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Abstract

We survey some results in quantum cryptography. After a brief introduction to classical cryp-
tography, we provide the quantum-mechanical background needed to present some fundamental
protocols from quantum cryptography. In particular, we review quantum key distribution via the
BB84 protocol and its security proof, as well as the related quantum bit commitment protocol
and its proof of insecurity.
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General Terms: Theory; Security; Algorithms; Experimentation.
Key words and phrases: quantum cryptography; quantum key distribution; quantumbit com-
mitment.

1 Introduction

Cryptography is the science of keeping private informationfrom unauthorized access. An algorithm,
which is called acipher in this context, scrambles the message via some rule such that restoring the
original message is hard—if not impossible—without knowledge of the secret key. Cryptographic
technology in use today relies on the hardness of certain mathematical problems. Classical cryptog-
raphy faces the following two problems. First, the hardnessof the problems on which the security
of cryptosystems is based (e.g., integer factoring or the discrete logarithm problem) often is not
a proven fact but rather a widely believed hypothesis. Second, the theory of quantum computa-
tion has yielded new methods to tackle these mathematical problems in a much more efficient way.
Although there are still numerous challenges to overcome before a working quantum computer of
sufficient power can be built, in theory all classical ciphers might be vulnerable to such a powerful
machine. However, while quantum computation seems to be thecoffin nail for classical cryptogra-
phy in a possibly not so distant future, at the same time it offers new possibilities to build encryption
methods that are safe even against attacks performed by means of a quantum computer. Quantum
cryptography extends the power of classical cryptography by protecting the secrecy of messages
using the physical laws of quantum mechanics.
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Looking back in the history of cryptography, one of the first encryption methods was the scy-
tale. The first recorded use of the scytale dates back to the fifth century B.C. when the Spartans
used it to exchange battle information between generals without revealing it to the enemy. To en-
crypt a message, which we call theplaintext in cryptography, a strip of leather or pergament was
wrapped around a wooden cylinder, the scytale. The encrypted message, also called theciphertext,
was then written from left to right onto the leather, so that unravelling the strip would produce a
meaningless alignment of seemingly random letters, see Figure 1 for the encryption of the plaintext
“scytaleisatranspositioncipher” by “ssoicaspytihtrteaairlnoesnipc.” The decryption of the ciphertext
was achieved by using a scytale of the same diameter as the cylinder that was used for encryption.

s c y t a l e i
s a t r a n s p
o s i t i o n c
i p h e r

Figure 1: The Scytale

The scytale is a so-called transposition cipher, since onlythe order of the letters within the
message is changed. Another type of encryption is the substitution cipher. Here, instead of swapping
the positions of the letters, each plaintext letter is replaced by another letter according to some
specific rule.

The method of encryption and decryption is called acryptosystem, whereas the particular in-
formation used for encryption or decryption in an individual communication is called akey. In the
case of the scytale, the diameter of the cylinder representsthe secret key. Obviously, this ancient
cryptosystem has a very low level of security. Once the method of encryption is known to the eaves-
dropper, he or she can simply try all possible diameters to reveal the original message. The fact
that the cryptosystem is publicly known is not the reason forthe insecurity of the communication,
but rather the small number of possible keys that can be used for encryption. In the 19th century,
Auguste Kerckhoffs stated the principle that the security of a cryptosystem must be based solely on
the secrecy of the key itself. Therefore, when designing newciphers, one should always treat the
algorithm as if it were publicly known.

Over time, the amount of information that needed to be encrypted exploded, making it impos-
sible to use simple and insecure procedures like the scytale. At first, mechanical devices were built
to speed up the encryption and the decryption process, and toincrease the complexity of the keys
used to scramble the message. An infamous example of such a mechanical cryptosystem is the
Enigma, which was used in World War II by the Germans to conceal their military communication.
Not following Kerckhoffs’ principle, the Germans considered the Enigma unbreakable, assuming
that the mechanical device used for secure communication was not known to the enemy. However,
allied cryptanalysts in Bletchley Park near London often were able to decrypt the German military
messages during the war. One might argue that breaking the Enigma was one of the most crucial
factors for the victory of the allied forces and for ending the war. After the war, it was the invention
of the transistor that made the rise of the computer industrypossible.

The huge speed-up in executing mathematical calculations resulted in the need to create much
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more secure cryptosystems, among them symmetric block ciphers such as the Data Encryption
Standard (DES) and the Advanced Encryption Standard (AES) and public-key cryptosystems such
as RSA and others, which are integrated in modern cryptographic applications currently in use. A
nice and easy-to-read overview of the history of cryptography is given by Singh [Sin99].

With the currently emerging theory of quantum computation,we seem to be at the beginning of
yet another era of cryptography.

2 Classical Cryptography

Overviews of classical cryptography can be found in varioustext books, see, e.g., [Rot05,Sti05].
Here, we present just the basic definition of a cryptosystem and give one example of a classical
encryption method, the one-time pad.

Definition 1 A (symmetric) cryptosystemis a five-tuple(P, C,K, E ,D) satisfying the following
conditions:

1. P is a finite set of possibleplaintexts.

2. C is a finite set of possibleciphertexts.

3. K is a finite set of possiblekeys.

4. For eachk ∈ K, there are anencryption ruleek ∈ E and a correspondingdecryption rule
dk ∈ D, whereek : P → C anddk : C → P are functions satisfyingdk(ek(x)) = x for each
plaintext elementx ∈ P.

insecure channel

Alice Bob

Eve

Figure 2: Communication between Alice and Bob, with Eve listening

In the basic scenario in cryptography, we have two parties who wish to communicate over an
insecure channel, such as a phone line or a computer network.Usually, these parties are referred to
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as Alice and Bob. Since the communication channel is insecure, an eavesdropper, called Eve, may
intercept the messages that are sent over this channel. By agreeing on a secret keyk via a secure
communication method, Alice and Bob can make use of a cryptosystem to keep their information
secret, even when sent over the insecure channel. This situation is illustrated in Figure 2.

The method of encryption works as follows. For her secret messagem, Alice uses the keyk
and the encryption ruleek to obtain the ciphertextc = ek(m). She sends Bob the ciphertextc over
the insecure channel. Knowing the keyk, Bob can easily decrypt the ciphertext by the decryption
ruledk:

dk(c) = dk(ek(m)) = m.

