
Time-Bounded Universal Distributions

Luis Antunes∗

University of Porto

Lance Fortnow†

University of Chicago

5th December 2005

Abstract

We show that under a reasonable hardness assumptions, the time-bounded Kolmogorov
distribution is a universal samplable distribution. Under the same assumption we exactly
characterize the worst-case running time of languages that are in average polynomial-time
over all P-samplable distributions.

1 Introduction

Leonid Levin [Lev73] considered a semi-measure defined by µ(x) = 2−K(x) where K(x) is
the prefix-free Kolmogorov complexity of x. Levin showed that µ(x) is universal among the
semi-computable semi-measures.

In this paper we consider the time-bounded variation µt(x) = 2−K
t(x). This measure seems

to sit somewhere between the polynomial-time computable and polynomial-time samplable
distributions. We show that under reasonable hardness assumptions µt(x) is universal among
the polynomial-time samplable distributions, specifically

1. For any polynomial p, there is a polynomial-time samplable distribution τ and a constant
c such that τ(x) ≥ cµp(x) for every x.

2. If E = DTIME(2O(n)) does not have size 2o(n) circuits with Σp
2 gates then for every

polynomial-time samplable distribution τ there is a polynomial p such that µp(x) ≥
p(|x|)τ(x).

The first item was proved earlier by Antunes, Fortnow and Vinodchandran [AFV03]. Our
paper focuses on proving the second item.

Building on Antunes, Fortnow and Vinodchandra [AFV03] we can characterize the worst-
case running time of languages that run in average polynomial-time over the samplable dis-
tributions. We show that if E = DTIME(2O(n)) does not have size 2o(n) circuits with Σp

2

gates then the following are equivalent for all languages L.

∗This author is also partially supported by funds granted to LIACC through the Programa de Financia-

mento Plurianual, Fundação para a Ciência e Tecnologia and Programa POSI. Email: lfa@ncc.up.pt. Web:

http://www.ncc.up.pt/~lfa.
†Email: fortnow@cs.uchicago.edu. Web: http://people.cs.uchicago.edu/~fortnow.

Electronic Colloquium on Computational Complexity, Report No. 144 (2005)

ISSN 1433-8092

1. L is polynomial-time on σ-average for all polynomial-time samplable σ.

2. For all polynomials p, there is an algorithm computing the language L using time
t(x) = 2O(K

p(x)−K(x)+log |x|).

Our proof techniques use recent advances in pseudorandom generators based on hard
functions, specifically the work of Nisan and Wigderson [NW94], Impagliazzo and Wigder-
son [IW97] and Klivans and van Melkebeek [KvM99].

2 Preliminaries

We use binary alphabet Σ = {0, 1} for encoding strings. Our computation model will be
prefix free Turing machines: Turing machines with a one-way input tape (the input head can
only read from left to right), a one-way output tape and a two-way work tape. The function
log denote log2. All explicit resource bounds we use in this paper are time-constructible.

2.1 Kolmogorov Complexity

We give essential definitions and basic result in Kolmogorov complexity and refer the reader
to the textbook by Li and Vitányi [LV97] for more details. We are interested in self-delimiting
Kolmogorov complexity. A set of strings A is prefix-free if there are no strings x and y in A
where x is a proper prefix of y.

Definition 2.1 Let U be a fixed Turing machine with a prefix-free domain. Then for any
string x, y ∈ {0, 1}∗, the Kolmogorov complexity of x given y is, K(x|y) = minp{|p| : U(p, y) =
x}.
For any time constructible t, the t-time-bounded Kolmogorov complexity of x given y is,
Kt(x|y) = min{|p| : U(p, y) = x in at most t(|x|) steps}.

The default value for y is the empty string ε, we typically drop this argument in the notation.
We can fix a universal machine U whose program size |p| is at most a constant additive factor
worse, and the running time t at most a logarithmic multiplicative factor.

