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Abstract

Explicit construction of Ramsey graphs or graphs with no large clique or independent set has remained
a challenging open problem for a long time. While Erdős’s probabilistic argument shows the existence of
graphs on

���
vertices with no clique or independent set of size

���
, the best explicit constructions with

���
vertices achieve only a bound of � � �	� 
��
� . Constructing Ramsey graphs is closely related to polynomial
representations of Boolean functions; a low degree representation for OR function can be used to explicitly
construct Ramsey graphs [Gro00].

We generalize the above relation by proposing a new framework. We propose a new definition of OR
representations: a pair of polynomials represent the OR function on if the union of their zero sets contains
all points in ��������� � except the origin. We give a simple construction of a Ramsey graph using such polyno-
mials. Furthermore, we show that all the best known constructions, ones to due to Frankl-Wilson [FW81],
Grolmusz [Gro00] and Alon [Alo98] are captured by this framework; they can all be derived from various
OR representations of degree ����� �	�

based on symmetric polynomials.
Thus the barrier to better Ramsey constructions through current techniques appears to be the construction

of lower degree representations. Using new algebraic techniques, we show that the above Ramsey construc-
tions cannot be improved using symmetric polynomials.
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1 Introduction

This paper studies a problem at the intersection of combinatorics and computational complexity.
The combinatorial problem is that of explicitly constructing Ramsey graphs. Ramsey’s theorem shows that

every graph on ��� vertices has either a clique or an independent set of size ����� . Using the probabilistic method,
Erdős showed that there exist graphs with � � vertices where ���
	���
����
	���������������������� [AS00]. The problem of
constructing such Ramsey graphs explicitly is an important open problem in explicit combinatorial constructions.
The best known construction due to Frankl and Wilson achieves a bound of ���
	���
����
	�� �"!$# �&%('�)*� [FW81].
There has been no improvement to this bound despite much effort. However there are other constructions known
due to Alon and Grolmusz [Alo98, Gro00] that achieve exactly the same bound, and also extend to the problem
of constructing multi-color Ramsey graphs, which is to + -color the edges of the complete graph so that there is
not large monochromatic clique. At first sight, the construction of Grolmusz is quite different from that of Alon
and Frankl-Wilson, yet it achieves exactly the same bound.

The complexity problem is to prove tight degree bounds for polynomials computing Boolean functions over,.-
. A central open problem in circuit complexity is to show lower bounds for ACC, the class of circuits with

And, Or and Mod gates. As a first step towards this goal, Barrington, Beigel and Rudich (BBR) studied poly-
nomial representations of Boolean functions modulo composites [BBR94]. They found surprisingly that such
representations are much more powerful over

,0/
than over

,21
when 3 is prime. They showed that the OR func-

tion can be represented by symmetric polynomials of degree 45��6 ��� over
,7/

and proved a matching lower bound
for symmetric polynomials. They asked if better representations exist using asymmetric polynomials. Tardos
and Barrington prove a lower bound of 8��:9<;>=2��� [TB98]. This is the best lower bound known for any function,
despite much effort [Gro95, Tsa96, Gre00, AB01, BGL03]. The main open question is whether asymmetric
polynomials can give lower degree representations of symmetric functions than symmetric polynomials.

A connection between these two problems was discovered by Grolmusz, who uses the OR polynomials of
BBR to construct Ramsey graphs [Gro00]. As an intermediate step, he constructs a set system of size �@?BADC�E on
� elements where all set sizes are F mod 6 but all intersections are non-zero mod G , settling an open problem
in extremal set theory. He constructs Ramsey graphs from this set system and shows that lower degree OR
representations mod 6 would give better Ramsey graphs.

1.1 Our Results

Our work generalizes and extends the connection between OR polynomials and Ramsey graphs. We propose
a new definition of an OR representation: a pair of polynomials represent the OR function on � variables if
the union of their zero sets contains all points in H�FI
J�LK � except the origin. We give a simple construction of a
Ramsey graph from such representations. This viewpoint based on OR polynomials unifies the constructions of
Frankl-Wilson, Alon and Grolmusz: they can all be derived from various OR representations of degree 45�M6 ���
based on symmetric polynomials. Thus the barrier to better Ramsey constructions through current techniques
appears to be the construction of lower degree representations. On one hand, since the best lower bound for any
of these representations is only 8��:9<;>=���� there is the possibility of better constructions. On the other hand, we
show that further improvements cannot come from representations using symmetric polynomials; we prove an
8�� 6 �N� lower bound for all such representations.

1.1.1 Ramsey Graphs from OR Representations
Let OQPR�TS C 
VUVUVUW
�S � � denote a vector of variables and X�PY�TZ C 
VUVUVUN
�Z � � denote a Boolean vector. The

following definition of Boolean function representation modulo [ was introduced by BBR [BBR94].

DEFINITION 1 Polynomial \5�:O]�_^ ,`-ba O5c weakly represents the function d mod [ if for Xe
�fg^hH�FI
J�LK � , if
de�TX��0iPjde�Tfk� then \5�TX��bil \5�Tfm�eno;Ip_[ .
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We propose the following definition of an OR representation.

DEFINITION 2 Polynomials \5�:O]�.^ ,21$a O�c and � �:O]�.^ ,��Va O�c represent the OR function on � variables if

\5�:FI
VUVUVUN
 F � l �7no;Ip03 and �5�:FI
VUVUVUN
 F � l �`no;*p��
\5�TX�� l F�no;Ip03 or �5�TX�� l F no;Ip�� X ^ H�FI
J�LK ��� �:FI
VUVUVU�
 F �

where 3N
�� are primes. The degree of the representation is 	oPhn�
��W�:p�
V= �:\ ��
 p�
V=&������� .
One can combine the two polynomials using the Chinese Remainder Theorem (CRT) to get a single polyno-

mial that weakly represents OR mod 3�� . However the specific choice of values output by the weak representation
is important for our application. The construction of BBR gives a degree 4 � 6 ��� OR representation using poly-
nomials over

,��
and

,��
. A simple representation of degree 45� 6 ��� with � P 3����h� using polynomials over, 1

and
, �

can be derived from Alon’s construction. This highlights another difference about our definition and
weak representations: for Ramsey constructions, we are not restricted to any fixed moduli 3 and � , we are free
to choose them in any way, (possibly as functions of � ) so that the degree is minimized as a function of � .

We give a simple Ramsey construction based on OR representations: the vertex set is H�FI
J�LK � and we add
edge �TXe
�fe� to 	 if X�� f is in the zero set of \5�:O]� , where X�� f denotes the symmetric difference of X and f .
In order to bound � �
	�� and ���
	�� , we use the notion of representations of graphs over spaces of polynomials
introduced by Alon [Alo98]. The idea is to assign polynomials to the vertices of 	 so that the polynomials
assigned to vertices in a clique are linearly independent.

DEFINITION 3 Let 	 ���e
��_� be a graph and � be a set polynomials in � variables over field � . A polynomial
representation of 	 over � is an assignment of a polynomial \�� �:O]�.^�� and a point X���^ � � to !�^"� where:

��� For each ! ^"� , \ � �TX � �0iPhF .
�$� If �$#�
%!I�`^ � then \ � �TX'&I�ePhF .

It is easy to see that ���
	�� �(	*)
[ �+��� which is the dimension of the � vector space spanned by polyno-
mials in � . We use the polynomial \��:O � to construct a representation of 	 over

,`1
and � �:O]� to construct a

representation of 	 over
,,�

. The Frankl-Wilson construction can also be viewed in this framework, where we
represent 	 over

,21
and 	 over - . However, quoting Alon ‘It seems that this construction does not extend to

the case of more than 2 colors’ [Alo98]. We propose a definition of OR representation which leads to such an
extension.

DEFINITION 4 Polynomials \5�:O]�.^ , 1/. a O�c and � �:O]�.^ , 110 a O�c represent the OR function on � variables if

\5�:FI
VUVUVUk
 F �bil F�no;Ip03�2 and � �:FI
VUVUVUk
 F �bil F�no;Ip0343
\��TX�� l F�no;Ip03 2 or � �TX�� l F�no;Ipb3 3 X ^ H�FI
J�LK � � �:FI
VUVUVUk
 F �

where 3 is prime and 5 
7698 � .The degree of the representation is 	_Phn�
��&�:p�
V= �:\ ��
 p�
V=&������� .
To differentiate the representations of Definitions 2 and 4, we refer to them as prime representations and prime-
power representations respectively. The Frankl-Wilson construction can be used to show that for � Pj3

�
� � ,

there exist OR representations of degree 4 ��6 ��� . The interesting feature of this representation is that it does not
use the Chinese Remainder Theorem (CRT). The construction of Ramsey graphs from prime-power representa-
tions stays the same; the difference is in the analysis. For this, we introduce polynomial representations of 	
over

,e1 .
.

