δ < 1. Given a graph G with n vertices,
we construct the graphs from Definition 5.1. These graphs have N = (18n/δ)2/ε vertices, 2m copies of G,
and a disjoint set of vertices I . We choose the number of copies to be 2m, where

m
def
= N ε/8 = (18n/δ)1/4. (3)

Therefore, the size of the set I is |I| = N − 2mn. In the proof of Claim 5.7 it would become clear why we
made these choices.

Algorithm Relevant/Non Critical – log n bits leakage

INPUT: A graph G = 〈V, E〉, a vertex v ∈ V , and a number 0 < δ < 1.
OUTPUT: One of the following: (i) The vertex v is relevant for G. (ii) The vertex v is not critical for G.
The algorithms errs with probability at most δ.

1. Choose distinct i1, . . . , im, j1, . . . , j2m at random from I .

2. For t = 0 to m do:

(a) Wt = A(Gj1j2
∨

i1
···

j2t−1j2t
∨

it

it+1

∧ ···

im
∧

).

(b) If Wt ∩ {it+1, . . . , im, j2t+1, . . . , j2m} 6= ∅ then return “Non Critical.”

3. (∗ all m + 1 sets Wt do not contain the last m− t vertices ∗)
RETURN “Relevant.”

Figure 7: Algorithm Relevant/Non Critical – log n bits leakage.

In the following we assume that, on graphs with n vertices, A leaks at most k(n) = ε
8 log n bits. Recall

that we execute A on graphs with N vertices, thus, the approximation ratio is N 1−ε and the leakage is
bounded by k(N) = ε

8 log N = log m. The next sequence of claims asserts the correctness of Algorithm
Relevant/Non Critical – log n bits leakage.

Claim 5.6 If Algorithm Relevant/Non Critical – log n bits leakage returns “Relevant,”
then v is relevant.

Proof: If the algorithms returns “Relevant,” then the for loop finishes. In this case the sets W0, . . . ,Wm

are m + 1 = 2k + 1 different sets; for t′ < t the set Wt must contain at least one of the vertices in
{ij, j2t−1, j2t} while Wt′ contains none of them. Thus, there are 2k + 1 graphs with pair-wise different
answers of A, and, since A leaks at most k bits, at least two of the graphs are not equivalent according to
RminVC. Thus, by Claim 5.3, the vertex v is relevant for G. 2

Claim 5.7 Let 0 ≤ t ≤ m. For every i1, . . . , it, j1, . . . , j2t ∈ I , consider the following experiment: choose
it+1, . . . , im at random and with uniform distribution from I and return 1 if

A(Gj1j2
∨
i1

···
j2t−1j2t

∨
it

it+1

∧ ···
im
∧

) ∩ {it+1, . . . , im, j2t+1, . . . , j2m} 6= ∅.

16

If v is critical and N = (18n/δ)2/ε , then the probability that this experiment returns 1 is at most δ/m.

Proof: We choose N – the number of vertices in the graphs we construct – such that the size of each
cover A returns is at most |I|/α, for some α to be fixed later in this proof. Thus, with probability at most
1/α, a random vertex from I is in a given answer.

We now analyze the probability that the experiment returns 1. If v is critical, then, by Claim 5.2, every
two choices of it+1, . . . , im result in an equivalent graphs according to RminVC. Since A leaks at most
k(N) = ε

8 log N = log m bits, there are at most 2k(N) = m different answers for all different choices.

Thus, the size of the union of all the answers is at most m|I|
α . The probability that any of the 3(m− t) ≤ 3m

vertices are in the union of the m answers is, by the union bound, at most 3m2

α . We, thus, choose the number
of vertices N , such that

α = 3m3/δ, (4)

and the probability of the experiment returning 1 is at most 3m2

α = δ/m, as required.
Finally, we show how to choose N . The first requirement we need is

|I| = N − 2mn ≥ N/2. (5)

That is, we need N/2 ≥ 2mn. As m = N ε/8 ≤ N1/8, it suffices to require N ≥ (4n)8/7. By the choice of
N

N = (18n/δ)2/ε ≥ (18n)2 ≥ (4n)8/7

(since 0 < δ, ε ≤ 1), thus (5) holds.
We next upper-bound the size of the covers that A outputs. The size of a minimum vertex cover of these

graphs is at most 2 · (n + 1)m ≤ 3nm. Since A is a N 1−ε-approximation algorithm for vertex cover, the
size of its output is at most 3 · nm ·N 1−ε. We choose N = (18n

