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Abstract

We survey some results in quantum cryptography. After & brieoduction to classical cryp-
tography, we provide the quantum-mechanical backgrouadexto present some fundamental
protocols from quantum cryptography. In particular, waeemguantum key distribution via the
BB84 protocol and its security proof, as well as the relatedrjum bit commitment protocol
and its proof of insecurity.
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General Terms Theory; Security; Algorithms; Experimentation.

Key words and phrasegjuantum cryptography; quantum key distribution; quanthihtom-
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1 Introduction

Cryptography is the science of keeping private informatiom unauthorized access. An algorithm,
which is called aipherin this context, scrambles the message via some rule suctestaring the
original message is hard—if not impossible—without knalge of the secret key. Cryptographic
technology in use today relies on the hardness of certaihenatical problems. Classical cryptog-
raphy faces the following two problems. First, the hardrdgte problems on which the security
of cryptosystems is based (e.g., integer factoring or teereie logarithm problem) often is not
a proven fact but rather a widely believed hypothesis. Sectire theory of quantum computa-
tion has yielded new methods to tackle these mathematioblgans in a much more efficient way.
Although there are still numerous challenges to overconfieréex working quantum computer of
sufficient power can be built, in theory all classical cigharight be vulnerable to such a powerful
machine. However, while quantum computation seems to bedffi@ nail for classical cryptogra-
phy in a possibly not so distant future, at the same time érsfhiew possibilities to build encryption
methods that are safe even against attacks performed bysméarmuantum computer. Quantum
cryptography extends the power of classical cryptographyrotecting the secrecy of messages
using the physical laws of quantum mechanics.
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Looking back in the history of cryptography, one of the firstgyption methods was the scy-
tale. The first recorded use of the scytale dates back to thecthtury B.C. when the Spartans
used it to exchange battle information between generalsowitrevealing it to the enemy. To en-
crypt a message, which we call th&intextin cryptography, a strip of leather or pergament was
wrapped around a wooden cylinder, the scytale. The enayptssage, also called thiphertext
was then written from left to right onto the leather, so thatawvelling the strip would produce a
meaningless alignment of seemingly random letters, sag&-iyfor the encryption of the plaintext
“scytaleisatranspositioncipher” by “ssoicaspytihteieimoesnipc.” The decryption of the ciphertext
was achieved by using a scytale of the same diameter as thdaythat was used for encryption.
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Figure 1: The Scytale
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The scytale is a so-called transposition cipher, since tmdyorder of the letters within the
message is changed. Another type of encryption is the sulti@ti cipher. Here, instead of swapping
the positions of the letters, each plaintext letter is regdbhby another letter according to some
specific rule.

The method of encryption and decryption is calledrgptosystemwhereas the patrticular in-
formation used for encryption or decryption in an indivilobammunication is called key. In the
case of the scytale, the diameter of the cylinder repreghatsecret key. Obviously, this ancient
cryptosystem has a very low level of security. Once the ntetdi@ncryption is known to the eaves-
dropper, he or she can simply try all possible diametersealethe original message. The fact
that the cryptosystem is publicly known is not the reasortterinsecurity of the communication,
but rather the small number of possible keys that can be wseshtryption. In the 19th century,
Auguste Kerckhoffs stated the principle that the securfity oryptosystem must be based solely on
the secrecy of the key itself. Therefore, when designing ciplvers, one should always treat the
algorithm as if it were publicly known.

Over time, the amount of information that needed to be enedypxploded, making it impos-
sible to use simple and insecure procedures like the scyAaliérst, mechanical devices were built
to speed up the encryption and the decryption process, aindrimase the complexity of the keys
used to scramble the message. An infamous example of suctclzanieal cryptosystem is the
Enigma, which was used in World War Il by the Germans to conted military communication.
Not following Kerckhoffs’ principle, the Germans considdrthe Enigma unbreakable, assuming
that the mechanical device used for secure communicatiematknown to the enemy. However,
allied cryptanalysts in Bletchley Park near London oftemenable to decrypt the German military
messages during the war. One might argue that breaking tiggn&rwas one of the most crucial
factors for the victory of the allied forces and for ending thiar. After the war, it was the invention
of the transistor that made the rise of the computer indysissible.

The huge speed-up in executing mathematical calculatiesdted in the need to create much
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more secure cryptosystems, among them symmetric bloclepsuch as the Data Encryption
Standard (DES) and the Advanced Encryption Standard (AE&pablic-key cryptosystems such
as RSA and others, which are integrated in modern cryptbgrapplications currently in use. A
nice and easy-to-read overview of the history of cryptolyais given by Singh [Sin99].

With the currently emerging theory of quantum computatisa,seem to be at the beginning of
yet another era of cryptography.

2 Classical Cryptography

Overviews of classical cryptography can be found in varitax$ books, see, e.g., [Rot05,Sti05].
Here, we present just the basic definition of a cryptosystathgive one example of a classical
encryption method, the one-time pad.

Definition 1 A (symmetric) cryptosystens a five-tuple(P,C, K, &, D) satisfying the following
conditions:

1. P is afinite set of possiblplaintexts

2. Cis afinite set of possibleiphertexts
3. K is afinite set of possiblkeys
4

. For eachk € K, there are anencryption rulee, € £ and a correspondinglecryption rule
dx € D, whereey, : P — C anddy : C — P are functions satisfyingy (e (z)) = z for each
plaintext element € P.

\ l insecure channel

¢

Eve

Figure 2: Communication between Alice and Bob, with Evesligg

In the basic scenario in cryptography, we have two parties wish to communicate over an
insecure channel, such as a phone line or a computer netWetlally, these parties are referred to

3



as Alice and Bob. Since the communication channel is inge@ur eavesdropper, called Eve, may
intercept the messages that are sent over this channel. rBgiag on a secret ke via a secure
communication method, Alice and Bob can make use of a cryptes to keep their information
secret, even when sent over the insecure channel. Thisigitigaillustrated in Figure 2.

The method of encryption works as follows. For her secretsagan, Alice uses the key:
and the encryption ruley to obtain the ciphertext = e;(m). She sends Bob the ciphertexbver
the insecure channel. Knowing the kikyBob can easily decrypt the ciphertext by the decryption
rule dy:

di(c) = di(ex(m)) = m.
Knowing the ciphertext but missing the keyt, there is no easy way for Eve to determine the
original messagen.

There exist many cryptosystems in modern cryptographyattstnit secret messages. An early
well-known system is thene-time padwhich is also known as théernam cipher The one-time
pad is a substitution cipher. Despite its advantageouseptiep, which we will discuss later on, the
one-time pad'’s drawback is the costly effort needed to tréinand store the secret keys.

Example 2 (One-Time Pad) For plaintext elements i, we use capital letters and some punctu-
ation marks, which we encode as numbers ranging fiam29, see Figure 3. As is the case with
most cryptosystems, the ciphertext space equals the gtaispace. Furthermore, the key spdce

A|/B|C|D|E|---| X|Y|Z Fy- 0.
00|01(02|03|04|---]123|24|25|26|27|28]|29

Figure 3: Letters and punctuation marks encoded by numbars® to 29

also equalsP, and we have? = C = K = {0, 1,...,29}.

