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Abstract

Let C be a class of distributions over {0, 1}n. A deterministic randomness extractor for C is
a function E : {0, 1}n → {0, 1}m such that for any X in C the distribution E(X) is statistically
close to the uniform distribution. A long line of research deals with explicit constructions of
such extractors for various classes C while trying to maximize m.

In this paper we give a general transformation that transforms a deterministic extractor E
that extracts “few” bits into an extractor E ′ that extracts “almost all the bits present in the
source distribution”. More precisely, we prove a general theorem saying that if E and C satisfy
certain properties, then we can transform E into an extractor E ′.

Our methods build on (and generalize) a technique of Gabizon, Raz and Shaltiel (FOCS
2004) that present such a transformation for the very restricted class C of “oblivious bit-fixing
sources”. Loosely speaking the high level idea is to find properties of E and C which allow
“recycling” the output of E so that it can be “reused” to operate on the source distribution.
An obvious obstacle is that the output of E is correlated with the source distribution.

Using our transformation we give an explicit construction of a two-source extractor E :
{0, 1}n × {0, 1}n → {0, 1}m such that for every two independent distributions X1 and X2 over
{0, 1}n with min-entropy at least k = (1/2+δ)n, E(X1, X2) is ε-close to the uniform distribution
on m = 2k − Cδ log(1/ε) bits. This result is optimal except for the precise constant Cδ and
improves previous results by Chor and Goldreich (SICOMP 1988), Vazirani (Combinatorica
1987) and Dodis et al. (RANDOM 2004).

We also give explicit constructions of extractors for samplable distributions that extract many
bits even out of “low-entropy” samplable distributions. This improves some previous results by
Trevisan and Vadhan (FOCS 2000).
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1 Introduction

1.1 Background

A very successful paradigm in computer science is that of randomized algorithms and protocols. It
is known that having access to random bits allow parties to perform tasks that cannot be performed
by deterministic parties. (The reader is referred to [18, 34] for textbooks on randomized algorithms).
The most obvious example is the area of Cryptography which inherently relies on the assumption
that parties have access to random bits (that is to a string of independent coin tosses).

A large body of research is concerned with obtaining such a sequence of random bits. A common
strategy is to try and sample from some source distribution X (say on n bit strings) that is available
to a computer (some examples are: electro-magnetic noise, key strokes of user and timing of past
events). However, it is unlikely that this gives bits that are independent coin tosses. A successful
paradigm is the “randomness-extraction paradigm” in which one attempts to extract bits that are
(close to) uniform from the source distribution X.

1.1.1 Deterministic randomness extractors

A “deterministic randomness extractor” is a function that “extracts” bits that are (statistically
close to) uniform from “weak sources of randomness” which may be very far from uniform.

Definition 1.1 (deterministic extractor). Let C be a class of distributions on {0, 1}n. A func-
tion E : {0, 1}n → {0, 1}m is a deterministic ε-extractor for C if for every distribution X in C the
distribution E(X) (obtained by sampling x from X and computing E(x)) is ε-close to the uniform
distribution on m bit strings.1

Given a class C the goal of this field is to design explicit (that is polynomial time computable)
deterministic extractors that extract as many random bits as possible.

1.1.2 Some related work on deterministic randomness extraction.

Various classes C of distributions were studied in the literature: The first construction of determin-
istic extractors can be traced back to von Neumann [39] who showed how to use many independent
tosses of a biassed coin (with unknown bias) to obtain an unbiased coin. Blum [5] considered
sources that are generated by a finite Markov-chain. Santha and Vazirani [27], Vazirani [36, 37],
Chor and Goldreich [6], Dodis et al. [9], Barak, Impagliazzo and Wigderson [1], Barak et al. [2]
and Raz [24] studied sources that are composed of several independent samples from various classes
of “high entropy” distributions. Chor et al. [7], Ben-Or and Linial [4], Cohen and Wigderson [8],
Kamp and Zuckerman [16] and Gabizon, Raz and Shaltiel [12] studied bit-fixing sources which are
sources in which a subset of the bits are uniformly distributed. Trevisan and Vadhan [33] studied
sources which are “samplable” by small circuits. Barak et al. [2] and Gabizon and Raz [11] studied
sources which are uniform over an affine subspace.

1Two distributions P and Q over {0, 1}m are ε-close (denoted by P ∼ε Q) if for every event A ⊆ {0, 1}m,
|P (A) − Q(A)| ≤ ε.
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1.1.3 Seeded extractors

A negative result was given by Santha and Vazirani [27] that exhibit a very natural class of high-
entropy sources that does not have deterministic extractors. This led to the development of a
different notion of extractors called “seeded extractors”. Such extractors are allowed to use a short
seed of few truly random bits when extracting randomness from a source. (The notion of “seeded
extractors” emerged from attempts to simulate probabilistic algorithms using weak random sources
[38, 6, 8, 40, 41] and was explicitly defined by Nisan and Zuckerman [22].) Unlike deterministic
extractors, seeded extractors can extract randomness from the most general class of sources: Sources
with high (min)-entropy.

Definition 1.2 (min-entropy). Given a random variable X taking values in {0, 1}n the min-

entropy of X denoted H∞(X) is given by minx∈{0,1}n log(1/ Pr[X = x]).

A seeded randomness extractor is a function which receives two inputs: In addition to a sample
from a source X, a seeded extractor also receives a short “seed” Y of few uniformly distributed bits.
Loosely speaking, the extractor is required to output many more random bits than the number of
bits “invested” as a seed.

Definition 1.3 (seeded extractors for high min-entropy sources). A function E : {0, 1}n×
{0, 1}d → {0, 1}m is a strong (k, ε)-extractor if for every random variables X, Y such that H∞(X) ≥
k and Y is independent of X and uniformly distributed over {0, 1}d: (E(X, Y ), Y ) is ε-close to the
uniform distribution on m + d bits.

A long line of research focuses on constructing such seeded extractors with as short as possible
seed length that extract as many as possible bits. There are explicit constructions of (k, ε)-extractors
that use seed of length polylog(n) + O(log(1/ε)) to extract k random bits. The reader is referred
to [19, 20, 35] for surveys on applications of seeded randomness extractors and to [28] for a survey
that focuses on recent explicit constructions of seeded randomness extractors.

1.2 How to get more mileage from deterministic extractors

Let C be some class of distributions over {0, 1}n and assume that for any X in C, H∞(X) ≥ k. The
randomness extraction problem is to design an explicit extractor E for C which extracts as many
random bits as possible. It is natural to hope to extract m ≈ k random bits as all distributions in
C “contain” k random bits. Suppose we already have an explicit ε-extractor E for C that extracts
t < k random bits it is natural to try to “get more mileage from E”. That is to try and extract
more bits by “recycling the output of E” as follows:

E′(x) = E1(x, E(x))

where E1 : {0, 1}n × {0, 1}t → {0, 1}m is a seeded extractor for min-entropy threshold k. If t
is large enough (say t > polylog(n)) then there are explicit constructions of a seeded extractor E1

that extracts all the k random bits from the source distribution.
There is however an obvious obstacle. Let X be a distribution in C. While it is true that E(X)

is close to uniform it is inherently dependent on the distribution X. Thus, when we run E1 we
run it with two dependent distributions X, E(X) and cannot conclude that the output is close to
uniform.
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1.2.1 The technique of Gabizon et al.

Gabizon et al. [12] focus on the class of (oblivious) bit-fixing sources with min-entropy k. These
are distributions X over n bit strings such that there is a set S ⊆ [n] of k indices such that X
restricted to S is uniformly distributed and the remaining bits are fixed. They show a specific
construction of a function E1 : {0, 1}n × {0, 1}t → {0, 1}m such that if E is an ε-extractor which
extracts t random bits from “low-entropy” bit-fixing sources then for every distribution X in the
class, E′(X) = E1(X, E(X)) is O(ε · 2t)-close to the uniform distribution on m ≈ k bits.

That is at least for the restricted case of bit-fixing sources, if one starts with an extractor E
that extracts few bits out of X then it is possible to come up with a function E1 which gives rise
to a deterministic extractor E ′ that extracts almost all the bits out of the source distribution. It
is important to notice that to achieve this we have to require that E works for a class C which
is larger than our “target class”: It is not sufficient that E extracts t random bits from bit-fixing
sources with min-entropy k. It is crucial that E extracts randomness even from bit fixing sources
with min-entropy k′ < k. We also remark that E1 needs to have a certain special structure. We
elaborate more on the construction of [12] later on.