DEFINITION 5 Let 	 ���e
��_� be a graph and � a set of polynomials in � variables over
,

. A polynomial
representation of 	 over

,@1 .
is an assignment of a polynomial \ � �:O]�.^:� and a point X � ^ , � to ! ^;� s.t.:

��� For each ! ^"� , \ � �TX � �0il F�no;Ipb3 2 .
�$� If �$#�
%!I�`^ � then \ � �TX'&I� l F�no;Ip03 2 .
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We show that the polynomials assigned to a clique are linearly independent over - so � is bounded by the
dimension of the - -vector space spanned by � . Like polynomial representations of graphs over - , represen-
tations over

,21 .
assign linearly independent polynomials over - to vertices in a clique. A crucial difference is

that representations over - tensor, those over
, 1 .

do not. This means that if we have sets of polynomials � C
and � � that represent 	 C and 	 � over - , then � C�� �

�
represents 	 C UL	

�
over - for an appropriate definition

of product (see [Alo98] for definitions and proofs). This is important for the original application of these rep-
resentations, which was to bound the Shannon capacity of the graph. However, this property implies that one
cannot get low dimensional representations of both 	 and 	 over - , since 	hU 	 always has a large clique. But
since

,21 .
has zero divisors, we lose this tensor product property, so we can simultaneously get low dimensional

representations of 	 and 	 over
, 1 .

.
We could restate this argument from the viewpoint of OR representations. We cannot get low degree prime

representations by taking 3 P � since then \5�:O]�%�5�:O �`^ , 1 a O�c is F at every point in H�FI
J�LK � except the origin,
and such a polynomial requires degree � . But this argument does not extend to prime-power representations
because of zero-divisors.

All the OR representations above achieve a bound of 45��6 �N� using symmetric polynomials. Plugging them

into the simple construction above gives � �
	���
����
	�� � ! # �&%('�) �C as opposed to the best bound of ! # ��%('�)*� .
However, by massaging the polynomials and working with set intersections as opposed to distances, we get
exactly the constructions of Frankl-Wilson, Grolumsz and Alon.

Here are some advantages of our unified view of these constructions:
� It places the constructions of Alon and Frankl-Wilson in the context of OR polynomials, and raises the
possibility of getting better constructions from low degree representations. The notions of prime-power repre-
sentations of graphs and Boolean functions arising from the Frankl-Wilson construction are new and interesting.
� It relates the construction of Grolmusz to those of Frankl-Wilson and Alon, which look very different at
first. Our Ramsey graph construction from the OR polynomial of BBR is simple and direct. In fact it takes some
work to show that we get the same graph as Grolmusz. Viewing this construction in terms of set intersections,
we derive improved bounds for set systems with restricted intersections modulo prime powers.
� In this view, all the constructions naturally extend to multicolor Ramsey graphs. To construct + -color
Ramsey graphs, we define OR representations involving + polynomials over

, ��� 
VUVUVU�
 ,���� where � C UVUVUW
���� are
prime powers. Taking powers of the same prime 3 extends the Frankl-Wilson construction.

1.1.2 Lower Bounds
A natural question is to show tight degree bounds for OR representations. A better upper bound would lead

to better Ramsey graphs. Lower bounds are interesting from the complexity-theory viewpoint of understanding
polynomial representations over composites. For the OR function, we believe Definition 2 is the right definition
to use, since it seems to eliminate dependence of the degree on the modulus 3�� . Also it places the problem in
the context of understanding the zero-sets of low degree polynomials over

, 1
. This question has been studied

in complexity theory in various contexts including low degree testing, zero-testing and derandomization (see
Section 6). Prime-power representations are interesting since they do not rely on the CRT. Interestingly, the
8��:9<;>=���� lower bound [TB98] also does not use the CRT, so it applies to prime-power representations too. It is
possible that proving bounds for prime-power representations is not as hard as the prime case.

Degree lower bounds extend a line of work in combinatorics aimed at understanding why explicit Ramsey
graphs are hard to construct, by showing limitations to various natural techniques. A conjecture of Babai states
that one cannot construct good Ramsey graphs based on the sign of a set of real polynomials. There has been
considerable progress towards proving this conjecture by Alon et.al [Alo90, APP � 05]. Degree lower bounds
are weaker since they say the known technique for bounding � �
	�� and ���
	�� does not yield good bounds, as
opposed to showing either ���
	�� or ���
	�� is large. But on the other hand, there are no good Ramsey constructions
using signs of real polynomials, while OR representations are the best technique known for this problem.
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We show a degree 8�� 6 �N� lower bound for OR representations by symmetric polynomials. Thus better rep-
resentations if they exist must use asymmetric polynomials. A lower bound of 8�� 6 �N� is known for symmetric
polynomials that weakly represent OR mod G [BBR94]. One might guess that similar arguments should work
even for our definition of OR representations, but this is incorrect. In fact the same argument does not suffice
even for prime representations. The precise bound they prove, and which holds for all weak representations is
p�
V= �:\ �mULp�
V= ����� 8 ���I� 3��$� . This is good enough when 3N
�� are small, but if ��� 34� as in Alon’s construction,
this gives a bound of � . One cannot hope for a stronger result since the polynomial

��� S �
of degree � weakly

represents OR on ��� 3�� variables over
,�11�

. Our definition restricts the values output by the weak representa-
tion, making it possible to show bounds independent of the modulus [ . But exploiting this difference calls for
new techniques, beyond the periodicity based arguments used for weak representations [BBR94, BGL03]. Our
lower bounds also apply to the polynomials used in the construction based on set intersections.

1.1.3 Our Techniques Our lower bounds for the prime and prime-power cases have similar high-level struc-
ture: an algebraic part where we show that if the zero-set of the polynomial has certain properties, then the
polynomial must have high degree, and a combinatorial part where we argue that there is no good partition
of hypercube, that any partition results in one of the polynomials having high degree. The details of the proof
however are very different.

For the prime-power case, we translate the problem to one about univariate polynomials modulo
, 1/.

. How-
ever over

,e1 .
it is no longer true that a degree 	 polynomial can have only 	 roots (take S 2 for instance); so

we need new tools for degree lower bounds. Building on an algorithm for interpolation over
,�1 .

by the author
[Gop06], we define a greedy sequence, which roughly is a sequence that is distributed uniformly among various
congruence classes modulo powers of 3 . We show that the longest greedy sequence in the zero-set lower-bounds
the degree of a polynomial. Then a combinatorial argument shows that in any partition of integers

a ��
VUVUVUk
�� c
into � and � , one of them contains a long greedy sequence.

For the prime case, we view a symmetric polynomial \ acting on a 0-1 input X as a polynomial �\ acting
on in the digits of the base 3 expansion of the weight ��+ �TX�� following [BGL03]. There it was shown that �\
can be used to bound p�
V= �:\ � within a factor of 3 ; we introduce a notion of weighted degree of �\ that exactly
captures the degree of \ . The combinatorial part of the proof uses a number theoretic lemma which seems of
independent interest. It says that if 3N
�� are primes, �	� 3�� and ��
 ,
�1

and ��
 ,���
are subsets so that every

number in
a ��
VUVUVUN
�� c lies in � mod 3 or in � mod � , then one of � or � has to be large.

The rest of the paper is organized as follows: we present our simple Ramsey constructions based on distances
in Section 2. The lower bounds for prime-power representations are in Section 3, the prime case is considered in
Section 4. We present the optimal construction based on set intersections in Section 5 and some open problems
in Section 6.

1.2 Preliminaries

Let � P �:FI
VUVUVUN
 F � . Given X�^ H�FI
J�LK�� let ��+ �TX�� denote its Hamming weight. Given Xe
�fg^ H�FI
J�LKL� , X�� f
denotes symmetric difference, X�� f denotes the bitwise AND and 	��TXe
�fe��P���+V�TX:� fm� denotes Hamming
distance. Let � ������ P � � � � � for )@� 	 . Let ���*�:O]�2P � S � � UVUVU S ���

denote the � � � elementary symmetric poly-
nomial. Every multilinear symmetric polynomial can be written as a linear combination of these polynomials.
We will use Lucas’ Theorem about binomials which states:

PROPOSITION 1 [Gra97] Let �jP ���"!�# � � 3 �

mF ��� � � 3 and � P ���"!�# � � 3 �


kF5�$� � � 3 .
Then �&% � � l(' � �&%*)� ) � no;Ipb3 .

For Z ^ , , let the valuation of Z denoted ! 1Ba ZBc be the highest power of 3 that divides Z . Let ! 1Ba FLc P�+ . We
have the ultrametric inequality ! 1Ba Z5�	, c�8jn.- /W�$! 1Ba ZBc

%! 1Ba , cT� and ! 1�a Z�, cmP ! 1Ba ZBc�� ! 1Ba , c . We briefly describe
the known explicit constructions of Ramsey graphs.
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� Frankl-Wilson [FW81]: Take 3 prime and [ P 3
�
. The vertex set consists of all subsets of

a [ c of size 3
�
��� .

Two vertices � and � are adjacent if � � �����eil ���7no;Ip03 . One can bound the size of ���
	�� and ���
	�� using
well-known results from extremal set theory [FW81, BF92]. Alternatively one can construct a low dimensional
representation for 	 over

,@1
and 	 over - [Alo98].

� Alon [Alo98]: Take 3�� � to be nearly equal primes and [ P�3
�
. The vertex set consists of all subsets ofa [ c of size 3�� � � . Two vertices � and � are adjacent if � � �����Wil ���`n ;*pb3 . To bound � �
	�� and ���
	�� , we

construct representations of 	 over
, 1

and 	 over
,��

.
� Grolmusz [Gro00, Gro02] : The main step is to construct a set system � on

a � c of size � ?BA C�E so that � ��� l
F�no;Ip G but � � ������il F�no;Ip G . The vertices of the graph 	 are sets of � and �m
�� are adjacent if � � ����� is
odd. We bound ���
	�� and ���
	�� using results from extremal set theory, see section 5 for details.