Next, we describe how Alice and Bob use the one-time pad nartréa their messages. One
concrete example is shown in Figure 4. ket= mims...m, be a given message of length
which Alice wishes to encrypt. For each plaintext elementwherel < ¢ < n, Alice randomly
and uniformly chooses a key elemépt {0, 1,...,29} and adds the plaintext numbers to the key
numbers. The result is taken modgla For example, the last letter of the plaintext from Figure 4,
“D," is encoded by 03" The corresponding key is28,” so we havec = 3 + 28 = 31. Since
31 = 1 mod 30, our plaintext letter ‘D" is decrypted as ‘B The encryption and decryption can
be written as:; = (m; + k;) mod 30 andm; = (¢; — k;) mod 30, respectively.

To prove that the one-time pad achieves perfect secrecyee some elementary notions from
probability theory.

Definition 3 Let X be a discrete random variable that can take on values fromieefgetX” ac-
cording to a given probability distribution o’. We denote b¥r[X = x| the probability thatX
takes on the value € X. If X is clear from the context, we just writer[z]. For all z € X,
Pr[z] > 0. Additionally, ", Pr[z] = 1. For another random variablé&” defined on the finite
set), we define the conditional probability that takes on the value € X given thatY takes on
the valuey € Y by Pr[x|y].



plaintextpe” | O | N | E| - | T | | |M|E P|A|D
p encoded 14113(04|28(19(08|12|04|26|15|00| 03
key k 06|13|02|01|14|05|07|18|05| 26| 13| 28
ciphertextce C || 20| 26| 06|29 |03|13|19(22|01|11|13|01
¢ decoded U G| .|DIN|T|W|B|L|N|B

Figure 4: Encryption and decryption example for the onestjmad

Suppose that a probability distribution on the finite plakttspaceP is given. Thus, the plain-
text element defines a random variable, which we denote. lfyimilarly, the key chosen by Alice
and Bob for their communication defines a random variableherkey space, denoted ly Both
probability distributions, fop andk, induce a probability distribution on the ciphertext spéce
which gives another random variabtefor the ciphertext element. We now define the notion of
perfect secrecy that was introduced by Shannon [Sha49].

Definition 4 A cryptosystem is said to achieperfect secrecif and only if for eachp € P and for

eachc € C,
Prlp|c] = Pr[p].

That means that the event that some plaintexts encrypted is independent of the ciphertext
being observed. In other words, knowingields no advantage when trying to retrieve the original

plaintextp.
Shannon [Sha49] gave a characterization of when perfetgecan be achieved. Suppose that
(P,C,K,E,D) is a cryptosystem with| || = ||C|| and such that every plaintext element will be

encrypted with a positive probability. Then, this crypte®m achieves perfect secrecy if and only
if

1. the keys inC are uniformly distributed, and

2. for eactp € P and for eachl € C, there exists a unique kdysuch thaky (p) = c.

The proof of Shannon’s theorem can be found in, e.g., [SREtO5,Sti05]. Using this theorem, it
is easy to see that the one-time pad satisfies the propergrfeiop secrecy. Since a new key element
is created for each single plaintext element randomly utteeuniform distribution, knowing the
ciphertext is no advantage for an eavesdropper who seeksdwar the original message.

Although it provides perfect secrecy, the one-time pad hissevere disadvantages that make
itimpractical to use. Recall that the key has to be as largeeasessage itself. Thus, the number of
bits that need to be exchanged over a secure channel fonimlgta joint secret key increases with
the amount of information that Alice and Bob wish to transsgtretly. In light of this fact, one
might ask why they don’t use the secure channel directlyHeirtcommunication. Using the same
key for encryption more than once is no alternative, as theetone pad’s perfect secrecy crucially
depends on creating a new key for every single plaintext efem

The scytale and the one-time pad are two examples of a sylcrogtptosystem. That means
that the same key is used for encryption and decryption {deast, that the decryption key can be
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easily determined from the encryption key). Thus, Alice Both have to agree on a joint secret key
prior to their conversation via a secure channel. Secrnetkeeement protocols were proposed by
Diffie and Hellman [DH76], Rivest and Sherman (see [RS97,${R®R01,HRSO05]), and others.
However, a major disadvantage of symmetric ciphers andelaged issue of key distribution occurs
when the communicating parties in a large communicatiowort need to share joint secret keys.
Whenn parties participater(n + 1)/2 different keys have to be exchanged and stored securely.

Public-key cryptosystems, also called asymmetric crystiesns, circumvent the key distribu-
tion and storage problem. Instead of having one key for epeiy of parties, only one key per
party is needed to communicate securely. In 1976, Whitfigfiecband Martin Hellman [DH76]
proposed the principle idea of public-key cryptographynaely to use two distinct keys, a public
key for encryption and a private key for decryption.

The first public-key cryptosystem is the RSA system, namtsa @$ three inventors Ron Rivest,
Adi Shamir, and Leonard Adleman [RSA78]Up to date, RSA is still used in numerous crypto-
graphic applications. Public-key cryptosystems are basedo-called(trapdoor) one-way func-
tions functions that are easy to compute but hard to invert (grdes possesses a certain “trapdoor”
information required for authorized decryption).

To communicate via a public-key cryptosystem, Alice credeo keys kpupiic andKprivate. Her
encryption keykpubiic is public, but Alice keeps her private decryption kyivate secret. Each
time Bob wishes to communicate with Alice, he looks up herliputey and uses it to encrypt his
message. Since only Alice knows her private key, she alondefficiently) compute the original
message, i.e., the inverse of the encryption function.

The key issue is to find one-way functions that are securegimtmuuse for public-key cryptog-
raphy. The first one-way function designed for this purpase, the RSA encryption function) was
based on the problem of factoring large integers. Up to navefficient algorithm for computing
the prime factors of some given integer is known. Other pukdly cryptosystems—such as the
ElGamal system [EIG85]—are based on the presumed hardhessputing discrete logarithms.
One disadvantage of such systems is that they often lackad pfgecurity. Another disadvantage
is that the directory storing the public keys has to be ptettagainst manipulation and unautho-
rized access. If eavesdropper Eve replaces Alice’s publjodith her own key, she can decrypt all
messages sent to Alice.

Since the publication of Peter Shor about prime factomrasind computing discrete logarithms
with quantum computers [Sho97], all cryptosystems whosergtg is based on the hardness of
solving these mathematical problems have become theallgticulnerable. Although it will cer-
tainly take some time for the first practical quantum comgaute emerge, it is advisable to look
for alternative, new cryptosystems whose security is ngebtasolely on the hardness of solving
such mathematical problems with current computer teclyyol@uantum theory seems to be the
perfect basis on which to build such a new cryptosystem tlitast@nds even an attack by quantum
computers.

1In 1997, the British Government Communications Headquarevealed that its researchers James Ellis, William
Cocks, and Malcolm Williamson had independently and evelieeaiscovered the principle idea of public-key cryptog-
raphy, the cryptosystem now called RSA, and the secretggeaent protocol now called Diffie-Hellman, see, e.g., the
discussion in [Sin99,Rot05].



3 From Bits to Qubits

The most important unit of information in computer scierethiebit. There are two possible values
that can be stored by a bit: the bit is either equal@bdr equal to “1.” These two different states
can be represented in various ways, for example by a simpletsar by a capacitor: if not charged,
the capacitor holds the value zero; if charged, it holds #ieesone.