Knowing the ciphertextc but missing the keyk, there is no easy way for Eve to determine the
original messagem.

There exist many cryptosystems in modern cryptography to transmit secret messages. An early
well-known system is theone-time pad, which is also known as theVernam cipher. The one-time
pad is a substitution cipher. Despite its advantageous properties, which we will discuss later on, the
one-time pad’s drawback is the costly effort needed to transmit and store the secret keys.

Example 2 (One-Time Pad)For plaintext elements inP, we use capital letters and some punctu-
ation marks, which we encode as numbers ranging from0 to 29, see Figure 3. As is the case with
most cryptosystems, the ciphertext space equals the plaintext space. Furthermore, the key spaceK

A B C D E · · · X Y Z ! - .
00 01 02 03 04 · · · 23 24 25 26 27 28 29

Figure 3: Letters and punctuation marks encoded by numbers from 0 to 29

also equalsP, and we haveP = C = K = {0, 1, . . . , 29}.
Next, we describe how Alice and Bob use the one-time pad to transmit their messages. One

concrete example is shown in Figure 4. Letm = m1m2 . . .mn be a given message of lengthn,
which Alice wishes to encrypt. For each plaintext elementmi, where1 ≤ i ≤ n, Alice randomly
and uniformly chooses a key elementki ∈ {0, 1, . . . , 29} and adds the plaintext numbers to the key
numbers. The result is taken modulo30. For example, the last letter of the plaintext from Figure 4,
“ D,” is encoded by “03.” The corresponding key is “28,” so we havec = 3 + 28 = 31. Since
31 ≡ 1 mod 30, our plaintext letter “D” is decrypted as “B.” The encryption and decryption can
be written asci = (mi + ki) mod 30 andmi = (ci − ki) mod 30, respectively.

To prove that the one-time pad achieves perfect secrecy, we need some elementary notions from
probability theory.

Definition 3 Let X be a discrete random variable that can take on values from a finite setX ac-
cording to a given probability distribution onX . We denote byPr[X = x] the probability thatX
takes on the valuex ∈ X . If X is clear from the context, we just writePr[x]. For all x ∈ X ,
Pr[x] ≥ 0. Additionally,

∑

x∈X Pr[x] = 1. For another random variableY defined on the finite
setY, we define the conditional probability thatX takes on the valuex ∈ X given thatY takes on
the valuey ∈ Y byPr[x|y].
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plaintextp ∈ P O N E - T I M E P A D
p encoded 14 13 04 28 19 08 12 04 26 15 00 03
keyk 06 13 02 01 14 05 07 18 05 26 13 28
ciphertextc ∈ C 20 26 06 29 03 13 19 22 01 11 13 01
c decoded U G . D N T W B L N B

Figure 4: Encryption and decryption example for the one-time pad

Suppose that a probability distribution on the finite plaintext spaceP is given. Thus, the plain-
text element defines a random variable, which we denote byp. Similarly, the key chosen by Alice
and Bob for their communication defines a random variable on the key space, denoted byk. Both
probability distributions, forp andk, induce a probability distribution on the ciphertext spaceC,
which gives another random variablec for the ciphertext element. We now define the notion of
perfect secrecy that was introduced by Shannon [Sha49].

Definition 4 A cryptosystem is said to achieveperfect secrecyif and only if for eachp ∈ P and for
eachc ∈ C,

Pr[p|c] = Pr[p].

That means that the event that some plaintextp was encrypted is independent of the ciphertextc
being observed. In other words, knowingc yields no advantage when trying to retrieve the original
plaintextp.

Shannon [Sha49] gave a characterization of when perfect secrecy can be achieved. Suppose that
(P, C,K, E ,D) is a cryptosystem with||K|| = ||C|| and such that every plaintext element will be
encrypted with a positive probability. Then, this cryptosystem achieves perfect secrecy if and only
if

1. the keys inK are uniformly distributed, and

2. for eachp ∈ P and for eachc ∈ C, there exists a unique keyk such thatek(p) = c.

The proof of Shannon’s theorem can be found in, e.g., [Sha49,Rot05,Sti05]. Using this theorem, it
is easy to see that the one-time pad satisfies the property of perfect secrecy. Since a new key element
is created for each single plaintext element randomly underthe uniform distribution, knowing the
ciphertext is no advantage for an eavesdropper who seeks to recover the original message.

Although it provides perfect secrecy, the one-time pad alsohas severe disadvantages that make
it impractical to use. Recall that the key has to be as large asthe message itself. Thus, the number of
bits that need to be exchanged over a secure channel for obtaining a joint secret key increases with
the amount of information that Alice and Bob wish to transmitsecretly. In light of this fact, one
might ask why they don’t use the secure channel directly for their communication. Using the same
key for encryption more than once is no alternative, as the one-time pad’s perfect secrecy crucially
depends on creating a new key for every single plaintext element.

The scytale and the one-time pad are two examples of a symmetric cryptosystem. That means
that the same key is used for encryption and decryption (or, at least, that the decryption key can be
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easily determined from the encryption key). Thus, Alice andBob have to agree on a joint secret key
prior to their conversation via a secure channel. Secret-key agreement protocols were proposed by
Diffie and Hellman [DH76], Rivest and Sherman (see [RS97,HR99,HPR01,HRS05]), and others.
However, a major disadvantage of symmetric ciphers and the related issue of key distribution occurs
when the communicating parties in a large communication network need to share joint secret keys.
Whenn parties participate,n(n+ 1)/2 different keys have to be exchanged and stored securely.

Public-key cryptosystems, also called asymmetric cryptosystems, circumvent the key distribu-
tion and storage problem. Instead of having one key for everypair of parties, only one key per
party is needed to communicate securely. In 1976, Whitfield Diffie and Martin Hellman [DH76]
proposed the principle idea of public-key cryptography, namely to use two distinct keys, a public
key for encryption and a private key for decryption.

The first public-key cryptosystem is the RSA system, named after its three inventors Ron Rivest,
Adi Shamir, and Leonard Adleman [RSA78].1 Up to date, RSA is still used in numerous crypto-
graphic applications. Public-key cryptosystems are basedon so-called(trapdoor) one-way func-
tions, functions that are easy to compute but hard to invert (unless one possesses a certain “trapdoor”
information required for authorized decryption).