2 OR Polynomials and Ramsey graphs

In this section, we prove the correctness of the construction described in the introduction. While the graphs
obtained are not quite optimal, the construction is simple and best explains the close connections between OR
representations and Ramsey graphs.

If graph 	 has a representation over a field � as in Definition 3, it is easy to show that ���
	��o� 	*)
[ �+���
where 	 )
[ �+��� is the dimension of the � -vector space spanned by � [Alo98]. For representations over

,�1 .
, we

show that ���
	���� 	*)
[ �+��� where 	*)
[ �+��� is the dimension of the - -vector space spanned by � . The proof is
by a valuation based argument similar to one used by Babai et. al. [BFKS01].

LEMMA 2 If 	o���e
��_� has a polynomial representation over
, 1/.

, then ���
	��.� 	*)
[ �+��� .
PROOF: Let � 
 � be a clique. We claim that the polynomials \ � �:O]� for !�^�� are linearly independent over
- . Assume for contradiction that 	

��

�
� � \ � �:O]� P F

By clearing denominators, w.m.a that
� � ^ , , and by removing common factors w.m.a that 3 does not divide� & for some # ^�� . Rearranging terms, we have

� &$\ & �:O]�QP �
	

��
���� ���� &
� � \ � �:O]�

Substituting O P X &�
 � &$\ & �TX'&*� P �
	

��
���� ���� &
� � \ � �TX'&*�

Since \ & �TX���� il F n ;*pb3 2 and ! 1 a � & c PjF , we have ! 1 a � & \ & �TX & � ck� 5 � � . But ! ^�� and ! iP # , then �$! 
%# �
is an edge, hence \ � �TX'&*� l F�no;Ip03 2 . So the RHS is divisible by 3 2 , which is a contradiction. �

CONSTRUCTION 1 Ramsey Graph 	o���2
�� � from OR polynomials.
� Let �5�
	��@P H�FI
J�LK � .
� If \5�TX:� fm� l F , then add �TXe
�fm� to � �
	�� .

THEOREM 3 Given a degree 	 OR representation, graph 	 has � � vertices and � �
	���
����
	���� � ������ .

PROOF: Assume that we have a prime representation. We give a polynomial representation of 	 over
,�1

.
For each vertex � ^ H�FI
J�LK � , let � � P"�4�_S �

if � � P � and � � PhS �
if � � P F . Define \��&�TS C 
VUVUVUN
�S � � to be

the polynomial obtained by multilinearizing \5��� C 
VUVUVUN
�� � � (i.e setting S �� P S �
). Note that for  ^ H�FI
J�LK � ,
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\��&�  m�2Ph\�� �9�� m� . Hence \��&� �k�@Pj\5� � �bil F�no;Ip03 . On the other hand, from our construction, if �  @
 �k�`^ �
then \�� ���  m�bil F�n ;*p03 . Hence \ � �  m�bil F�n ;*pb3 .

Thus we get a polynomial representation of 	 over
,.1

. Since the \��&�:O]� s are all multilinear polynomials
of degree at most 	 in � variables, they lie in a vector space of dimension � ���� � . This shows that ���
	���� � ������ .
Similarly, if �  @
 �k� is not an edge then \5� � �  k� il F no;*p 3 , hence � � � �  m� l F�no;Ip � . Using this we
construct a representation of 	 over

, �
and bound � �
	�� .

For prime-power representations of OR, we can represent 	 and 	 over
,`1 .

by the same argument. �
We say a Ramsey construction is explicit if there is a deterministic algorithm running in time polynomial in

the number of vertices that outputs a color for each edge. One can construct explicit Ramsey graphs by plugging
in various OR representations described below; all of which give 	 P 45� 6 ��� using symmetric polynomials.

This gives a bound of ! # � %('�) �C for some constant ! C on the clique size. In fact the constructions below have the
property that given vertices Xe
�f ^ H�FI
J�LKL� , the color of the edge �TXe
�fk� can be computed in time 4 �T��� .
��� Alon [Alo98]: Let 3 � � be primes and let �]P 3��9� � . Define \5�:O]�.^ , 1 a O�c and � �:O]�.^ ,��Ma O�c as

\5�:O]� P ��� �
	
S � � 1 � C � �:O]� P ��� �

	
S � � � � C (1)

For X iP � , since �o� � � ��+V�TX�� � 3�� � � , by the CRT ��+ �TX��_il F�no;Ip03 or ��+V�TX��oil F n ;*p�� . By Fermat’s
Theorem, in the former case \5�TX�� l F no;Ipb3 , in the latter �5�TX�� l F no;Ip�� . Taking 3�
�� nearly equal gives
degree 	_P"����� ��������� 6 � .

�$� BBR [BBR94]: Let � Pj� � ��� � � . Define \5�:O]�.^ ,��Ja O�c and � �:O]�.^ ,��Ja O�c as

\5�:O]� P
� ��� S � � � � � �

� � � � � 
 � �:O]� P
� ��� S � � ��� � �� � � � � (2)

Since ��� )
	 )� � P � � �TX�� for X ^ H�FI
J�LK � , \5�:O]� and � �:O]� in fact have coefficients from
, �

and
, �

. For Z iP � ,
� � � � ��+V�TX����g� � ��� �h� . Lucas’ theorem implies that if ��+V�TX��5il F�n ;*p � � then \��TX�� l F�no;Ip � , and if��+V�TX��bil F�no;*p ��� then �5�TX�� l F�no;Ip � . We can choose ��
�� s.t. 	 P"��� ��
L� 6 � for any 
�� F [Kut02].

Both representations above are prime representations, we now construct prime power representations. For
ease of exposition, we restate Definition 4 of prime-power representations in terms of rational polynomials; we
omit the simple proof of equivalence.

DEFINITION 6 Polynomials \5�:O]��
 �5�:O �7^ - a O�c represent the OR function on H�FI
J�LK�� if

\��:FI
VUVUVU�
 F � l �7no;Ip03 and � �:FI
VUVUVU�
 F � l �`n ;*pb3
\5�TX�� l F�no;Ip03 or �5�TX�� l F no;Ipb3 X ^ H�FI
J�LK � � �:FI
VUVUVU�
 F �

for a prime 3 . The degree of the representation is 	_Phn�
��W�:p�
V=��:\ ��
 p 
V= ��� ��� .
Note that in general \��TX�� could be rational. When we say \5�TX�� l F �*��no;*p 3 , we mean \��TX�� is an integer

satisfying the condition. However by this definition, if XhiP � and � �TX�� l F no;Ipb3 , then \5�TX�� need not be an
integer and vice versa.� � Frankl-Wilson [FW81]: Take 3 prime and � P 3

�
� � . Define \5�:O]��
 � �:O]�`^ - a O5c as

\5�:O]� P
1 � C�� � C �

	 � S � ���*��
 �5�:O]�eP
1 � C�� � C �

��� S �
3 ��� � (3)

For a non-zero vector X ^ H�FI
J�LK � we have � �$��+ �TX���� 3 � � � . If ��+ �TX���il �5no;Ip�� then \5�TX�� l F�no;*p 3 .
If ��+ �TX�� l F no;Ipb3 , then ��� % � A���E1 � 3�� � hence �5�TX�� l F no;Ipb3 . The degree is 	 P 3�� � �h6 � .
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� � We construct representations with the prime fixed and � varying, analogous to [BBR94]. Let � P �
� � � � .

Define \��:O ��
 �5�:O]�`^ - a O�c as

\5�:O]�2P
� ��� S � � � � � �

� � � � � 
 �5�:O]�2P � � ) � )� � � � � � �
� � � � � (4)

The proof of correctness is through Lucas’ theorem.

Plugging any of these polynomials into construction 1 gives the following type of graph : Add �TXe
�fk� to �
if 	��TXe
�fe� il F no;Ip � where � is either a prime or a prime power close to 6 � .

For constructing + -color Ramsey graphs, we define OR representations with + polynomials \ C �:O]��
VUVUVUk
 \ � �:O]�
such that the union of their zero sets if H�FI
J�LKL� � H � K . We can extend constructions in Equations 1, 2 by taking +
distinct primes. To extend the construction of Equation 3, let � P 3 � � � . For ����� � + define

\ � �:O]� P 1 � C�� � C
� ��� S �
3 � � ) � (5)

We can similarly extend Equation 4, we omit the details.

3 Lower Bounds for Prime-power Representations

THEOREM 4 Let \5�:O]��^ ,21 . a O�c and � �:O]��^ , 1 0 a O�c be symmetric polynomials that represent the OR func-
tion on � variables. Then �:p�
V= �:\ �W�h���kU*�:p�
V=���� �&�h��� 8 � � .

Since a symmetric polynomial on 0-1 inputs is essentially a polynomial in the weight of the input, we can
restate Theorem 4 in terms of integer polynomials. The formal proof is easy and is omitted. While we could
also work with polynomials in

,�1 . a S c , the presence of zero divisors would make it messier to use valuations.

PROPOSITION 5 Let \��TS ��
 � �TS �7^ ,�a S]c be univariate polynomials such that for Z ^ H ��
VUVUVU�
��mK ,
! 1�a \5�:F � c � ! 1Ba \5�TZ � c or ! 1Ba � �:F � c � ! 1Ba �5�TZ � c (6)

Then �:p�
V=��:\ �&�j���kU �:p�
V= �����W� ����8 � � .
The next two Lemmas (6 and 7) develop tools to show degree bounds for such polynomials.