A function f : S −→ [0, 1] is called a semi-measure over the space S if

∑

x

f(x) ≤ 1

It is called a measure if equality holds. A semi-measure is called constructive if it is semi-
computable from below, i.e., there is a computable function g(x, t) monotone in t such that
f(x) = limt→∞ g(x, t).

A constructive semi-measure which multiplicatively dominates every other constructive
semi-measure is called universal. In the unbounded case, an enumeration µ1, µ2, · · · of r.e.,
semi-measures can be used to define a universal semi-measure m. For all x ∈ Σ∗ let

m(x) =
∑

n

α(n)× µn(x)

where α is some function such that
∑

n α(n) ≤ 1.
We can use Kolmogorov complexity to define a semi-measure.

Definition 2.2 The algorithmic probability R(x) of a string x is defined as

R(x) = 2−K(x).

R(x) is a semi-measure because of Kraft’s inequality that states that
∑

y∈A 2−|y| ≤ 1 for any
prefix-free set A.

The a priori probability, based on the set of all programs producing a string x, can be
thought as the probability that the universal Turing machine computes the output x if its
input is provided by successive tosses of a fair coin.

Definition 2.3 The a priori probability Q(x) of a string x is defined as

Q(x) =
∑

p

2−|p|

where p ranges over all strings such that U(p) = x but U(p′) does not stop for any prefix p′

of p.

Levin [Lev74] and Gács [Gac74], showed that the universal distribution coincides up to a
multiplicative factor with the algorithmic probability or the a priori probability. So, if x has
high probability because it has many long descriptions then it must have a short description
too.

Theorem 2.4 (Coding Theorem) There is a constant c such that for every x,

− logm(x) = − logQ(x) = − logR(x)

with equality up to an additive constant c

The question whether a similar result holds in the time bound setting is open. It is not
known if there exist strings having no small fast programs, even though they have enough
large fast programs to contribute a significant fraction of their algorithmic probability.

The definition of the t-time bounded universal distribution based on the Kolmogorov
complexity is controversial, some authors define it as Rt(x) and others as Qt(x). We define
it as:

Definition 2.5 The t-time bounded universal distribution, mt is given by mt(x) = 2−K
t(x).

2.2 P-Computable and P-Samplable distributions

Usually simple distributions are identified with the polynomial-time computable distributions.

Definition 2.6 Let t be a time constructible function. A probability distribution function µ
on {0, 1}∗ is said to be t-time computable, if there is a deterministic Turing machine that on
every input x and a positive integer k, runs in time t(|x|+ k), and outputs a fraction y such
that |µ∗(x)− y| ≤ 2−k.

The most controversial definition in the average case complexity theory is the association
of the class of simple distributions with P-computable, which may seem too restricting. Ben-
David et al. in [BDCGL92] introduced a wider family of natural distributions, P-samplable,
consisting of distributions that can be sampled by randomized algorithms, working in time
polynomial in the length of the sample generated.

Definition 2.7 A probability distribution µ on {0, 1}∗ is said to be P-samplable, if there is a
probabilistic Turing machine M which on input 0k produces a string x such that |Pr(M(0k) =
x)− µ(x)| ≤ 2−k and M runs in time poly(|x|+ k).

Every P-computable distribution is also P-samplable, however the converse is unlikely.

Theorem 2.8 ([BDCGL92]) If one-way functions exists, then there is a P-samplable prob-
ability distribution µ which is not dominated by any polynomial-time computable probability
distribution ν.

One important property of mt is that it dominates certain computable distributions.

Theorem 2.9 ([LV97]) mt dominates any t/n-time computable distribution.

It is then natural to ask if there exists a polynomial-time computable distribution dom-
inating mt. Schuler [Sch99] showed that if such a distribution exists then no polynomially
secure pseudo-random generators exists.

Theorem 2.10 ([Sch99]) If there exists a polynomial time computable distribution that
dominates mt then pseudo-random generators do not exist.

While, it is unlikely that there are polynomial-time computable distributions dominating
universal distributions, there are P-samplable distributions dominating the time-bounded
universal distributions.

Theorem 2.11 ([AFV03]) For any polynomial t, there is a P-samplable distribution µ
which dominates mt.

