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Abstract

We survey some results in quantum cryptography. After a brief introduction to classical
cryptography, we provide the physical and mathematical background needed and present some
fundamental protocols from quantum cryptography, including quantum key distribution and
quantum bit commitment protocols.

1 Introduction

Cryptography is the science of keeping private information from unauthorized access. An algorithm,
which is called a cipher in this context, scrambles the message via some rule such that restoring the
original message is hard—if not impossible—without knowledge of the secret key. Cryptographic
technology in use today relies on the hardness of certain mathematical problems. Classical cryptog-
raphy faces the following two problems. First, the hardness of the problems on which the security
of cryptosystems is based (e.g., integer factoring or the discrete logarithm problem) often is not
a proven fact but rather a widely believed hypothesis. Second, the theory of quantum computa-
tion has yielded new methods to tackle these mathematical problems in a much more efficient way.
Although there are still numerous challenges to overcome before a working quantum computer of
sufficient power can be built, in theory all classical ciphers might be vulnerable to such a powerful
machine. However, while quantum computation seems to be the coffin nail for classical cryptogra-
phy in a possibly not so distant future, at the same time it offers new possibilities to build encryption
methods that are safe even against attacks performed by a quantum computer. Quantum cryptog-
raphy extends the power of classical cryptography by protecting the secrecy of messages using the
physical laws of quantum mechanics.
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Looking back in the history of cryptography, one of the first encryption methods was the scy-
tale. The first recorded use of the scytale dates back to the fivth century B.C. when the Spartans
used it to exchange battle information between generals without revealing it to the enemy. To en-
crypt a message, which we call the plaintext in cryptography, a strip of leather or pergament was
wrapped around a wooden cylinder, the scytale. The encrypted message, also called the ciphertext,
was then written from left to right onto the leather, so that unravelling the strip would produce a
meaningless alignment of seemingly random letters, see Figure 1 for the encryption of the plaintext
“scytaleisatranspositioncipher” by “ssoicaspytihtrteaairlnoesnipc.” The decryption of the ciphertext
was achieved by using a scytale of the same diameter as the cylinder that was used for encryption.

s c y t a l e i
s a t r a n s p
o s i t i o n c
i p h e r

Figure 1: The Scytale

The scytale is a so-called transposition cipher, since only the order of the letters within the mes-
sage is changed. Another type of encryption is the substitution cipher. Here, instead of swapping
the positions of the letters, each plaintext letter is replaced by another letter according to some spe-
cific rule. The method of encryption and decryption is called a cryptosystem, whereas the particular
information used for encryption or decryption in an individual communication is called a key. In
the case of the scytale, the diameter of the cylinder represents the secret key. Obviously, this an-
cient cryptosystem has a very low level of security. Once the method of encryption is known to
the eavesdropper, he can simply try all possible diameters to reveal the original message. The fact
that the cryptosystem is publicly known is not the reason for the insecurity of the communication,
but rather the small number of possible keys that can be used for encryption. In the 19th century,
Auguste Kerckhoffs stated the principle that the security of a cryptosystem must be based solely on
the secrecy of the key itself. Therefore, when designing new ciphers, one should always treat the
algorithm as if it were publicly known.

Over time, the amount of information that needed to be encrypted exploded, making it impos-
sible to use simple and insecure procedures like the scytale. At first, mechanical devices were built
to speed up the encryption and the decryption process, and to increase the complexity of the keys
used to scramble the message. An infamous example of a mechanical cryptosystem is the Enigma,
which was used in World War II by the Germans to conceal their military communication. Not fol-
lowing Kerckhoff’s principle, the Germans considered the Enigma unbreakable, assuming that the
mechanical device used for secure communication was not known to the enemy. But during the war
allied cryptanalysts in Bletchley Park near London often were able to decrypt the German military
messages. One might argue that breaking the Enigma was one of the most crucial factors for the
victory of the allied forces and for ending the war. After the war, it was the invention of the transistor
that made the rise of the computer industry possible. The huge speed-up in executing mathematical
calculations resulted in the need to create much more secure cryptosystems, among them symmetric
block ciphers such as the Data Encryption Standard (DES) and the Advanced Encryption Standard
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insecure channel
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Figure 2: Communication between Alice and Bob, with Eve listening

(AES) and public-key cryptosystems such as RSA and others, which are integrated in modern cryp-
tographic applications currently in use. With the theory of quantum computation, we seem to be at
the beginning of yet another era of cryptography. A nice and easy-to-read overview of the history
of cryptography is given by Singh [Sin99].

2 Classical Cryptography

Overviews of classical cryptography can be found in various text books, see, e.g., [Rot05,Sti02].
Here, we present just the basic definition of a cryptosystem and give one example of a classical
encryption method, the one-time pad.

Definition 1 A cryptosystem is a five-tuple (P, C,K, E ,D) satisfying the following conditions:

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K, the keyspace, is a finite set of possible keys.

4. For each k ∈ K, there is an encryption rule ek ∈ E and a corresponding decryption rule
dk ∈ D. Every ek : P → C and every dk : C → P is a function satisfying dk(ek(x)) = x for
every plaintext element x ∈ P .

In the basic scenario in cryptography, we have two parties that wish to communicate over an
insecure channel, such as a phone line or a computer network. Usually, these parties are referred to
as Alice and Bob. Since the communication channel is insecure, an eavesdropper, called Eve, may
intercept the messages that are sent over this channel. By agreeing on a secret key k via a secure
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communication method, Alice and Bob can make use of a cryptosystem to keep their information
secret, even when sent over the insecure channel. This situation is illustrated in Figure 2.

The method of encryption works as follows. For her secret message m, Alice uses the key k
and the encryption rule ek to obtain the ciphertext c = ek(m). She sends Bob the ciphertext c over
the insecure channel. Knowing the key k, Bob can easily decrypt the ciphertext by the decryption
rule dk: dk(c) = dk(ek(m)) = m. Knowing the ciphertext c but missing the key k, there is no easy
way for Eve to determine the original message m.