DEFINITION 7 A sequence � P ��� C 
VUVUVUN
 � � � of integers is called a greedy sequence if for all � ,
	 ��� � ! 1Ba � � � � � c]� 	 ��� � ! 1Ba � � � � � c for � iP��

Let us define � C �TS �.P � and � � �TS �.P ' ��� � �TS � � � � for � �g� . The definition of a greedy sequence can be
restated as ! 1Ba � � ��� � � c � ! 1Ba � � ��� �>� c for � iP � . Given any set � , we can order it elements greedily as follows
to get a greedy sequence: we choose � C arbitrarily; having chosen ��� C 
VUVUVUN
 � � � C � we choose � � ^ � to be the
element that minimizes ! 1Ba � � ��� � � c .
LEMMA 6 Let � P"��� C 
VUVUVUN
 � � � be a greedy sequence. Let \5�TS �7^ ,�a S]c be such that

! 1Ba \5��� � � c � ! 1�a \5��� � � c for )@� 	 � �
Then p�
V= �:\ � 8 	�� � .

7



PROOF: The proof is by induction on 	 . We will show the converse, namely that if p�
V= �:\ �.� 	�� � .
! 1Ba \���� � � c 8 n - /� ��� � C ! 1�a \5��� � � c

The base case 	5Pg� is trivial, in this case \ is constant so it is clear that ! 1Ba \���� � � c�P ! 1Ba \���� C � c . Assume
the property holds for greedy sequences of length 	�� � . Given a polynomial \5�TS � of degree 	:� � , since
� � � C �TS � is a monic polynomial of degree 	 � � , we write \5�TS � P �5�TS �W� ! � � C � � � C �TS � , where � �TS � is a
polynomial of degree 	�� � .

\5��� � �QP � ��� � �&� ! � � C � � � C ��� � �
! 1�a \5��� � � c 8 n - / H1! 1 a � ��� � � c

%! 1Ba ! � � C � � � C ��� � � c�K (7)

To lower bound ! 1 a � ��� � � c , note that the sequence ��� C 
VUVUVUW
 � � � � 
 � � � of length 	 � � obtained by deleting � � � C
is also greedy. Hence applying the inductive hypothesis to � ��� � � , we get

! 1Ba � ��� � � c 8 n - /� ��� � � ! 1Ba �5��� � � c5P n - /� ��� � � ! 1Ba \5��� � � c (8)

The last equality follows since � � � C ��� � � P F for ) � 	:� � , hence � ��� � �_P \5��� � � . We now lower bound
! 1Ba ! � � C � � � C ��� � � c . Using the greedy property of the sequence ��� C 
VUVUVUN
 � � � ,

! 1�a ! � � C � � � C ��� � � c 8 ! 1Ia ! � � C � � � C ��� � � C � c! � � C � � � C ��� � � C � P \5��� � � C � � � ��� � � C �� ! 1 a ! � � C � � � C ��� � � C � c 8 n - / H1! 1 a \5��� � � C � c

%! 1 a � ��� � � C � c�K (9)

Since ��� C 
VUVUVUW
 � � � C � is a greedy sequence and � has degree 	�� � , we get by induction that

! 1Ba � ��� � � C � c 8 n - /� ��� � � ! 1Ba �5��� � � c5P n - /� ��� � � ! 1Ba \5��� � � c (10)

Combining Equations 7, 8, 9, 10 gives the desired result. �
An example of a greedy sequence is when ��� C 
VUVUVUW
 � � � are consecutive integers. Thus while a degree 	

polynomial over
, 1/.

can have several zeroes, the lemma implies that it can have at most 	 consecutive zeroes.
The intuition for this Lemma is from an algorithm for polynomial interpolation over

,71 .
by the author [Gop06].

Given a set � , and values de�TZ � for Z ^ � of some polynomial in
,.1 . a S c , the algorithm will output the smallest

degree polynomial \��TS � that fits the data, provided it sees the elements of � in the above greedy order. If the
polynomial is F on every element but the last, the algorithm is forced to output a polynomial of degree 	�� � .

Next we define the notion of a greedy array and on ordering of its elements; which we use to construct
long greedy sequences. Given a + -dimensional matrix � of dimension 	 #�� UVUVU � 	 � � C , we use � a�� c to denote� a ) # 
VUVUVUN
%) � � C c .
DEFINITION 8 A + -dimensional matrix of distinct integers � is called a greedy array if

! 1�a � a�� c � � a � c*c�Phn - /�H 5 � ) 2 iP � 2 K (11)

Given
� 
 � , let ��Phn�
�� H 5 � ) 2 iP � 2 K . Then � a�� c �	� a � c if ) � � � � .

For example, consider the 3 � UVUVU � 3 array where � a ) # 
VUVUVUW
%) � � C c�P ) # ��) C 3�UVUVU�) � � C 3 � � C and F � ) � � 3�� � .
Thus the array contains )b^ H�FI
VUVUVU�
:3 � � �LK with numbers indexed by their base-p expansion. Since ! 1�a ) � �>c
depends on the smallest digit where ) and � , this is a greedy array. The ordering defined above gives the usual
ordering of integers, it depends on the largest digit where the expansions differ.
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LEMMA 7 Ordering elements of a greedy array gives a greedy sequence.

PROOF: We want to show that	
� ��� !

1Ba � a � c�� � a�� c*c � 	
� ��� !

1Ba � a � c�� � a�� c c for
� iP �

(12)

For F � 5 � + � � , we define the set � 2 PgH � � ) 2 � � 2 
%) 2 � C P � 2 � C 
VUVUVUN
%)�� � C P ��� � C K . The indices ) # 
VUVUVUW
%) 2 � C
are unrestricted. Note that the � 2 s are disjoint and they partition the set H � � � � � K . We show that for every 5 ,

	
� 
�� . !

1Ba � a � c�� � a�� c*c � 	
� 
�� . !

1Ba � a � c�� � a�� c*c for
� iP �

(13)

Equation 12 will follow by summing over all 5 . Hence consider a fixed 5 . Note that if
� ^�� 2 then F �

! 1Ba � a � c�� � a�� c c�� 5 . Accordingly we partition � 2 into �@�:F ��
VUVUVUk
��2� 5�� as follows

For F ��� � 5 � ��
��2� ��� P H � ^ � 2 � )
# P � # 
VUVUVU�
%) � � C P � � � C 
%) � iP � � K

P H � ^ � 2 � ! 1Ba � a � c�� � a�� cIc�P �LK
�@� 5I� P H � ^ � 2 � )

# P � # 
VUVUVU�
%) 2 � C P � 2 � C K
For

� ^	�@� 5�� we have ! 1Ba � a � c�� � a�� c�c@P 5 since for all
� ^	� 2 , ) 2 � � 2 so ) 2 iP � 2 . Now given

� iP �
let us

define the sets � �:F ��
VUVUVUN
�� � 5�� as follows. Let

For F5� � � 5�� ��
 � � ��� P H � ^ � 2 � )
# P � # 
VUVUVUN
%) � � C P � � � C 
%) � iP(� � K

P H � ^ � 2 � ! 1Ba � a � c4� � a�� c*c P �LK
� � 5��QP H � ^ � 2 � )

# P � # 
VUVUVUN
%) 2 � C P � 2 � C K
Unlike for �@� 5I� , for ) ^ � � 5�� it could be that ) 2 P � 2 , so we have ! 1Ba � a � c ��� a�� c�c98 5 . Since the indices
) # 
VUVUVU�
%) 2 � C are unrestricted in � 2 , we have �
�@� �����$P � � � ����� for F ��� � 5 . We now prove Equation 13.

	
� 
�� . !

1�a � a � c�� � a�� c*cYP 	
# � � � 2

	
� 
�� A � E !

1Ia � a � c4� � a�� cIc P 	
# � � � 2 � U �
�@� �����	

� 
�� . !
1Ba � a � c�� � a�� c*cYP 	

# � � � 2
	
� 
�� A � E !

1Ba � a � c�� � a�� c c 8 	
# � � � 2 �.U � � � �J��� 8

	
# � � � 2 �.U �
�@� �J���

Hence the claim follows. �
A two-dimensional greedy array is a matrix 	 of integers such that elements in the same row are congruent

mod 3 , while elements in distinct rows are not congruent mod 3 . Lemma 7 says that ordering the elements of 	
column-wise gives a greedy sequence.

This concludes the algebraic step of the proof. Let us sketch the rest of the proof when � P 3
�
� � , which

corresponds to the Frankl-Wilson construction. We define the sets

�jP H�F*K
� HJZ ^ H ��
VUVUVUk
:3 � � �LK �/! 1Ba \5�:F � c � ! 1Ba \5�TZ � c�K
�"P H�F*K
� HJZ ^ H ��
VUVUVUk
:3 � � �LK �/! 1Ba \5�:F � c 8 ! 1Ba \5�TZ � c�K

Note that ! 1Ba �5�:F � c�� ! 1Ba �5�TZ � c for every Z�iP F in � . Further � and � partition the set H ��
VUVUVUN
:3
�
�h�LK and

they intersect only at F . We will show that � and � contain large greedy arrays.

� Arrange H�FI
VUVUVU
3
�
� �LK in 3 � 3 grid, each row corresponding to a congruence class mod 3 .