δ)2/ε and m = N ε/8, thus, by (3),

18nm4 = δ(18n/δ) ·N ε/2 = δ((18n/δ)2/ε)ε/2 ·N ε/2 = δN ε/2N ε/2 = δN ε. (6)

Therefore, the size of the cover returned by A is at most

3 · nm ·N 1−ε =
3nmN

N ε
≤ 6nm|I|

N ε
=

18nm4

δN ε
· δ|I|
3m3

=
δ|I|
3m3

,

where the inequality above follows from (5) and the last equality follows (6). To conclude, taking N =
(18n/δ)2/ε guarantees that the size of the cover is at most |I|/α, for the α we needed in (4), which, in turn,
implies that the probability of the experiment returning 1 is at most δ/m. 2

Claim 5.8 If Algorithm Relevant/Non Critical – log n bits leakage returns “Non Criti-
cal,” then, with probability at least 1− δ, vertex v is non-critical.

Proof: Since Algorithm Relevant/Non Critical – log n bits leakage repeats 2k + 1
the experiment of Claim 5.7, and for t = m the experiment cannot fail, the probability that Algorithm
Relevant/Non Critical – log n bits leakage errs when returning “Non Critical” is at most δ.

2

Algorithm Relevant/Non Critical – log n bits leakage executes m times the polyno-
mial algorithm A on graphs with N vertices, where N = (18n/δ)2/ε. Thus,

Claim 5.9 If A runs in polynomial time and 0 ≤ ε < 1 is a constant, then the running time of Algorithm
Relevant/Non Critical – log n bits leakage is poly(n/δ).

17

Theorem 5.10 Let ε > 0 be a constant. If RP 6= NP , then there is no deterministic n1−ε-approximation
algorithm for the search problem of vertex cover that leaks at most ε

8 log n bits.

Proof: Algorithm Greedy Vertex Cover, which solves vertex cover, executes at most n times
Algorithm Relevant/Non Critical – log n bits leakagewith graphs of size at most n. We
execute these calls with δ = 1

4n (where n is the original number of vertices in G), thus, all together the error
is at most 1/4. By Claim 5.9, the running time of Algorithm Greedy Vertex Cover is polynomial.

Thus, if there is an n1−ε-approximation algorithm for the search problem of vertex cover that leaks at
most k(n) = ε

8 log n bits, then there is a polynomial time randomized algorithm for minimum vertex cover
that errs with probability 1/4. This implies that NP ⊆ BPP . To contradict RP 6= NP we construct a
one-sided error algorithm for the decision problem of vertex cover as in the proof of Theorem 3.3. 2

6 Impossibility Result for Private Approximation of a Search Problem in P
An algorithm solving a search problem can return any solution to the problem. An algorithm solving a
search problem privately has additional requirements on the solutions that it returns. In this section, we
show that these additional requirements can make the problem much harder. That is, we show that there
is a polynomial relation Q whose search problem is in P , however, unless NP ⊆ P/poly, there is no
polynomial time private algorithm for Q with respect to RQ.

Definition 6.1 Let G be a graph and C1, C2 ⊆ V . We define the relation Q as follows: 〈G,C1〉 and C2 are
in Q (that is, 〈〈G,C1〉, C2〉 ∈ Q) if |C1| = |C2| and C1 and C2 are cliques in G.

Clearly, the search problem of Q is easy, given 〈G,C1〉 return C1. Assume that there is a private algorithm
forRQ. That is, if C1 and C2 are two disjoint cliques of the same size in a graph G, then a private algorithm
has to return the same output distribution on 〈G,C1〉 and 〈G,C2〉. Intuitively, this implies that given a clique
in the graph, there is an efficient algorithm that finds another clique. We will prove that this is impossible
unless NP ⊆ P/poly.

Theorem 6.2 If NP 6⊆ P/poly, then there is no polynomial-time private algorithm for the search problem
of Q with respect to the privacy structure RQ.