Proof. (Sketch) We will define a samplable distribution µt by prescribing a sampling algorithm
for µt as follows. Let U be the universal machine.

Sample n ∈ N with probability 1
n2

Sample 1 ≤ j ≤ n with probability 1/n
Sample uniformally y ∈ Σj

Run U(y) for t steps. If U stops and outputs a string x ∈ Σn, output x.

For any string x of length n, K t(x) ≤ n. Hence it is clear that the probability that x is
at least 1

n3 2
−Kt(x). ¦

2.3 Pseudo-random Generators

Pseudo-random generators are efficiently computable functions which stretches a seed into
a long string so that for a random input the output looks random for a resource-bounded
machine. We need some pseudorandom generators based on hard functions.

Definition 2.12 Given a Boolean function f : {0, 1}∗ → {0, 1} and an oracle B, the circuit
complexity of CB

f (n) of f at length n relative to B, is the smallest integer t such that there is
a B-oracle circuit of size t that computes f on inputs of length n.

Definition 2.13 The hardness HB
f (n) of f at length n relative to B is the largest integer t

such that, for any oracle circuit D of size at most t with n inputs

|Prx∈Un [D
B(x) = f(x)]− 1/2| < 1/t

Using the hardness of the parity function [Has87], Nisan and Wigderson [NW94] create a
pseudo-random generator that looks random to constant depth circuits.

Lemma 2.14 (Nisan-Wigderson) For any fixed non-negative integer d, there exists a fam-
ily of generators {G0, G1, . . .} with the following properties:

• Gn maps strings of length u polynomial in log n to strings of length n.

• For any circuit D of depth d and size n, we have

| Pr
ρ∈{0,1}n

[D(ρ)]− Pr
σ∈{0,1}u

[D(Gn(σ))]| < 1/n.

• Each output bit of Gn is computable in time polynomial in logn.

Impagliazzo and Wigderson [IW97] strengthen the work of Nisan and Wigderson to show
how to achieve full derandomization based on strong hardness assumptions. Klivans and
van Melkebeek [KvM99] generalize Impagliazzo-Wigderson by showing the results hold for
relativized worlds in a strong way.

Lemma 2.15 (Klivans-van Melkbeek) There exists a positive constant γ and δ such that,
for any oracle B, Boolean function f , and a constructible function h : N→ N satisfying

h(n) ≤ (CB
f (γn))δ/n

the following holds: There exists a Boolean function g such that HB
g ≥ h(n). Computing g

on inputs of length n takes time 2O(n) plus evaluating f on all inputs of length γn.

3 Main Result

In this section we show that the polynomial time bounded coding theorem holds up to a poly-
nomial factor. We start showing that under a reasonable assumption the following hypothesis
holds:

Hypothesis 3.1 Consider F : Σm → Σn, n ≥ m and F ∈ FP. Let Ty = {x ∈ Σm : F (x) =
y}, r = 2blog |Ty |c and Vr = {Tz : |z| = n and |Tz| ≥ r}. Then there exists a pseudo-random
generator G computable in time polynomial in m

G : Σm−log(r)+O(log(n)) → Σm

such that for all Ty ∈ Vr, range(G)∩Ty 6= ∅.

Theorem 3.2 If there exists a language in DTIME(2n) that does not have 2o(n)-size circuits
with Σ2-gates then Hypothesis 3.1 holds.

The proof is done in two steps:

1. show that a random G satisfies Hypothesis 3.1.

2. derandomize. First applying Lemma 2.14 from exponential to polynomial, and then
Lemma 2.15 from polynomial to logarithmic.

Proof.

Let r = 2blog |Ty |c, and consider a partition of Σm induced by the set Vr into 2m

r pieces.
By a coupon collector argument, in average, we need 2m

r log(2
m

r) rounds in order to hit all of
the Tz’s. But

2m

r
log(

2m

r
) ≤

2m

r
log 2m

=
m2m

r

≤
n2m

r

= 2m+O(log n)−log r

So, with high probability a random G : Σm−log(r)+O(log(n)) → Σm hit all the 2m

r sets Tz’s.