� Within each row, place elements lying in � before those in � . Since F lies in � � � , place all other elements
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Figure 1: Lower bound for 3
�
� � and the Frankl-Wilson construction

in � which are F�no;Ip03 before F .
� Sort the rows according to how many elements from � they contain.

This reordering is illustrated in Figure 1, the dark line separates � and � . It is clear that � and � contain
greedy arrays 	 of size � # � � C and

�
of size � # � � C respectively (indicated by shaded regions) so that� # � � # P�� C � � C P 3]� � . From this it follows that �(	 � � � � 8g3

�
. Also, we can ensure that F is the last

element of these arrays in the column-wise ordering. So ! 1Ba \5�TZ&� c is minimized at the last element in 	 , hence
by Lemma 7 p�
V= �:\ � 8 �(	 � � � . Similarly p 
V= �����98 � � � � � , which proves the desired bound. Also, �(	 � � � �
is minimized when �gP"HJZ � Z l F�no;Ipb3WK , and � P F � HJZ � Z il F�no;Ip03WK (or vice versa), the corresponding
polynomials give exactly the Frankl-Wilson construction.

The proof for general � is a high dimensional extension of this argument. The next lemma (Lemma 8) says
that any disjoint partition of H�FI
VUVUVUk
�� � �LK into � 
 � will result in one of the partitions having a greedy array
of size 6 � . In fact we prove something stronger, we can choose the dimensions of the array to be any solution
to Equation 14. We also assume that � is of the form ��� 3 � � C for ��� � 3 which makes it easier to use induction.

LEMMA 8 Let ��� ��� � 3 . Let ��
 � be disjoint sets of integers such that � � � P H�FI
VUVUVUk
���� 3 � � C � �LK . Given
any positive integers � # 
VUVUVUW
 � � � C 
�� # 
VUVUVUW
�� � � C satisfying

� � � � � P 3o�h� for )�� + � � (14)

� � � C � � � � C P � � �h�
either � contains a greedy array of size � # � UVUVU � � � � C or � contains a greedy array of size � # � UVUVU � � � � C .
PROOF: The proof is by induction on + (the dimension of the greedy arrays).

When +�P � , we have disjoint sets ��
 � so that � � � P H�FI
VUVUVUk
���� �j�LK hence � ���>� � � �NP ��� . Since
��� � � � 3 any ordering of � and � gives greedy arrays of size � ��� and � ��� respectively. Given � # 
�� # such that� # � � # P � � �h� , if � ���*�$� # � � , then � ��� 8 � � �h��� � # P � # .

Assume that the claim is true up to + � � . For F � )�� 3�� � , we define the following sets

� �$)��2P HJZ ^ ��� Z l )�n ;*p03WK �� �$)��2P H �TZ�� ) ��� 3 � Z ^ �_�$) � K
We define sets � �$) � and

�� �$) � similarly. Note that for each ) , ��_�$) � and
�� �$) � are disjoint, further

�� �$)�� � �� �$) � P
H�FI
VUVUVUk
���� 3 � � � � �LK . So the induction hypothesis applied to

��_�$)�� and
�� �$) � with � C 
VUVUVUN
 � � � C 
�� C 
VUVUVUN
�� � � C

implies that either � contains a greedy array of size � C � UVUVU � � � � C or � contains a greedy array of size� C � UVUVU � � � � C . We define the following sets

� P H1) � ��o�$) � has a greedy array
�	 �

of size � C � UVUVU � � � � C K�hP H1) � �� �$) � has a greedy array
�� �

of size � C � UVUVU � � � � C K
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Since �k
�� are disjoint and � ��� � � ���IP 3 we have either � � � 8 � #
or � ����8 � # . Assume � ����8 � #

. We define a
greedy array 	 of size � # � UVUVU � � � � C as follows. Choose � � � � of size � #

. For each )@^ ��� , the ) � � row of 	
contains the preimage 	 �

of
�	 �

in �_�$) � of dimension � C � UVUVU � � � � C .
We need to verify that 	 satisfies ! 1 �
	 a�� c �h	 a � cT� PRn - / H 5 � ) 2 iP � 2 K . Given

�
and

�
, if ) # iP � # , then

	 a�� c il 	 a � c�no;*p 3 so the condition holds. Now assume that ) # P � # , so that
� P �$) # 
 � �D��
 � P �$) # 
 � �<� . Since 	 a�� c

and 	 a � c are in the same row, 	 a�� c l 	 a � c l !`n ;*p03 for F � ! � 3�� � . So

	 a�� c�� 	 a � c�PQ	�� a�� � c4� 	�� a � � c5P � 3 �	�� a�� � c�� !V� � � 3 �	�� a � � c*� !V� P 3k� �	�� a�� � c � �	�� a � � cT�
� ! 1 a 	 a�� c�� 	 a � cIc P ��� ! 1 a 	 � a�� � c�� 	 � a � � c*c P �@� n - /�H 5 � ) � 2 iP � �2 K

Note that n - / H 5 � ) 2 iP ) 2 KbP"�@� n - /�H 5 � ) � 2 iP ) � 2 K . Hence 	 is a greedy array of the right dimension. �
The next Lemma is the key step in the combinatorial argument. Now we consider sets � and � which

intersect only at F , and we want to produce greedy arrays that end at F by our ordering. We show that such
arrays exist whose dimensions satisfy Equation 14.

LEMMA 9 Partition Lemma: Let ��� � � � 3 . Let � 
 � be sets of integers such that

� � � P H�FI
VUVUVU�
�� � 3 � � C � �LK$
 � � � P H�F*K
Then there exist positive integers � # 
VUVUVUN
 � � � C 
�� # 
VUVUVU�
�� � � C satisfying Equation 14, so that � contains a greedy
array 	 of size � # � UVUVU � � � � C and � contains a greedy array

�
of size � # � UVUVU � � � � C , and both 	 and

�

contain F as the last element.

PROOF: The proof is by induction on + .
When +eP"� , we have sets � 
 � so that � � � P H�FI
VUVUVUk
�� � � �LK and � � � P H�F*K so � ���V� � ���>P ���>� � .

We take � # P � ��� 
�� # P � ��� . Define 	 to be an ordering of � where F comes last, similarly for
�

.
Assume that the claim is true up to + � � . For F � )�� 3�� � , we define the sets �_�$) ��
 �� �$) ��
 � �$) ��
 ��]�$) � as

before. Note that
�� �:F � � �� �:F �@P H�FI
VUVUVU�
�� � 3 � � � � �LK$
 �� �:F � � �� �:F �@P H�F*K

By the induction hypothesis, there exist � C 
VUVUVUN
 � � � C 
�� C 
VUVUVUN
�� � � C as above so that
��_�:F � contains a greedy array

of size � C � UVUVU � � � � C and
�� �:F � contains a greedy array of size � C � UVUVU � � � � C . For � � ) � 3�� � ,

�� �$) � � �� �$)��@P H�FI
VUVUVU�
�� � 3 � � � � �LK$
 ��_�$) � � �� �$) �2P��
Hence applying Lemma 8, either

�� �$) � contains an array of size � C � UVUVU � � � � C or
�� �:F � contains a greedy array

of size � C � UVUVU � � � � C . Again we define the sets

� P H1) � ��o�$) � has a greedy array
�	 �

of size � C � UVUVU � � � � C K�hP H1) � �� �$) � has a greedy array
�� �

of size � C � UVUVU � � � � C K
Let � # P � ��� 
�� # P � ��� . Since �.� �jP H�F*K and � � �jP H�FI
VUVUVU�
:3 � �LK we have � # � � # P 3 � � . Order � and
� so that F is the last element. We define a greedy array 	 of size � # � UVUVU � � � � C as follows. For each )`^ � ,
the ) � � row of 	 contains the preimage 	 �

of
�	 �

in � �$) � of dimension � C � UVUVU � � � � C . Similarly we define�
where the ) � � row contains the preimage

� �
of

�� �
in � �$)�� . The proof that these are greedy arrays follows

Lemma 8. They both contain F as the last element by induction. �
We now complete the proof of Theorem 4.
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PROOF OF THEOREM 4:
Assume that 3 � � C�� � � 3 � . We can choose � � so that ��� ����� 3 and �����_� ��� 3 � � C�� ��� � . Define the sets

�jP H�F*K � HJZ ^ H ��
VUVUVUk
�� � 3 � � C � �LK �/! 1Ba \5�:F � c � ! 1Ba \5�TZ � c�K
�"P H�F*K � HJZ ^ H ��
VUVUVUk
�� � 3 � � C � �LK �/! 1 a \5�:F � c 8 ! 1 a \5�TZ � c�K

Applying Lemma 9 implies that � and � contain greedy arrays 	 and
�

of size � # � UVUVU � � � � C and � # � UVUVU � � � � C
respectively where � �

and � � satisfy Equation 14. Applying Lemma 7, by ordering 	 we get a greedy sequence
H � C 
VUVUVUN
 � � � C 
 F*K in � of length 	oP ' � � � . By the definition of set � , ! 1Ba \5�:F � c � ! 1Ba \5��� � � c for )@� 	 . So by
Lemma 6 p�
V=��:\ � 8 ' � � � � � .