To communicate via a public-key cryptosystem, Alice creates two keys,kpublic andkprivate. Her
encryption keykpublic is public, but Alice keeps her private decryption keykprivate secret. Each
time Bob wishes to communicate with Alice, he looks up her public key and uses it to encrypt his
message. Since only Alice knows her private key, she alone can (efficiently) compute the original
message, i.e., the inverse of the encryption function.

The key issue is to find one-way functions that are secure enough to use for public-key cryptog-
raphy. The first one-way function designed for this purpose (i.e., the RSA encryption function) was
based on the problem of factoring large integers. Up to now, no efficient algorithm for computing
the prime factors of some given integer is known. Other public-key cryptosystems—such as the
ElGamal system [ElG85]—are based on the presumed hardness of computing discrete logarithms.
One disadvantage of such systems is that they often lack a proof of security. Another disadvantage
is that the directory storing the public keys has to be protected against manipulation and unautho-
rized access. If eavesdropper Eve replaces Alice’s public key with her own key, she can decrypt all
messages sent to Alice.

Since the publication of Peter Shor about prime factorization and computing discrete logarithms
with quantum computers [Sho97], all cryptosystems whose security is based on the hardness of
solving these mathematical problems have become theoretically vulnerable. Although it will cer-
tainly take some time for the first practical quantum computers to emerge, it is advisable to look
for alternative, new cryptosystems whose security is not based solely on the hardness of solving
such mathematical problems with current computer technology. Quantum theory seems to be the
perfect basis on which to build such a new cryptosystem that withstands even an attack by quantum
computers.

1In 1997, the British Government Communications Headquarters revealed that its researchers James Ellis, William
Cocks, and Malcolm Williamson had independently and even earlier discovered the principle idea of public-key cryptog-
raphy, the cryptosystem now called RSA, and the secret-key agreement protocol now called Diffie–Hellman, see, e.g., the
discussion in [Sin99,Rot05].
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3 From Bits to Qubits

The most important unit of information in computer science is thebit. There are two possible values
that can be stored by a bit: the bit is either equal to “0” or equal to “1.” These two different states
can be represented in various ways, for example by a simple switch or by a capacitor: if not charged,
the capacitor holds the value zero; if charged, it holds the value one.

In general, a quantum state|ψ〉 is an element of a finite-dimensional complex vector space
(or Hilbert space)H. We denote the scalar product of two states|ψ〉 and |φ〉 by 〈ψ|φ〉, where

〈ψ| = |ψ〉T is the conjugate transpose of|ψ〉.2 It is convenient to deal with normalized states, so
we require〈ψ|ψ〉 = 1 for all states|ψ〉 that have a physical meaning.

The quantum analog of the bit is calledqubit, which is derived fromquantumbit. A qubit |ψ〉
is an element of a two-dimensional Hilbert space, in which wecan introduce an orthonormal basis,
consisting of the two states|0〉 and|1〉. Unlike its classical counterpart, the quantum state can bein
anycoherent superpositionof the basis states:

|ψ〉 = α|0〉 + β|1〉, (3.1)

whereα and β are, in general, complex coefficients. This is due to the factthat the quantum
mechanical equation of motion, the Schrödinger equation,is linear: Any linear superposition of its
solutions (the quantum states) is also a solution. Since we require quantum states to be normalized,
we find that the coefficients in (3.1) have to fulfill|α|2 + |β|2 = 1, where| · | denotes the absolute
value.

There exist many possibilities to physically represent a qubit in practice, as every quantum
system with at least two states can serve as a qubit. For example, the spin of an atom or the
polarization3 of a light particle can represent the state of a qubit. Even a cat with its two basic
states “dead” and “alive,” introduced by Schroedinger [Sch35] to visualize fundamental concepts
of quantum mechanics, might serve as a representation. The cat’s problem—or fortune from the
animal’s point of view—when being used as a quantum system isits sheer size compared to that of
an atom or light particle. There is no way to protect such a bigquantum instance from interaction
with its environment, which in turn will result in decoherence of the superposition of the cat. For
the rest of the chapter, we will leave the cat alone and use light particles as our preferred qubits.

The physical meaning of (3.1) can most easily be understood when we measure the quantum
state |ψ〉. In quantum mechanics, this is achieved by apositive operator valued measurement
(POVM), which is a set of positive-definite, hermitian operatorsE = {Ex}x∈X acting on the Hilbert
space of the qubit. The elements of this set have to sum up to the identity,

∑

x∈X Ex =
�
. A simple,

special case occurs when theEx are orthogonal projectors, i.e.,Ex = |φx〉〈φx| and〈φx|φy〉 = δxy.
This simple projection measurement is calledvon Neumann measurement. The resultx of a von
Neumann measurement will occur with probabilityPr[x] = 〈ψ|Ex|ψ〉 = |〈ψ|φx〉|2. Consider our
qubit being represented by the polarization states of a photon. We denote horizontal polarization by

2Mathematically,〈ψ| is an element of the dual spaceH∗.
3Light particles, called photons, can be seen as electromagnetical waves. A specific property of them is their transver-

sality, which means that the electric and the magnetic fieldsare orthogonal to each other and to the propagation direction.
The inclination of the electric (or magnetic) field to the axis of the propagation is called polarization.
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|0〉 and vertical polarization by|1〉. It is a physical property of the electromagnetic field that these
two states are orthogonal,4 i.e., 〈0|1〉 = 0, and thus form a basis in the two-dimensional Hilbert
space. A simple measurement that tells us whether the qubit is in the state|0〉 or |1〉 is given by the
projection set{|0〉〈0|, |1〉〈1|}. When performing this measurement, the qubit will be found in the
state|0〉 with probability |α|2, and in the state|1〉 with probability |β|2. We are free to choose a
different basis in the Hilbert space; for instance, the one given by the two states

|0〉× =
1√
2
(|0〉 + |1〉) and

|1〉× =
1√
2
(|0〉 − |1〉).