In general, a quantum state¢) is an element of a finite-dimensional complex vector space
(or Hilbert space)d. We denote the scalar product of two state$ and |¢) by (i|¢), where

(| = WT is the conjugate transpose [of).? It is convenient to deal with normalized states, so
we require(y|y) = 1 for all stategv) that have a physical meaning.

The quantum analog of the bit is callgdbit, which is derived fronquantumbit. A qubit |¢)
is an element of a two-dimensional Hilbert space, in whichcase introduce an orthonormal basis,
consisting of the two state8) and|1). Unlike its classical counterpart, the quantum state can be
any coherent superpositioaf the basis states:

) = |0) + B[1), (3.1)

wherea and S are, in general, complex coefficients. This is due to the flaat the quantum
mechanical equation of motion, the Schrodinger equattlmear: Any linear superposition of its
solutions (the quantum states) is also a solution. Sinceeggine quantum states to be normalized,
we find that the coefficients in (3.1) have to fulfitt|* + | 3> = 1, where| - | denotes the absolute
value.

There exist many possibilities to physically represent hitgim practice, as every quantum
system with at least two states can serve as a qubit. For deatme spin of an atom or the
polarizatiort of a light particle can represent the state of a qubit. Eveatanith its two basic
states “dead” and “alive,” introduced by Schroedinger [{&jho visualize fundamental concepts
of quantum mechanics, might serve as a representation. atlsepcoblem—or fortune from the
animal’s point of view—when being used as a quantum systéts sheer size compared to that of
an atom or light particle. There is no way to protect such agpigntum instance from interaction
with its environment, which in turn will result in decohepenof the superposition of the cat. For
the rest of the chapter, we will leave the cat alone and ube figrticles as our preferred qubits.

The physical meaning of (3.1) can most easily be understduehwve measure the quantum
state[)). In quantum mechanics, this is achieved bypasitive operator valued measurement
(POVM), which is a set of positive-definite, hermitian ogera& = {E, }.cx acting on the Hilbert
space of the qubit. The elements of this set have to sum uge idéntity,> © . £, = 1. Asimple,
special case occurs when thg are orthogonal projectors, i.62; = |¢,) (.| and(¢.|dy) = 0y.
This simple projection measurement is callexh Neumann measuremerfhe resultz of a von
Neumann measurement will occur with probabilRy[z] = (| E,|v) = |(¥|é,)|?. Consider our
gubit being represented by the polarization states of agph&/e denote horizontal polarization by

2Mathematically,(t/| is an element of the dual spaég’.

3Light particles, called photons, can be seen as electroetimghwaves. A specific property of them is their transver-
sality, which means that the electric and the magnetic fildorthogonal to each other and to the propagation directio
The inclination of the electric (or magnetic) field to thesagf the propagation is called polarization.



|0) and vertical polarization byi). It is a physical property of the electromagnetic field ttnetse
two states are orthogondli.e., (0/1) = 0, and thus form a basis in the two-dimensional Hilbert
space. A simple measurement that tells us whether the gubithe stat¢0) or |1) is given by the
projection set{|0)(0],|1)(1|}. When performing this measurement, the qubit will be foumthie
state|0) with probability |«|?, and in the statél) with probability |3|2. We are free to choose a
different basis in the Hilbert space; for instance, the duergby the two states

1

1

Dy = \/5(|0> — ).

This is a rotated basis, and a photon in the sfiaite and|1) , respectively, has a polarization of
+45° against the horizontal. If we measure in this basis by meétisegrojection measurement
{]0) . (0], 1) (1]}, we find the qubit in the state) . with probability 1/2+ R(«3), and in the state
1), with probability 1/2 — ®(«/3). Let us consider the special case where, for instafice, 0:
When we do the first measurement, we find the qubit in the $fiatevith certainty. But when
we apply the second measurement, the outcome will be coepletndom. This is an important
property of theconjugated base§|0), |1)} and{|0), |1), } with |(i|j)« | = 1/+/2 for all i and,
which will be exploited in many quantum key distribution fwreols, as described below.

From POVMs it is just a small step mbservables Each measurable physical quantity is rep-
resented by a hermitian operator, called observable. Whewnite an observabld in its spectral
decompositionA = ), \;[i)(i|, where(i|j) = d;;, the corresponding POVM is given by the or-
thogonal projectorq|:)(i|}. A measurement ofd always yields one of the eigenvalugs as a
result, and the measured quantum statéapsesonto the corresponding staie.

An important concept in quantum mechanics is de@sity matrixor density operatop: The
density matrix of a so-callepure state|+)) is given by the projectof))(¢|. In the case of a qubit,
this is a complex-valued2 x 2) matrix. The advantage of this representation is the pdigibi
to describe systems with a statistical distribution ofegatFor instance, consider a system that
is known to be in the statg),) with probability Pr[z], for z € X. LetE = {E,},cy be some
POVM. Then the probability to get the resuftif the system was known to be in the state)
would be (| Ey|1,). But since we do not know, we have to average over all possihtes, just
as we would do if the system were prepared many times in onkeo$tates|¢,.)} and we had
repeated the measurement each time. The probability touresas theensembld |, ), Pr[z]} is
consequently

Prly] = ) Prla](¢|Eylyy) = tr (Ey > Pr[w]!d}xﬂwx\) : (3.2)

zeX TeX

wheretr A denotes the trace of the matri i.e., the sum of its diagonal elements. We can now

introduce the density matrix = . Prlz][¢,)(¥.|, such that (3.2) takes the simple form:

“This is by no means a consequence of the geometric relaijphetween “horizontal” and “vertical.” For instance,
the spin of a spin-1/2 particle like the electron can poigi™ar “down,” and the corresponding state$) and| |) are
orthogonal. However, the angle between the two spin satigigertainly not 90 degree.
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Prly] = tr(E,p). From now on, we can concentrate on density matrices ssielye anypure state
|1 is just a special case where one probability in the ensefiblg, Pr[x]} is equal to one and all
others vanish. In the general case, i.e., when at least @it states in the ensemble occur with
nonvanishing probability, the system is said to be migedstate.

Once we consider composite quantum systems, the situagiconmes more complicated—and
more interesting. Let us consider Alice holding a staie acting on a Hilbert spac# 4, and Bob
holding a staterp acting onHp. Both states are part of a total statgg, acting on the tensor
productH 4 ® Hpg, and they are related by the partial trapg: = trgpap andpp = trapap. This
operation discards degrees of freedom in the respectivgystdm. Composite states, suctpag
can be divided into two classeseparableandentangledstates. We first look at pure states, which
means thap 45 is of the formpap = [YaB) (Y ap|. Separable pure states @meduct states

[YAB) = |¥A) ® [¥B) = |[¥A)|¥B) = [Ya¥B).