Similarly we get a greedy sequence of length ' � � � in � ending in F . Note that by Equation 6, Z ^ � and
Z iP F implies ! 1 a �5�:F � c � ! 1 a �5�TZ � c . So by Lemma 6, p�
V=���� � 8 ' � � � �j� . By Equation 14, � � � � 8h3 for��� + � � and � � � C � � � C 8 � � . Hence

�:p 
V=��:\ �W�j��� �:p�
V= ��� �&�h��� 8 � � � � � � 8 � � 3 � � C �Y�����
�

For the Frankl-Wilson construction where � P 3
�
� � , we get �:p�
V= �:\ �W�h��� �:p�
V=&�����N�h��� 8 3

�
which is tight.

4 Lower Bounds for Prime Representations

THEOREM 10 Let \5�:O]�0^ ,21 a O�c and � �:O]�0^ ,��Ma O�c be symmetric polynomials that represent the OR func-
tion on � variables. Then p�
V= �:\ ��� p�
V=&����� 8 ���*�VF .

Note that this requires p�
V=��:\ ��
 p�
V=&������8 � but if p 
V= �:\ �@P F , then it is easy to show that p�
V= ��� �@Ph� , so
this case is not interesting. The hard case of this theorem is when 3 and � are fast-growing functions of � , as in
Alon’s construction. To handle this case, we prove a partition lemma (Lemma 11) which says that taking 3 and
� large does not help.

DEFINITION 9 Let 3 � � be distinct primes, let � � 3�� . Let � 
 , �1
and � 
 , ��

. We say that Z is covered by� if Z�no;Ipb3 ^ � . We say � and � cover
a � c if every Z ^ H ��
VUVUVUk
��mK is covered by � or � .

If � � 3�� , we can cover
a � c by taking � P , �1

and � P ,���
. Given � 
 , �1

and � 
 , ��
, the number of

elements in H ��
VUVUVUk
:3�� K that are covered by � or � is � ��� ��� � ��� 3"� � ��� � ��� which can be much larger than
� ��� � � � . The partition lemma states that to cover the first � integers however, � ��� � ��� needs to be 8��T��� .
LEMMA 11 Partition Lemma: If � 
 , �1

and ��
 , ��
cover

a � c , then ��� ���J�h���kU*��� � �V�j��� � � � .
Using � �����g� rather than � ��� in the product lets us ignore the case when � ���&P F . Let us sketch the idea

behind the proof of the Partition Lemma. Let �gP � � � . Assume that to begin with, we have � P , ��
and� P H �*
 � �*
VUVUVUk
�� � � K . It is clear that � and � cover � , however ��� ����� ��� ��� � ��� ��� � � . One could try and

reduce � ��� by removing elements from it. We want to show that this results in an increase in � ��� . Removing
)�^ , ��

from � results in the numbers H1) 
%)k� � 
VUVUVU�
%)��g�T� � �h��� � K being uncovered. Call this set �`�$) � . The
various elements of �`�$) � are less than 3�� and they are congruent mod � , hence the CRT implies they cannot also
be congruent mod 3 . But the problem is for )]iP � ,there could be considerable overlap between the residues
of �`�$) � and �`� �*� mod 3 . Hence it is not clear that removing many elements from � does actually cause � ���
to increase. However, by suitably reordering the elements of

, 1
, we show that every element removed from �

causes the size of � to increase by at least � . In fact Figure 4 shows that � ��� could increase by just � . This is
sufficient to prove the Partition Lemma.

Set � 1 P
� � 1�� and � � P

� � ��� . Given set � of integers, define � n ;*p03 
 ,@1 to be the set HJZ�n ;*pb3 � Z ^ ��K .
12
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Figure 2: Proof of Prop 12

PROPOSITION 12 Let � 8 � . If � and � cover
a � c and � ���>P �9� � then � ��� 8 � � ��� � ��� � .

PROOF: Note that since � 8 � , � � 8j� . Let � denote the complement of � in
, �

, so Fo^ � . For each ) ^ � , take�`�$) � to be the first � � numbers in H ��
VUVUVUk
��mK congruent to )kno;Ip03 . In other words, �`�:F �bP H � 
 � �.UVUVU�
�� � � K
and for )�iPhFI
��7�$) �@P H1) 
%)&� �*
VUVUVU�
%)��j�T� � � ��� � K . Let

� P43� 
 5 �`�$)��
If Z ^ � , then Z is not covered by � so it must be covered by � . We want to lower bound the size of � no;Ip03 .

Let us reorder the set
,@1

as H�FI
��*
 � �*
VUVUVUk
�� 3 � ��� � K (this is a reordering since � � 
:3&�2P � ). It sends ��no;Ip03
to !�� �*� � such that !>� �*� � l ��no;Ip03 . This map sends �`�:F �mno;Ipb3 to H �*
VUVUVUN
�� � � K and the set �`�$) �mno;Ipb3 to
the interval H�!>�$) � �*
��:!>�$) �2� ��� �*
VUVUVUN
��:!>�$) �e� � � � ��� � K of length � � for ) iP"F . None of these intervals contain
F , since that would give Z ^ H ��
VUVUVUN
��mK such that Z l )Nno;Ip�� and Z l F�n ;*p03 . Such an Z is not covered by� or � . Each interval �`�$) �mn ;*p03 begins at a distinct point !��$)�� . Sorting the intervals by their starting points, it
follows that the union of � such intervals of length � � contains at least � � � � � � elements of

, �1
. �

Figure 2 illustrates this argument for 3 P76 
���P"�>��
�� P � �
. Here �"P , C�C � H�FI
J�LK .

PROOF OF LEMMA 11:
We consider the cases � � 3 , 3 � � � � and �o� � separately. The non-trivial case is when �_� � and here we
use Prop. 12.

1. Let � � 3 � � . Numbers H ��
VUVUVUk
��mK lie in distinct congruence classes mod 3 and � . Hence

� ���J� � ��� 8 � � ��� ���J�h���mU ��� � ���h��� � �
2. Let 3�� � � � . The numbers H ��
VUVUVUk
:3WK lie in distinct congruence classes modulo 3 and � . Hence

� ���J� � ��� 8 3 and ��� �����h���kU ��� ���J�j��� � 3 . This proves the claim if � � ��3 so let � � ��3 .

Let � ��� Pj3���� for �5� � � 3 . There are � 1 numbers � � in each congruence class mod 3 . Thus � 1 �
numbers are not covered by � and have to be covered by � . Since � � � , they lie in distinct congruence
classes mod � . Hence � ��� 8 � 1 � . Using the fact that � 8 ��3 hence 3 � 1 8 ����� we get

��� �����h���mU ��� � ���h��� � � 3�� ���h��� �*� 1 8 3 � 1 � �����
3. Let � � � . By Prop. 12, if � ���$P � � � , then � ����8 � � � � � � . Since � ����� 3 � � , we get � ��� � 3 � � � .

Hence ��� ��� �h��� ��� ���J�h��� 8 � � � �2�j��� �:� � � ��� � ����� 3�� � �
13



We will show that this is lower bounded by ����� . By differentiating, this bound is minimized at one of the
extreme values of � , so it suffices to check the bound is at least � � for those values. When ��P � ,

� �9� �@�h��� ��� � ��� � � � P �
��� �
��� �h� � � �

When �7P 3:� � � � �

� � � �2�j��� ��� � � � � � � P
�
�9� 3_�

� �
� � �h� � 3 8 �

�9� 3o� � � � 3 P � � � 3 �D3_� �I3�
We show that one of � � � 3 �D3 and �T�I3 ����� is at least ����� in size.

If � � ��3N
 �I3
� � � �

If � 8 ��3N
 �9� 3;8 ��
� � � � 3 �D3 8 ��3

� � �
�

�

We now proceed to the algebraic step of the proof. Every symmetric polynomial \5�:O]��^ ,71 a O5c computes
a symmetric function � �:O]��� ,@1

. Let �_�TX���P � � � � � � 3 �
. Every polynomial �\��"� # 
VUVUVUW
 � � � also computes

a function � �:O]��� ,21
. The following equivalence between the two kinds of polynomials is given by Theorem

2.4 of [BGL03].

PROPOSITION 13 The functions that can be computed by symmetric polynomials \5�:O]��^ ,`1$a O]� of degree
less than 3 � � C are the functions which can be computed by polynomials �\��"� # 
VUVUVUW
 � � � .

For each variable � � , let p�
V= �"� � � denote the degree of � � in �\ . If � is the largest index so that p�
V=��"� � � � F
then 3 � � p�
V=��:\ � ��3 � . This gives a bound with an error factor of 3 . By defining an appropriate weighted
degree of �\ , we can make the correspondence exact.

DEFINITION 10 Given �\5�"� # 
VUVUVUN
 � � �.^ ,e1$a � # 
VUVUVU�
 � � c , the degree of a monomial ' � � � )� with 	 � � 3�� � is
defined as p�
V= � ' � � � )� �2P � � 	 � 3 �

. The degree of �\ denoted p�
V= � �\_� is the maximum degree over all monomials.

Note that if � is the largest index such that p 
V= �"� � � � F then p 
V=�� �\ ����� � p�
V=��"� � �D3 � � p�
V=�� �\ � .
LEMMA 14 Given a symmetric polynomial \��:O ��^ ,�1 �:O]� there is a unique polynomial �\5�"� # 
VUVUVU�
 � � � that
computes the same function �_�:O]��� , 1

and vice versa. This correspondence preserves the degree.