There exist many cryptosystems in modern cryptography to transmit secret messages. One early
well-known system is the one-time pad, which is also known as the Vernam cipher. The one-time
pad is a substitution cipher. Despite its advantageous properties, which we will discuss later on, the
one-time pad’s drawback is the costly effort needed to transmit and store the secret keys.

Example 2 (One-time Pad) For our plaintext elements in P , we restrict ourselves to capital letters
and some punctuation marks, which we encode as numbers ranging from 0 to 29, see Figure 3. As
is the case with most cryptosystems, the ciphertext space equals the plaintext space. Furthermore,

A B C D E · · · X Y Z ! - .
00 01 02 03 04 · · · 23 24 25 26 27 28 29

Figure 3: Letters and punctuation marks encoded by numbers from 0 to 29

the key space K also equals P , and we have P = C = K = {0, 1, . . . , 29}.
Next, we describe how Alice and Bob use the one-time pad to transmit their messages. One

concrete example is shown in Figure 4. Let m = m1m2 . . . mn be a given message of length n,
which Alice wishes to encrypt. For each plaintext element mi, where 1 ≤ i ≤ n, Alice randomly
and uniformly chooses a key element ki ∈ {0, 1, . . . , 29} and adds the plaintext numbers to the key
numbers. The result is taken modulo 30. For example, the last letter of the plaintext from Figure 4,
“D,” is encoded by “03.” The corresponding key is “28,” so we have c = 3 + 28 = 31. As
31 ≡ 1 mod 30, our plaintext letter “D” is decrypted as “B.” The encryption and decryption can
be written as ci = (mi + ki) mod 30 and mi = (ci − ki) mod 30, respectively.

plaintext p ∈ P O N E - T I M E P A D
p encoded 14 13 04 28 19 08 12 04 26 15 00 03
key k 06 13 02 01 14 05 07 18 05 26 13 28
ciphertext c ∈ C 20 26 06 29 03 13 19 22 01 11 13 01
c decoded U G . D N T W B L N B

Figure 4: Encryption and decryption example for the one-time pad

To prove that the one-time pad is perfectly secure, we need a few notions from probability
theory.

4



Definition 3 Let X be a discrete random variable that can take on values from a finite set X
according to a given probability distribution on X . We denote by Pr[X = x] the probability that
X takes on the value x ∈ X . If X is clear from the context, we just write Pr[x]. For all x ∈ X ,
Pr[x] ≥ 0. Additionally,

∑
x∈X Pr[x] = 1. For another random variable Y defined on the finite

set Y , we define the conditional probability that X takes on the value x ∈ X given that Y takes on
the value y ∈ Y by Pr[x|y].

Suppose that a probability distribution on the finite plaintext space P is given. Thus, the plain-
text element defines a random variable, which we denote by p. The key chosen by Alice for commu-
nication with Bob also defines a random variable, which we call k. Both probability distributions,
for p and k, induce a probability distribution on the ciphertext C. Thus, we have another random
variable c for the ciphertext element. We call a cryptosystem perfectly secure if Pr[p|c] = Pr[p]
for all p ∈ P and c ∈ C. That means that the event that plaintext p occurs is independent of the
ciphertext c being observed. In other words, knowing c yields no advantage when trying to retrieve
the original plaintext p.

Shannon [Sha49] gave a characterization of when perfect secrecy can be guaranteed. Suppose
that (P, C,K, E ,D) is a cryptosystem with ||K|| = ||C|| and such that every plaintext element will
be encrypted with a positive probability. Then, this cryptosystem achieves perfect secrecy if and
only if (1) the probability distribution on the key space K is uniform, and (2) for each p ∈ P and for
each c ∈ C, there exists a unique key k such that ek(p) = c. The proof of Shannon’s theorem can
be found, e.g., in [Sha49,Rot05,Sti02]. Using this theorem, it is easy to see that the one-time pad
satisfies the property of perfect secrecy. As a new key element is created for each single plaintext
element randomly under the uniform distribution, knowing the ciphertext is no advantage for an
eavesdropper when trying to obtain the original message.

Although it provides perfect secrecy, the one-time pad also has severe disadvantages that make it
impractical to use. Remember that the key has to be as large as the message itself. Thus, the number
of bits that need to be exchanged over a secure channel for the key increases with the amount of
information that Alice and Bob wish to transmit secretly. Therefore, one might ask why they don’t
use the secure channel for their communication directly. Using the same key for encryption more
than one time is no alternative, as the one-time pad’s perfect secrecy crucially depends on creating
a new key for every single plaintext element.

The scytale and the one-time pad are two examples of a symmetric cryptosystem. That means
that the same key is used for encryption and decryption (or, at least, that the decryption key can be
easily determined from the encryption key). Thus, Alice and Bob have to agree on a joint secret
key prior to their conversation via a secure channel. Secret-key agreement protocols were proposed
by Diffie and Hellman [DH76], Rivest and Sherman (see [RS97,HR99]), and others. However, a
major disadvantage of symmetric ciphers and the related issue of key distribution occurs when the
communicating parties in a large network need to share joint secret keys. When n parties participate
in a communication network, n(n+ 1)/2 different keys have to be exchanged and stored safely.

Public-key cryptosystems, also called asymmetric cryptosystems, circumvent the key distribu-
tion and storage problem. Instead of having one unique key for every pair of parties, only one key
per party is needed to communicate securely. In 1976, Whitfield Diffie and Martin Hellman [DH76]
proposed the principle idea of public-key cryptography, namely to use two distinct keys, a public
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key for encryption and a private key for decryption. The first public-key cryptosystem is the RSA
system, named after its three inventors Ron Rivest, Adi Shamir, and Leonard Adleman [RSA78].1

RSA is used in numerous cryptographic applications still today. Public-key cryptosystems are based
on so-called one-way functions, functions that are easy to compute but hard to invert.