Proof: We assume towards contradiction that there exists a polynomial-time private algorithm A for
the search problem of Q with respect to the privacy structure RQ. We will use A to prove that the NP-
complete problem CLIQUE is in P/poly. That is, we construct a sequence of polynomial-length advice
strings 〈an〉n∈N and a polynomial time algorithm B such that, given a graph G with n vertices, an integer k,
and the advice an, Algorithm B decides if G contains a clique of size k.

Given two graph G0 = 〈V0, E0〉 and G1 = 〈V1, E1〉, where V1 ∩ V2 = ∅, we define their disjoint union
G0 ∪G1 as the graph G = 〈V,E〉 where V = V0 ∪ V1 and E = E0 ∪E1. Every clique in G0 ∪G1 is either
a clique in G0 or a clique in G1. Assume that C0 and C1 are cliques of size k in G0 and G1 respectively.
Then, 〈G0 ∪G1, C0〉 and 〈G0 ∪G1, C1〉 have the same set of cliques of size k, that is, they are inRQ.

As a first step, we construct in Figure 8 an algorithm A′ that will be used to construct Algorithm B and
the advice strings. This algorithm gets two graphs G0, G1 and a clique C in one of them, executes A on their
union, and checks in which graph A returns a clique. If only one graph Gi has a clique of size |C|, then, by
the correctness requirement of A, Algorithm A′ must return i. However, if both graphs have a clique of size
|C|, then, by the privacy requirement of A, the output distribution of A′ is approximately the same when C
is a clique in G0 and when C is a clique in G1. That is, there is an integer n0 such that for every pair of
graphs with at least n0 vertices, the difference between the probabilities that A′ returns 0 in the two cases is
small (for concreteness, at most 1/3).

18

AlgorithmA′

INPUT: Two graphs G0, G1 with disjoint sets of vertices and a set C.
PROMISE: C is a clique in G0 ∪G1.

1. ExecuteA on 〈G0 ∪G1, C〉

(a) Let j be the index such that A returns a clique in Gj .

(b) Return j.

Figure 8: Algorithm A′ which gets two graphs and a clique, executes A on their union, and checks in which
graph A returns a clique.

We construct the advice string an as the concatenation of advice strings an,1, . . . , an,n where an,k is
used to decide if a graph G with n vertices has a clique of size k.4 Fix an integer n and an integer k, where
n ≥ n0 and 1 ≤ k ≤ n. For every graph G with n vertices that has a clique of size k, we fix some clique
CG of size k in G. Let G0 and G1 be two graphs that have a clique of size k.

Definition 6.3 We say that G0 loses to G1 if AlgorithmA′ returns 1 on input 〈G0, G1, CG0
〉 with probability

at least 1/3.

That is, G0 loses to G1 if, when given a clique in G0, Algorithm A “magically” manages to return with
probability 1/3 a clique in the graph G1; thus, G0, CG0

can aid in finding a clique in G1.
If G0 does not lose to G1, thenA′ returns 0 with probability at least 2/3, and by the privacy requirement,

with probability at least 1/3 Algorithm A′ returns 0 on input 〈G0, G1, CG1
〉. That is,

Claim 6.4 Let G0 and G1 be two graphs with n vertices that have a clique of size k. If G0 does not lose to
G1, then G1 loses to G0

(It is possible that G0 loses to G1 and G1 loses to G0.) Thus, for every set of graphs with n vertices and a
clique of size k, there exists a graph G0 in the set that loses to at least half the graphs in the set. This is the
idea of constructing the advice string an,k.

Construction of an,k

1. an,k ← ∅.

2. Initialize L as the set of all graphs with n vertices that have a clique of size k.

3. While L 6= ∅ do

(a) Choose a graph G in L that loses to at least half of the graphs in L.

(b) an,k ← an,k ∪ {〈G,CG〉}.
(c) L← L \ {G1 : G loses to G1}.

Since there are 2O(n2) graphs with n vertices, the advice an,k contains O(n2) graphs. We are ready to
describe the non-uniform algorithm B that, given a graph G with n vertices, an integer k, and the advice an,
decides if G contains a clique of size k.

4We assume that any two graphs with n vertices have disjoint sets of vertices. E.g., we can order all graphs with n vertices
according to some order, and the vertices of the ith graph in this order are {1, . . . , n} × {i}.

19

Algorithm B

INPUT: G, k, and an,k.