This is a rotated basis, and a photon in the state|0〉× and |1〉×, respectively, has a polarization of
±45◦ against the horizontal. If we measure in this basis by means of the projection measurement
{|0〉×〈0|, |1〉×〈1|}, we find the qubit in the state|0〉× with probability1/2+<(αβ̄), and in the state
|1〉× with probability 1/2 − <(αβ̄). Let us consider the special case where, for instance,β = 0:
When we do the first measurement, we find the qubit in the state|0〉 with certainty. But when
we apply the second measurement, the outcome will be completely random. This is an important
property of theconjugated bases{|0〉, |1〉} and{|0〉×, |1〉×} with |〈i|j〉×| = 1/

√
2 for all i andj,

which will be exploited in many quantum key distribution protocols, as described below.
From POVMs it is just a small step toobservables. Each measurable physical quantity is rep-

resented by a hermitian operator, called observable. When we write an observableA in its spectral
decomposition,A =

∑

i λi|i〉〈i|, where〈i|j〉 = δij , the corresponding POVM is given by the or-
thogonal projectors{|i〉〈i|}. A measurement ofA always yields one of the eigenvaluesλi as a
result, and the measured quantum statecollapsesonto the corresponding state|i〉.

An important concept in quantum mechanics is thedensity matrixor density operatorρ: The
density matrix of a so-calledpurestate|ψ〉 is given by the projector|ψ〉〈ψ|. In the case of a qubit,
this is a complex-valued(2 × 2) matrix. The advantage of this representation is the possibility
to describe systems with a statistical distribution of states. For instance, consider a system that
is known to be in the state|ψx〉 with probability Pr[x], for x ∈ X . Let E = {Ey}y∈Y be some
POVM. Then the probability to get the resulty if the system was known to be in the state|ψx〉
would be〈ψx|Ey|ψx〉. But since we do not know, we have to average over all possiblestates, just
as we would do if the system were prepared many times in one of the states{|ψx〉} and we had
repeated the measurement each time. The probability to measurey in theensemble{|ψx〉,Pr[x]} is
consequently

Pr[y] =
∑

x∈X

Pr[x]〈ψx|Ey|ψx〉 = tr

(

Ey

∑

x∈X

Pr[x]|ψx〉〈ψx|
)

, (3.2)

wheretrA denotes the trace of the matrixA, i.e., the sum of its diagonal elements. We can now
introduce the density matrixρ =

∑

x∈X Pr[x]|ψx〉〈ψx|, such that (3.2) takes the simple form:

4This is by no means a consequence of the geometric relationship between “horizontal” and “vertical.” For instance,
the spin of a spin-1/2 particle like the electron can point “up” or “down,” and the corresponding states| ↑〉 and| ↓〉 are
orthogonal. However, the angle between the two spin settings is certainly not 90 degree.
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Pr[y] = tr(Eyρ). From now on, we can concentrate on density matrices solely,since anypurestate
|ψ〉 is just a special case where one probability in the ensemble{|ψx〉,Pr[x]} is equal to one and all
others vanish. In the general case, i.e., when at least two different states in the ensemble occur with
nonvanishing probability, the system is said to be in amixedstate.

Once we consider composite quantum systems, the situation becomes more complicated—and
more interesting. Let us consider Alice holding a stateρA, acting on a Hilbert spaceHA, and Bob
holding a stateρB acting onHB . Both states are part of a total stateρAB, acting on the tensor
productHA ⊗HB, and they are related by the partial trace:ρA = trBρAB andρB = trAρAB . This
operation discards degrees of freedom in the respective subsystem. Composite states, such asρAB

can be divided into two classes:separableandentangledstates. We first look at pure states, which
means thatρAB is of the formρAB = |ψAB〉〈ψAB |. Separable pure states areproduct states:

|ψAB〉 = |ψA〉 ⊗ |ψB〉 ≡ |ψA〉|ψB〉 ≡ |ψAψB〉.

(The last three expressions are equivalent notations.) They are composed of two independent states
of the two subsystemsA andB. Pure states that cannot be written in this form are called entangled.
A famous example of pure entangled states are the Bell states:

|φ±〉 =
1√
2
(|00〉 ± |11〉), (3.3)

|ψ±〉 =
1√
2
(|01〉 ± |10〉). (3.4)

These four states form a basis in the two-qubit Hilbert space. A mixed state is calledseparableif
and only if it can be written as a convex sum of projectors ontoproduct states [Wer89]:

ρ =
∑

x∈X

Pr[x]|ψA
x φ

B
x 〉〈ψA

x φ
B
x | =

∑

x∈X

Pr[x]|ψA
x 〉〈ψA

x | ⊗ |φB
x 〉〈φB

x |, (3.5)

with Pr[x] ≥ 0 for eachx ∈ X and
∑

x∈X Pr[x] = 1. These states can be prepared locally in
Alice’s and Bob’s laboratory only by means ofclassicalcommunication, i.e., no quantum systems
need to be sent. If a state cannot be written in the form (3.5),it is calledentangled.

4 Quantum Key Distribution

Quantum cryptography exploits the quantum mechanical property that a qubit cannot be copied or
amplified without disturbing its original state. This is thestatement of theNo-Cloning Theorem
[WZ82], which is easily proven: Assume there exists a unitary transformation5 U that can copy two
states|ψ1〉 and|ψ2〉:

U |ψ1〉|0〉 = |ψ1〉|ψ1〉, (4.6)

U |ψ2〉|0〉 = |ψ2〉|ψ2〉, (4.7)

5The time-evolution of an isolated quantum system is described by a unitary transformationU : |ψ〉 → U |ψ〉.
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where|0〉 is an arbitrary input state. If we equate the scalar productsof the left-hand and right-
hand sides, it follows by the unitarity ofU that 〈ψ1|ψ2〉 = 〈ψ1|ψ2〉2, which implies that〈ψ1|ψ2〉
equals0 or 1. This means that we can copy only orthogonal or identical states. In contrast, arbitrary
unknown states cannot be perfectly cloned. (Note that orthogonal or identical states are not viewed
as “unknown” states, since we do know they are orthogonal, for example.)

The essence of this theorem is the main ingredient of quantumkey distribution, where Alice
and Bob use a quantum channel to exchange a sequence of qubits, which will then be used to create
a key for the one-time pad in order to communicate over an insecure channel. Any disturbance of
the qubits, for example caused by Eve trying to measure the qubits’ state, can be detected with high
probability.

In this section, we describe the BB84 protocol proposed by Charles Bennett and Gilles Brassard
in 1984, see [BB84]. This is the first protocol designed to employ quantum mechanics for two
parties to agree on a joint secret key.