To communicate via a public-key cryptosystem, Alice creates two keys, kpublic and kprivate . Her
encryption key kpublic is public, but Alice keeps her private decryption key kprivate secret. Each
time Bob wishes to communicate with Alice, he looks up her public key and uses it to encrypt his
message. Since only Alice knows her private key, she alone can (efficiently) compute the inverse of
the encryption function.

The key issue is to find one-way functions that are safe enough to use for public-key cryptogra-
phy. The first one-way function designed for this purpose (i.e., the RSA encryption function) was
based on the problem of factoring large integers. Up to now, no efficient algorithm for computing
the prime factors of some given integer is known. Other public-key cryptosystems—such as the
ElGamal system [ElG85]—are based on the presumed hardness of computing discrete logarithms.
One disadvantage of such systems is that they often lack a proof of security. Another disadvantage
is that the directory storing the public keys has to be protected against manipulation. If eavesdropper
Eve replaces Alice’s public key with her own key, she can decrypt all messages sent to Alice.

Since the publication of Peter Shor about prime factorization and computing discrete logarithms
with quantum computers [Sho97], all cryptosystems whose security is based on the hardness of solv-
ing these mathematical problems have become theoretically vulnerable. Although it will certainly
take some time for the first practical quantum computers to emerge, it is advisable to look for al-
ternative, new cryptosystems that do not solely build on the hardness of solving such mathematical
problems with current computer technology. Quantum theory seems to be the perfect basis on which
to build such a new cryptosystem that withstands an attack even by quantum computers.

3 From Bits to Qubits

The most important unit of information in computer science is the bit. Two possible values can be
stored by a bit: it is either equal to “0” or equal to “1.” These two distinct states can be represented
in various ways, for example by a simple switch or a capacitor: if not charged, the capacitor holds
the value zero; if charged, it contains the value “1.”

The quantum analog of the bit is called qubit, which is derived from quantum bit. Both entities
are similar in the sense that they are represented by two states. For the qubit, the basic states are
called |0〉 and |1〉. But unlike its classical counterpart, the qubit is represented by a two-dimensional
quantum system and can be in a coherent superposition of the two states. Its general state is ex-
pressed by

|Q〉 = α|0〉 + β|1〉,

1In 1997, the British Government Communications Headquarters revealed that its researchers James Ellis, William
Cocks, and Malcolm Williamson had independently and even earlier discovered the principle idea of public-key cryptog-
raphy, the cryptosystem now called RSA, and the secret-key agreement protocol now called Diffie–Hellman, see, e.g.,
[Sin99,Rot05].
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with complex numbers α and β satisfying ||α||2 + ||β||2 = 1. Thus, we view a qubit |Q〉 as a vector
of unit length in the two-dimensional Hilbert space over complex numbers. This does not mean that
the value of the qubit is somewhere between zero and one, but rather that the probability that the
qubit takes on the value |0〉 or the value |1〉 once measured is equal to respectively ||α||2 or ||β||2.
The most important property of the qubit is that any measurement performed on it alters its state,
which makes it impossible to copy the contained quantum information. This fact is known as the
no-cloning theorem in quantum mechanics.

There exist many possibilities to represent a qubit in practice, as every quantum system with
at least two states can serve as a qubit. For example, the spin of an atom or the polarization of a
light particle (called a photon) can represent the state of a qubit. Even a cat with its two basic states
“dead” and “alive” might serve as a representation; see Schr ödinger’s well-known example of how
to visualize the concept of quantum mechanics [Sch35]. The cat’s problem—or fortune from the
animal’s point of view—when being used as a quantum system is its sheer size compared to that of
an atom or a photon. There is no way to protect such a big quantum instance from interaction with
its environment, which in turn will result in decoherence of the superposition of the cat. For the rest
of the paper, we will leave the cat alone and use photons to represent qubits.

Photons can be viewed both as particles and as electromagnetical waves. Regarding the latter,
a specific property of photons is their transversality, which means that the electrical and the mag-
netical fields are orthogonal to each other and to the propagation direction. The inclination of the
electrical and magnetical fields to the axis of the propagation is called the polarization. To obtain
photons with a desired polarization, one may use a filter that absorbs those photons with undesired
polarization out of the light emerging from the source. Figure 5 shows such a polarization filter.
Two things can happen: Either the photon passes through the filter and gets the desired polarization,
or it will be absorbed by the filter and its energy is converted into heat. Let γ be the angle between
the polarization filter and the electrical field of the photon. The probability that the photon passes
the filter equals cos2 γ. Thus, it will be absorbed with probability 1 − cos2 γ.

Figure 5: Polarization filters with rectilinear and diagonal basis

There are strict rules to get information out of a quantum state. This can be done by a mathemat-
ical structure called observable. Any observable can be mathematically represented by a so-called

observable operator, which is a Hermitian matrix, i.e., A is self-adjoint: A = A
T

, where A
T

de-
notes the conjugate transpose. All possible values of the observable are eigenvalues of the matrix.
Let A be an observable. Define 〈A〉 to be the expected value we would obtain if we would measure
A in the same quantum system again and again. ∆A =

√
〈A2〉 − 〈A〉2 is the root of the average

quadratic deviation with A2 = A · A. Let [A,B] = AB − BA be the commutator of the two
observables A and B.
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Suppose we have a quantum state ρ, how can we identify the final value x ∈ X of all out-
comes? A positive operator valued measure (POVM) is a set of nonnegative Hermitian operators
E = (Ex)x∈X that act in the Hilbert space of a quantum system and sum to the identity operator,
i.e.,

∑
x∈X Ex = 1, where 1 is the identity matrix. The probability for the outcome x, if the system

is in a state described by the density matrix ρ, is given by pE(x) = Tr(ρEx). A brief history of
POVMs in quantum theory is given in [Bra99].

It is impossible to do a proper measurement of specified observables simultaneously. If we
define a state of an observable precisely, this will make it impossible to define the other state pre-
cisely as well. This principle is called the Heisenberg uncertainty relation. The general form of
the Heisenberg uncertainty relation for observables A and B is ∆A∆B ≥ 1

2 |〈[A,B]〉|. We can
measure both values exactly only if the left-hand side is equal to 0, i.e., there is no uncertainty in
the measurement. And this is possible only if the commutator can be reduced to a matrix with only
0 entries. In this case we say that A and B are commuting.