Following [12], Gabizon and Raz [11] used related ideas to get more mileage out of deterministic
extractors for a “affine sources over large fields”. (These are sources in which X = (X1, . . . , Xn)
where each Xi belongs to a field of size at least poly(n) and there exists a subset S = {i1, . . . , ik}
of indices such that X restricted to S is uniformly distributed and for every i 6∈ S, Xi is given by
a linear function of Xi1 , . . . , Xik .) We elaborate more on the construction of [11] later on.

1.2.2 Our result: a general transformation

We now explain our main result. We are given a distribution X over {0, 1}n and functions E :
{0, 1}n → {0, 1}t, F : {0, 1}n × {0, 1}t → {0, 1}r. We want to get that F (X, E(X)) is close to
F (X⊗Ut).

2 We show that a sufficient condition is that there is a class C of distributions such that:

• X belongs to C.

• E is an ε-extractor for C with ε < 2−t.

• For every y ∈ {0, 1}t and a ∈ {0, 1}r, (X|F (X, y) = a) belongs to C. (We refer to this
condition as a “closeness condition”).

Thus, for example if F is a seeded extractor we get that F (X, E(X)) is close to F (X ⊗ Ut)
which is in turn close to uniform. We now give a formal statement of our main result:

Theorem 1.4 (main theorem). Let C be a class of distributions over {0, 1}n. Let E : {0, 1}n →
{0, 1}t be an ε-extractor for C. Let F : {0, 1}n×{0, 1}t → {0, 1}r. Let X be a distribution in C and
assume that:

Closeness condition: For every y ∈ {0, 1}t and a ∈ {0, 1}r, (X|F (X, y) = a) belongs to C.

Then F (X, E(X)) ∼ε·2t+3 F (X ⊗ Ut).

We remark that the distribution (X|F (X, y) = a) typically has lower min-entropy than the
distribution X. Thus, to apply the Theorem on a distribution X with min-entropy k we typically
need an extractor E that extracts randomness from distributions with min-entropy smaller than k.

2For two distributions P, Q we use P ⊗Q to denote the distribution of pairs (p, q) sampled independently from P
and Q.
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Overview of the argument: We prove (a more general version of) Theorem 1.4 in Section
3. We now explain the intuition behind the proof. It is helpful to oversimplify the situation and
assume that E is errorless, that is that E is a 0-extractor for C.

Our goal is to show that F (X, E(X)) is equivalent to F (X⊗Ut). For this purpose it is sufficient
to show that for every y ∈ {0, 1}t, F (X, y) is equivalent to (F (X, E(X))|E(X) = y). This is because
by the assumption that X belongs to C we have that E(X) is equivalent to Ut.

For this purpose, it is sufficient to show that for every y ∈ {0, 1}t, F (X, y) is independent of
E(X) because then

(F (X, E(X))|E(X) = y) ∼ (F (X, y)|E(X) = y) ∼ F (X, y)

However, we have that for every y ∈ {0, 1}t and a ∈ {0, 1}r, (X|F (X, y) = a) is a distribution
in C. It follows that (E(X)|F (X, y) = a) is the uniform distribution. As this is true for every
a ∈ {0, 1}r we have that E(X) is independent of F (X, y). The actual proof imitates the outline
above while taking into account that ε > 0.

1.3 Applications

We show that our technique is applicable to a large variety of classes of sources.

1.3.1 Extractors for two independent sources

We now consider the class of random variables X that are composed of two independent random
variables X1 and X2 such that H∞(X1) ≥ k1 and H∞(X2) ≥ k2.

Definition 1.5 (two source extractors). A function E : {0, 1}n1 × {0, 1}n2 → {0, 1}m is
a (k1, k2; ε)-two-source extractor if for every two independent random variables X1, X2 such that
H∞(X1) ≥ k1 and H∞(X2) ≥ k2: E(X1, X2) is ε-close to the uniform distribution on m bits.

The function E is strong in the first source if (X1, E(X1, X2)) is ε-close to (X1, Z) where Z is
an independent random variable that is uniformly distributed over {0, 1}m.

As noted earlier in Section 1.1.2, a long line of research is concerned with explicit constructions
of such extractors. We now mention only results that are directly relevant to this paper. We focus
on the scenario in which n1 = n2 and we denote this length by n. Furthermore we are concerned
with entropy threshold k = (1/2 + δ)n for some constant δ > 0 and set k1 = k2 = k.

Chor and Goldreich [6] proved that the function E(x, y) = IP (x, y)mod2 (here IP is the inner-
product function) is a (k, k; ε)-two source extractor (with error ε = 2−ηn where η > 0 is a constant
that depends only on δ). Note that this extractor extracts only a single bit out of the source
distribution. Vazirani [36, 37] (see also [10, 9]) constructed a function E that extracts Ω(δn) bits
with the same properties. Dodis et al. [9] observed that Vazirani’s extractor is strong in the first
source (and also in the second one). A consequence is that it is possible to use the output of E
to operate on the first source with a seeded extractor. More specifically, that the construction
E′(x1, x2) = E1(x1, E(x1, x2)) where E1 is a seeded extractor yields a two-source extractor. Using
this method, [9] construct an extractor that extracts k + Ω(δn) bits (that is about half the entropy
present in the source distribution).

In this paper we use our technique (and a recent extractor construction of [24]) to improve this
result. In particular we show how to extract 2k−C log(1/ε) bits (for a constant C depending only
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on δ). That is, we extract almost all the 2k random bits present in the source distribution. This is
stated formally in the next Theorem:

Theorem 1.6. For every constant δ > 0 there is a constant C > 0 such that for large enough n,
let k1 = k2 = (1/2+ δ)n and let ε ≤ 2− log4 n then there is an explicit (k1, k2; ε)-two-source extractor
E : {0, 1}n × {0, 1}n → {0, 1}m for m = k1 + k2 − C log(1/ε).

Radhakrishnan and Ta-Shma [23] showed that any two-source extractor must suffer an entropy
loss of 2 log(1/ε). It follows that the output length of our extractor is optimal except for the value
of the constant C.

Overview of the argument: We show that the function

E′(x1, x2) = E1(x1, E(x1, x2)), E2(x2, E(x1, x2))

is a two-source extractor at least when E is a two source extractor with somewhat stronger proper-
ties. (We find this surprising as unlike the case of [9] we have that (X1, X2) is inherently dependent
on E(X1, X2)). The basic intuition is that we can use our transformation whenever the extractor
E is able to extract randomness from sources of type ((X1, X2)|E2(X2, y) = a). As X1, X2 are
independent we have that:

((X1, X2)|E2(X2, y) = a) ∼ (X1, (X2|E2(X2, y) = a))

We can set the parameters of E2 so that (X2|E2(X2, y) = a) has (a small amount of) entropy.
Finally, the extractor of [24] can handle scenarios in which one source has entropy k = (1/2 + δ)n
and the other has low entropy. The exact details are given in Section 4. We remark that any future
improvement in constructing two-source extractors for low entropy threshold can be plugged into
our technique.

1.3.2 Extractors for samplable distributions

Trevisan and Vadhan [33] suggested studying the class of distributions that are samplable by
polynomial size circuits.

Definition 1.7 (Samplable distributions). A function f : {0, 1}r → {0, 1}n ∪ {⊥} is a sampler

for a distribution P over {0, 1}n if for a random variable R that is uniformly distributed in {0, 1}r:

• (f(R)|f(R) 6= ⊥) ∼ P .

• Pr[f(R) = ⊥] ≤ 1/3.

Given a class F of functions we define a class of distributions samplable by F which is the class
of all distributions P such that there is an f in F which is a sampler for P .

We remark that this definition is slightly different than that in [33].3

3We allow the sampling function to output ⊥. This is a minor difference and we take this approach to allow
sampling from distributions which have probabilities that aren’t powers of two. We stress that all our results also
follow in the definition of [33].
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Definition 1.8 (Extractors for samplable distributions). A function E : {0, 1}n → {0, 1}m

is a (k, ε)-extractor for a class F of functions if E is an ε-extractor for the class of distributions X
samplable by F which satisfy H∞(X) ≥ k.

Following [33] we are interested in extracting randomness from distributions X on n bit strings
that are samplable by size s = nO(1) circuits. Trevisan and Vadhan showed that such extractors
exist (and in fact are computable by size sO(1) circuits). They also showed that any extractor E for
such distributions cannot have a size s circuit. This means that with our current state of knowledge
we cannot expect to have unconditional explicit extractors as such extractors are polynomial time
computable functions that cannot be computable by size s circuits. Trevisan and Vadhan show
that explicit extractors can be constructed assuming the existence of polynomial time computable
functions that are hard on average for size s Σ1-circuits.4

Theorem 1.9. [33] Let f : {0, 1}n → {0, 1} be a function such that for any Σ1-circuit C of size
s, Pr[C(X) = f(X)] ≤ ε (here X is a uniformly distributed random variable over {0, 1}n). Then
for any ∆ > 0, f is a (n − ∆, O(2∆ε))-extractor for distributions samplable by size (2∆εs)Ω(1)

(deterministic) circuits.