PROOF: Given a symmetric multilinear polynomial \5�:O]�.^ ,.1 a O�c of degree 	 , write it as \5�:O]�2P � � ��� ! � � � �:O]� .
On at 0-1 input Xe
����I�TX��2P � % A���E� � . By Lucas’ Theorem� �_�TX��� � l � � � �

� � �
� � � no;Ipb3

Further the polynomial ' � � � � %�)� ) � has degree
��� � � 3 �

P � . Thus \��:O � computes the same function as

�\��"� # 
VUVUVUN
 � � �eP �	
� � # ! � � � � �

� � �
� � � n ;*pb3

14



and they have the same degree.
To prove the other direction, observe that the monomials ' � � � � %�)� ) � with � � � 3 �"� form a basis for

polynomials in
,21$a � # 
VUVUVUW
 � � c with degree at most 3�� � in each � �

. Further writing a polynomial in this basis
does not change the degree as defined above. Let �]P � � � � 3 �

be the degree of the monomial ' � � %�)� ) � . Hence
given �\5�"� # 
VUVUVU�
 � � � with degree 	 , one can write

�\5�"� # 
VUVUVUN
 � � � C �eP �	
� � # ! � � ��� �

� � �
� � �

By Lucas’ theorem, this computes the same function as the polynomial \5�:O]�2P � � ��� ! � � �*�:O � . �
For � ^ H�FI
VUVUVUN
��mK , let � P � � � � # # � 3 �

P � �� � # ! � � � denote the base 3 and base � expansions of � . For�\5�$# # 
VUVUVUN
%# � ��^ ,e1 a # # 
VUVUVUN
%# � c let �\5�"� � denote the polynomial �\ applied to the base 3 expansion of � . As
consequence of Lemma 14, to prove Theorem 10 it suffices to prove the following Proposition.

PROPOSITION 15 Let �\5�"� �`^ ,e1$a # # 
VUVUVUN
%# � c and �� �"�b�`^ ,��Va ! # 
VUVUVUN
%! ��c be polynomials such that

�\5�:F � l �7no;Ip03 and ��5�:F � l �7no;Ip � (15)

For ����� � �e
 �\5�"� � l F�no;Ip03 or ��o�"�b� l F�no;Ip �
Further p�
V= � �\ �kUJp�
V= � ���� 8 �C # .

PROOF: Let 5 denote the largest index such that p�
V= �$# 2 ��8 � in �\ . This implies p�
V=�� �\ ��8 3 2 and �\5�"� � P�\5�$# # 
VUVUVUN
%# 2 � . Similarly let 6 be the largest index so that p�
V= �$! 3 � 8R� . Then p�
V= � �� � 8 � 3 and ��5�"�b� P�� �$! # 
VUVUVUW
%! 3 � . Hence p�
V= � �\ ��U>p�
V= � �� � 8 3 2 � 3 . This proves the desired bound for � � �VFM3 2 � 3 . So we may
assume that � 8��VFM3 2 � 3 .

Also � � 3 2 � C7� 3 � C , since if �jP 3 2 � C7� 3 � C7� � , then # # 
VUVUVU�
%# 2 PhF and ! # 
VUVUVUN
%! 3 PhF so

�\�� 3�2 � C � 3 � C �eP �\5�:FI
VUVUVUk
 F � l ��no;*p03 and �� � 342 � C � 3 � C �2P �� �:FI
VUVUVU�
 F � l �`n ;*pb3
which contradicts Equation 15. Let

�� P
� �11. � 0 � � 3�� .

Let us consider inputs of the form �jP�, 3 2 � 3 where F ��, � �� . Observe that this implies # # 
VUVUVU�
%# 2 � C PhF
and # 2 l , � 3 no;Ipb3 . Similarly ! # 
VUVUVUN
%! 3 � C P F and ! 3 l , 3 2 no;Ip�� . Define polynomials � ���o� ^ , 1 a ��c
as � ���_� P �\��:FI
VUVUVUN
 FI
�� � 3 � , and �`���o� ^ ,�� a ��c as �`���_� P �� �:FI
VUVUVUN
 FI
��03 2 � . This implies p�
V= ����� P
p�
V= �$# 2 � � 3�� � and p�
V= � �2�2Php�
V=��$! 3 �.� �9� � . By Equation 15,

� �:F � l �7no;Ip03 and �`�:F � l �`no;Ip�� (16)

� �",B� l F�no;Ip03 or �7�",�� l F�no;Ip � ����, � ��
We define � 
 ,��1

and ��
 ,���
to be the F sets of � ���o� and �`���o� respectively. By equation 16 � and � covera �� c . So by Lemma 11,

�:p�
V=��$# 2 �&�h��� �:p�
V=&�$! 3 �&�h��� 8
��W��� � p�
V=��$# 2 �mUJp�
V=��$! 3 � 8

��N���
The second inequality follows since p�
V=��$# 2 ��
 p 
V= �$! 3 � 8 � . Since p�
V= �*�\ � 8 3 2 p�
V= �$# 2 � and p�
V= � ���� 8
� 3 p�
V=��$! 3 � ,

p�
V= � �\ ��U p�
V= � ���� 8 ��
� 3 2 � 3 � �

�

� �
�VF � �

�VF
The second inequality uses the fact that � 8 �VFM3 2 � 3 hence 3 2 � 3

� �1 . � 0 � ��� �C
#

. �
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5 Ramsey Graphs based on Set Intersections

The constructions of Frankl-Wilson, Alon and Grolmusz use a coloring scheme based on the size of set inter-
sections. In this section we show that these can be constructed from certain polynomials that are closely related
to OR polynomials. These polynomials are also used by Grolmusz [Gro02] and Kutin [Kut02] to give simple
constructions of set systems with restricted intersections mod 6.

DEFINITION 11 The weight- � function � � is a partial function defined on H�FI
J�LK
-

for [ 8 � as follows

� � �TX��2PjF if ��+V�TX��2P � � � �TX��2P"� if ��+V�TX�� � �
The function is undefined for ��+V�TX��`^ a ��� ��
VUVUVU�
�[ c .

Note that � � on � variables is simply the NAND function. We now define polynomial representations of
� - . We give an extension of Definition 2, a similar extension holds for Definition 4

DEFINITION 12 Polynomials \5�:O]�.^ ,@1$a O�c and � �:O]�.^ ,��Va O�c represent the � � function on [ variables if

\5�TX��bil F n ;*pb3 and � �TX��bil F no;*p�� if ��+ �TX���P �
\5�TX�� l F n ;*pb3 or � �TX�� l F no;Ip�� if ��+ �TX�� � �

The degree of the representation is 	_Phn�
��&�:p�
V= �:\ ��
 p�
V=&������� .
Assume that \5�TS C 
VUVUVUW
�S

- � and � �TS C 
VUVUVU�
�S
- � represent � � with degree 	 for some [ 8g� . Define�\5�TS C 
VUVUVU�
�S � � and

�� �TS C 
VUVUVU�
�S � � to be polynomial by substituting � � S �
for S �

when )b� � and setting
S � P F for )�8 � . It is easy to verify that

�\ and
�� represent OR on � variables with degree at most 	 . Further

if \ and � were symmetric polynomials, then so are
�\ and

�� . Thus lower bounds for OR representations
imply lower bounds for � � representations. In particular our lower bounds for OR representations rule out
representations of � � with symmetric polynomials of degree ��� 6 �W� .

Conversely one can construct degree 	 representations of � � from degree 	 symmetric polynomials repre-
senting OR on � variables. We do not know if a similar statement is true for asymmetric polynomials.

LEMMA 16 A degree 	 representation of OR on � variables using symmetric polynomials gives a degree 	
representation of � � on � variables for all [ 8 � ,

PROOF: Let \��:O ��
 �5�:O]� be symmetric polynomials of degree at most 	 on [ variables that represent OR.
Replace each S �

by ��� S �
and multi-linearize. It is easy to show that the resulting polynomials \ � �:O]��
 � � �:O]�

represent � � on � variables. Further, they are symmetric multilinear polynomials of degree 	 , hence we can
write them as

\ � �TS C 
VUVUVUN
�S � � P
	
� ��� 5

� � � �TS C 
VUVUVU�
�S � � � � �TS C 
VUVUVU�
�S � � P
	
� ��� 6

� � � �TS C 
VUVUVUN
�S � �
We obtain new polynomials \ � � and � � � by replacing � � �TS C 
VUVUVUN
�S � � by � � �TS C 
VUVUVU�
�S - � .

\ � � �TS C 
VUVUVUN
�S
- � P

	 � ��� 5
� � � �TS C 
VUVUVUN
�S - � � � � �TS C 
VUVUVUN
�S

- � P
	 � ��� 6

� � � �TS C 
VUVUVUN
�S - �
Since the value of a symmetric function on a FI
J� -input depends only on the weight of the input, one can show
that \ � � and � � � represent � � on [ variables. �

We can use the 4 � 6 ��� OR representations to construct representations of � � . We give a construction of
explicit Ramsey graphs from representations of � � .
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CONSTRUCTION 2 Ramsey Graph 	o���2
�� � from representations of � � .� ���
	�� consists of vectors X ^ H�FI
J�LK
-

of weight � .
� If \5�TX � fm� l F , add �TXe
�fk� to � �
	�� .

THEOREM 17 Given a degree 	 representation of the weight-n function on H�FI
J�LK
-

, the graph 	 has � - � � ver-
tices and ���
	���
����
	���� � -����� .