For example, suppose we want to simultaneously measure the position x and the momentum
y of a particle. We need light with short wavelength to measure x strictly. The problem is that
light with short wavelength increases the momentum of the particle. On the other hand, we need
light with long wavelength to measure the momentum of the particle, but in this case we cannot
determine its position precisely.

OR

Figure 6: The Heisenberg uncertainty relation also holds for polarized photons

In quantum cryptography we generally use more than just one qubit. A quantum register is an
ordered set of a finite number of qubits. The standard basis of a n-qubit register is

B = {|i〉 | i is a n-bit binary string }.

4 Quantum Key Distribution

Quantum cryptography exploits the quantum mechanical property that a qubit cannot be copied or
amplified without disturbing its original state. Alice and Bob use a quantum channel to exchange
a random sequence of bits, which will then be used to create a key for the one-time pad used for
communication over an insecure channel. Any disturbance of the qubits, for example Eve trying to
measure the qubits’ state, can be detected with high probability.

In this section, we describe the BB84 protocol proposed by Charles Bennett and Gilles Brassard
in 1984, see [BB84]. It was the first protocol suggested that uses quantum mechanics for two parties
to agree on a joint secret key. After describing the protocol in detail, we show that it is secure against
all collective attacks, which implies that it is secure against any attack.
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4.1 The BB84 Protocol

In this protocol, Alice and Bob use a quantum channel by sending qubits. They are also connected
by a classical channel, which is insecure against an eavesdropper but unjammable. Alice and Bob
use four possible quantum states in two conjugate bases (say, the rectilinear basis + and the diagonal
basis ×). We use |0〉+ and |0〉× = (|0〉+ + |1〉+)/

√
2 for 0, and |1〉+ and |1〉× = (|0〉+ −|1〉+)/

√
2

for 1. The protocol works as follows.

1. Alice sends a n′′-bit string to Bob.

2. For each qubit, Alice tells Bob via the classical channel whether she used the basis + or the
basis ×. They keep the bits where Bob has used the same basis for his measurement as Alice.
Now they have n′ qubits left.

3. Alice and Bob compare a few bits (say ntest many) for which they used the same basis. When
the estimated error-rate ptest is less than a pre-agreed limiting value pallowed , then the test
succeeds. They now have an n-bit string n = n′ − ntest .

4. Finally, Alice and Bob obtain a joint secret key from the remaining n bits by performing error
correction and privacy amplification.

Alice’s string 1 1 0 1 0 0 1 0 1 1 1 1 0 0
Alice’s basis + + + × × + × × × × + + + +

Alice sends — — | \ / | \ / \ \ — — | |
Bob’s basis + × + + × + × + × × + + + +

Bob’s string 1 0 0 1 0 0 1 1 1 1 1 1 0 0
Same basis? Y N Y N Y Y Y N Y Y Y Y Y Y
Bits to keep 1 0 0 0 1 1 1 1 1 0 0
Test Y N N Y N N N N Y Y N
Key 0 0 1 1 1 1 0

Table 1: The BB84 Key Distribution Protocol

There is a simple method for error correction. Alice chooses two bits at random and tells Bob
the XOR-value of the two bits. Bob tells Alice if he has the same value. In this case they keep the
first bit and discard the second bit. If their values differ, they discard both bits. The remaining bits
are added to the key.

The probability to detect an eavesdropper Eve is 1/4 for every bit. Thus, with probability 3/4,
Eve is lucky and won’t be detected. If Alice and Bob compare N bits, the probability to detect Eve
is 1 − (3/4)N . When N increases, the probability that Eve’s attack succeeds converges to zero.

4.2 Security of Quantum Key Distribution

In this section, we show the security of quantum key distribution against the most general attack, the
so-called joint attack. Collective attacks are probably the strongest joint attacks. In a joint attack,
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Eve can delay her measurements until receiving all classical data, and she can manipulate the qubits
without anyone noticing. An important subclass of the joint attacks is a collective attack where each
qubit is attached to a separate probe, the measurement is delayed and performed collectively on all
probes after all classical data is received.

In order to prove the security of quantum key distribution against all collective attacks we first
have to introduce some definitions and notations. For two binary strings k and l, let k ⊕ l denote
the bitwise XOR addition of k and l. We call Tr |ρ0 − ρ1| the trace-norm of the Hermitian operator
(ρ0−ρ1), where ρ0 and ρ1 are two density matrices. In this section, we use only Hermitian matrices,
thus Tr(A) is nothing else than the sum of the absolute values of the eigenvalues of A.

For random variables X and B, we will write p(x) for p(X = x) and p(b) for p(B = b). We
denote the conditional probability by pb(x) = p(X = x|B = b). We need a function that gives the
increase of information about the input if the output is known. To this end, we introduce the entropy
between the input and the output, which is defined as

H(X;B) = −
∑

b∈B

p(b) log p(b) +
∑

x∈X

p(x)
∑

b∈B

px(b) log px(b).

When the input probabilities are equal for a binary input B, then the entropy is H(B;X) =∑
x∈X p(x)H2(px(0)), with H2(p) = 1 + p log p + (1 − p) log (1 − p). Every probability dis-

tribution in the entropy can be computed with p0(x) and p1(x). Thus to define the input when the
output is given is the same as to distinguish p0(x) and p1(x). We can define a new function for
binary inputs with equal probabilities, SD(p0(x), p1(x)) ≡ H(B;X), the Shannon Distinguisha-
bility.

We present only a proof sketch, a complete proof can be found in [BBB+98]. Given two
equiprobable states ρ0, ρ1, and a measurement procedure (POVM) E , let pEb (x) = Tr(ρbEx); for all
E , let SD

E(ρ0, ρ1) ≡ SD(pE0 (x), pE1 (x)). The optimal Shannon Distinguishability SD(ρ0, ρ1) ≡
supE [SD

E(ρ0, ρ1)], where the supremum is taken over all measurement procedures on all possible
sets X , gives us the maximum information we can obtain from a state. Unfortunately, we are not
able to compute the exact value of the optimal Shannon Distinguishability, therefore we will give
two bounds. The first bound shows that tracing out does not increase information, it merely leads to
a useful upper bound in special cases.