1. For every G0 in an,k execute A′ on 〈G0, G,CG0
〉.

2. If there exists an execution of A′ which returns 1, return “G has a clique of size k,”

3. Otherwise, return “FAIL.”

If G does not have a clique of size k, then, by the correctness of A, Algorithm A ′ always returns 0, and B
always returns “FAIL.” If G has a clique of size k, then there exists a graph G0 in an,k that loses to G, thus,
with probability at least 1/3, Algorithm A′ returns 1 on input 〈G0, G,CG0

〉, and, thus, with probability at
least 1/3, Algorithm B returns “G has a clique of size k.” That is, B is a randomized algorithm with advice
strings that decides if 〈G, k〉 ∈ CLIQUE with a one-sided error of 2/3. By a standard amplification and
union-bound arguments, we can get a deterministic polynomial-time non-uniform algorithm that decides if
〈G, k〉 ∈ CLIQUE without error. 2

Acknowledgement. We thank Yinnon Haviv for helpful discussions and Robi Krauthgamer for pointing
out that we can use ε-biased independent spaces.

References

[1] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal
independent set problem. J. Algorithms, 7(4):567 – 583, 1986.

[2] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple constructions of almost k-wise independent
random variables. Random Structures & Algorithms, 3:289–304, 1992.

[3] R. Bar-Yehuda, B. Chor, E. Kushilevitz, and A. Orlitsky. Privacy, additional information, and commu-
nication. IEEE Trans. on Information Theory, 39(6):1930–1943, 1993.

[4] M. Bellare and E. Petrank. Making zero-knowledge provers efficient. In Proc. of the 24th ACM Symp.
on the Theory of Computing, pages 711–722, 1992.

[5] B. Chor, J. Friedmann, O. Goldreich, J. Hastad, S. Rudich, and R. Smolansky. The bit extraction
problem or t-resilient functions. In Proc. of the 26th IEEE Symp. on Foundations of Computer Science,
pages 396–407, 1985.

[6] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N. Wright. Secure multiparty
computation of approximations. In P. G. Spirakis and J. van Leeuven, editors, Proc. of the 28th In-
ternational Colloquium on Automata, Languages and Programming, volume 2076 of LNCS, pages
927–938. Springer-Verlag, 2001.

[7] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In C. Cachin
and J. Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of LNCS, pages
1–19. Springer-Verlag, 2004.

[8] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc. of the 19th ACM
Symp. on the Theory of Computing, pages 218–229, 1987.

20

[9] O. Goldreich, R. Ostrovsky, and E. Petrank. Computational complexity and knowledge complexity.
SIAM J. on Computing, 27(4):1116–1141, 1998.

[10] O. Goldreich and E. Petrank. Quantifying knowledge complexity. Computational Complexity, 8(1):50–
98, 1999. Preliminary version appeared in FOCS 91.

[11] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM J. on Computing, 18(1):186–208, 1989.

[12] S. Halevi, R. Krauthgamer, E. Kushilevitz, and K. Nissim. Private approximation of NP-hard functions.
In Proc. of the 33th ACM Symp. on the Theory of Computing, pages 550–559, 2001.

[13] J. Håstad. Some optimal inapproximability results. J. of the ACM, 48(4):798–859, 2001.

[14] P. Indyk and D. Woodruff. Polylogarithmic private approximations and efficient matching. Tech-
nical Report TR05-117, Electronic Colloquium on Computational Complexity, http://www.eccc.uni-
trier.de/eccc/, 2005. To appear at TCC 2006.

[15] D. S. Johnson. Approximation algorithms for combinatorial problems. J. of Computer and System
Sciences, 9:256–278, 1974.

[16] E. Kiltz, G. Leander, and J. Malone-Lee. Secure computation of the mean and related statistics. In
J. Kilian, editor, the Second Theory of Cryptography Conference – TCC 2005, volume 3378 of LNCS,
pages 283–302. Springer-Verlag, 2005.

[17] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. on Comput-
ing, 15(4):1036–1055, 1986.

[18] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM J.
on Computing, 22(4):838–856, 1993.

[19] C. H. Papadimitriou and M. Yannakakis. On limited nondeterminism and the complexity of the V-C
dimension. J. of Computer and System Sciences, 53(2):161–170, 1996.

[20] E. Petrank and G. Tardos. On the knowledge complexity of NP. Combinatorica, 22(1):83–121, 2002.