(The last three expressions are equivalent notations.y difeecomposed of two independent states
of the two subsystemd and B. Pure states that cannot be written in this form are callégnghed.
A famous example of pure entangled states are the Bell states

1

+y
4 1
v¥) = 5001 = [10). (3.4)

These four states form a basis in the two-qubit Hilbert spdcenixed state is calledeparableif
and only if it can be written as a convex sum of projectors gmtmluct states [Wer89]:

p="> Prlzllpfol)wiel| = Pria]lvd) (vl @ [¢F)(6F], (3.5)

TeEX rzeX

with Pr[z] > 0 for eachz € X and)___, Pr[z] = 1. These states can be prepared locally in
Alice’s and Bob's laboratory only by means dassicalcommunication, i.e., no qguantum systems
need to be sent. If a state cannot be written in the form (8.B)calledentangled

4 Quantum Key Distribution

Quantum cryptography exploits the quantum mechanicalgstgphat a qubit cannot be copied or
amplified without disturbing its original state. This is th&atement of thélo-Cloning Theorem
[WZ82], which is easily proven: Assume there exists a ugiteansformation U that can copy two

stateg)1) and|is):

Uly1)0) = [¢1)]eb1), (4.6)
Ul2)[0) = [i2)]b2), (4.7)

>The time-evolution of an isolated quantum system is desdrly a unitary transformatidii: |v)) — U|s).
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where|0) is an arbitrary input state. If we equate the scalar prodottbe left-hand and right-
hand sides, it follows by the unitarity @f that (1;]12) = (31]12)2, which implies that(y [2)
equalsd or 1. This means that we can copy only orthogonal or identicaéstdn contrast, arbitrary
unknown states cannot be perfectly cloned. (Note that gahal or identical states are not viewed
as “unknown” states, since we do know they are orthogonakxample.)

The essence of this theorem is the main ingredient of quakiydistribution, where Alice
and Bob use a quantum channel to exchange a sequence of gutids will then be used to create
a key for the one-time pad in order to communicate over arcurgechannel. Any disturbance of
the qubits, for example caused by Eve trying to measure thisgjgtate, can be detected with high
probability.

In this section, we describe the BB84 protocol proposed tarieh Bennett and Gilles Brassard
in 1984, see [BB84]. This is the first protocol designed to lemmguantum mechanics for two
parties to agree on a joint secret key.

4.1 The BB84 Protocol

In this protocol, Alice and Bob use a quantum channel to seuits; They are also connected by
a classical channel, which is insecure against an eavaseir@gpoit unjammable. Alice and Bob use
four possible quantum states in two conjugate bases (saygethilinear basis- and the diagonal
basisx). We use/0), and|0), = (|0), + |1),)/v/2 for the classical signal0;” and we usg1)
and|1),, = (|0), —|1),)/v/2 for the classical signall“” Note that the two bases are connected by
the so-called Hadamard transformation

500

in the following way: Since{? = 1, we haveH|0), = |0), andH|1), = |1),, and vice versa.
The protocol works as follows (see also Table 1 for illusorat

1. Alice randomly prepare2n qubits, each in one of the four stat@s_ , [0),, [1),, or[1),
and sends them to Bob.

2. For each qubit that Bob receives, he chooses at randomfdhe two bases+ or x) and
measures the qubit with respect to that basis. If he chodsesame basis as Alice, his
measurement result is the same as the classical bit thag pliepared. If the bases differ,
Bob’s result is completely random.

3. Alice tells Bob via the classical channel which basis sbedufor each qubit. They keep the
bits where Bob has used the same basis for his measuremeflit@sTis happens in about
half the cases, so they will have approximatelpits left. These are forming the so-called
sifted key

4. Alice and Bob choose a subset of the sifted key to estinteteetror-rate. They do so by
announcing publicly the bit values of the subset. If theyediin too many cases, they abort
the protocol, since its security cannot be guaranteed.
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5. Finally, Alice and Bob obtain a joint secret key from theneéning bits by performing error
correction and privacy amplification.

Alicesstringff 1 |1(0|1,0}0212]0|1(1|1,1|0/|0
Alicesbasis || + | + | + | X | X |+ | X | x| X | x|+ |+ ]|+ |+
Bob'sbasis | + | x |+ |+ | x|+ | X |+ | x| x|+ ]|+ ]|+]|+
Bob'sstring | 1| R|O|R|O|O0O|2|R|2]2]2]21|0]|0
Samebasis?| Y N|Y|N|Y | Y| Y| NI|Y|Y|Y|Y|Y]|Y
Bitstokeep | 1 0 0|01 1/1,1]1]0/|0
Test Y N N|lY|N NIN|N|Y |Y|N
Key 0 0 1 1111 0

Table 1: The BB84 Key Distribution Protocol. Here, “Y” and tand for “yes” and “no,” respec-
tively, and “R” means that Bob obtains a random result.

Which possibilities does Eve have to attack this protocolfd,Aconsequently, what is the
threshold of the error-rate, at which Alice and Bob shouldrakhe protocol? To answer these
guestions, we look at a simple eavesdropping strategy,hwbicalled “intercept and resend.”

Eve’s goal is to learn at least some part of the key. Thus, aoob strategy for her is to
intercept the qubits being transmitted from Alice to Bobe $hnnot simply copy the qubits, since
this would contradict the No-Cloning Theorem. In order ttr&st some information, she is forced
to measure (and thus destroy) them. But since she does net tkigobasis in which they were
prepared (Alice announces this information only after Beteived all signals), she can only guess
or just flip a coin for the selection of the measurement basiabout half the cases, she will happen
to choose the same basis as Alice and get completely ceueldt values. In the other half, her
results will be random and uncorrelated. Bob certainly etgto receive something from Alice, so
Eve needs to send some gqubits to him. However, she still haeaavhich basis Alice used, so she
prepares each qubit in the same basis as she measured i¢ @r@bses a basis at random). These
newly created qubits again match Alice’s bases in only hialhe cases. After Bob receives Eve's
gubits, he measures them, and Alice and Bob apply the sifBegause of Eve’s disturbance, about
half of Bob's key was measured in a different basis than itpvapared by Alice. Since Bob's result
is random in those cases, his sifted key will contain abo@tb 28rors. In the error-estimation stage,
if Alice and Bob obtain such a high error rate, it would be wisethem to abort the protocol.

If the error rate is below an agreed threshold value, Alicé Bob can eliminate errors with
(classical) error correction. A simple method for errorrection works as follows: Alice chooses
two bits at random and tells Bob the XOR-value of the two Heb tells Alice if he has the same
value. In this case, they keep the first bit and discard thergkbit. If their values differ, they
discard both bits. The remaining bits form the key.

The last stage of the protocol is privacy amplification—acpdure in which Alice and Bob
eliminate (or, at least, drastically reduce) Eve’s knowkedbout the key. They do so by choosing
random pairs of bits of the sifted key and replacing them byrttorresponding XOR-values. Thus,
they halve the length of the key, in order to “amplify” theriyacy. Note that Eve has less knowledge
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about the XOR-value, even if she knew the values of the sibiggewith high probability (but not
with certainty).

There are even more sophisticated methods for error caimeahd privacy amplification. For
more details on error-correcting codes and their usageeiphiysics of quantum information, we
refer to Huffman and Pless [HP03] and Bouwmeester, Ekett Zailinger [BEZ0O].