To complete the proof we show that for all y, Ty is too small or exists s such that
F (G(s)) = y.

- if |Ty| is too small (|Ty| << 2r) we can approximate it.

Lemma 3.3 ([Sip83]) Given b, k, l > 0, l > max(b, 8), and C ⊆ Σk. Randomly , select
l linear functions H = {h1, · · · , hl}, hi : Σ

k → Σb and l2 strings Z = {z1, · · · , zl2} ⊆ Σb.
Then:

1. If b = 2 + dlog |C|e then

(a) Pr[H(C) ≥ |C|
l] ≥ 1− 2l.

(b) Pr[H(C) ∩ Z 6= ∅] ≥ 1− 2l/8.

2. (a) |H(C)| ≤ l|C|.

(b) Pr[H(C) ∩ Z 6= ∅] ≤ l3/d.

Pick 2
εr
6 independent random hash functions f1, · · · , f2

εr
6
: Σm → Σr and the 2

εr
3 points

zi 1 ≤ zi ≤ 2
εr
3 in Σr. If exists an x ∈ Ty such that fi(x) = zj for some i, j, 1 ≤ i ≤ 2

εr
6

and 1 ≤ j ≤ 2
εr
3 then the set is big, otherwise it is small. Now by Lemma 3.3 we have:

– if |Ty| ≥ 2r then the probability of consider it small is ≤ 2−
2
εr
6
8 .

– if |Ty| ≤
2r

2εr = 2r(1−ε) then the probability of consider it small is ≥ 1 − 2
εr
2

2εr =

1− 2−
εr
2 .

- Exists s such that F (G(s)) = y.

G as a random string has length m×nO(1)

rO(1) 2m, but we cannot afford log(m×nO(1)

rO(1) 2m) bits to
describe the seed. However, we can compose the generator in Lemma 2.15, logarithmic
to polynomial, with the generator in Lemma 2.14, polynomial to exponential, so we can
derandomize.

– Lemma 2.14: computed by a constant depth circuit of size 22
mO(1)

, namely as
follows. For each string y of length n, we have to verify that Ty is too small or
exists an s ∈ Σm−log r+O(logn) such that F (G(s)) = y. Since F ∈ FP and G is
computable in time polynomial in m then F (G()) is computable in time polynomial
in m, say mc. Such a computation can be expressed as an OR of 2m−log r+O(logn)

AND´s of size mc.

– Lemma 2.15: recognized by circuits with ΣP
2 -oracle gates. The circuit just needs

to ask the ΣP
2 oracle gate the s for a given y and verify that the s given produces a

string p such that if we apply F (p) = y. This can be done efficiently because each
bit of p can be computed from s in polynomial time and we can efficiently verify
whether p produces y.

So, under hardness assumption in Lemma 2.15 there exists a efficient pseudo-random
generator rIW with logarithmic seed length that fools ΣP

2 circuits of the required poly-
nomial size, and then using Lemma 2.14 there exists an efficient pseudo-random gener-
ator NW to compute the description of G from rIW (s).

The final description of G consists of, the seed s for rIW that is O(logm), rIW (s) the
seed for NW that is of size m+O(logn)−O(log r) and some O(log n) bits to describe
the parameters of rIW and NW pseudo-random generators, so at the end it requires
m+O(logn)−O(log k) bits. We can compute G as the result of NW (rIW (s)) and this
computation takes time polynomial in n.

¦
We now state our main result

Theorem 3.4 If there exists a language in DTIME(2n) that does not have 2o(n)-size circuits
with Σ2-gates, then for all polynomials t there exists a polynomial t′ such that for all x,

Rt′(x) ≥
Qt(x)

poly(|x|)
.