[21] A. C. Yao. Protocols for secure computations. In Proc. of the 23th IEEE Symp. on Foundations of
Computer Science, pages 160–164, 1982.

A Impossibility Result for Randomized Private Approximation of Vertex
Cover

In this section, we generalize the inapproximability results of Section 3.1 to randomized private protocols.
here, a single execution of the approximation algorithm cannot yield information about v. However, from k
executions of A, we can decide if v is relevant or non-critical for G with probability 1− exp(−k). We start
with a claim that is analogue to Claim 3.13 from the deterministic case.

Claim A.1 Let A be a randomized private approximation algorithm for vertex cover. For every polynomial
p(·), there exists some n0 ∈ N such that for every n ≥ n0 and every graph G = 〈V,E〉, where |V | = n, if
Pr[{u, v} ∩ A(G) = ∅] ≥ 1/p(n), for some u, v ∈ V , then u is not critical for G.

21

Proof: Let n be an integer, p(·) be a polynomial, G = 〈V,E〉 be a graph, where |V | = n, and u, v ∈ V .
Assume that Pr[{u, v} ∩ A(G) = ∅] ≥ 1/p(n). As u and v are both not in A(G) with probability at least
1/p(|n|), and A(G) is a cover of G, we infer that (u, v) /∈ E. Let E∗ = E ∪ {(u, v)}, and define G∗ =
〈V,E∗〉. We consider a (hypothetical) execution of the algorithm A on G∗. In every execution of A, the set
A(G∗) must cover the edge (u, v) and thus Pr[{u, v} ∩A(G) = ∅]−Pr[{u, v} ∩A(G∗) 6= ∅] ≥ 1/p(|n|).

Consider the following algorithm D, whose input is two graphs and the output C of A on one of them.
If the graphs differ in more than one edge, Algorithm D always returns 1. If the graphs differ in exactly
one edge, say (w1, w2), Algorithm D returns 1 if {w1, w2} ∩ C 6= ∅ and 0 otherwise. Now consider the
execution of D where the graphs are G and G∗ (which differ in exactly one edge). Since A is private, there
exists some n0 such that D cannot distinguish between equivalent graphs with more than n0 vertices. Thus,
if G has n ≥ n0 vertices and Pr[{u, v} ∩ A(G) = ∅] ≥ 1/p(n), the graphs G and G∗ are not equivalent.
This implies, by Claim 3.9, that u is not critical for G. 2

We present Algorithm Randomized Relevant-Non-Critical Vertex in Figure 9. We now
prove its correctness. We start with asserting that in step (5) there exists at least one vertex v ′ the algorithm
can choose.

Algorithm Randomized Relevant-Non-Critical Vertex

INPUT AND OUTPUT: See Definition 3.7.

1. If G contains less than n2 vertices (where n2 is a constant that will be determined later), then find if
v is relevant for G or non-critical for G using exhaustive search.

2. Let I be a set of size (8n)1/ε − 2n.

3. Construct the graph G2 from G and I as in Definition 3.10.

4. Execute k times AlgorithmA on G2.

5. Choose a vertex v′ ∈ I such that v′ appeared at most k/2 times in A(G2) in the k executions.

6. Construct G v′

∧

from G, I , and v′ as in Definition 3.10.

7. Execute k times AlgorithmA on G v′

∧

.

8. If v′ ∈ A(G v′

∧

) in at least 0.75k of the k executions, then return “NOT CRITICAL.” Else return

“RELEVANT.”

Figure 9: An algorithm for finding a relevant or non-critical vertex with a blackbox access to a randomized
algorithm A.

Claim A.2 There is a vertex v′ ∈ I such that v′ appeared at most k/2 times in A(G2) out of the k execu-
tions.

Proof: Let N = |I| + 2n = (8n)1/ε be the number of vertices in G2. The size of the minimum vertex
cover of G2 is twice the size of the minimum vertex cover of G, thus, it is at most 2n. Since A is an
N1−ε-approximation algorithm for vertex cover, the size of A(G2) is at most

2n ·N1−ε = 2n · ((8n)1/ε)1−ε =
(8n)1/ε

4
≤ (8n)1/ε − 2n

2
=
|I|
2

.