4.2 Security of Quantum Key Distribution

Unlike many of the classical cryptosystems in use today,s&tsecurity often draws on unproven as-
sumptions about the computational complexity of matherabproblems, the security of quantum
cryptography is based on—and employs—the laws of physibe t&rm “unconditional security”
is used to emphasize the fact that it does not rely on the preduyet unproven hardness of some
mathematical problem. In this section, we present the poddlfie unconditional security of the
BB84 protocol, as devised by Peter Shor and John PreskillQEP

We divide the proof into three parts:

e In the first part, we present the so-calledtanglement-basegkersion of the BB84 protocol.
In contrast, the scheme presented in the previous secticalled aprepare-and-measure
scheme for obvious reasons. In the entanglement-based versitice And Bob’s aim is
to share a special entangled state that allows them to optafectly correlated bits upon
measuring their half of the state. We will see how they carsttant such a state, how they
can check whether they were successful, and how they cact date’s attempted attack.

¢ In the second part, we will show that the equivalent entanglg-based version is secure.
More precisely, we will prove that Eve cannot deceive Alical 80ob into continuing the
protocol, falsely believing that they are creating a sekese

¢ In the third part, we show that the two schemes are equivaidetd.

4.2.1 The Entanglement-Based Version of BB84

In this version of the protocol, Alice and Bob aim at creatingpecial entangled state, namely the
Bell state )
V2
where Alice holds the first particle and Bob holds the secamel GAn important property of this
state is that it isnaximally entangledThis means that Alice’s and Bob’s measurement results are
completely correlated whenever they measure the §tdtgin the same basis. (Moreover, their
results are random.) Since the state is pure, it cannot lamgletd with anything else, in particular
not with anything under Eve’s control. Thus, whenever Alicel Bob are sure they shareqa’)
state, they know that (a) measuring in the same basis gesexaghared random bit, and (b) Eve has
no knowledge about this bit. To generate the whole key, Adice Bob prepare a large number of
these Bell states,

|67) = —=(100) + [11)), (4.9)

61" =T @ - @ |6T),
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and measure each qubit separately. We will now show how taeyachieve this.
We need to take a brief detour to quantum error correctiot finscontrast to a classical bit, a
qubit can undergo three different errors: bit flips, phaserer and combinations of these two:

e When a bit flip occurs, the stat@) becomeg1), and vice versa. This error is described by

the Pauli matrix
(01
Op — 1 0 .

e Phase errors transform the stéte into —|1), but leave|0) unchanged. Such an error is
described by the Pauli matrix
(0 —i
W (05)

e Both these errors can also occur combined. For examplegeigj®) to —|1) and|1) to |0)
can be described by, o, = io,, where

/1 0
o = <0 _1> |

Let us now recall some elements of classical error cornectio(classical) lineafn, k| codeC
that encodes bits of information by am bit string is a set ok codewords. Each codeword isan
dimensional binary vector. The whole code can be descrigeahlpn x k)-dimensional generator
matrix G that maps each messageto the encoded messager. Thus, the set of all possible
codewords is the vector space that is spanned by the colufnfis e require those vectors to
be linearly independent. Error correction for linear codas be easily described by means of the
parity check matrixd. This is an((n — k) x n) matrix with the property thatiz = 0 for all
codewordse.

Suppose now that a messagis encoded ag = Gx. Due to an erroe, one obtaing/ = y +e.
Since we have{y = 0 for all codewords, it follows that{y’ = He, which is called theerror)
syndrome Thus, if the syndrome is 0, no error has occurred. Otherwisis constructed such that
the syndrome contains information about the error thatlshmake it possible to correct it. Finally,
we introduce the concept dbiality: Let C be a lineaifn, k] code with generator matri and parity
check matrixH. Then we can define the dual cofé of C, which is the set of all codewords that
are orthogonal to each codeword@h The dual code> is an[n — k,n] code which is generated
by H” and has a parity check matr&x”. Dual codes play an important role in the construction of
CSS codes, as we explain below.

Definition 5 Let C; and Cy be classical linear[n, k1] and [n, k2] codes, respectively, such that
Cy C (4. For each codeword: € 1, define the quantum state

| + (4.10)
Fr g2l

The space spanned Byz + C5) }.cc, defines ann, k1 — k3] quantum code, which is called the
Calderbank—Shor—Steane co@&S(C1, C2) for short.

|z + C3) =
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Let z andz’ in C; be codewords such that— 2’ is in C. Then one can show that
[z 4+ C2) = [2" + Ca),

i.e., the statéz + Cy) depends only o’} /O, that is, the coset to which belongs® It follows
that if x andz’ belong to different cosets, the statest+ Cs) and|z’ + Cs) are orthogonal. As the
number of cosets af’y in C1 is |C1]/|C2|, the dimension of the spa€&sS(Cy, Ca) is |C1|/|Ca| =
2k1—Fk2 thusm = k; — k» qubits can be encoded.

Error correction with CSS codes works as follows. Suppoaedh andCs;- both can correct
errors. Moreover, leH; be the parity check matrix far';, and letHs be that forCzi. Define

00 =0 RoZR-- Qo (4.11)
wherea € {z,y,z}, 0% = 1, ands = (sy,s2,...,5,) iS ann bit vector. It can be shown that

the syndrome for bit flip errors can be computed by measurinépr each row vector of H;.
Similarly, the syndrome for phase errors can be computed égsorings’. for each row vectot
of Hs. In this way,/ bit flips and¢ phase errors can be corrected.

We have now collected all the ingredients to describe therghment-based version of the
BB84 protocol:

1. Alice create2n qubit pairs in the statpb+>®2".
2. She randomly selectsof those qubits which will later serve as check qubits.

3. Alice selects a randorw bit string b and applies the Hadamard transformation (4.8) to her
half of each qubit pair whenever the corresponding bit isf“1.”

She sends the other half of all qubit pairs to Bob.
Alice announces and which qubits are to serve as check qubits.

Bob performs a Hadamard transformation on those of higgjuereb is “1.”

N oo g A

Alice and Bob measure the check qubits in {f®, |1) } basis to estimate the error rate. If
more thary results differ, they abort the protocol.

8. For the remaining qubits, Alice and Bob measure the syndsofor the code€’; and C,
correct the errors, and obtaia™)®".

9. They measure this state in th®), |1) } basis to obtain a shared secret key.

The point of performing the Hadamard transformation on bétthe qubits is that this operation
effectively changes the basis, in which the qubits are pegpdrom{[0)_,[1)_ } to {|0) ,[1)}.
This is necessary because if Eve knew the basis, she couldndhe intercept-resend attack pre-
sented in the previous section and break the protocol.

®Let G and H be two groups withG ¢ H. Then for anyh € H, we define the coset @ in H, determined by, as
hG ={h+ g| g € G}. The groupH /G is the set of all elements df that belong to different cosets.
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4.2.2 Security of the Entanglement-Based Version

The goal of the entanglement-based version of the BB84 pobts to provide Alice and Bob with
a number of qubit pairs in the stafi@™), because measuring this state in a joint basis generates
correlated, random bits. The distribution of this state amal by means of CSS codes, but this
operation may not be 100% efficient. Moreover, the randonptiamwhich Alice and Bob apply
by randomly choosing a set of check bits may not provide sepegample. In this section, we deal
with these issues.

We first need a technical lemma stating, roughly speakirad,alstate that is “close” to the state
\¢+>®m has a small entropy. The “distance” to a pure state is meddiyreneans of the so-called
fidelity, which is defined ag'(p, [¢)) = (¥|p|v). If F = 1, the two states are identical.