4.1 The BB84 Protocol

In this protocol, Alice and Bob use a quantum channel to send qubits. They are also connected by
a classical channel, which is insecure against an eavesdropper but unjammable. Alice and Bob use
four possible quantum states in two conjugate bases (say, the rectilinear basis+ and the diagonal
basis×). We use|0〉+ and|0〉× = (|0〉+ + |1〉+)/

√
2 for the classical signal “0,” and we use|1〉+

and|1〉× = (|0〉+ − |1〉+)/
√

2 for the classical signal “1.” Note that the two bases are connected by
the so-called Hadamard transformation

H =
1√
2

(

1 1
1 −1

)

(4.8)

in the following way: SinceH2 =
�
, we haveH|0〉+ = |0〉× andH|1〉+ = |1〉×, and vice versa.

The protocol works as follows (see also Table 1 for illustration):

1. Alice randomly prepares2n qubits, each in one of the four states|0〉+, |0〉×, |1〉+, or |1〉×,
and sends them to Bob.

2. For each qubit that Bob receives, he chooses at random one of the two bases (+ or ×) and
measures the qubit with respect to that basis. If he chooses the same basis as Alice, his
measurement result is the same as the classical bit that Alice prepared. If the bases differ,
Bob’s result is completely random.

3. Alice tells Bob via the classical channel which basis she used for each qubit. They keep the
bits where Bob has used the same basis for his measurement as Alice. This happens in about
half the cases, so they will have approximatelyn bits left. These are forming the so-called
sifted key.

4. Alice and Bob choose a subset of the sifted key to estimate the error-rate. They do so by
announcing publicly the bit values of the subset. If they differ in too many cases, they abort
the protocol, since its security cannot be guaranteed.
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5. Finally, Alice and Bob obtain a joint secret key from the remaining bits by performing error
correction and privacy amplification.

Alice’s string 1 1 0 1 0 0 1 0 1 1 1 1 0 0
Alice’s basis + + + × × + × × × × + + + +

Bob’s basis + × + + × + × + × × + + + +

Bob’s string 1 R 0 R 0 0 1 R 1 1 1 1 0 0
Same basis? Y N Y N Y Y Y N Y Y Y Y Y Y
Bits to keep 1 0 0 0 1 1 1 1 1 0 0
Test Y N N Y N N N N Y Y N
Key 0 0 1 1 1 1 0

Table 1: The BB84 Key Distribution Protocol. Here, “Y” and “N” stand for “yes” and “no,” respec-
tively, and “R” means that Bob obtains a random result.

Which possibilities does Eve have to attack this protocol? And, consequently, what is the
threshold of the error-rate, at which Alice and Bob should abort the protocol? To answer these
questions, we look at a simple eavesdropping strategy, which is called “intercept and resend.”

Eve’s goal is to learn at least some part of the key. Thus, an obvious strategy for her is to
intercept the qubits being transmitted from Alice to Bob. She cannot simply copy the qubits, since
this would contradict the No-Cloning Theorem. In order to extract some information, she is forced
to measure (and thus destroy) them. But since she does not know the basis in which they were
prepared (Alice announces this information only after Bob received all signals), she can only guess
or just flip a coin for the selection of the measurement basis.In about half the cases, she will happen
to choose the same basis as Alice and get completely correlated bit values. In the other half, her
results will be random and uncorrelated. Bob certainly expects to receive something from Alice, so
Eve needs to send some qubits to him. However, she still has noidea which basis Alice used, so she
prepares each qubit in the same basis as she measured it (or she chooses a basis at random). These
newly created qubits again match Alice’s bases in only half of the cases. After Bob receives Eve’s
qubits, he measures them, and Alice and Bob apply the sifting. Because of Eve’s disturbance, about
half of Bob’s key was measured in a different basis than it wasprepared by Alice. Since Bob’s result
is random in those cases, his sifted key will contain about 25% errors. In the error-estimation stage,
if Alice and Bob obtain such a high error rate, it would be wisefor them to abort the protocol.

If the error rate is below an agreed threshold value, Alice and Bob can eliminate errors with
(classical) error correction. A simple method for error correction works as follows: Alice chooses
two bits at random and tells Bob the XOR-value of the two bits.Bob tells Alice if he has the same
value. In this case, they keep the first bit and discard the second bit. If their values differ, they
discard both bits. The remaining bits form the key.

The last stage of the protocol is privacy amplification—a procedure in which Alice and Bob
eliminate (or, at least, drastically reduce) Eve’s knowledge about the key. They do so by choosing
random pairs of bits of the sifted key and replacing them by their corresponding XOR-values. Thus,
they halve the length of the key, in order to “amplify” their privacy. Note that Eve has less knowledge
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about the XOR-value, even if she knew the values of the singlebits with high probability (but not
with certainty).

There are even more sophisticated methods for error correction and privacy amplification. For
more details on error-correcting codes and their usage in the physics of quantum information, we
refer to Huffman and Pless [HP03] and Bouwmeester, Ekert, and Zeilinger [BEZ00].

4.2 Security of Quantum Key Distribution

Unlike many of the classical cryptosystems in use today, whose security often draws on unproven as-
sumptions about the computational complexity of mathematical problems, the security of quantum
cryptography is based on—and employs—the laws of physics. The term “unconditional security”
is used to emphasize the fact that it does not rely on the presumed, yet unproven hardness of some
mathematical problem. In this section, we present the proofof the unconditional security of the
BB84 protocol, as devised by Peter Shor and John Preskill [SP00].

We divide the proof into three parts:

• In the first part, we present the so-calledentanglement-basedversion of the BB84 protocol.
In contrast, the scheme presented in the previous section iscalled aprepare-and-measure
scheme, for obvious reasons. In the entanglement-based version, Alice and Bob’s aim is
to share a special entangled state that allows them to obtainperfectly correlated bits upon
measuring their half of the state. We will see how they can construct such a state, how they
can check whether they were successful, and how they can detect Eve’s attempted attack.

• In the second part, we will show that the equivalent entanglement-based version is secure.
More precisely, we will prove that Eve cannot deceive Alice and Bob into continuing the
protocol, falsely believing that they are creating a securekey.

• In the third part, we show that the two schemes are equivalentindeed.