PROOF: Assume we have prime representation of � � . We associate a polynomial \ � �:O]� with each vertex �
so that \��W�  k� PY\5� � �  m� . Given � PQ�$! C 
VUVUVUW
%!

- � , let � � P F if ! � PRF and � � PYS �
if ! � P � . Set

\��&�:O]�oP \5��� C 
VUVUVUN
��
- � and multi-linearize. Using an argument like in Theorem 3, we can show that this

gives a polynomial representation of 	 over
, 1

. Since the \ �&�:O � s are multilinear polynomials of degree 	 , we
get ���
	��.� � -��� � . Similarly we bound ���
	�� by representing �
	�� over

, �
.

For prime-power representations of OR, we can represent 	 and 	 over
,`1 .

and get a similar bound. �
The OR representation of Equation 1 gives the following construction due to Alon [Alo98]. Let � P 3�� �

��
�[ P �
�
. The vertices are all subsets of

a [ c of size � . Add �TXe
�fk� to ���
	�� if � X � f��&il ���`no;Ipb3 .
The OR representation of Equation 3 gives the Frankl-Wilson construction: Let � P 3

�
� ��
�[RP �

�
. The

vertices are all subsets of
a [ c of size � . Add edge �TXe
�fk� to ���
	�� if � X � f��&il ���`no;*p03 . This construction can

be extended to + 8 � colors using the polynomials constructed in Equation 5.

CONSTRUCTION 3 Extending the Frankl-Wilson construction to + colors.
� Take � P 3 � � ��
�[ P 3 � � C . Vertices are all � subsets of [ .
� Edges are colored H�FI
VUVUVUk
�+ � �LK . Edge �TXe
�fm� is given color ! 1 ��� � � X ��f��(� .

The OR representation of Equation 2 gives the following graph 	 ���e
��_� . Let � P � � ��� � ��
�[RP � � . The
vertices are all subsets of

a [ c of size � . Add �TXe
�fk� to ���
	�� if � X � f���il ���7no;Ip � � . In fact the graph obtained
is the same as Grolmusz. To show this, we first present his construction, following the simplified exposition of
Grolmusz himself [Gro02] and Kutin [Kut02].
��� Let � Pj� � ��� � � . The BBR polynomials give the following representation of � � .

\5�:O]�2P
� � S �
� � � � � 
 � �:O]�2P � � S �� � � � �

Define � �:O]�.^ , / a O�c to be the polynomial obtained by combining these polynomials using the CRT. It follows
that � �TX�� l �7no;Ip G when ��+V�TX��2P � and � �TX is divisible by 2 or 3 when ��+V�TX�� � � .
�$� We can view � �:O]� as an integer polynomial with coefficients in H�FI
VUVUVU�
�� K . By repeating each monomial
sufficiently many times, we can write

� �:O]�2P
	
�

�� 
 � S �

The elements of the universe are the monomials. If � is repeated ! times in � �:O � , then there are ! elements
in the universe, one for each occurance of � . For each X ^ H�FI
J�LK

-
of weight � , the set �`�TX�� consists of

monomials that evaluate to � on X . One can verify that this system has restricted intersections mod 6 since
� �`�TX�� � �`�Tfk��� P � �TX�� fk� .� � The vertices of the graph

�
are the sets �`�TX�� . We add edge � �7�TX���
��`�Tfk��� if � �7�TX�� � �`�Tfk��� l F�no;Ip � .
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We wish to show that this graph
�

is the same as the graph 	 constructed above. We identify X ^ ���
	��
with �`�TX��0^ �5� � � . In

�
, we add an edge between �`�TX�� and �`�Tfm� if � �TX � fm� l F n ;*p5� . By the CRT, this

implies that \��TX � fk� l F no;Ip5� . By Lucas’ theorem, this happens if ��+ �TX �]fk��il ���`no;Ip5� � . But this is
precisely when �TXe
�fk� is an edge of 	 .

This equivalence can also be seen from Kutin’s construction [Kut02]. While Grolmusz’s set system con-
struction is an important result, our approach seems to be simpler for the purpose of Ramsey graph construction.
One can interpret the bounds on clique and independent set size as coming from an extension of the modular
Ray-Chaudhuri-Wilson theorem to prime powers, which we prove below (Theorem 18).

5.1 Set Systems with restricted Intersections modulo Prime Powers

DEFINITION 13 A set system � P H � � K on
a � c is said to have restricted intersections mod � if there exists� � ,��

so that � � � ��n ;*p � �^ �
but � � � � � � ��no;Ip �o^ �

.

For a fixed modulus � , we study the problem of how large � � � can be as a function of � . When �]P 3 is
a prime, the non-uniform modular Ray-Chaudhuri Wilson theorem proved by Deza, Frankl and Singhi [BF92]
gives a bound of

� � ���
� �
� � � � � �

� �
� 3:� � �

When � is not a prime power, Grolmusz shows a lower bound of �k? ADC�E [Gro00]. We give a near-tight bound
of � �� 1 . � C � for the prime power case. This improves the bound of � �� ��� ��� � � � due to Babai et. al [BFKS01].
Previously stronger bounds than ours were known for the special case when � � �$P 3 2 � � i.e. when all set sizes
are congruent to � no;*p 3 2 for some � (see theorems 5.30 and 7.18 in the book by Babai and Frankl [BF92]).
To prove our result, we use the fact that every function from

,.1 .
to
,e1

can be written as a polynomial.

THEOREM 18 Let � be a set system with restricted intersections modulo 3 2 . Then � � �I� � �� 1 . � C � .

PROOF: We construct a univariate integer-valued polynomial \��TS �.^ - a S c of degree 3 2 � � such that

\5�TZ � l
� ��no;*p03 Z�no;Ipb3 2 ^ �
F�no;*p03 Z�no;Ipb3 2 �^ �

By Lucas’ theorem, � Z
3 2 � � � l

� ��no;*p 3 Z l 3 2 � �7n ;*p03 2
F�no;*p 3 Z il 3 2 � �7n ;*p03 2

�
� Z:� �2� 3 2 � �

3 2 � � � l
� ��no;*p 3 Z l �7no;Ip03 2
F�no;*p 3 Z il �7no;Ip03 2

Set \5�TS �@P
	� 
��

� S � �@� 3 2 � �
3 2 � � �

By Lemma 3.1, of [BFKS01] this implies the desired bound. We sketch the argument below.
We will use 	 � to denote the incidence vector of set � �

. Let \ � �TS C 
VUVUVUN
�S � �bP \5� � � 
�� ) S � � and multi-
linearize. It is easy to show that

\ � �
	 � �2Ph\���� � � � � � �(� l � �`no;Ipb3 )kP �
F no;Ipb3 )�iP �

Using this one can show that the polynomials \ � �:O]� are linearly independent over - . Since they are multilinear
polynomials in � variables of degree 3 2 � � , the bound follows. �
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6 Discussion and Open Problems

Lower Bounds for Asymmetric Polynomials: The question of whether there are lower degree weak repre-
sentations of the OR function mod 6 has been open for a while. This work raises the question of whether low
degree OR representations exist for our definition. Better upper bounds would give better Ramsey graphs. Lower
bounds for prime representations will imply lower bounds for weak representations mod 6. Prime-power repre-
sentations are exciting from the lower bound viewpoint since they have not been studied previously and might
turn out to be easier to work with. The 8��:9<;>=���� lower bound of [TB98] applies to both kinds of representations.

Both our lower bounds for symmetric polynomials follow a similar scheme: we characterize the zero-sets
of low-degree symmetric polynomials and then show that there is no good partition of the hypercube. A natural
question is whether such a scheme could extend to the general case. The first step would be to give a of
characterization of zero-sets of low degree polynomials. Motivated by this we pose the following problems:

��� Given � 
hH�FI
J�LK � � � , let p�
V= 1 � �2� denote the smallest degree of a polynomial in
, 1$a O�c which is F at every

point in � but not at the origin. Give a lower bound on p�
V= 1 � �2� .
�$� Given � � H�FI
J�LK � , let p�
V= �1 � �2� denote the smallest degree of a polynomial in

, 1 a O5c which is F over � but
not at every point in H�FI
J�LK � . Give a lower bound on p�
V= �1 � �2� .

Note that both quantities are easy to compute, since they involve checking whether a system of equations
is feasible. We are looking for a combinatorial lower bound, perhaps analogous to Lemma 6. We note that
questions of similar flavor arise in several areas of complexity including low-degree testing [AKK � 03], zero-
testing [KS01] and constructing hitting sets for low degree polynomials [Bog05].

Limitations to Constructions based on Distances: We have shown that using symmetric polynomials in
Construction 1, current techniques cannot give better bounds on ���
	���
����
	�� . Note that for the constructions of
Alon, Frankl-Wilson and Grolmusz, this technique gives tight bounds.This raises the question: do constructions
based on symmetric polynomials contain either a large clique or independent set?

Using a symmetric polynomial in Construction 1 gives a graph where edges are added between vertices
based on the Hamming distance between them. More formally, let � � H ��
VUVUVUk
��mK . The graph 	o��� � is defined
as follows: The vertex set is H�FI
J�LK � . We add �TXe
�fk� to � if 	 �TXe
�fk��^�� . Is it true that for every choice of � ,
	o��� � contains a large clique or independent set?

Similarly in Construction 2, symmetric polynomials give graphs where the vertices are sets and edges are
added based on intersection sizes. Do such graphs always contain large cliques or independent sets?
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