Lemma 6 Letp be a density matrix and > 0. If F(p, [¢T)®")2 > 1 — 2%, then
S(p) < (2m+s+1/In2)27% + O(272).

HereS(p) = —tr(p1n p) denotes the von Neumann entropy. The proof of this lemmariplsi
and can be found in [NC00]. The amount of information that lbarxtracted from a quantum state
is given by theaccessible informatianHolevo’s bound [Hol73] shows that it can be upper-bounded
by the von Neumann entrop¥(p). Now using the above lemma, we have shown that if the state
shared by Alice and Bob is close to the stat&)“™, then the information extractable by Eve is
negligibly small.

It remains to show that by the random sampling that Alice and Bpply, they can reliably
estimate the fidelity of the remaining qubits. The main idlgget to prove this is again a lemma,
which we state here without proof. (The proof is left to thader, see Nielsen and Chuang [NC00].)

Lemma 7 Let a random2n bit string that might contain some errors, and a random stilode:
check bits of that string be given. Then, for any two constént 0 ande > 0, the probability of
finding less thamn errors on the check bits, and more théh+ €)n errors on the remaining bits is
less thane=©(<*n)  for sufficiently largen.

Although this lemma is based on classical probability tiieate can give an argument for its
validity in the quantum world: The observables that Alicel @ob measure on the check bits are
both diagonal in the Bell basis, which means that the siegisf the results can be described purely
classically. These measurementsién ® Hpg are given by the POVMs

{Pog = [0 ") (T [+ |7 ) (7|, 1 — Py},
which are used to check for bit flips, and
{Poe =167 )07 [+ ) W], 1 — Ppe}s

which are used to check for phase errors. Alice and Bob chooseof those measurements at
random for each check qubit. In this way, they can calculdtevar bound for the fidelity of the
remaining qubits.
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Summarizing, these rough arguments show that by randomlisenthe fidelity of the state
shared by Alice and Bob can be lower-bounded, with an exg@ilgnsmall probability of error.
Moreover, with this bound, the information that Eve can obtbout this state (and consequently
about the secret key) can be shown to be also exponentiadit.sm

4.2.3 Equivalence of the Two Schemes

We prove the equivalence of the entanglement-based andrprapd-measure versions of the BB84
protocol by successive simplifications. Each step is vemphs, so it is easy to verify that the
security of the protocol is not compromised.

A major simplification is that all measurements done by Abfr transmitting the particles
can already be done at the very beginning: If Alice measueepart of the statg™), she obtains
a random bit as a result, but on the other hand, Bob’s parteo$tilite collapses onto the correlated
state|0) or [1). Thus, instead of sending entangled qubits for the chedkeAdan as well prepare
single qubits randomly in one of the statés and|1), and send those states to Bob. Of course, it
is crucial for the security of the protocol that Eve does maivka priori which qubits will serve as
check qubits and which as “key qubits”; otherwise, she cinddt them differently and thus fudge
the error estimation.

Another measurement Alice can do at the beginning is the uneaent of her syndrome and
her key qubits. This is not very obvious, so let us give someenuetail: Given a CSS code
CSS(Ch, Cq), we can define a family of equivalent codéss,, .,(C1, Cz), in the sense that they
have the same error correcting properties. The codeworttie @odeCsSS,, ., (C1, C2) are given by

Z 1)"Y]wy, +y + w), (4.12)

V| 2 yeCa

wherez, is one representative of one of thecosets ofC; in C1, andv andw are arbitraryn bit
strings. Since th¢|zy, v, w) } form a basis, we can rewrite

‘xk, v, U)> -

2" —1

1
j6%)°" ¢2—n Z i)li) =

Z ’mk7vaw>‘xkvv7w>7 (413)

T, U, W

wherei is in binary notation. If now Alice measures the error symdes, namely’ for each
row vectorr of H; ando! for each row vector of H,, she obtains a random result forand w.
Finally, if she does a last measurement in {f@®, |1)} basis, she obtains a random codeweoyd
From (4.13), we see that Bob’s state then collapses |eft@, w), which is a random qubit encoded
in a random code.

As an intermediate result, we rephrase the entanglemeaetharotocol including all simplifi-
cations introduced so far:

1. Alice creates: random check qubits, each in the stieor |1), a randomn bit string &,
which will serve as the key, and two randonbit stringsv andw. She prepares the state
and encodes it usingSS,, ., (C1, C2).
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2. She randomly selects positions for the check qubits and puts the encoded qubithen
remaining positions.

3. Alice selects a randofn bit stringb and applies the Hadamard transformation to her half of
each qubit pair whergis “1.”

She sends the other half of all qubit pairs to Bob.
Alice announces, v, andw, and which qubits are to serve as check qubits.

Bob performs a Hadamard transformation on those of higgjuereb is “1.”

R

Bob measures the check qubits in @), |1)} basis. If he finds more thafiresults that
disagree with Alice’s prepared states, they abort the pobto

8. Bob decodes the key qubits frait$S,, ., (C1, C2) and obtains the staté).
9. He measurel:) in the {|0), |1) } basis and obtains the kéyas the result.

We will now simplify this protocol even further: Note that the original version, Alice and
Bob do not care whether they shared the siate or |¢~) = (]00) — [11))/+/2, because measuring
both states provides them with correlated, random bitsrefeive phase is irrelevant. Thus, it is
unnecessary to send the phase correction informatitnBob. This is why CSS codes are used:
They decouple the bit flip error correction from the phaserecorrection. If now Bob were to
measure his key qubits before the decoding, he would ohtait v + w + e, wheree denotes
the bit errors that occurred during the transmission (or wWexe introduced by Eve). He can now
classically decode this bit string by subtractiagwhich was announced by Alice, and correct it to
the codewordr; + y, if e did not introduce too many errors. Bob finds the key by conmguthe
coset to whichry, + y belongs. But since Bob does not negdvhy should Alice send it? If she
never reveals that value, she effectively prepares a dtatas a classical mixture of all possible
values that) can take, weighted with the corresponding probabilities:

1 1
Paaw = g D o v, w) g, v,w| = Gl D Jwk 4 2+ w)(zk+ 2+ w. (4.14)

v zeCl

We see that this state can also be prepared by classicalbsiclgpa random codeword € C,
and constructingzy, + z + w). Thus, the preparation in Step 1 can be done equivalentlfien t
following way: Alice creates: random check qubits, each in the stéigor |1), a randomn bit
string w, a random stringe;, € C1/C>, and a random codeword € C,. Then key qubits are
prepared in the state;, + w + z), and the check qubits are placed at random positions.

Note that we can also remove the needfoe Cs, if Alice instead of choosing:, € C;/Cs
choosesr;, € €. With this modification, Alice sends the stdte, + w) as key qubits, which Bob
then measures and correctsiio+ w. Sincexy, + w is a completely random bit string, Alice can
as well just preparéy), wherey is a randomn bit string. She sends it to Bob who measures it to
obtainy + e, then Alice sends error correction informatigr- x;, which Bob subtracts from—+e to
finally obtainzy, 4+ e. He corrects it tac;, and calculates the kdyas the coset to which;, belongs.
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What we have achieved is that now the check and the key qukiisist prepared randomly in one
of the states$0) or |1). The whole protocol so far looks as follows:

1. Alice create2n random qubits, each in the stat or |1), and a random codeworg, € C4.
2. She randomly selectspositions to be check qubits and the remainingositions to bey).