It is natural to extend this approach to extract more than one bit. Note that a function
f as above satisfies that the distribution (X, f(X)) is indistinguishable from uniform by size s
Σ1-circuits. By using the same argument as in [33] it is possible to extract t < log s bits using
an analogous assumption that there is a pseudorandom generator G such that the distribution
(X, G(X)) is indistinguishable from uniform by small Σ1-circuits.

Lemma 1.10. Let G : {0, 1}n → {0, 1}t be a function such that for any Σ1-circuit D of size s:

| Pr
X∈R{0,1}n

[D(X, G(X)) = 1]− Pr
X∈R{0,1}n,Y ∈R{0,1}t

[D(X, Y ) = 1]| ≤ ε

If t ≤ log s− 1 then for any ∆ > 0, G is a (n−∆, O(2∆ε)-extractor for distributions samplable by
size (2∆εs)Ω(1) (deterministic) circuits.

In Section 6 we discuss whether the assumptions of Theorem 1.9 and Lemma 1.10 are equivalent.
We remark that this argument only works for t < log s.5 Given a size bound s = nO(1) if there
exist a generator G as in the lemma then we get an extractor. We remark that as we want G to
run in polynomial time we must assume that this polynomial is larger than s and can extract at
most t = O(log n) bits.

Using our general approach we show how to convert an extractor E that extracts t = O(log n)
bits into an extractor E ′ that extracts almost all the bits present in the source distribution. Our
construction improves a different construction implicit in [33] that achieves the same goal for the
special case when the min-entropy threshold is k = (1 − ν)n for a small constant ν > 0. The
advantage of our construction (that is presented in Section 5) is that it works for any k > log4 n. One
subtlety in our construction (that also occurs in the construction of [33]) is that it is not sufficient
that the initial extractor E extracts randomness from distributions samplable by deterministic

4A Σ1-circuit is a circuit which in addition to the standard boolean gates is also allowed to use gates which
compute a Σ1-complete problem (e.g. satisfiability). The precise definition appears in Definition 5.1.

5Loosely speaking, this is because the proof converts a distinguisher D′ for G(X) where X is a samplable distri-
bution into a distinguisher D as above. The assumption that t < log s guarantees that D′ can be expressed as a size
2t < s circuit.
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circuits. Instead we make the stronger requirement that E extracts randomness from distributions
samplable by Σ1-circuits.

Thus, we need to move everything “up one level in the hierarchy”. Following [33] we notice that
Lemma 1.10 relativizes and therefore if one assumes that G fools Σ2-circuits then one gets that G is
an extractor for distributions samplable by Σ1-circuits. We now show how to use our transformation
to improve some constructions of extractors for samplable distributions. Nevertheless, we remark
that in this setting the improvements are less significant as we do not have good extractors to
“start from”. Putting the ideas sketched above together we get that if the assumption of Lemma
1.10 holds for Σ2-circuits with ε = 2−(1−β)n for some constant β > 0 then for any k and constant
α > 0 we get an explicit extractor E that on distribution samplable by size sΩ(1) circuits extract
(1− α)k − βn−O(log n) bits. Exact details are given in Section 5.

Overview of the argument: Our basic construction is given by E ′(x) = E1(x, E(x)) where
E is a deterministic extractor for distributions samplable by small Σ1-circuits and E1 is a seeded
extractor. The main problem is that to apply Theorem 1.4 we need (X|E1(X, y) = a) to be a
smaplable distribution. We have that E is polynomial time computable, however this does not
suffice to get that the distribution above is samplable by deterministic circuits. It does follow (by
using results on sampling NP witnesses [31, 15, 3]) that the distribution above is samplable by a
Σ1-circuit and this is why we require that E is an extractor for such distributions.

We remark that Tevisan and Vadhan also give another construction of extractors for samplable
distributions that starts from worst case hardness. Even with the strongest possible assumptions
this construction only gives an extractor for entropy threshold k = (1−ν)n for some small constant
ν > 0. Thus, at the moment our transformation does not give an improvement in this setup. In
Section 6 we elaborate on open problems.

1.3.3 Extractors for bit-fixing sources

For completeness we now sketch how the main result of Gabizon, Raz and Shaltiel [12] follows in our
framework. We are interested in extracting randomness from bit-fixing sources with min-entropy
k. We are given an extractor E that extracts few bits (say t bits) and want to convert it into an
extractor E ′ that extracts almost all the bits present in the source distribution. Interestingly, in this
scenario we cannot use the construction E ′(x) = E1(x, E(x)) as used in the previous applications.
Instead we use Theorem 1.4 to construct a “seed-obtainer”. This is an object A(x) introduced in
[12] which on a bit-fixing source X with min-entropy k outputs two distributions X ′ and Z such
that X ′ is a bit-fixing source with min-entropy k′ ≈ k, Z is short and is (close to) uniform and X ′

and Y are (close to) being independent. Given a seed obtainer we can use Z as a seed to a seeded
extractor and extract randomness from X ′ and the point is that we are guaranteed that X ′ and Z
are (close to) independent.

To construct a seed obtainer, [12] use an “averaging sampler” this is a function Samp that given
a random seed of t/2 random bits produces a subset T ⊆ [n] which “behaves like a random set” in
the sense that it intersects every fixed set T in essentially the same way as if it was a random set.
(The reader is referred to [13] for a survey on averaging samplers.) To construct the seed-obtainer
we consider the following function F : {0, 1}n × {0, 1}t → {0, 1}n: Given x and y, F splits the t
bits long y into two t/2 bit long blocks y1, y2. It uses y1 as a seed to a sampler to produce a set
T and sets x′ to be x|T (x restricted to the indices in T ) and z = y2. The parameters are set so
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that with high probability (over the choice of the seed to the sampler y1) T hits approximately k′

indices of bits that are random in X.
It follows that if we apply F on X and an independent uniformly distributed random variable

Y then we obtain X ′ and Z such that indeed X ′ is (a convex combination of) bit-fixing sources
with min-entropy k′ and Z = Y2 is independent and uniformly distributed. Thus, if we can meet
the requirements of Theorem 1.4 then we can argue that F (X, E(X)) is close to F (X, Y ) and this
means that A(x) = F (x, E(x)) gives a seed obtainer. To meet the requirements we note that
(X|F (X, y) = (x′, y2)) is a bit fixing source with k − k′ bits. (This is because the conditioning
misses k − k′ indices in which X is random). Thus, if E is an extractor for bit-fixing sources with
min-entropy k − k′ then this transformation works and yields a seed obtainer.

1.3.4 Extractors for affine sources

Recall that Gabizon and Raz [11] used an analysis analogous to that in [12] to get more mileage
out of extractors for affine sources. For completeness we sketch how this transformation follows in
our framework.

We are given an extractor E : {0, 1}n → {0, 1}t that extracts randomness from distributions
that are uniform over an affine space of dimension k′. We want to get more mileage by using
E′(x) = E1(x, E(x)) where E1 is a seeded extractor. Given an affine source X of dimension k > k′

we want to apply Theorem 1.4. We need that (X|E1(X, y) = a) is an affine source. This follows
when E1(X, y) is a linear function. Thus, we can get more mileage out of affine sources by using
seeded extractors which for every seed y are linear functions. Gabizon and Raz give a construction
of a deterministic extractor which extracts few bits and a seeded extractor which is linear and as
a consequence get a deterministic extractor that extracts many bits.

We remark that Gabizon and Raz focus on the case where field is of polynomial size (rather
than say size two) because their initial deterministic extractor only works in this case. Nevertheless,
we want to point out that the transformation works for any field. In fact, the transformation can
also be applied in the affine-source disperser of Barak et al. [2] but this requires getting into the
details of that paper (essentially because the final object is a disperser and not an extractor).

1.4 Can we get more mileage from seeded extractors?

In Section 6 we give a counterexample showing that our method cannot be directly applied to get
more mileage out of seeded extractors. One reason that our analysis does not work for seeded
extractor is that we require the error ε of the initial extractor E to satisfy ε ≤ 2−t where t is the
output length of E. However, by the lower bounds of [22, 23] an extractor with error ε must have a
seed of length at least 2 log(1/ε) > t and thus it is not useful as it spends more bits than it extracts.