Thus, in each execution, at least half of the vertices in I are not in A(G2). Consequently, there is at least
one vertex v′ ∈ I such that v′ is not in A(G2) in at least k/2 of the executions of A on G2. 2

22

In the following claims we use some constants (e.g., 0.55 and 0.6). These constants could be replaced
by any constants greater than 0.5 provided the order between them is kept. The first claim is analogue to
Claim 3.14 from the deterministic case.

Claim A.3 There exits a constant n1 such that if

1. G2 contains at least n1 vertices,

2. Pr[v′ ∈ A(G2)] < 0.55, and

3. Pr[v′ ∈ A(G v′

∧
)] > 0.6,

then v is not critical for G.

Proof: Consider the following algorithm D, whose input is two graphs and the output C of A on one of
them. If the sets of isolated vertices in both graphs are equal, Algorithm D always returns 1. Otherwise,
Algorithm D chooses the first vertex that is isolated in exactly one of the graphs and returns 1 if this vertex
is in C and 0 otherwise. Now consider the execution of D where the graphs are G2 and G v′

∧
(in which v′

is the only vertex that is isolated in exactly one of them). Since A is private, there exists some n1 ∈ N

such that D cannot distinguish between equivalent graphs with more than n1 vertices. Thus, if G2 and G v′

∧
have more than n1 vertices and Pr[v′ ∈ A(G v′

∧
)]− Pr[v′ ∈ A(G2)] ≥ 0.05, the graphs G2 and G v′

∧
are not

equivalent. This implies, by Claim 3.11, that v is non-critical for G. 2

The following claim is the randomized analogue of Claim 3.15.

Claim A.4 If Pr[v′ ∈ A(G v′

∧
)] ≤ 0.8, then v is relevant for G.

Proof: Since |I| = (4n)1/ε, there must be some v′′ ∈ I such that Pr[{v′, v′′} ∩ A(G) = ∅] is non-
negligible. By Claim A.1, the vertex v ′ is non-critical for G v′

∧
. Hence, by Claim 3.12, the vertex v is

relevant for G. 2

We are ready to prove the correctness of Algorithm Randomized Relevant-Non-Critical
Vertex.

Lemma A.5 Let k > Ω((log n)/ε). Algorithm Randomized Relevant-Non-Critical Vertex
returns the correct answer with probability 1− 2−O(k).

Proof: Let n0 and n1 be the constants guaranteed in Claims A.3 and A.4 respectively, and define n2 =
max {n0, n1}. If G contains less than n2 vertices, then the correctness is obvious.

Fix any vertex w ∈ I . If Pr[w ∈ A(G2)] < 0.55, then, by Chernoff bound, the probability that w ∈
A(G v′

∧
) in less than 0.5k of the k executions of AlgorithmA on G2 is 2−O(k). Thus, the probability that there

is a vertex w ∈ I such that Pr[w ∈ A(G2)] < 0.55 and w ∈ A(G v′

∧
) in less than 0.5k of the k executions

of Algorithm A on G2 is |I|2−O(k) = (4n)1/ε2−O(k) = 2−O(k) (since k > Ω((log n)/ε)). Therefore,
with probability at least 1− 2−O(k), the vertex v′ chosen in Randomized Relevant-Non-Critical
Vertex satisfies Pr[v′ ∈ A(G2)] < 0.55, and in the rest of the proof we assume that Pr[v ′ ∈ A(G2)] <
0.55.

Let p = Pr[v′ ∈ A(G v′

∧
)]. If 0.6 < p < 0.8, then by Claims A.3 and A.4, vertex v is both relevant

and non-critical for G, thus the algorithm cannot err in this case. If p > 0.8 then, by Claim A.3, vertex v is

23

not critical. By Chernoff bound, the probability that v ′ ∈ A(G v′

∧
) in less than 0.75k of the k executions is

2−O(k), thus the algorithm errs with probability at most 2−O(k) in this case. If p < 0.6 then, by Claim A.4,
vertex v is not critical. By Chernoff bound, the probability that v ′ ∈ A(G v′

∧
) in more than 0.75k of the

executions is 2−O(k), thus the algorithm errs with probability at most 2−O(k) in this case. 2

Theorem 3.3 Let ε > 0 be a constant. If RP 6= NP , then there is no randomized private n1−ε-
approximation algorithm for vertex cover.

Proof: Lemma A.5 and Claim 3.8 imply that if there is a randomized private n1−ε-approximation al-
gorithm for vertex cover, then there is a randomized algorithm for the exact search problem of minVC.
However this algorithm has a two-sided error.