3. Alice selects a rando2w. bit stringb and applies the Hadamard transformation to her half of
each qubit pair whergis “1.”

She sends the other half of all qubit pairs to Bob.
Alice announces andy — x, and which qubits are to serve as check qubits.

Bob performs a Hadamard transformation on those of higgjuereb is “1.”

N g &

Bob measures the check qubits in #i@), |1)} basis. If he finds more thafiresults that
disagree with Alice’s prepared state, they abort the paitoc

8. Bob measures the key qubits to get e, subtractgy — x, and corrects, + e to xy.
9. He calculates the coset to whigh belongs to get the kej.

Finally, we can remove the Hadamard transformation, andliee choose randomly one of
the four states i{|0)_, |1),|0),,[1),}. Then Bob, instead of waiting far to be announced,
simply chooses one basis at random and measures the aqiviitg. As he will choose the wrong
basis in roughly half the cases, Alice should double the ramalf input qubits todn. After his
measurement, Alice announces which basis she used andibcgincddall instances where they used
a different basis. With this last modification, we finallyiaed at the prepare-and-measure version
of the BB84 protocol, only up to some small twists.

5 Quantum Bit Commitment

When talking about quantum cryptography, everyone is thinkbout key distribution. There are,
however, other cryptographic applications as well, suchibsommitment. In 1993, a bit com-
mitment protocol based on quantum mechanics was introdogdgfassard et al. [BCJIL93]. The
unconditional security of the protocol (which means thatsbcurity of the protocol is independent
of the computational resources, such as computing timeuatraf memory used, and computer
technology of the cheater) has been accepted without piaa9b]. Two years after it had been
proposed, the protocol turned out to be insecure [May95].

A commitment protocol is a procedure in which one party, séged deposits a message such
that no one (and in particular not Alice) can read it nor cleeihgAt some point in the future, Alice’s
message will be announced, and with high certainty it canrbeen that the revealed message is
the same as the one Alice had deposited originally. To ildistthis situation, suppose Bob wants
to auction off a diamond ring, subject to the condition thetheperson wishing to participate in the
auction can bid only one single amount of money. After eachgrehas chosen a specific amount,
the highest bidder gets the ring. So everyone writes their loid on a piece of paper, puts it into
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a personal safe, which is then locked and given to Bob. Uhtiids have been submitted to Bob,
each bidder keeps the key matching the lock of his or her safhis way Bob cannot see any of the
bids, which in turn cannot be changed once they have beenigetnsince only Bob has access to
the committed safes. All keys are handed over to Bob afteabeadreived all safes from the people
participating in the auction. The different offers are camgal in public, so that everybody can be
sure that only the highest bidder walks away with the diamamdian empty wallet.

We can describe this commitment protocol mathematicallfolsws: The protocol has two
stages, the commit phase and the unveil phase. Alice conimargelf to the datan by com-
putingc = f(m), and she sendsto Bob. Alice unveils the commitment by showing Bob the
preimagem of c. In classical cryptography, and in particular in publigtikayptography, one-way
functions are used for commitment. In quantum cryptograpleywant to make use of the laws of
guantum mechanics to create a fair protocol for both sidéscdnmitment is a special case of a
commitment protocol, where the dataconsists of only one single bit.

It is widely believed that it is impossible to create a pettfesecure classical bit commitment
protocol. Regarding the extension to the quantum world a shown that unconditionally secure
guantum bit commitment is also impossible [May97,LC97].

5.1 The BB84 Quantum Bit Commitment Protocol

The BB84 protocol was introduced in Section 4.1. A quantutncbimmitment protocol can be

created from the BB84 quantum key distribution protocohwvétfew minor changes [BB84]. Just
as in the classical bit commitment protocol, the quantumagma starts with the commit phase and
ends with the unveil phase.

The commit procedure:
1. Alice chooses a bit € {0,1}.
2. Alice creates a random binary string= w - - - w,, with n bits.

3. If Alice wants to commit td, she does a quantum encoding of each:hitn the two basis
states of the rectilinear basis If she wants to commit td, she encodes the bits in the two
basis states of the diagonal basgisLet §; denote the basis chosen foy.

4. Alice sends the sequenceroencoded quantum states to Bob.

5. Bob chooses a random measurement basis (rectlllneaa@mmhl) for each of the recelved
guantum states, i.e., he chooses a string of random tased); ---6,, € {+, x}".
measures théh state in the basié, and denotes the outcome by.

If we take a look at the two density matrices for thetates corresponding to= 0 andb = 1,
respectively, it is easy to see that they are the same, arad e identity matrix. Thus, Bob has
no chance to get any information about thebbit

The unveil procedure:

1. Alice publishe$ (i.e., the basis that she used for encoding) and the siring
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2. For about half of the states, Bob used the same basis for his measurement as #diddar
encoding. In these cases Bob can verify that Alice’s rewkhits are matching his measure-
ment results.

How could a dishonest party cheat in this protocol? For exemidice could choose the bit
b = 1 for the commit phase, so she encodes the states with thendibasisx. Later during
the unveil phase, she changes her mind and tells Bob thatoshmitted to the bib = 0, so Bob
assumes that Alice has used the rectilinear basig approximatelyn /2 cases, Bob measures the
states with the rectilinear basis and in these cases Alice has to guess the bits Bob measimed. S
Alice’s success to make a right guess for one bit/i8, her overall cheating will not be detected
with a probability of(1/2)™/2. Oncen is chosen large enough, Alice has practically no chance to
manipulate the protocol by this probabilistic method.

But what if Alice uses specially entangled states as in tharghement-based version of the
BB84 protocol (see Section 4.2.1, Equation (4.9))? Aliceld¢areaten pairs of entangled states
and send one part of each pair to Bob. She doesn'’t have to ddmenbit in the beginning, because
she can perform a measurement right before the unveil pifaga.example, she chooses bit= 0,
she measures the states that she has kept in the rectiliagiarbh Bob’s measurement results will
be perfectly correlated, due to the shape of the entangtgd st Equation (4.9). If Alice wants
to choose bib = 1 instead, she measures the states that she has kept in thealibgsisx. As
the state from Equation (4.9) is form-invariant under a $astation by45°, Alice’s announced
encoded states will again match Bob's measurement rediitss, Bob has no chance to notice the
attack.

5.2 Impossibility of Unconditionally Secure Quantum Bit Canmitment

As mentioned above, unconditionally secure quantum bitraiment is impossible. In this section
we will review the main arguments to prove this statementoiding to Lo and Chau [LC97], the
ideas of all quantum bit commitment protocols proposed wate can be roughly described by the
following five steps:

1. Alice chooses a bit € {0, 1} and prepares the state
0) = ailef) @ |£7)

for b = 0, and the state

=Ygl o)
J

for b = 1, where|e/!) and|e’, ) are orthonormal bases of Alice’s Hilbert space, ii/}|e;') =
Sik and(e"j‘\e’f‘) = 0. The statesf”) and|f;”) live in Bob’s Hilbert space, and are not
necessarily orthogonal to each other.

2. Now, Alice has to make a measurement on the first part of blogeastate, and will thus
determinei or j, depending on her initial choice fér
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3. Alice sends the second part of the above state to Bob. $Hiseilast step in the commit
phase.