Proof. Consider a universal Turing machine U : Σm → Σn whose running time t is polynomial
in n, i.e., U t is in FP. For every y ∈ Σn let

Ty = {p ∈ Σm : U t(n)(p) = y},

r = 2blog |Ty |c and
Vr = {Tz : |z| = n and |Tz| ≥ r}

By construction Ty is in Vr and by Hypothesis 3.1 there exists a pseudo-random generator
computable in time polynomial in n (t′(n))

G : Σm−log r+O(logn) → Σm

such that for all Ty ∈ Vr, range(G)∩Ty 6= ∅. Consider
∑

p:U t(p)=y 2
−|p|, the length of the

programs in the sum can not exceed t(n), otherwise there will not be time to read the program.
Fix m′ that maximizes

Qt
m(y) =

∑

p:|p|=m, U t(p)=y

2−|p| =
|Ty|

2m
.

Note that

Qt(y) =

t(n)∑

m=Kt(y)

Qt
m(y)

≤ t(n)Qt
m′(y)

So

Rt′(y) = 2−K
t′ (y)

≥ 2−m
′−O(logn)+log r

=
r

2m′poly(n)

=
|Ty|

2m′poly(n)

=
Qt
m′(y)

poly(n)

≥
t(n)Qt(y)

poly(n)

¦
A distribution is called universal if it multiplicatively dominates every other distribution

in a given class, i.e., it represents the class. Based the previous result we show that Rq is, up
to a polynomial multiplicative factor, a universal P-samplable distribution.

Theorem 3.5 If E = DTIME(2O(n)) does not have size 2o(n) circuits with Σp
2 gates then for

every polynomial-time samplable distribution σ, exists polynomials p and t such that mt(x) ≥
σ(x)
p(|x|) .

Proof. Consider a P-samplable distribution σ, and a string r such that σ(r) = x with
|r| ≤ |x|. Then

mt(x) = 2−K
t(x) =

∑
Ut(p)=x 2

−|p|

p(|x|)
≥

∑
σ(r)=x 2

−|r|

p(|x|)
=

σ(x)

p(|x|)

¦
For a distribution σ, Levin [Lev86] defined a notion of polynomial-time on σ-average.

Definition 3.6 A language L is polynomial-time on σ-average if L is accepted by some ma-
chine M whose running time is t(x) and for some k,

∑

x∈Σ∗

t1/k(x)

|x|
σ(x) <∞

With abuse of notation we say a time function t is polynomial-time on σ-average if it fulfills
the above equation.

Given the hardness assumption we can characterize the worst-case running time for all
languages that are polynomial-time on average on P-samplable distributions.

Theorem 3.7 If E = DTIME(2O(n)) does not have size 2o(n) circuits with Σp
2 gates then,

L is polynomial-time on σ-average for all P-samplable σ if and only if for all polynomials p
the running time for some M(x) accepting L is 2O(K

p(x)−K(x)+log|x|).

To prove Theorem 3.7 we need the following theorem due to Antunes, Fortnow and Vin-
odchandran [AFV03].

Theorem 3.8 (Antunes-Fortnow-Vinodchandan) Let T be a constructible time bound.
Then for any time constructible t, the following statements are equivalent.

1. T (x) ∈ 2O(K
t(x)−K(x)+logn).

2. T is polynomial time on mt-average.

We first need a lemma that if σ dominates τ and t is polynomial time on σ-average then
t is polynomial-time on τ average.

Lemma 3.9 If there is a j such that for all x, σ(x) ≥ τ(x)/|x|j and t is polynomial time on
σ-average then t is polynomial-time on τ average.

Proof. By assumption there is a k such that

∑

x∈Σ∗

t1/k(x)

|x|
σ(x) <∞

Let A be the set of x such that t(x) ≥ |x|2jk. We have

∑

x∈Σ∗

t1/2jk(x)

|x|
τ(x) =

∑

x∈A

t1/2jk(x)

|x|
τ(x) +

∑

x∈Σ∗−A

t1/2jk(x)

|x|
τ(x).

For the first term we have

∑

x∈A

t1/2jk(x)

|x|
τ(x) ≤

∑

x∈A

t1/2jk(x)|x|j

|x|
σ(x) ≤

∑

x∈A

t1/2jk(x)t1/2k(x)

|x|
σ(x) ≤

∑

x∈Σ∗

t1/k(x)

|x|
σ(x) <∞.