The first bound: Let ρ̃0 and ρ̃1 be two density matrices defined on a space H1 ⊗H2. Further, let
ρi = Tr2(ρ̃i) be the density matrices on H1, obtained by tracing out H2. Then,

SD(ρ0, ρ1) = SD(Tr 2(ρ̃0),Tr 2(ρ̃1)) ≤ SD(ρ̃0, ρ̃1). (4.1)

If ρ̃b is a pure state, we call ρ̃b the lift-up or purification of ρb.

The second bound: For any two density matrices ρ0 and ρ1,

SD(ρ0, ρ1) ≤
1

2
Tr |ρ0 − ρ1|. (4.2)

The proof of the two bounds can be found in [BBB+98].
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We assume that Eve’s probes are in an arbitrary but fixed initial pure state |E〉. In a collective
attack, Eve can change the state |b〉 sent by Alice to the global states

|0〉+ 7→ |E+
0,0〉|0〉+ + |E+

0,1〉|1〉+ ≡ |φ+
0 〉;

|1〉+ 7→ |E+
1,0〉|0〉+ + |E+

1,1〉|1〉+ ≡ |φ+
1 〉,

where the |E+
i,j〉 are Eve’s non-normalized states. We assume that Eve is strong enough to control

the natural noise.
Now we can identify Bob’s error probability (measuring |0〉+ when |1〉+ was sent etc.). We

have p+
e = 1

2(〈E+
0,1|E+

0,1〉 + 〈E+
1,0|E+

1,0〉) for the rectilinear basis, and p×e = 1
2(〈E×

0,1|E×
0,1〉 +

〈E×
1,0|E×

1,0〉) for the diagonal basis. Alice uses the two bases with the same probability, so Bob’s
overall probability of error is pe = 1

2 (p×e + p+
e ), thus p×e ≤ 2pe and p+

e ≤ 2pe. In a few steps we
can convert this result [BBB+98] into

p×e =
1 −<(〈E+

0,0|E+
1,1〉 + 〈E+

1,0|E+
0,1〉)

2
, (4.3)

where <(z) denotes the real part of the complex number z. Everything we will say in the following
for a basis holds by symmetry for the other basis too. Eve’s goal is tracing-out Bob from the states
φ+

b if the + basis was used:

ρ+
0 (E) = |E+

0,0〉〈E+
0,0| + |E+

0,1〉〈E+
0,1|;

ρ+
1 (E) = |E+

1,0〉〈E+
1,0| + |E+

1,1〉〈E+
1,1|.

There are many purifications that also result in the same reduced density matrices for Eve, in
particular

|ψ+
0 〉 = |E+

0,0〉|0〉+ + |E+
0,1〉|1〉+;

|ψ+
1 〉 = |E+

1,1〉|0〉+ + |E+
1,0〉|1〉+.

Now, if there is no disturbance, the angle between the two purifications is zero. The states in Eve’s
hands are the trace-outs of these pure states. These states exist in some Hilbert space HE ⊗H2, and
they are normalized. Here, H2 is the two-dimensional Hilbert space. Thus |〈ψ+

0 |ψ+
1 〉| = cos(2α+),

for some angle α+, 0 ≤ α+ ≤ π/4.
Let |Ψ+

0 〉 = |ψ+
0 〉 and |Ψ+

1 〉 = eiθ|ψ+
1 〉. There exist two normalized orthogonal states |0+

H〉 and
|1+

H〉 with

|Ψ+
0 〉 = cos(α+)|0+

H〉 + sin(α+)|1+
H〉;

|Ψ+
1 〉 = cos(α+)|0+

H〉 − sin(α+)|1+
H〉.

Since
1 − 2 sin2(α+) = 〈Ψ+

0 |Ψ+
1 〉 = |〈ψ+

0 |ψ+
1 〉| = |〈E+

0,0|E+
1,1〉 + 〈E+

1,0|E+
0,1〉|,

we have <(〈E+
0,0|E+

1,1〉 + 〈E+
1,0|E+

0,1〉) ≤ 1 − 2 sin2(α+).
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We can deduce from (4.3) that Eves’s state is a partial trace of the pure states |Ψ+
b 〉 with

sin(α+) ≤
√
p×e . Because of the symmetry of the bases, sin(α×) ≤

√
p+

e also holds. We know
that p×e ≤ 2pe and p+

e ≤ 2pe, so we can conclude that sin(α+) ≤ √
2pe and sin(α×) ≤ √

2pe.
In what follows, we omit the indices × and + for the bases, since Alice and Bob use the same

basis from now on. Eve detects which basis is used only after she retransmitted the particle towards
Bob.

After the two parties discard the bits where they used different bases, and those bits they used
to show that ptest ≤ pallowed , they have an n-bit string x left. From now on, we will use boldface
letters to denote strings in {0, 1}n. We will use boldface letters also in the following meaning: If
j = j1 · · · jn is the concatenation of n bits, then |j〉 = |j1〉1 · · · |jn〉n.