4. At the beginning of the unveil phase, Alice publicly annoes: or j together withp.

5. Bob makes a measurement on his part of the state, in ordesike sure that in Step 3, Alice
committed to the same bit she has announced in Step 4.

To show that a cheating Alice cannot be detected, we digshgiwo cases. We give only a
sketch of the proof, for more details we refer to [May97,LL97

In the first case, Bob cannot get any information about thé biit of the state that Alice sent
him. This means that his two reduced density matrices, sporeding to the two stateg) and|1),
are the same, i.ety 4|0)(0| = tr4|1)(1]. Thus, the fidelity of the two states ig" = 1. Now, we
can write the Schmidt decomposition (i.e., a bi-orthogatedomposition that can always be found,
see, e.g., Nielsen and Chuang [NCO00]) as

0) =D Valer) @ 1£F)
k

and

1) =3 Vet @ 1FF),
k

where|és) and |é};“> are orthonormal bases of Alice’s Hilbert space, af‘@ is an orthonormal
basis of Bob'’s Hilbert space. The,’s are the eigenvalues of Bob’s two reduced density matrices
corresponding td0) and|1) (which are identical). There always exists a unitary tramsationU/
that maps an orthonormal basig') of a Hilbert space to another orthonormal bdsjg) of the
same Hilbert space, and thus thisal unitary transformation (a rotation on Alice’s side onlyhca
map|0) to |1).

Therefore, Alice can start her commit phase with thé bit 0. She prepares the stdtg, skips
the measurement (delays until Step 4) and sends Bob’s ptreaitatd0) directly to Bob. At the
beginning of the unveil phase, Alice has to choose the \alifeshe chooses = 0, she can proceed
with the original protocol honestly. If she chooges 1, she can execute the unitary transformation
U, and switch0) to |1). Becausd" = 1, Bob has no chance to detect the cheating.

In the second case, Iét # 1, i.e., the two reduced density matrices of Bob, correspantt
the two state$0) and|1), are not the same. The fidelity must be closé;totherwise, Bob could
easily distinguish between the bitsand1, and so he could cheat. Alice can again use her cheating
strategy from above. Mayers [May97] has shown that with atihg Alice, the probability of Bob
being able to distinguish betwe@&nand 1 will not be larger. Thus Alice can cheat again with a
probability close tadl.

As we can see, a dishonest party uses the same algorithm amest Iparty. Hence it is im-
possible for the honest party to detect the cheater, andséaige quantum bit commitment is not
possible.

"Note that the fidelityF” for two mixed stateg, andp, is defined ag” = tr, /\/P1P2/P1-
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6 Outlook and Conclusions

The security of quantum key distribution relies on the italide laws of quantum mechanics:
nonorthogonal quantum states are used as signal states BB®4 protocol. The impossibility
of perfect cloning of nonorthogonal states implies the ggcof this protocol.

In the security proof for the BB84 protocol, we have emplogedequivalent entanglement-
based protocol. The main idea is that local measurementsnoexamally entangled state, shared
by Alice and Bob, have perfectly correlated outcomes thathmused as the key. A maximally
entangled state is necessarily pure, and a pure state charaitangled with an eavesdropper’s
state—thus Eve cannot learn anything about the key. Thefateguantum cryptography with en-
tangled states goes back to Artur Ekert [Eke97], who sugddstconfirm the existence of quantum
correlations in the state of Alice and Bob by a Bell inequyatigst.

6.1 Other Quantum Key Distribution Protocols

A variety of quantum key distribution protocols can be foumdhe literature. All known prepare-
and-measure schemes can be seen as variations of the BB8dabravhich are obtained by chang-
ing the number and/or dimension of the quantum states.

In 1992, Charles Bennett [Ben92] proposed a protocol—wlmiolv is named after him the
B92 protocol—in which only two nonorthogonal states areduda the so-called six-state proto-
col [Bru98,BPG99], the six eigenstates of the three Pawdraiors are used. This protocol has a
lower efficiency compared with BB84, as in only one third af tases Alice and Bob use the same
basis, but it is more difficult for Eve to retrieve any infortiaa, thus the security is enhanced.

In this paper, we have always considered qubits, i.e., avellsystems as information carriers.
What happens if one considers higher-dimensional systeuna$), as qutrits (three-level systems)?
Intuitively, one would expect that the increased numbelegfrdes of freedom makes it more difficult
for Eve to extract information on the key. As proven in [BMQRiIgher-dimensional systems indeed
offer increased security.

A recently suggested protocol [SARGO04] introduces a netingiimethod: rather than announc-
ing the basis, Alice gives Bob a list of two nonorthogonatetadrom which the signal state was
taken. This protocol has certain security advantages tieat@nected with experimental imple-
mentations of quantum cryptography.

6.2 Experimental Status

So far, we have presented quantum key distribution in a ratle®retical, abstract manner. What is
the experimental situation—can the ideas of quantum cgypfithy be made reality? In recent years,
much effort has been devoted to experiments on quantumagsggihy, and much progress has been
made. In most experiments, polarized photons are repriageht qubits: photons are polarized if
their electromagnetic field oscillates in a fixed directidspace (which has to be orthogonal to the
direction of flight). The two degrees of freedom for a photogubit can be, e.g., horizontal and
vertical polarization (the rectilinear basis in the BB84tprol), or polarization rotated byp° with
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respect to the horizontal/vertical direction—this cop@sds to the diagonal basis in BB84. The
experimentalist “only” has to produce single polarizedtphs on demand.

This, however, is one of the main experimental challengesateenuated laser pulse consists
of Poisson-distributed number states, i.e., with a ceppaibability more than one photon will be
emitted. These events with more than one photon allow forrgel@mus eavesdropping strategy,
the so-called photon-number splitting attack, where EVigsspff a photon and receives full infor-
mation about the key. Apart from experimental progress tda/#&rue single-photon sources, new
algorithms that can cope with this sort of attack have beerldped. One example, the protocol
by Scarani et al. [SARGO04], has already been mentioned above

The long-term goal in experimental quantum key distributsto reach high key rates over large
distances. For the transmission of photons, two pos$#siliéxist: either transmission via optical
fibers, or transmission in free space. Rather than tryingitonsarize all existing experiments, let
us mention just two examples. A very stable, robust systetim eyitical fiber transmission has been
developed by Gisin and Zbinden at the University of Genegae, [ERTZ02]. They were able to
transmit a secret key from Geneva to Lausanne (i.e., ovestaraie of about 67 km), with a rate of
130 bit/s. Regarding free space quantum cryptography, ffgem from LMU Munich [KZHT02]
recently demonstrated secret key exchange over about 238.dnkthe Alps, from Zugspitze to
Karwendelspitze), with a rate of about 1000 bit/s.

Long-term goals of quantum key distribution are the realishplementation via fibers, e.g.,
for different buildings of a bank or company (with a relativemall distance), and free space
key exchange via satellites. Future practical developseiilt have to prove which one of the
described protocols will turn out to be successful. At themaaot, demonstrators for long-range
guantum key distribution are being built within the EU patjSECOQC (for further information,
see www.secoqc.net). Quantum cryptography already pesvilde most advanced technology of
guantum information science, and is on the way to achievgghantum) jump from university
laboratories to the real world.
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