1.5 Outline of this paper

In Section 2 we give some necessary preliminaries. In Section 3 we explain our main transformation,
restate Theorem 1.4 in a more general way and prove it. In Section 4 we show how to apply our
technique to two-source extractors. In Section 5 we show how to apply our technique to exractors for
samplable distributions. Finally, we discuss limitations of our technique and present open problems
in Section 6.
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2 Preliminaries

Notations: We use [n] to denote the set {1, . . . , n}. We denote the length of a string x by |x|.
Logarithms will always be taken with base 2. We use Un to denote the uniform distribution over n
bits. Given a distribution A we use w ← A to denote the experiment in which w is chosen randomly
according to A.

2.1 Probability distributions

Distributions: Some of the proofs in this paper require careful manipulations of probability
distributions. We use the following notation. We denote the probability of an event B under a
probability distribution P by PrP [B]. We say that two distributions P and Q are ε-close (denoted
P ∼ε Q) if for any event B, |PrP [A]− PrQ[A]| ≤ ε.

Random variables: A random variable R that takes values in U is a function R : Ω→ U (where
Ω is a probability space). We write Pr[R ∈ B] to denote the probability of the event B in the
probability space. We sometimes refer to R as a probability distribution over U (the distribution
of the output of R). For example, given a random variable R and a distribution P we sometimes
write “R ∼ P” and this means that the distribution of the output of R is equal to P .

Pairs of distributions and variables: Given two random variables R1, R2 over the same
probability space Ω we use (R1, R2) to denote the random variable induced by the function
(R1, R2)(ω) = (R1(ω), R2(ω)). Given two probability distributions P1, P2 over domains Ω1, Ω2

we define P1 ⊗ P2 to be the product distribution of P1 and P1 which is defined over the domain
Ω1 × Ω2.

Definition 2.1 (conditioning distributions and random variables). Given a probability dis-
tribution P over some domain U and an event A ⊆ U such that PrP [A] > 0 we define a distribution

(P |A) over U as follows: Given an event B ⊆ U , Pr(P |A)(B) = PrP [B|A] = PrP [A∩B]
PrP [A] .

We extend this definition to random variables R : Ω → U . Given an event A ⊆ Ω we define
(R|A) to be the probability distribution over U given by Pr(R|A)[B] = Pr[R ∈ B|A].

We also need the following standard technical lemmas. We omit the proofs in this version.

Lemma 2.2. Let R1, R2 be random variables taking values in A. Let f : A→ B be some function.
If R1 ∼ε R2 then f(R1) ∼ε f(R2).

Lemma 2.3. Let R1 be a random variable taking values in A1 and R2 be a random variable taking
values in {0, 1}v. Assume that H∞(R1) ≥ k. Then for every ρ > 0 there exists a set G ⊆ {0, 1}t

such that:

1. Pr[R2 ∈ G] ≥ 1− ρ.

2. For every a ∈ G, H∞((R1|R2 = a2)) ≥ k − (v + log(1/ρ)).

Lemma 2.4. Let R1, V1 be random variables taking values in A1 and R2, V2 be random variables
taking values in A2. Suppose that:

1. R2 ∼ε2 V2.
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2. For every a ∈ A2, (R1|R2 = a) ∼ε1 (V1|V2 = a).

Then (R1, R2) ∼(ε1+ε2) (V1, V2).

Lemma 2.5. Let R1, V1 be random variables taking values in A1 and R2 be random variables taking
values in A2. Suppose that there exists a set G ⊆ A2 such that:

1. Pr[R2 ∈ G] ≥ 1− ε2.

2. For every a ∈ G, (R1|R2 = a2) ∼ε1 V1.

Then (R1, R2) ∼(ε1+ε2) (V1, R2).

We also use the following easy Lemma proven in [12].

Lemma 2.6. [12] (Lemma 2.6) Let R1 be a random variable taking values in A1 and R2 be a
random variable taking values in {0, 1}t. Assume that (R1, R2) ∼ε (R1 ⊗ Ut). Then for every
b ∈ {0, 1}t, (R1|R2 = b) ∼ε·2t+1 R1.

3 A transformation for a general family of sources

3.1 The main theorem

For some of our intended applications we need to restate Theorem 1.4 in a more general form. We
first need the definition of a strong deterministic extractor.

Definition 3.1 (strong deterministic extractor). Let C be a class of distributions on {0, 1}n.
A function E : {0, 1}n → {0, 1}m is a strong deterministic ε-extractor for C with respect to some
function Part : {0, 1}n → {0, 1}p if for every distribution X in C: (E(X), Part(X)) is ε-close to the
distribution (Z, Part(X)) where Z is an independent random variable that is uniformly distributed
over {0, 1}m.

As the statement of Theorem 3.2 below is rather technical, we first explain the main differences
from the more simple Theorem 1.4.

A weaker closeness condition: We replace the “closeness condition” of Theorem 1.4 by a wekaer
condition which essentially says that the closeness condition holds with high probability rather
than with probability one.

A stronger guarantee: We don’t only claim that F (X, E(X)) is close to F (X ⊗ Ut) but rather
that for any y ∈ {0, 1}t, (F (X, E(X))|E(X) = y) is close to F (X, y).

Allowing E to be strong: We allow E to be a strong extractor (with respect to some function
Part). In this case we get the stronger conclusion that F (X, E(X)) is close to being indepen-
dent from Part(X).

Recycling the bits of E(X): We replace the former guarantee that F (X, E(X)) is close to F (X⊗
Ut) by the stronger guarantee that (F (X, E(X)), E(X)) is close to (F (X, Y ), Y ) where Y is
independent of X and is uniformly distributed in {0, 1}t.

We now state the more general version.
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Theorem 3.2 (main theorem: more general version). Let C be a class of distributions over
{0, 1}n. Let E : {0, 1}n → {0, 1}t be an ε-extractor for C that is strong with respect to a function
Part : {0, 1}n → {0, 1}p. Let F : {0, 1}n × {0, 1}t → {0, 1}r. Let X be a distribution in C and
assume that:

Weak closeness condition: For every y ∈ {0, 1}t there exists a set Gy ⊆ {0, 1}
r such that:

1. Pr[F (X, y) 6∈ Gy] ≤ ε.

2. For every a ∈ Gy, (X|F (X, y) = a) belongs to C.

Then,

1. For every y ∈ {0, 1}t, (Part(X), F (X, E(X))|E(X) = y) ∼ε·2t+2 (Part(X), F (X, y)).

2. Let Y be a random variable that is independent of X and is uniformly distributed over {0, 1}t.
We have that: (Part(X), F (X, E(X)), E(X)) ∼ε·2t+3 (Part(X), F (X, Y ), Y ).

Note that Theorem 1.4 is indeed a special case of Theorem 3.2 by choosing Part(X) to be
some constant function. It is therefore sufficient to prove Theorem 3.2. This is done in the next
subsection.

3.2 Proof of correctness

In this Section we prove Theorem 3.2. Let X be a distribution in C which satisfies the “weak
closeness condition”. Fix some y ∈ {0, 1}t and let Gy be the set guaranteed by the “weak closeness
condition”.

Lemma 3.3. For every a ∈ Gy, (E(X), Part(X)|F (X, y) = a) ∼ε (Ut ⊗ Part(X)).

Proof. This follows because for this choice of a the “weak closeness condition” gives that X ′ =
(X|F (X, y) = a) is a distribution in C. The function E is an ε-extractor for C that is strong with
respect to Part and the lemma follows by applying the extractor E on X ′.

Lemma 3.4. (E(X), Part(X), F (X, y)) ∼2ε (Ut ⊗ (Part(X), F (X, y)).

Proof. The lemma will follow by applying Lemma 2.5. We choose:

• R1 = (E(X), Part(X)).

• R2 = F (X, y).

• V1 = (Ut ⊗ Part(X)).

By the “weak closeness condition” and Lemma 3.3 we have that:

1. Pr[R2 6∈ Gy] ≤ ε.

2. For every a ∈ Gy, (R1|R2 = a) ∼ε V1.

Applying Lemma 2.5 we conclude that (R1, R2) ∼2ε (V1, R2) or in other words:

(E(X), Part(X), F (X, y)) ∼2ε ((Ut ⊗ Part(X)), F (X, y)) ∼ (Ut ⊗ (Part(X), F (X, y)))
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Lemma 3.5. (Part(X), F (X, y)|E(X) = y) ∼2ε·2t+1 (Part(X), F (X, y)).