To contradict RP 6= NP , this algorithm is transformed to a one-sided error algorithm for the decision
problem of vertex cover: Given 〈G, s〉 decide if G has a vertex cover of size at most s. The transformation
is simple; execute the algorithm for the search problem of vertex cover. If this algorithm returns a set that
covers G and its size is at most s return “yes.” 2

B Negative Result for Private Approximation of Max Exact 3 SAT

Recall that the privacy structureRmaxE3SAT contains all pairs of exact 3 CNF formulae φ1, φ2 over n variables
for which an assignment a satisfies the maximum number of clauses in φ1 iff it satisfies the maximum
number of clauses in φ2.

Definition B.1 (Private Approximation of Max Exact 3 SAT) An algorithm A is a private c(n) approxi-
mation algorithm for Max Exact 3 SAT if: (i) A runs in polynomial time. (ii) A is a c(n)-approximation
algorithm for Max Exact 3 SAT, that is, for every exact 3 CNF formula φ over n variables it returns an as-
signment that satisfies at least c(n) times the maximum number of clauses that are simultaneously satisfiable
in φ. (iii) A is private with respect to privacy structure RmaxE3SAT.

Theorem B.2 Let ε > 0 be a constant. If P 6= NP , then there is no deterministic private 1/n1−ε-
approximation algorithm for the search problem of maxE3SAT.

Proof: Similarly to the proof of Theorem 3.2, we will assume the existence of a deterministic private
1/n1−ε-approximation algorithm A, and use A to construct a deterministic algorithm for deciding the sat-
isfiability of exact 3 CNF formulae. We emphasize that we are solving the decision problem of satisfiability
and not the optimization problem of maximum satisfiability.

Definition B.3 (Relevant Assignment to a Variable) Let φ be an exact 3 CNF formula over Boolean vari-
ables x1, . . . , xn. We say that variable xi is σ-relevant (where σ ∈ {0, 1}) if there exist a maximum assign-
ment a for φ such that a(xi) = σ.

Note that for every satisfiable formula, every variable is 0-relevant or 1-relevant (or both). Furthermore,
if a variable is not σ-relevant, then, in each assignment that satisfies the formula, its value is ¬σ, that is, the
variable is “¬σ-critical.”

We will first assume an algorithm Relevant Variable-Assignment that given an exact 3 CNF
formula φ over variables x1, . . . , xn and y1, . . . , yn outputs an index i and a bit σ such that xi is σ-relevant.
The variables y1, . . . , yn are auxiliary variables that we add to the formula to ensure that the formula remains
exact 3 CNF. Algorithm Relevant Variable-Assignment returns an index of a variable xi (it never

24

returns a variable yi). For technical reasons, Relevant Variable-Assignmentneeds that φ includes
at least 3 variables from x1, . . . , xn (negated or non-negated). Algorithm Greedy E3SAT, described in
Figure 10, uses algorithm Relevant Variable-Assignment to decide E3SAT.

Algorithm Greedy E3SAT

INPUT: An exact 3 CNF formula φ on n variables x1, . . . , xn.
OUTPUT: 1 if φ is satisfiable, 0 otherwise.

1. Let φ̂ = φ.

2. While φ̂ contains at least three variables in x1, . . . , xn do:

(a) Execute Algorithm Relevant Variable-Assignment on φ̂. Denote the answer 〈i, σ〉.
(b) Assign ai ← σ.

(c) Modify φ̂ as follows:

i. Leave in φ̂ every clause that does not include xi or ¬xi.

ii. If σ = 0 then replace every clause (xi ∨ `j ∨ `k) in φ̂ by the clauses (yi ∨ `j ∨ `k) and
(¬yi ∨ `j ∨ `k). Remove all clauses that include ¬xi.

iii. If σ = 1 then replace every clause (¬xi ∨ `j ∨ `k) in φ̂ by the clauses (yi ∨ `j ∨ `k) and
(¬yi ∨ `j ∨ `k). Remove all clauses that include xi.

3. For every variable xi that is not in φ̂ and was not assigned a value in step (2b), assign ai ← 0.

4. Exhaustively check all 4 assignments a that agree with the assignments made in step (2b) and
step (3). If at least one of these assignments satisfies φ return 1, otherwise return 0.