4.2.1 The Entanglement-Based Version of BB84

In this version of the protocol, Alice and Bob aim at creatinga special entangled state, namely the
Bell state

|φ+〉 =
1√
2
(|00〉 + |11〉), (4.9)

where Alice holds the first particle and Bob holds the second one. An important property of this
state is that it ismaximally entangled. This means that Alice’s and Bob’s measurement results are
completely correlated whenever they measure the state|φ+〉 in the same basis. (Moreover, their
results are random.) Since the state is pure, it cannot be entangled with anything else, in particular
not with anything under Eve’s control. Thus, whenever Aliceand Bob are sure they share a|φ+〉
state, they know that (a) measuring in the same basis generates a shared random bit, and (b) Eve has
no knowledge about this bit. To generate the whole key, Aliceand Bob prepare a large number of
these Bell states,

|φ+〉⊗n
= |φ+〉 ⊗ · · · ⊗ |φ+〉,
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and measure each qubit separately. We will now show how they can achieve this.
We need to take a brief detour to quantum error correction first. In contrast to a classical bit, a

qubit can undergo three different errors: bit flips, phase errors, and combinations of these two:

• When a bit flip occurs, the state|0〉 becomes|1〉, and vice versa. This error is described by
the Pauli matrix

σx =

(

0 1
1 0

)

.

• Phase errors transform the state|1〉 into −|1〉, but leave|0〉 unchanged. Such an error is
described by the Pauli matrix

σy =

(

0 −i
i 0

)

.

• Both these errors can also occur combined. For example, changing |0〉 to −|1〉 and|1〉 to |0〉
can be described byσzσx = iσy, where

σz =

(

1 0
0 −1

)

.

Let us now recall some elements of classical error correction. A (classical) linear[n, k] codeC
that encodesk bits of information by ann bit string is a set ofk codewords. Each codeword is ann-
dimensional binary vector. The whole code can be described by an(n × k)-dimensional generator
matrix G that maps each messagex to the encoded messageGx. Thus, the set of all possible
codewords is the vector space that is spanned by the columns of G. We require those vectors to
be linearly independent. Error correction for linear codescan be easily described by means of the
parity check matrixH. This is an((n − k) × n) matrix with the property thatHx = 0 for all
codewordsx.

Suppose now that a messagex is encoded asy = Gx. Due to an errore, one obtainsy′ = y+ e.
Since we haveHy = 0 for all codewords, it follows thatHy′ = He, which is called the(error)
syndrome. Thus, if the syndrome is 0, no error has occurred. Otherwise, H is constructed such that
the syndrome contains information about the error that should make it possible to correct it. Finally,
we introduce the concept ofduality: LetC be a linear[n, k] code with generator matrixG and parity
check matrixH. Then we can define the dual codeC⊥ of C, which is the set of all codewords that
are orthogonal to each codeword inC. The dual codeC⊥ is an[n − k, n] code which is generated
byHT and has a parity check matrixGT . Dual codes play an important role in the construction of
CSS codes, as we explain below.

Definition 5 Let C1 andC2 be classical linear[n, k1] and [n, k2] codes, respectively, such that
C2 ⊂ C1. For each codewordx ∈ C1, define the quantum state

|x+ C2〉 =
1

√

|C2|
∑

y∈C2

|x+ y〉. (4.10)

The space spanned by{|x+ C2〉}x∈C1
defines an[n, k1 − k2] quantum code, which is called the

Calderbank–Shor–Steane code, CSS(C1, C2) for short.
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Let x andx′ in C1 be codewords such thatx− x′ is inC2. Then one can show that

|x+ C2〉 = |x′ + C2〉,

i.e., the state|x+ C2〉 depends only onC1/C2, that is, the coset to whichx belongs.6 It follows
that if x andx′ belong to different cosets, the states|x+ C2〉 and|x′ + C2〉 are orthogonal. As the
number of cosets ofC2 in C1 is |C1|/|C2|, the dimension of the spaceCSS(C1, C2) is |C1|/|C2| =
2k1−k2, thusm = k1 − k2 qubits can be encoded.

Error correction with CSS codes works as follows. Suppose thatC1 andC⊥
2 both can correct̀

errors. Moreover, letH1 be the parity check matrix forC1, and letH2 be that forC⊥
2 . Define

σs
α = σs1

α ⊗ σs2

α ⊗ · · · ⊗ σsn

α , (4.11)

whereα ∈ {x, y, z}, σ0
α =

�
, ands = (s1, s2, . . . , sn) is ann bit vector. It can be shown that

the syndrome for bit flip errors can be computed by measuringσr
z for each row vectorr of H1.

Similarly, the syndrome for phase errors can be computed by measuringσt
x for each row vectort

of H2. In this way,` bit flips and` phase errors can be corrected.
We have now collected all the ingredients to describe the entanglement-based version of the

BB84 protocol:

1. Alice creates2n qubit pairs in the state|φ+〉⊗2n.

2. She randomly selectsn of those qubits which will later serve as check qubits.

3. Alice selects a random2n bit string b and applies the Hadamard transformation (4.8) to her
half of each qubit pair whenever the corresponding bit ofb is “1.”

4. She sends the other half of all qubit pairs to Bob.

5. Alice announcesb and which qubits are to serve as check qubits.

6. Bob performs a Hadamard transformation on those of his qubits whereb is “1.”

7. Alice and Bob measure the check qubits in the{|0〉, |1〉} basis to estimate the error rate. If
more thaǹ results differ, they abort the protocol.

8. For the remaining qubits, Alice and Bob measure the syndromes for the codesC1 andC2,
correct the errors, and obtain|φ+〉⊗m.

9. They measure this state in the{|0〉, |1〉} basis to obtain a shared secret key.

The point of performing the Hadamard transformation on halfof the qubits is that this operation
effectively changes the basis, in which the qubits are prepared, from{|0〉+, |1〉+} to {|0〉×, |1〉×}.
This is necessary because if Eve knew the basis, she could launch the intercept-resend attack pre-
sented in the previous section and break the protocol.

6LetG andH be two groups withG ⊂ H . Then for anyh ∈ H , we define the coset ofG in H , determined byh, as
hG = {h+ g | g ∈ G}. The groupH/G is the set of all elements ofH that belong to different cosets.
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4.2.2 Security of the Entanglement-Based Version

The goal of the entanglement-based version of the BB84 protocol is to provide Alice and Bob with
a number of qubit pairs in the state|φ+〉, because measuring this state in a joint basis generates
correlated, random bits. The distribution of this state is done by means of CSS codes, but this
operation may not be 100% efficient. Moreover, the random sampling which Alice and Bob apply
by randomly choosing a set of check bits may not provide a perfect sample. In this section, we deal
with these issues.