Proof. The lemma will follow by applying Lemma 2.6. We choose R1 = (Part(X), F (X, y)) and
R2 = E(X). By Lemma 3.5 we have that (R1, R2) ∼2ε (R1 ⊗ Ut). It follows from Lemma 2.6 that
for every b ∈ {0, 1}t, (R1|R2 = b) ∼2ε·2t+1 R1. In particular choosing b = y we get that:

(Part(X), F (X, y)|E(X) = y) ∼2ε·2t+1 (Part(X), F (X, y))

as required.

We are now ready to prove the 1st item of Theorem 3.2.

(Part(X), F (X, E(X))|E(X) = y) ∼ (Part(X), F (X, y)|E(X) = y) ∼ε·2t+2 (Part(X), F (X, y)) (1)

Where the last move is by Lemma 3.5. The 1st item follows. (We remark that for the 1st item
we did not use the assumption that X is in C). We now prove the second item. This will follow
by applying Lemma 2.4. For this purpose we add to our probability space an independent random
variable Y that is uniformly distributed over {0, 1}t. We choose:

• R1 = (Part(X), F (X, E(X))).

• R2 = E(X).

• V1 = (Part(X), F (X, Y )).

• V2 = Y .

By the assumption that X is in C and the fact that E is an ε-extractor for C we have that R2 ∼ε V2.
By equation (1) we have that for every y ∈ {0, 1}t (R1|R2 = y) ∼ε·2t+2 (V1|V2 = y). (Here we also
used the fact that Y is independent of X). Applying Lemma 2.4 gives that (R1, R2) ∼(ε·2t+2+ε)

(V1, V2). Note that ε · 2t+2 + ε ≤ ε · 2t+3. We conclude that:

(Part(X), F (X, E(X)), E(X)) ∼ε·2t+3 (Part(X), F (X, Y ), Y )

This concludes the proof of Theorem 3.2.

4 Extractors for two independent sources

In this section we focus on extractors for two independent sources. In Section 4.1 we suggest a way
to get more mileage out of a given two source extractor. In Section 4.2 we prove the correctness of
this construction. Finally, we show how to use this method to get improved two-source extractors
in Section 4.3.
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4.1 The transformation

We now show how to transform a given two-source extractor E that extracts few bits into a two-
source extractor E ′ that extracts almost all the bits present in the source distribution.

The transformation below involves many parameters. The rough intuition is as follows: We
start with a two-source extractor E that extracts t bits with error ε/2t. We require that this
extractor is strong in the first source (that is that it extracts randomness from the second source).
We use k1 to denote the entropy threshold of the first source. We allow the extractor E to lose
most of the bits that are present in the second source. More precisely, to extract t bits out of
the second source we only require that the second source contains t + ` bits where ` (that may be
much larger than t) is a parameter measuring the number of bits that E “loses”. We now show
how to transform E into an extractor E ′ which extracts many more bits with error ε. To achieve
this goal we need the entropy thresholds of E ′ in the second source to be larger than that of E.
More precisely, the entropy threshold of E ′ are k1 (which is the same as E) and k2 which needs to
be somewhat larger than the entropy threshold of E. The gain is that the extractor E ′ extracts
k1 + k2 − (` + O(t + log(1/ε))) bits. If we set k2 large enough so that `, t and log(1/ε) are small
compared to k1 + k2 we get that E ′ extracts almost all the k1 + k2 bits of randomness that are
present in the source. The exact details are given below.

Construction 4.1.

Parameters:

• n1, n2 : The length of the two input sources.

• k1, k2 : The entropy threshold of the two input sources.

• ε : The required error.

Goal: Construct a (k1, k2; ε)-two-source extractor E ′ : {0, 1}n1 × {0, 1}n2 → {0, 1}m (for as large
as possible m).

Ingredients: (note that the ingredients below involve additional parameters t, `, m1, m2).

• A (k1, t + `; ε/2t+10)-two-source extractor E : {0, 1}n1 × {0, 1}n2 → {0, 1}t that is strong
in the first source.6

• A strong (k1, ε/4)-extractor E1 : {0, 1}n1 × {0, 1}t → {0, 1}m1.

• A strong (k2, ε/4)-extractor E2 : {0, 1}n2 × {0, 1}t → {0, 1}m2.

Requirements: 0 ≤ m2 ≤ k2 − (2t + ` + log(1/ε) + 5).

Description of E ′: E′(x1, x2) = E1(x1, E(x1, x2)), E2(x2, E(x1, x2)), E(x1, x2).

Output length of E ′: Note that this gives that the output length of E ′ is m = m1 +m2 + t. If we
use seeded extractors E1, E2 such that: E1 extracts all the entropy from X1 (apart from the
unavoidable O(log(1/ε)) entropy loss) and E2 satisfies the requirement above on m2 with an
equality, we get that m = k1 + k2 − (` + O(t + log(1/ε)). Thus, if `, t and log(1/ε) are small
compared to k1 + k2 we extract almost all the k1 + k2 bits of randomness that are present in
the source distribution..

6That is, E is strong with respect to the function Part(x1, x2) = x1.
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We now state a Theorem that says that E ′ is a two-source extractor. We find this quite
surprising as the output E(X1, X2) is used as a seed to operate on both sources X1, X2. This
should be compared with the previous result of Dodis et al. [9] who observed that when E is strong
in the first source one can use E(X1, X2) as a seed to operate on X1 (this is because E(X1, X2)
is essentially independent of X1). Note that this is not the case in our setting and E(X1, X2) is
inherently dependent on (X1, X2).

Theorem 4.2. Given parameters and ingredients as in Construction 4.1 then E ′ is a (k1, k2; ε)-
two-source extractor.

We prove Theorem 4.2 in Section 4.2. Using off the shelf constructions of seeded extractors and
fixing some of the parameters we obtain the following Corollary:

Corollary 4.3. There is a universal constant A > 0 such that: Let t ≥ log4 n. Let E : {0, 1}n ×
{0, 1}n → {0, 1}t be a (k1, t + `; 2−1.1·t)-two-source extractor that is strong in the first source. Then
for any k2 ≥ `+At we can construct a (k1, k2; 2

−Ω(t))-two-source extractor E ′ : {0, 1}n×{0, 1}n →
{0, 1}m for m = k1 + k2 − (` + O(t)). Furthermore, if E is explicit then so is E ′.

Note that for the particular setting of say ` = 100t (that is an extractor E that extracts a small
yet constant fraction of the entropy present in the second source we get that by choosing k2 such
that t = o(k2) the extractor E extracts a 1− o(1) fraction of the entropy.

Remark 4.4. We are not making any attempt to present the most optimized or general corollary.
The assumption that t ≥ log4 n is made so that there will be explicit constructions of strong seeded
extractors that on entropy threshold k in a source of length n use a seed of length t to extract
k−O(t) bits with error 2−Ω(t) (e.g., [25]). We also remark that 1.1 above can be replaced with any
constant larger than 1 and yield the same result.

We now prove that Corollary 4.3 follows from Theorem 4.2.

Proof. (of Corollary 4.3) To prove the corollary we use a seeded extractor construction from [25]
which for every k and ε gives a strong (k, ε)-seeded extractor with seed length d = O(log3 n +
log(1/ε)) that extract k−O(log(1/ε) bits. Let ε = 2−αt for a constant 0 < α < 1 to be chosen later.
We choose E1 to be the strong (k1, ε/4)-extractor from [25] which extracts m1 = k1 − O(log(1/ε)
bits. We also choose E2 to be the strong (k2, ε/4)-extractor from [25]. However, we take a smaller
output length m2 = k2 − (2t + ` + log(1/ε) + 5). In order to meet the requirements of Theorem
4.2 we need to make sure that m2 ≥ 0. For this purpose we choose A to be a sufficiently large
constant so that k2 ≥ ` + At is large enough so that m2 ≥ 0. We now choose α > 0 to be small
enough so that the seed length of both E1 and E2 is at most t. This can be done because we have
required that t ≥ log4 n. We have that E has error 2−1.1·t ≤ ε · 2t+10 for sufficiently small α > 0. It
follows that we can apply Theorem 4.2 and obtain a (k1, k2; ε)-two-source extractor that extracts
m1 + m2 + t ≥ k1 + k2 − (` + O(t)) bits.

4.2 Proof of Correctness

We now prove Theorem 4.2. We are given the parameters and ingredients in Construction 4.1. Let
n = n1 + n2. When given an n bit string x, we use x1 to denote the first n1 bits of x and x2

to denote the last n2 bits of x. With this notation E is a function from n bits to t bits. Let X1
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and X2 be independent random variables over {0, 1}n1 and {0, 1}n2 such that H∞(X1) ≥ k1 and
H∞(X2) ≥ k2. Let X = (X1, X2). Our goal is to prove that E ′(X1, X2) is ε-close to the uniform
distribution on {0, 1}m. Let Y be an independent random variable that is uniformly distributed
over {0, 1}t. We first prove the following Lemma which asserts that E(X1, X2) can replace Y and
be used as a seed for E2 to extract randomness from X2.