For the second term we have

∑

x∈Σ∗−A

t1/2jk(x)

|x|
τ(x) ≤

∑

x∈Σ∗−A

|x|2jk/2jk

|x|
τ(x) ≤

∑

x∈Σ∗−A

τ(x) ≤ 1.

¦
We can now give the proof of Theorem 3.7.

Proof. Suppose L is polynomial-time on σ-average for all P-samplable σ. Fix a polynomial
p. By Theorem 2.11 there is a P-samplable σ that dominates mp. By Lemma 3.9, L is
polynomial-time on mp average. By Theorem 3.8 the running time of L is bounded by
2O(K

p(x)−K(x)+logn).
Now suppose the running time of L is bounded by 2O(K

p(x)−K(x)+log|x|) for all polynomials
p. Let σ be a P-samplable distribution. By Theorem 3.5 there are polynomials p and q such
that mp(x) ≥ σ(x)/q(|x|). By Theorem 3.8, L is polynomial time on mp average and then by
Lemma 3.9, L is polynomial time on σ-average. ¦

4 Concluding Remarks

Dieter van Melkebeek [vM05] showed how to create the pseudorandom generators we need
from a slightly weaker assumption, that E does not have nondeterministic circuits of size
2o(n).

Eric Allender suggested defining a version of mt using Kolmogorov measures that build
the time into the complexity instead of as a parameter. We can define mt(x) = 2−Kt(x)

and mT (x) = 2−KT (x) where Kt(x) = minp{|p| + log t | U(p) outputs x in t steps} and
KT (x) = minp{|p|+ t | U(p) outputs x in t steps}.

Theorem 3.5 holds for mt without the need for a polynomial t, since for all functions t,
mt(x) ≥ mt(x)/t(|x|). However we do not know if mt is dominated by a samplable distribu-
tion.

One can build a samplable distribution that dominates mT but we do not know if Theo-
rem 3.5 holds for that distribution.

Acknowledgments

We thank Eric Allender, Dieter van Melkebeek and Paul Vitányi for helpful discussions and
comments.

References

[AFV03] L. Antunes, L. Fortnow, and V. Vinodchandran. Using depth to capture average-
case complexity. In Fundamentals of Computation Theory, 14th International
Symposium, FCT, volume 2751 of Lecture Notes in Computer Science, pages
303–310. Springer, 2003.

[BDCGL92] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average
case complexity. J. Computer System Sci., 44(2):193–219, 1992.

[Gac74] P. Gacs. On the symmetry of algorithmic information. Soviet Math. Dokl.,
15:1477–1480, 1974.

[Has87] J. Hastad. Computational limitations of small-depth circuits. MIT Press, Cam-
bridge, MA, USA, 1987.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits:
derandomizing the xor lemma. In Proceedings of the 29th STOC, pages 220–229,
1997.

[KvM99] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponen-
tial size proofs unless the polynomial-time hierarchy collapses. In STOC ’99:
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 659–667, New York, NY, USA, 1999. ACM Press.

[Lev73] L. Levin. On the notion of a random sequence. Soviet Math. Dokl., 14:1413–1416,
1973.

[Lev74] L. Levin. Laws of information conservation (nongrowth) and aspects of the
foundation of probability theory. Probl. Inform. Transm., 10:206–210, 1974.

[Lev86] L. Levin. Average case complete problems. SIAM J. Computing, 15(1):285–286,
February 1986.

[LV97] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Ap-
plications. Springer, 1997.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer
and System Sciences, 49:149–167, 1994.

[Sch99] R. Schuler. Universal distributions and time-bounded kolmogorov complexity.
In Proc. 16th Annual Symposium on Theoretical Aspects of Computer Science,
volume 1563, pages 434–443. Springer-Verlag, 1999.

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of
the 15th ACM Symposium on the Theory of Computing, pages 330–335, 1983.

[vM05] D. van Melkebeek, 2005. Personal Communication.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