We first need a technical lemma stating, roughly speaking, that a state that is “close” to the state
|φ+〉⊗m has a small entropy. The “distance” to a pure state is measured by means of the so-called
fidelity, which is defined asF (ρ, |ψ〉) = 〈ψ|ρ|ψ〉. If F = 1, the two states are identical.

Lemma 6 Letρ be a density matrix ands > 0. If F (ρ, |φ+〉⊗m
)2 ≥ 1 − 2−s, then

S(ρ) ≤ (2m+ s+ 1/ ln 2)2−s + O(2−2s).

HereS(ρ) = −tr(ρ ln ρ) denotes the von Neumann entropy. The proof of this lemma is simple
and can be found in [NC00]. The amount of information that canbe extracted from a quantum state
is given by theaccessible information. Holevo’s bound [Hol73] shows that it can be upper-bounded
by the von Neumann entropyS(ρ). Now using the above lemma, we have shown that if the state
shared by Alice and Bob is close to the state|φ+〉⊗m, then the information extractable by Eve is
negligibly small.

It remains to show that by the random sampling that Alice and Bob apply, they can reliably
estimate the fidelity of the remaining qubits. The main ingredient to prove this is again a lemma,
which we state here without proof. (The proof is left to the reader, see Nielsen and Chuang [NC00].)

Lemma 7 Let a random2n bit string that might contain some errors, and a random subset of n
check bits of that string be given. Then, for any two constants δ > 0 and ε > 0, the probability of
finding less thanδn errors on the check bits, and more than(δ+ ε)n errors on the remaining bits is
less thane−O(ε2n), for sufficiently largen.

Although this lemma is based on classical probability theory, we can give an argument for its
validity in the quantum world: The observables that Alice and Bob measure on the check bits are
both diagonal in the Bell basis, which means that the statistics of the results can be described purely
classically. These measurements onHA ⊗HB are given by the POVMs

{Pbf = |ψ+〉〈ψ+| + |ψ−〉〈ψ−|, �− Pbf},

which are used to check for bit flips, and

{Ppe = |φ−〉〈φ−| + |ψ−〉〈ψ−|, � − Ppe},

which are used to check for phase errors. Alice and Bob chooseone of those measurements at
random for each check qubit. In this way, they can calculate alower bound for the fidelity of the
remaining qubits.
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Summarizing, these rough arguments show that by random sampling, the fidelity of the state
shared by Alice and Bob can be lower-bounded, with an exponentially small probability of error.
Moreover, with this bound, the information that Eve can obtain about this state (and consequently
about the secret key) can be shown to be also exponentially small.

4.2.3 Equivalence of the Two Schemes

We prove the equivalence of the entanglement-based and prepare-and-measure versions of the BB84
protocol by successive simplifications. Each step is very simple, so it is easy to verify that the
security of the protocol is not compromised.

A major simplification is that all measurements done by Aliceafter transmitting the particles
can already be done at the very beginning: If Alice measures her part of the state|φ+〉, she obtains
a random bit as a result, but on the other hand, Bob’s part of the state collapses onto the correlated
state|0〉 or |1〉. Thus, instead of sending entangled qubits for the check, Alice can as well prepare
single qubits randomly in one of the states|0〉 and|1〉, and send those states to Bob. Of course, it
is crucial for the security of the protocol that Eve does not know a priori which qubits will serve as
check qubits and which as “key qubits”; otherwise, she couldtreat them differently and thus fudge
the error estimation.

Another measurement Alice can do at the beginning is the measurement of her syndrome and
her key qubits. This is not very obvious, so let us give some more detail: Given a CSS code
CSS(C1, C2), we can define a family of equivalent codesCSSv,w(C1, C2), in the sense that they
have the same error correcting properties. The codewords ofthe codeCSSv,w(C1, C2) are given by

|xk, v, w〉 =
1

√

|C2|
∑

y∈C2

(−1)v·y|xk + y + w〉, (4.12)

wherexk is one representative of one of them cosets ofC2 in C1, andv andw are arbitraryn bit
strings. Since the{|xk, v, w〉} form a basis, we can rewrite

|φ+〉⊗n
=

1√
2n

2n−1
∑

i=0

|i〉|i〉 =
1√
2n

∑

xk,v,w

|xk, v, w〉|xk, v, w〉, (4.13)

wherei is in binary notation. If now Alice measures the error syndromes, namelyσr
z for each

row vectorr of H1 andσt
x for each row vectort of H2, she obtains a random result forv andw.

Finally, if she does a last measurement in the{|0〉, |1〉} basis, she obtains a random codewordxk.
From (4.13), we see that Bob’s state then collapses onto|xk, v, w〉, which is a random qubit encoded
in a random code.

As an intermediate result, we rephrase the entanglement-based protocol including all simplifi-
cations introduced so far:

1. Alice createsn random check qubits, each in the state|0〉 or |1〉, a randomn bit string k,
which will serve as the key, and two randomn bit stringsv andw. She prepares the state|k〉
and encodes it usingCSSv,w(C1, C2).
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2. She randomly selectsn positions for the check qubits and puts the encoded qubits inthe
remaining positions.

3. Alice selects a random2n bit stringb and applies the Hadamard transformation to her half of
each qubit pair whereb is “1.”

4. She sends the other half of all qubit pairs to Bob.

5. Alice announcesb, v, andw, and which qubits are to serve as check qubits.

6. Bob performs a Hadamard transformation on those of his qubits whereb is “1.”

7. Bob measures the check qubits in the{|0〉, |1〉} basis. If he finds more thaǹresults that
disagree with Alice’s prepared states, they abort the protocol.