Lemma 4.5. (X1, E2(X2, E(X1, X2)), E(X1, X2)) ∼ε/4 (X1, E2(X2, Y ), Y ).

Proof. We define a function F : {0, 1}n × {0, 1}t → {0, 1}m2 by F (x, y) = E2(x2, y). We define a
function Part : {0, 1}n → {0, 1}n1 by Part(x1, x2) = x1. Let C be the class of distributions X over n
bit strings such that X1, X2 are independent, H∞(X1) ≥ k1 and H∞(X2) ≥ t + `. The lemma will
follow by applying Theorem 3.2 on C, E, F and Part. We first note that X belongs to C because
k2 ≥ t + `. To apply the Theorem we need to check that the “weak closeness condition” holds. We
set ρ = ε/2t+5 and our goal will be to show that the condition holds when choosing ρ as ε. More
precisely, we need to show that: for every y ∈ {0, 1}t there exists a set Gy ⊆ {0, 1}

m2 such that:

1. Pr[F (X, y) 6∈ Gy] ≤ ρ.

2. For every a ∈ Gy, (X|F (X, y) = a) belongs to C.

Note that as X1, X2 are independent we have that for every y ∈ {0, 1}t and a ∈ {0, 1}m2 :

(X|F (X, y) = a) ∼ ((X1, X2)|E2(X2, y) = a) ∼ (X1 ⊗ (X2|E2(X2, y) = a))

This means that to prove that (X|F (X, y) = a) belongs to C we only need to show that H∞((X2|E2(X2, y) =
a)) ≥ t + `. To obtain Gy we use Lemma 2.3 choosing R1 = X2 and R2 = E2(X2, y) and using ρ.
We indeed conclude that for every y ∈ {0, 1}t there exists a set Gy such that:

1. Pr[R2 6∈ Gy] ≤ ρ.

2. For every a ∈ Gy, H∞((X2|E2(X2, y) = a)) ≥ k2 − (m2 − log(1/ρ)) ≥ t + `.

where the inequality follows because we have required that m2 ≤ k2 − (2t + ` + log(1/ε) + 5) =
k2 − (t + ` + log(1/ρ)) which gives the inequality above.

We have verified that the conditions of Theorem 3.2 are met and therefore using the second
item of the Theorem we can conclude that

(Part(X), F (X, E(X)), E(X)) ∼ρ·2t+3 (Part(X), F (X, Y ), Y )

Which is exactly what we wanted:

(X1, E2(X2, E(X)), E(X)) ∼ε/4 (X1, E2(X2, Y ), Y )

We also need the following easy Lemma which asserts that applying Y as a seed on both X1 and
X2 produces a distribution that is close to uniform.

Lemma 4.6. (E1(X1, Y ), E2(X2, Y ), Y ) ∼ε/2 (Um1
⊗ Um2

⊗ Ut)
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Proof. We have that (X1, X2, Y ) ∼ (X1⊗X2⊗Ut). Using Lemma 2.2 with the function f(a1, a2, a3) =
a1, E2(a2, a3), a3 and using the fact that E2 is a strong (t + `, ε/4)-extractor we have that:

(X1, E2(X2, Y ), Y ) ∼ε/4 (X1 ⊗ Um2
⊗ Ut)

We now use Lemma 2.2 with the function f(a1, a2, a3) = E1(a1, a3), a2, a3) and using the fact that
E1 is a strong (k1, ε/4)-extractor we have that:

(E1(X1, Y ), E2(X2, Y ), Y ) ∼(ε/4+ε/4) (Um1
⊗ Um2

⊗ Ut)

We are now ready to prove Theorem 4.2.

Proof. (of Theorem 4.2) By Lemma 4.5 we have that

(X1, E2(X2, E(X)), E(X)) ∼ε/4 (X1, E2(X2, Y ), Y )

We consider the function f(a1, a2, a3) = (E1(a1, a3), a2, a3). By applying Lemma 2.2 on the triples
above we get that:

(E1(X1, E(X)), E2(X2, E(X)), E(X)) ∼ε/4 (E1(X1, Y ), E2(X2, Y ), Y )

Using Lemma 4.6 we conclude that:

(E1(X1, E(X)), E2(X2, E(X)), E(X)) ∼ε (Um1
⊗ Um2

⊗ Ut)

and the Theorem follows.

4.3 Two source extractors which extract almost all the randomness

In this section we use the method above to get “more mileage” out of a recent extractor construction
by Raz [24]. We use the following Theorem due to Raz. We first state the Theorem and then state
a less general corollary which we use for our application.

Theorem 4.7. [24] For any n1, n2, b1, b2, m and any 0 < δ < 1/2, such that: n1 ≥ 6 log n1+2 log n2,
b1 ≥ (1/2 + δ)n1 + 3 log n1 + log n2, b2 ≥ 5 log(n1 − b1), m ≤ δ ·min(n1/8, b2/40) − 1 there is an
explicit (b1, b2; 2

−1.5m)-two-source extractor E : {0, 1}n1 × {0, 1}n2 → {0, 1}m that is strong in the
first source.

We use the following Corollary of the Theorem above:

Corollary 4.8. For every 0 < δ < 1/2 and n such that δn ≥ 10 log n, let b1 = (1/2 + δ)n and
let b2 be an integer such that b2 ≥ 5 log n. There is an explicit (b1, b2; 2

−1.5t)-two-source extractor
E : {0, 1}n × {0, 1}n → {0, 1}t with t = δb2/100. Furthermore, E is strong in the first source.

Applying the method of Section 4.1 gives the following Theorem:

Theorem 4.9. There is a universal constant B > 0 such that for every constant 0 < δ < 1/2 there

exists a constant C > 0 such that: Let n be large enough, let ε ≤ 2− log4 n, let k1 = (1/2 + δ)n, and

let k2 ≥
B log(1/ε)

δ . Then there is an explicit (k1, k2; ε)-two-source extractor E : {0, 1}n × {0, 1}n →
{0, 1}m with m = k1 + k2 − C log(1/ε).
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Remark 4.10. We made no attempt to present the most general result and Theorem 4.9 can be
generalized in several respects. For example, we do not have to require that δ > 0 is a constant and
in that case C = O(1/δ) and the Theorem holds as long as δn ≥ 10 log n.

In particular we obtain Theorem 1.6 as a corollary:

Corollary 4.11 (Theorem 1.6 restated). For every constant δ > 0 there is a constant C > 0

such that for large enough n, let k1 = k2 = (1/2 + δ)n and let ε ≤ 2− log4 n then there is an explicit
(k1, k2; ε)-two-source extractor E : {0, 1}n × {0, 1}n → {0, 1}m for m = k1 + k2 − C log(1/ε).

We now prove Theorem 4.9:

Proof. (of Theorem 4.9) Let C1 ≥ 1 be a universal constant to be chosen later. Let t = C1 log(1/ε).
By the requirement on ε we have that t ≥ log4 n. Let b2 = 100t/δ. By the fact that t ≥ log4 n
we have that b2 ≥ 5 log n. We conclude from Corollary 4.8 that there is an explicit (k1, b2; 2

−1.5t)-
two-source extractor E : {0, 1}n × {0, 1}n → {0, 1}t that is strong in the first source. We now
set ` = b2 − t and let A be the universal constant from Corollary 4.3. We assume that B is a
large enough universal constant so that k2 ≥

B log(1/ε)
δ ≥ At + b2 ≥ At + `. This can be done

because At + b2 = O(AC1 log(1/ε)
δ ). We meet the requirements of Corollary 4.3 and conclude that

there is an explicit (k1, k2; 2
−Ω(t))-two-source extractor E ′ : {0, 1}n × {0, 1}n → {0, 1}m where

m = k1 + k2 − (` + O(t)). Let C1 be a large enough constant so that the error of E ′ is bounded
from above by ε. Note that

` + O(t) ≤ b2 + O(t) ≤ 100C1 log(1/ε)/δ + O(C1) log(1/ε) (2)

Let C be a constant depending on δ (and C1) such that the expression in equation (2) is bounded
from above by C log(1/ε). We remark that C = O(C1/δ). We conclude that m = k1+k2−C log(1/ε)
as required.

5 Extractors for Samplable distributions

In this section we focus on extractors for distributions samplable by poly-size circuits. In Section
5.2 we suggest a way to get more mileage out of a given extractor. In Section 5.3 we prove the
correctness of this construction. Finally, we show how to use this method to get improved extractors
in Section 5.4.