The global state of Eve’s probes is a partial trace of |Ψx〉, the tensor product of |Ψxi
〉, where

|Ψxi
〉 = cos(αi)|0〉i + (−1)xi sin(αi)|1〉i is the purification of Eve’s state after retransmitting the

ith bit xi to Bob. Let dj = dj1 · · · djn , where dji
= cos(αi) if ji = 0, and dji

= sin(αi) if ji = 1.
It follows that

|Ψx〉 = ⊗n
i=1 ((cos(αi)|0〉i + (−1)xi sin(αi)|1〉i)) =

∑

j∈{0,1}n

dj(−1)xj|j〉,

where xj =
∑n

i=1 xiji mod 2.
At this point we are going to show an example for |Ψx〉. Let x = 10, then

|Ψ10〉 = (cos(α1)|0〉1 − sin(α1)|1〉1) ⊗ (cos(α2)|0〉2 + sin(α2)|1〉2)
= cos(α1) cos(α2)|00〉 + cos(α1) sin(α2)|01〉 −

sin(α1) cos(α2)|10〉 − sin(α1) sin(α2)|11〉

Since (−1)xj(−1)xk = (−1)x(j⊕k), the state in Eve’s hands, i.e., the lift-up of Eve’s density
matrix, is

ρ̃x = |Ψx〉〈Ψx| =
∑

j,k∈{0,1}n

djdk(−1)x·(j⊕k)|j〉〈k|, (4.4)

for all the strings x sent by Alice.
We still have to analyze the parity bit. The procedure to encode one key-bit b ∈ {0, 1} with a

substring of the n bits that were sent by Alice looks as follows:

1. To define the relevant substring, Alice chooses a string v ∈ {0, 1}n and sends it to Bob.

2. Bob can calculate the bit b, as he knows that b = x · v.

Now Eve has a problem, since only the value of v is known to her, so she has to guess b = x · v.
Only strings x with x · v = b satisfy

ρ̃vb ≡ 2−n+1
∑

{x|x·v=b}

|Ψx〉〈Ψx|.

Eve has to distinguish between the two density matrices ρv
b in her hands to find out b, where the ρ̃vb

are lift-ups of ρvb .
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Let ∆v ≡ ρ̃v0 − ρ̃v1 . The trace-norm of ∆v can be calculated [BBB+98] by

Tr |∆v| ≤ 2
∑

i⊕j=v

didj = 2
∑

j

djdj⊕v = 2
∏

i∈v

sin(2αi), (4.5)

where vi is the ith bit in v. We write i ∈ v instead of vi = 1 when looking at v as a characteristic
function of a set also denoted v, see [BBB+98]. Using the bounds (4.1) and (4.2), we notice that

SD(ρv0 , ρ
v
1 ) ≤ SD(ρ̃v0 , ρ̃

v
1 ) ≤ Tr |∆v| ≤ 2

∏

i∈v

sin(2αi)

if Eve does not know the error correction data.
Some remarks on error correction are in order here. For all s ∈ {0, 1}r , let vs =

∑r
i=1 sivi.

With a compatible error correction model as in [BBB+98], it can be shown using the two bounds (4.1)
and (4.2) that

SD(ρE,v
0 , ρE,v

1 ) ≤ 2
∑

s∈{0,1}r


 ∏

i∈(v⊕vs)

(8pi)




1/2

,

where E = {v1 · x = b1,v2 · x = b2, . . . ,vr · x = br} is a system of r linear equations chosen by
Alice such that the r + 1 strings v,v1, . . . ,vr are linearly independent and bi ∈ {0, 1}. We write
E(x) for x satisfying the system E, so x is a code word.

For all s, let n̂s be the number of ones in v ⊕ vs. Let ps = (
∑

i∈(v⊕vs)
pi)/n̂s be the average

error in the subset s. Since the geometrical mean is always less than the arithmetical mean, it follows
that 

 ∏

i∈(v⊕vs)

8pi




1/2

≤ (8ps)
cns/2 ,

which implies
SD(ρE,v

0 , ρE,v
1 ) ≤ 2

∑

s∈{0,1}r

(8ps)
cns/2 . (4.6)

With these equations at hand, one can prove that the BB84 protocol is secure against all col-
lective attacks. Let us assume that the test was successful with probability ptest ≤ pallowed . The
statistical analysis tells us that each of the error values ps is bounded. Using bound (4.2), the two
laws of large numbers of Hoeffding [Hoe63], and Equation (4.6), it follows for the average pi of all
n′ relevant bits pn′ that

p[pn′ > ptest + 2δ] ≤ 2e−2ntestδ2

.

Due to the fact that pn′ is bounded, we can also bound ps in the following way: Let Alice and Bob
use ntest = n = n′/2 bits. Assume that n′ is even, otherwise we can throw in another bit. Thus
ps ≤ (n′/n̂s)pn′ . Eve’s information is bounded by

2
∑

s∈{0,1}r

((
8n′

n̂s

)
(ptest + 2δ)

)cns/2

,
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except she has luck with probability pluck = 2e−2ntestδ2

. In the case of Eve being lucky, her
information is maximal, i.e., only one bit, and her total information is bounded by

2
∑

s∈{0,1}r

((
16n

n̂s

)
(ptest + 2δ)

)cns/2

+ 2e−2nδ2

.

Thus, we can give a bound for the Shannon Distinguishability:

SD(ρE,v
0 , ρE,v

1 ) ≤ 2r+1

((
16

α

)
(ptest + 2δ)

)αn/2

+ 2e−2nδ2

,

where αn = n̂ = mins∈{0,1}r n̂s.
For reasonable error rates, for example below 2%, there exist many codes where we can choose

the parameters n, r, α, and δ such that Eve’s information is negligible. In [BBB+99], an asymptotic
result of security and reliability using random linear codes is presented, and it is shown that such a
code provides asymptotic reliability and security, for an allowed error-rate below 7.56%.

5 Quantum Bit Commitment

When talking about quantum cryptography everyone is thinking about key distribution. However,
there are other cryptographic applications as well, such as bit commitment. In 1993, a bit com-
mitment protocol based on quantum mechanics was introduced by Brassard et al. [BCJL93]. The
unconditional security of the protocol (which means that the security of the protocol is independent
of time, space, and technology of the cheater) has been accepted without proof [Yao95]. Two years
later the protocol turned out to be wrong [May95].

A commitment protocol is a procedure in which one party, say Alice, deposits a message such
that no one (and in particular not Alice) can either read or change it. A commitment protocol has two
stages, the commit phase and the unveil phase. Alice commits herself to the data m by computing
c = f(m) and she sends c to Bob. Alice unveils the commitment by showing Bob the preimage m
of c. Bit commitment is a special case of a commitment protocol, where the data m consists of only
a single bit.