Figure 10: Algorithm Greedy E3SAT.

Note that the algorithm terminates in at most n− 2 iterations, as every iteration reduces the number of
x variables in φ̂ by one. The final length ofφ̂ is at most eight times that of φ as the replacement steps 2(c)ii
and 2(c)iii are applied only to clauses including x variables, resulting in one less x variable in each of the
two replacement clauses. Hence, if algorithm Relevant Variable-Assignment runs in polynomial
time, so does Greedy E3SAT.

We now prove the correctness of algorithm Greedy E3SAT. Clearly, the only way Greedy E3SAT
can err is by outputting 0 on a satisfiable formula φ, hence we assume from now on that φ is satisfiable,
and show that executing Greedy E3SAT results in outputting 1. Before proving the correctness of the
algorithm, we will try to explain what is going on. In each step of the algorithm we have a partial assignment
to φ that can be extended to an assignment that satisfies φ. On one hand, this partial assignment already
satisfies some clauses in φ and therefore we deleted them fromφ̂. On the other hand, some literals in clauses
are not satisfied by the partial assignment. We would have liked to delete them from the clauses that they
appear in, and continue. However, this might result in a 3 CNF formula that is not an exact 3 CNF formula.
We, therefore, replace the literal by an auxiliary variable yi. By replacing each clause (xi ∨ `j ∨ `k) with
two clauses, one with yi and one with ¬yi, we ensure that a satisfying assignment to φ̂ must satisfy `j ∨ `k.

The formal proof is by induction, on the number of iterations in Greedy E3SAT: After executing
the main iteration in algorithm Greedy E3SAT for k times (i) φ̂ is satisfiable; (ii) k variables are assigned
values in Step 2b; (iii) φ̂ does not contain these variables; and (iv) any assignment that extends the k assigned
variables satisfies φ iff it satisfiesφ̂. 2

25

To conclude the proof, we now present algorithm Relevant Variable-Assignment. On input
φ, Relevant Variable-Assignment uses a private 1/n1−ε-approximation algorithm A to produce
an index i and a bit σ such that xi is σ-relevant.

Algorithm Relevant Variable-Assignment

INPUT: An exact 3 CNF formula φ over Boolean variables x1, . . . , xn and y1, . . . , yn. Without loss of
generality, variables x1, x2, x3 all appear in φ. Let m denote the number of clauses in φ.
OUTPUT: an index i ∈ {1, 2, 3} and a bit σ such that xi is σ-relevant.

1. ExecuteA on φ and denote a = A(φ).

2. For i ∈ {1, 2, 3}, let `i = xi if a(xi) = 0 and `i = ¬xi otherwise.

3. Set φ′ = φ∧(`1∨`2∨`3)∧· · ·∧(`1∨`2∨`3), where the clause (`1∨`2∨`3) is added n1−ε ·(m+1)
times.

4. ExecuteA on φ′ and denote a′ = A(φ′).

5. Choose i ∈ {1, 2, 3} such that a′(xi) 6= a(xi). Let σ = a(xi).

6. Return 〈i, σ〉.

By our choice of `1, `2, `3, the clause (`1 ∨ `2 ∨ `3) is not satisfied by the assignment a. Hence, as
A is a 1/n1−ε approximation algorithm, at least one of x1, x2, x3 changes assignments between a and a′.
Hence, as A respects the privacy structure RmaxE3SAT, we conclude that the formulae φ and φ′ differ on
their sets of maximum assignments. The following claim implies the correctness of algorithm Relevant
Variable-Assignment:

Claim B.4 If a′(xi) 6= a(xi) for some i ∈ {1, 2, 3}, then xi is a(xi)-relevant.

Proof: Assume the contrary, i.e. that for every maximum assignment for φ assigns a ′(xi) to xi. It is easy
to see that every maximum assignment of φ is also a maximum assignment for φ′ as it satisfies the added
clauses (`1∨ `2∨ `3). In the reverse direction, note that every maximum assignment for φ′ is also maximum
for φ as the assignment to the two other variables from x1, x2, x3 does not affect the satisfiability of the
clause (`1 ∨ `2 ∨ `3). We get that 〈φ, φ′〉 ∈ RmaxE3SAT, contradicting A(φ) 6= A(φ′). 2

26
ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