5.1 Preliminaries on Σi-circuits

We start with defining Σi-circuits.

Definition 5.1 (Σi-circuit). A Σi-circuit is a circuit which in addition to the standard boolean
gates can also use gates that compute a function that is complete for Σi (e.g. QBF with i alterna-
tions).

We need the following result on Σ1-circuits which follows from results on “sampling of NP
witnesses” [31, 15, 3].
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Theorem 5.2 (Sampling of NP witnesses). For every circuit T over {0, 1}n of size t and ε > 0

there exists a Σ1-circuit T ′ over {0, 1}poly(n) of size poly(n, t) such that T ′ is a sampler for the
distribution (Z|C(Z) = 1) where Z is random variable that is uniformly distributed over {0, 1}n.

Proof. (sketch) Given a circuit T it is possible to sample inputs on which T outputs “one” in
BPPNP [31, 15, 3]. The proof of Bellare, Goldreich and Petrank [3] uses the randomness to first
sample a hash function. For a “good” hash function the procedure samples the required distribution
without any errors. A Σ1-circuit T ′ can be hardwired with a good hash function and this is the
reason why we a circuit can sample from a distribution which is exactly (Z|C(Z) = 1).7

We remark that Shaltiel and Umans [30] observed that there is a circuit T ′ that makes non-
adaptive calls to its Σ1 oracle.

5.2 The transformation

We now show how to transform a given extractor E that extracts few bits out of samplable distri-
butions into an extractor E ′ that extracts almost all the bits present in the source distribution.

Trevisan and Vadhan [33] showed how to transform an extractor which extracts t > polylog(n)
random bits into one which extracts many more bits. More precisely, implicit in the paper is
a general transformation (inspired by Goldreich and Wigderson [14], see also Raingold, Vadhan
and Wigderson [26]). A drawback of this transformation is that it only works when the entropy
threshold is very high (say k = (1 − ν)n where ν > 0 is some small constant). Loosely speaking,
when given an extractor E for samplable distributions with entropy threshold k = (1 − ν)n the
paper shows how to construct an extractor E ′ which extracts m = (1−O(ν)n) random bits. It is
important to notice the following subtlety: To make the argument go through and deduce that E ′

works on distributions samplable by deterministic circuits, one needs to assume that E extracts
randomness even from distributions that are samplable by Σ1-circuits.8

We now present a different transformation which has essentially the same flavor (that is it
transforms an extractor that extracts few bits from distributions samplable by Σ1-circuits into an
extractor that extracts many bits from distributions that are samplable by deterministic circuits).
The advantage is that this transformation works even when the min-entropy threshold k is very
small.

In the transformation below we start with an extractor E that on entropy threshold t + ` loses
` bits and extracts only t bits. We transform this extractor into an extractor E ′ which for entropy
threshold sufficiently larger than t + ` extracts essentially all the randomness from the source.

7We remark that for our purposes it suffices to sample a distribution which is only close to the desired distribution.
This precisely follows from [3].

8Loosely speaking, the idea is that when the entropy threshold k = (1 − ν)n for a small ν > 0 then one can
partition the n bit source into two “blocks”, X1, X2 where X1 is of length say (1− 100ν)n and X2 is of length 100νn,
and it follows that there must be entropy in both blocks. More precisely it follows that X1, X2 form a block-wise
source (block-wise sources were defined by [6]). Following [22] (see also [19, 20, 28]) in this setting one can hope to
extract bits from X2 and use the bits extracted as a seed for a seeded extractor that extracts all the randomness in
X1. A subtlety is that for this argument to go through it is not sufficient that the initial extractor E can extract
randomness from X2 but rather that for every value x1 of X1, E can extract randomness from (X2|X1 = x1). The
fact that X2 is samplable by deterministic circuits does not necessarily means that the distribution (X2|X1 = x1) is
samplable by deterministic circuits. Nevertheless, it does follow from Theorem 5.2 that the distribution (X2|X1 = x1)
is samplable by Σ1-circuits. This explains why the transformation requires that E works for distributions samplable
by Σ1-circuits. We want to also stress that the argument above completely fails when k < n/2 as then there is no
way to partition the source into two blocks and ensure that both of them “contain” entropy.
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Construction 5.3.

Parameters:

• n : The length of the input sources.

• k : The entropy threshold of the input sources.

• ε : The required error.

• s : The size bound on the sampling circuit.

Goal: Construct a (k; ε)-extractor E ′ : {0, 1}n → {0, 1}m for distributions samplable by size s
circuits (for as large as possible m).

Ingredients: (note that the ingredients below involve additional parameters t, `, m1, s
′).

• A (t + `, ε/2t+10)-extractor E ′ : {0, 1}n → {0, 1}t for distributions samplable by size s′

Σ1-circuits.

• An explicit strong (k, ε/2)-extractor E1 : {0, 1}n1 × {0, 1}t → {0, 1}m1.

Requirements:

• 0 ≤ m1 ≤ k − (2t + ` + log(1/ε) + 5).

• s′ ≥ p(s + n) where p is some fixed polynomial to be determined later.

Description of E ′: E′(x) = E1(x, E(x)), E(x).

Output length of E ′: Note that this gives that the output length of E ′ is m = m1 + t. If we use
a seeded extractor E1 such that E1 satisfies the requirement above on m1 with an equality, we
get that m = k − (` + O(t + log(1/ε)). Thus, if `, t and log(1/ε) are small compared to k we
extract almost all the k bits of randomness that are present in the source distribution.

Theorem 5.4. Given parameters and ingredients as in Construction 5.3 then E ′ is a (k, ε)-extractor
for distributions samplable by size s circuits.

5.3 Proof of correctness

We now prove Theorem 5.4. We are given the parameters and ingredients in Construction 5.3.
Let X be a random variable taking values in {0, 1}n that is samplable by a size s circuit C and
H∞(X) ≥ k. Our goal is to show that E ′(X) is ε-close to the uniform distribution on m bit strings.
We start with the following lemma:

Lemma 5.5. There exists some polynomial p such that For every y ∈ {0, 1}t and a ∈ {0, 1}m1 the
distribution (X|E1(X, y) = a) is samplable by a size p(s + n) Σ1-circuit.

Proof. Consider the circuit

T (z) =

{

1 E1(C(z), y) = a and C(z) 6= ⊥
0 otherwise

Note that as E1 is explicit, we have that T (x) is a (deterministic) circuit of size poly(n, s). By
Theorem 5.2 we get that there exists a Σ1 circuit T ′ of size poly(n, s) and an independent random
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variable Z that is uniformly distributed such that T ′ is a sampler for the distribution (Z|T (Z) = 1).
Consider the Σ1-circuit

T ′′(z) =

{

C(T ′(z)) T ′(z) 6= ⊥
⊥ T ′(z) = ⊥

It follows that T ′′ is a sampler for

(C(Z)|T (Z) = 1) ∼ (C(Z)|E1(C(Z), y) = a and C(z) 6= ⊥) ∼ (X|E1(X, y) = a)

and thus this distribution is samplable by a Σ1-circuit of size poly(n + s).

We now prove Theorem 5.3

Proof. (of Theorem 5.3) We define a function F : {0, 1}n×{0, 1}t → {0, 1}m1 by F (x, y) = E1(x, y).
Let C be the class of distributions over n bit strings that are samplable by size s′ Σ1-circuits and
have min-entropy at least t + `. The theorem will follow by using Theorem 3.2 on C, E and F . We
first note that X belongs to C because k ≥ t + ` and s ≤ s′. To apply the Theorem we need to
check that the “weak closeness condition” holds. We set ρ = ε/2t+5 and our goal will be to show
that the condition holds when choosing ρ as ε. More precisely, we need to show that: for every
y ∈ {0, 1}t there exists a set Gy ⊆ {0, 1}

m2 such that:

1. Pr[F (X, y) 6∈ Gy] ≤ ρ.

2. For every a ∈ Gy, (X|F (X, y) = a) belongs to C.

To obtain Gy we use Lemma 2.3 choosing R1 = X and R2 = E1(X, y) and using ρ. We indeed
conclude that for every y ∈ {0, 1}t there exists a set Gy such that:

1. Pr[R2 6∈ Gy] ≤ ρ.

2. For every a ∈ Gy, H∞((X|E1(X, y) = a)) ≥ k − (m1 − log(1/ρ)) ≥ t + `.

where the inequality follows because we have required that m1 ≤ k − (2t + ` + log(1/ε) + 5) =
k − (t + ` + log(1/ρ)) which gives the inequality above. By Lemma 5.5 we have that for every
a ∈ Gy, (X|E1(X, y) = a) is samplable by a size p(s + n) ≤ s′ Σ1-circuit. Thus, we conclude that
(X|F (X, y) = a) belongs to C.