5.1 How to Realize Quantum Bit Commitment

For simplicity, we will use only two-dimensional quantum registers. Systems of higher dimension
can be created from two-dimensional systems. The two parties, Alice and Bob, have their own
corresponding areas HA and HB on their respective sides. They thus perform the protocol on the
system HA⊗HB ⊗HE , where HE corresponds to the environment. We allow any kind of quantum
communication between Alice and Bob. The two parties can execute any unitary transformation on
their own system. In particular, they can launch new quantum registers in a fixed state |0〉. Let HS

be the system that stores the classical bits that have been transmitted from Alice’s system to Bob’s
system, or vice versa. Thus, the environment has the form HE = HS ⊗ HE,A ⊗ HE,B, where
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HE,A and HE,B store untransmitted classical bits that are kept on Alice’s side and on Bob’s side,
respectively.

In quantum bit commitment, the bit b that Alice has in mind must be changed with a procedure
commit(b) into a state |ψb〉 of HA ⊗HB ⊗HE . The protocol also needs a procedure unveil(|ψb〉)
that returns the value of the bit b, or if Alice cheats, an inconclusive result denoted by ⊥. We call
the protocol correct if the procedure unveil always returns b on |ψb〉 assuming that Alice and Bob
are honest.

If one of the parties, say Alice, wishes to perform a binary outcome measurement, she proceeds
as follows:

1. Alice launches a quantum register in a fixed state |0〉.
2. Next she entangles it with the measured system initially in a state |φ〉 and receives the state in

the form α|0〉|φ0〉 + β|1〉|φ1〉.

3. Alice sends this quantum register to a measuring device in HE,P , which stores and am-
plifies the component |x〉 as a complex state |x〉(E,P ). The new state is then of the form
α|0〉(E,P )|φ0〉 + β|1〉(E,P )|φ1〉.

To generate a random bit, we can proceed in the same way. The transmission of a classical bit x
from Alice to Bob is represented by a transformation that maps |x〉(E,A)|0〉(E,B) to |x〉(S,A)|x〉(S,B),
see Mayers [May97].

The entire system is always in a state

∑

ξS ,ξA,ξB

α(ξS ,ξA,ξB)|ξS, ξA, ξB〉(E)|φ(ξS ,ξA,ξB)〉,

where ξS , ξA and ξB are random binary strings with joint probability |α(ξS ,ξA,ξB)|2, and |φ(ξS ,ξA,ξB)〉
is the state of HA ⊗HB combined with the appearance of ξS , ξA, and ξB when a collapse occurs.
A party P ∈ {A,B} knows ξP and ξS . P can choose the next action such that the transformations
must behave as if a collapse into the state |φ(ξS ,ξA,ξB)〉 had really occured.

Next, we will introduce some definitions and notations. Let us assume that Alice is cheating,
namely that she has not any specific bit b in mind during the commit phase, and that she chooses
this bit later. Let |ψ′〉 be the state created by Alice’s modified procedure commit ′. Now, p(b| not ⊥)
is the probability that unveil returns b on |ψ ′〉, given that it has not returned ⊥. Alice can certainly
choose the probability p(b| not ⊥), see Mayers [May97]. After the procedure commit ′, Alice
should not be able to change her mind about p(b| not ⊥). Analogously, let unveil

′ be Alice’s
modified unveil procedure, and define p′(b| not ⊥) accordingly. Thus, p′(b| not ⊥) is the prob-
ability that unveil

′ returns b on |ψ′〉, given that it does not return ⊥. The state |ψ ′〉 is perfectly
binding if every procedure unveil

′ returns ⊥ with probability one, or else returns b with probability
p′(b| not ⊥) = p(b| not ⊥). The state |ψ′〉 with a parameter n (for example, the number of the
transmitted photons) is binding if with the increase of the parameter it can be made arbitrarily close
to being perfectly binding.

In the following we want to explain what kind of security we expext from a quantum bit commit-
ment protocol. We considered Alice to be dishonest above. Now, what if Alice is honest (otherwise,
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the encoding b 7→ |ψb〉 would not make sense), but the encoding can be modified by a dishonest
Bob. Let η = (ξB , ξS) be the random classical information stored in HE,B⊗HS after the encoding.
This classical information is available to Bob. Let |ψb,η〉 be the corresponding collapsed state of the
system HA ⊗HB ⊗HE,A. For given η, let ρB(|ψb,η〉) = TrHA⊗HE,A

(|ψb,η〉〈ψb,η |) denote the re-
duced density matrix of HB . Next we need an expression for the accuracy of our encoding. For any
given communication scheme, the fidelity is a quantitative measure of the accuracy of transmission,
see Jozsa [Joz94]. Define F (η) as follows: Set F (η) = 0 if η determines a single value of the bit
b; otherwise, let F (η) be the fidelity between ρB(|ψ0,η〉) and ρB(|ψ1,η〉), see Mayers [May97]. The
value of the fidelity is always between 0 and 1. It is equal to 1 if and only if the two density matrices
are identical.

We call the modified encoding perfectly concealing if the expected value of F (η) is 1 and the
random string η gives no information about the bit b. We can now define “concealing” the same
way we defined “binding” above. Let us explain what kind of security we expect from a quantum
bit commitment protocol. We call a protocol perfectly secure if

• the encoding is perfectly concealing, even if Bob is cheating, and

• if the state |ψ〉 returned by the commit procedure is perfectly binding.

Analogously, define a protocol (with parameter n) to be secure if

• even for a dishonest Bob, the encoding is concealing, and

• even for a dishonest Alice , the encoding is binding.

It is widely believed that it is impossible to create a perfectly secure bit commitment proto-
col. In quantum cryptography, we want to design “only” secure protocols. Mayers has shown that
unconditionally secure quantum bit commitment is impossible [May97]. A bit commitment pro-
tocol is unconditionally secure if any desired property holds even against a cheater with unlimited
computational capacities, regarding technology, time, and space.

5.2 The BB84 Quantum Bit Commitment Protocol

If b 7→ |ψb〉 is concealing and |ψ0〉 and |ψ1〉 bind Alice to 0 and 1, respectively, then we call the
encoding a bit commitment encoding. The BB84 protocol was introduced in Section 4.1. We will
create a bit commitment protocol from the BB84 quantum key distribution protocol with a few
minor changes.

The commit procedure:

1. Alice creates a random binary string w = w1 · · ·wn.

2. Alice encodes each bit wi by the rectilinear basis θ = + or the diagonal basis θ = ×, if she
wants to commit to 0 or to 1, respectively.

3. Alice sends the registers to Bob.

4. Bob chooses for each received register the basis to measure, so he has a string of random
bases θ̂ = θ̂1 · · · θ̂n ∈ {+,×}n. He measures register i with basis θ̂i, and denotes the
outcome by wi.
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The unveil procedure:

1. Alice publishes the string w.

2. Bob can identify b by looking at the positions where wi 6= ŵi. Bob knows that θ 6= θ̂i must
hold when wi 6= ŵi. Thus he can determine θ and b at each of these positions. If two of
these positions reveal different values for θ, Bob interprets this as an inconclusive result.

The protocol above is a bit commitment encoding, since it is concealing, and b = 0 and b = 1
correspond to the same density matrix on Bob’s side. The commit procedure is also binding because
if Alice wants to cheat, she has to guess the right bits obtained by Bob when θ̂i 6= θ. As these bits
are chosen at random, the probability of detecting that Alice is cheating increases with n.

There is a strategy Alice can use against the BB84 bit commitment protocol. In step two in the
commit procedure, Alice creates for each random bit wi the state

1√
2

(
|0〉(E,A)

θ |0〉(B)
θ + (|1〉(E,A)

θ |1〉(B)
θ

)
. (5.7)

If Alice is dishonest, she performs the commit procedure for b = 0, with the difference that she
won’t send any information to the environment. Thus, for each position i the state above is of the
form

1√
2

(
|0〉(A)

+ |0〉(B)
+ + (|1〉(A)

+ |1〉(B)
+

)
. (5.8)

The only difference between the two states (5.7) and (5.8) are the underlying systems. At this point,
Alice can execute a unitary transformation on HA, which transforms Alice’s state into the state that
she would have created at the beginning with b = 1:

1√
2

(
|0〉(A)

× |0〉(B)
× + (|1〉(A)

× |1〉(B)
×

)
.

It seems that this transformation is the identity transformation, but in general the cheater has to
launch a nontrivial transformation.

5.3 Unconditional Security of Quantum Bit Commitment

Unconditionally secure quantum bit commitment is impossible. However, a secure bit commitment
protocol where the initial state is already the outcome of the encoding is easy to build [BCJL93].
There are no unconditional secure quantum bit commitment protocols, with initial quantum registers
set to |0〉, without any entanglement of the environment.

We can act on the assumption that the protocol is secure against Bob, otherwise the protocol is
not secure. Alice chooses in her modified commit

′ procedure b = 0, and she does not send any
register to the environment unless it is required for classical communication. Bob acts the same
way in his commit ′′ procedure. So, the two systems HE,A and HE,B are not used in commit ′ and
commit ′′, respectively.

After the commit ′ procedure, there is a random string γ stored in HS . Let |ψ′
b,γ〉 be the corre-

sponding collapsed state of the remaining system HA ⊗HB ⊗HE,B. Mayers [May97] has shown
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that the expected value of F ′(γ) between the density matrices ρB(|ψ′
b,γ〉) in the commit

′ procedure
is arbitrary close to 1.

We have two cases. First, F ′(γ) = 1, so the density matrices are always identical. Second,
F ′(γ) 6= 1, but this is arbitrarily close to 1.

In the first case there exists a unitary transformation that maps |ψ ′
0,γ〉 to |ψ′

1,γ〉. Thus, Alice can
unveil the bit b = 1, so she can cheat if the two density matrices on Bob’s side are identical.

Now, let F ′(γ) 6= 1. If ρB(|ψ01〉) = ρB(|ψ′
0,γ〉), we call |ψ01〉 the purification of the density

matrix ρB(|ψ′
0,γ〉). Uhlmann’s Theorem (see Jozsa [Joz94]) says that there exists a purification

|ψ01〉 of ρB(|ψ′
0,γ〉) with 〈ψ01|ψ′

1,γ〉 ≥ F ′(γ). Therefore, Alice is able to transform |ψ ′
0,γ〉 into

|ψ01〉 in her unveil
′ procedure, just as in the case where the density matrices were identical. After

this, she can continue with the honest unveil procedure. From Uhlmann’s Theorem it follows that
Alice can change the bit b from 0 into 1 with probability arbitrarily close to one if the expected value
of F ′(γ) is close to one, see Mayers [May95].

As we can see, a dishonest party uses the same algorithm in the commit
′ and commit

′′ proce-
dure as does an honest party in the commit procedure. Thus, it is impossible for the honest party to
detect the cheater in the commit ′ and commit ′′ procedures.

Acknowledgments: The choice of Alice and Bob in Figure 2 was inspired by a talk by Dagmar
Bruß at the University of D üsseldorf in November, 2005.
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[Sch35] E. Schr ödinger. Die gegenw ärtige Situation in der Quantenmechanik. Die Naturwis-
senschaften, 23:807–812, 823–828, 844–849, 1935.

[Sha49] C. Shannon. Communication theory of secrecy systems. Bell System Technical Journal,
28(4):657–715, 1949.

[Sho97] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[Sin99] S. Singh. The Code Book. The Science of Secrecy from Ancient Egypt to Quantum
Cryptography. Fourth Estate, London, 1999.

[Sti02] D. Stinson. Cryptography: Theory and Practice. CRC Press, Boca Raton, second
edition, 2002.

[Yao95] A. Yao. Security of quantum protocols against coherent measurements. In Proceedings
of the 27th ACM Symposium on Theory of Computing, pages 67–75. ACM, New York,
1995.

19

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