We have verified that the conditions of Theorem 3.2 are met. We add an independent random
variable Y that is uniformly distributed over {0, 1}t to our probability space. By the second item
of the Theorem we can conclude that:

(F (X, E(X)), E(X)) ∼ρ·2t+3 (F (X, Y ), Y )

Or in other words that:

(E1(X, E(X)), E(X)) ∼ε/4 (E1(X, Y ), Y ) ∼ε/2 (Um1
⊗ Ut)

20



5.4 Extractors for samplable distributions that extract almost all the random-

ness

In order to use the transformation of Theorem 5.4 we need an extractor for distributions samplable
by Σ1-circuits. By observing that Lemma 1.10 relativizes we can “go up a level in the hierarchy”
and get the following corollary:

Corollary 5.6. Let G : {0, 1}n → {0, 1}t be a function such that for any Σ2-circuit D of size s:

| Pr
X∈R{0,1}n

[D(X, G(X)) = 1]− Pr
X∈R{0,1}n,Y ∈R{0,1}t

[D(X, Y ) = 1]| ≤ ε

If t ≤ log s− 1 then for any ∆ > 0, G is a (n−∆, O(2∆ε)-extractor for distributions samplable by
size (2∆εs)Ω(1) Σ1-circuits.

Combining Corollary 5.6 with Theorem 5.4 and using an explicit seeded extractor by [17] we
obtain the following corollary:

Corollary 5.7. For every constant α > 0 there is a constant C > 1 such that suppose that there
exist a function G = {Gn} such that Gn : {0, 1}n → {0, 1}C log n is computable in time poly(n) and
for any Σ2-circuit D of size s(n) > n3C :

| Pr
X∈R{0,1}n

[D(X, G(X)) = 1]− Pr
X∈R{0,1}n,Y ∈R{0,1}t

[D(X, Y ) = 1]| ≤ ε(n)

then for every k(n) ≥ n − log(1/ε(n)) + O(C log n) and constant 0 < α < 1 there is a function
polynomial time computable function E = {En} such that for every n, En : {0, 1}n → {0, 1}m(n)

is a (k(n), 1/100)-extractor for distributions samplable by circuits of size s(n)Ω(1) with m(n) =
(1− α)k(n)− (n− log(1/ε(n)) + O(C log n)).

If the assumption of the Theorem holds with ε = 2−(1−β)n for some constant 0 < β < 1 then
we get a (k(n), 1/100)-extractor that extracts (1− α)k(n)− βn−O(log n) random bits.

We remark that we can improve the error of the final extractor from 1/100 to s(n)−Ω(1) (which
by increasing s(n) can be made n−c for an arbitrary constant c). However, in this case we need
to use a seeded extractor from [29] with seed O(log n) and error n−Ω(1) which at the moment can
only extract k/ log2 n bits from a source with min-entropy k. As a result our final extractor will
extract m(n)/ log2 n bits instead of m(n) bits.

Proof. (of Corollary 5.7) Let n be a large enough integer. We use a seeded extractor construction
from [17] which gives that for every constant α > 0 there is a constant C > 1 such that for
any k there is a strong explicit (k, 1/1000)-extractor with seed length t = C log n and output
length (1 − α)k. Let ∆ = log(1/ε(n)) − 2C log n and let ` = (n − ∆). By the assumption on
G and Corollary 5.6 we have that G is a (t + `, O(n−2C)-extractor for distributions samplable by
size (s(n)n−2C)Ω(1) Σ1-circuits. We let E1 be the (k(n), 1/1000)-extractor of [17] taking output
length m1 = k(n) − (2t + ` + log(1/ε(n)) + 5). We want to use Theorem 5.4 on G and E1. We
need to verify that m1 ≥ 0. This follows because we have required that k(n) is large. We also
verify that the error of G is O(n−2c) ≤ (1/100)/2t+10. Thus, we obtain a (k, 1/100)-extractor for
distributions samplable by size (s(n)n2c)Ω(1)/poly(n + s(n)) which is s(n)Ω(1) by the requirement
that s(n) ≥ n3C . We have that this extractor extracts m1 ≥ (1−α)(k(n)−(2t+`+log(1/ε(n))+5) ≥
(1− α)k(n)− (n− log(1/ε(n) + O(C log n)).
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6 Discussion and open problems

We hope that presenting the transformation in general form will allow finding more applications.
We now discuss several future directions for this research.

6.1 Can we get more mileage from seeded extractors?

We were able to get more mileage out of various kinds of deterministic extractors. It is natural
to ask whether it is possible to get more mileage from seeded extractors. More specifically, the
current situation in explicit construction of seeded extractors (see [28] for precise details) is that
explicit constructions can optimize any of the two main parameters (seed length and output length)
at the expense of losing in the other parameter. A natural approach to achieve optimality in both
parameters simultaneously is to take an explicit extractor E : {0, 1}n × {0, 1}d → {0, 1}t with t
being sufficiently larger than d such that there is an explicit seeded extractor E1 : {0, 1}n×{0, 1}t →
{0, 1}m which extracts that maximum possible amount of random bits from the source. It is natural
to ask whether E ′(x, y) = E1(X, E2(x, y)) can yield an extractor. Following our paradigm one may
ask whether there exist properties of E that will allow such a transformation to go through.

We now show that for any extractor E there is an extractor E1 so that the suggeted transfor-
mation completely fails. In fact, we state the following more general lemma.

Lemma 6.1 (Impossibility result). Let E : {0, 1}n × {0, 1}d → {0, 1}t be any function and let
F : {0, 1}n → {0, 1}t → {0, 1}m be any function. There exists a function F ′ : {0, 1}n × {0, 1}t →
{0, 1}m ∪ {⊥} such that:

• For every random variable X over {0, 1}n, F (X ⊗ Ut) ∼2d−t F ′(X ⊗ Ut).

• For every x ∈ {0, 1}n and y ∈ {0, 1}d, F ′(x, E(x, y)) = ⊥.

The Lemma says for example that no matter how you pick E, if F is a seeded extractor then
there exist a function F ′ that behaves like F when given a uniform seed (and therefore is also
an extractor E1 with essentially the same parameters). Furthermore, when trying to use E(x, y)
instead of a uniformly chosen seed in E1 = F ′ one always gets a worthless constant.

Proof. We define F ′ as follows:

F ′(x, z) =

{

⊥ ∃y ∈ {0, 1}d : z = E(x, y)
F (x, y) otherwise

It is easy to verify that the two conditions in the Lemma hold.

6.2 Research directions for two-source extractors

We showed how to extract almost all the randomness from two sources with entropy threshold
k = (1/2+δ)n. An intereting open problem is to achieve this goal for smaller entropy threshold. We
remark that it seems that by combining recent constructions by Bourgain (that is still unpublished)
and Raz [24] it may be possible to reduce the entropy threshold to slightly below 1/2. However,
further improvement must await until we have better extractors to start from.

We remark that there are recent constructions of two-source dispersers for lower entropy thresh-
old [2]. We believe that our technique is also applicable in that setting. However, it seems that
showing this may require specific properties of these dispersers and does not apply to any disperser.
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6.3 Research directions for samplable distributions

We showed that given an explicit extractor for distributions samplable by poly-size Σ1-circuits we
can get get more mileage from it (at least for distributions samplable by standard circuits). We have
very few techniques for constructing such extractors. In particular, we do not have any technique
to construct extractors for samplable distributions with error ε = n−ω(1). We find it interesting to
achieve this goal using any plausible assumption.

Another important problem is to find minimal assumptions sufficient to construct extractors
for samplable distributions and in particular obtain constructions that only rely on worst-case
hardness. Trevisan and Vadhan [33] present such a construction (assuming worst-case hardness for
Σ5-circuits) but their construction only works for very large values of k. Interestingly, a barrier that
prevents achieving constructions for lower entropy threshold is that any such construction (with
certain black-box properties) translates into a two-source extractor. (This follows essentially in the
same way that certain pseudorandom generators yield extractor [32] and was observed in [33]). It
is natural to expect that recent advances in two-source extractors and dispersers can be translated
to this framework and yield extractors for samplable distributions.

Finally, it is natural to ask whether the assumption of Lemma 1.10 is stronger than that of
Theorem 1.9. We remark that following [21] it is often the case that a function that is hard on
average entails a pseudorandom generator. However, this is not known for the range of parameters
we are considering.
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