8. Bob decodes the key qubits fromCSSv,w(C1, C2) and obtains the state|k〉.

9. He measures|k〉 in the{|0〉, |1〉} basis and obtains the keyk as the result.

We will now simplify this protocol even further: Note that inthe original version, Alice and
Bob do not care whether they shared the state|φ+〉 or |φ−〉 = (|00〉−|11〉)/

√
2, because measuring

both states provides them with correlated, random bits; therelative phase is irrelevant. Thus, it is
unnecessary to send the phase correction informationv to Bob. This is why CSS codes are used:
They decouple the bit flip error correction from the phase error correction. If now Bob were to
measure his key qubits before the decoding, he would obtainxk + y + w + e, wheree denotes
the bit errors that occurred during the transmission (or that were introduced by Eve). He can now
classically decode this bit string by subtractingw, which was announced by Alice, and correct it to
the codewordxk + y, if e did not introduce too many errors. Bob finds the key by computing the
coset to whichxk + y belongs. But since Bob does not needv, why should Alice send it? If she
never reveals that value, she effectively prepares a state that is a classical mixture of all possible
values thatv can take, weighted with the corresponding probabilities:

ρxk,w =
1

2n

∑

v

|xk, v, w〉〈xk, v, w| =
1

|C2|
∑

z∈C2

|xk + z + w〉〈xk + z + w|. (4.14)

We see that this state can also be prepared by classically choosing a random codewordz ∈ C2

and constructing|xk + z + w〉. Thus, the preparation in Step 1 can be done equivalently in the
following way: Alice createsn random check qubits, each in the state|0〉 or |1〉, a randomn bit
stringw, a random stringxk ∈ C1/C2, and a random codewordz ∈ C2. Then key qubits are
prepared in the state|xk + w + z〉, and the check qubits are placed at random positions.

Note that we can also remove the need forz ∈ C2, if Alice instead of choosingxk ∈ C1/C2

choosesxk ∈ C1. With this modification, Alice sends the state|xk + w〉 as key qubits, which Bob
then measures and corrects toxk +w. Sincexk +w is a completely randomn bit string, Alice can
as well just prepare|y〉, wherey is a randomn bit string. She sends it to Bob who measures it to
obtainy+e, then Alice sends error correction informationy−xk, which Bob subtracts fromy+e to
finally obtainxk + e. He corrects it toxk and calculates the keyk as the coset to whichxk belongs.
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What we have achieved is that now the check and the key qubits are just prepared randomly in one
of the states|0〉 or |1〉. The whole protocol so far looks as follows:

1. Alice creates2n random qubits, each in the state|0〉 or |1〉, and a random codewordxk ∈ C1.

2. She randomly selectsn positions to be check qubits and the remainingn positions to be|y〉.

3. Alice selects a random2n bit stringb and applies the Hadamard transformation to her half of
each qubit pair whereb is “1.”

4. She sends the other half of all qubit pairs to Bob.

5. Alice announcesb andy − xk, and which qubits are to serve as check qubits.

6. Bob performs a Hadamard transformation on those of his qubits whereb is “1.”

7. Bob measures the check qubits in the{|0〉, |1〉} basis. If he finds more thaǹresults that
disagree with Alice’s prepared state, they abort the protocol.

8. Bob measures the key qubits to gety + e, subtractsy − xk, and correctsxk + e to xk.

9. He calculates the coset to whichxk belongs to get the keyk.

Finally, we can remove the Hadamard transformation, and letAlice choose randomly one of
the four states in{|0〉+, |1〉+, |0〉×, |1〉×}. Then Bob, instead of waiting forb to be announced,
simply chooses one basis at random and measures the arrivingqubits. As he will choose the wrong
basis in roughly half the cases, Alice should double the number of input qubits to4n. After his
measurement, Alice announces which basis she used and both discard all instances where they used
a different basis. With this last modification, we finally arrived at the prepare-and-measure version
of the BB84 protocol, only up to some small twists.

5 Quantum Bit Commitment

When talking about quantum cryptography, everyone is thinking about key distribution. There are,
however, other cryptographic applications as well, such asbit commitment. In 1993, a bit com-
mitment protocol based on quantum mechanics was introducedby Brassard et al. [BCJL93]. The
unconditional security of the protocol (which means that the security of the protocol is independent
of the computational resources, such as computing time, amount of memory used, and computer
technology of the cheater) has been accepted without proof [Yao95]. Two years after it had been
proposed, the protocol turned out to be insecure [May95].

A commitment protocol is a procedure in which one party, say Alice, deposits a message such
that no one (and in particular not Alice) can read it nor change it. At some point in the future, Alice’s
message will be announced, and with high certainty it can be proven that the revealed message is
the same as the one Alice had deposited originally. To illustrate this situation, suppose Bob wants
to auction off a diamond ring, subject to the condition that each person wishing to participate in the
auction can bid only one single amount of money. After each person has chosen a specific amount,
the highest bidder gets the ring. So everyone writes their own bid on a piece of paper, puts it into
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a personal safe, which is then locked and given to Bob. Until all bids have been submitted to Bob,
each bidder keeps the key matching the lock of his or her safe.In this way Bob cannot see any of the
bids, which in turn cannot be changed once they have been submitted, since only Bob has access to
the committed safes. All keys are handed over to Bob after he has received all safes from the people
participating in the auction. The different offers are compared in public, so that everybody can be
sure that only the highest bidder walks away with the diamondand an empty wallet.

We can describe this commitment protocol mathematically asfollows: The protocol has two
stages, the commit phase and the unveil phase. Alice commitsherself to the datam by com-
puting c = f(m), and she sendsc to Bob. Alice unveils the commitment by showing Bob the
preimagem of c. In classical cryptography, and in particular in public-key cryptography, one-way
functions are used for commitment. In quantum cryptography, we want to make use of the laws of
quantum mechanics to create a fair protocol for both sides. Bit commitment is a special case of a
commitment protocol, where the datam consists of only one single bit.

It is widely believed that it is impossible to create a perfectly secure classical bit commitment
protocol. Regarding the extension to the quantum world, it was shown that unconditionally secure
quantum bit commitment is also impossible [May97,LC97].

5.1 The BB84 Quantum Bit Commitment Protocol

The BB84 protocol was introduced in Section 4.1. A quantum bit commitment protocol can be
created from the BB84 quantum key distribution protocol with a few minor changes [BB84]. Just
as in the classical bit commitment protocol, the quantum protocol starts with the commit phase and
ends with the unveil phase.

The commit procedure:

1. Alice chooses a bitb ∈ {0, 1}.

2. Alice creates a random binary stringw = w1 · · ·wn with n bits.

3. If Alice wants to commit to0, she does a quantum encoding of each bitwi in the two basis
states of the rectilinear basis+. If she wants to commit to1, she encodes the bits in the two
basis states of the diagonal basis×. Let θi denote the basis chosen forwi.

4. Alice sends the sequence ofn encoded quantum states to Bob.

5. Bob chooses a random measurement basis (rectilinear or diagonal) for each of the received
quantum states, i.e., he chooses a string of random basesθ̂ = θ̂1 · · · θ̂n ∈ {+,×}n. He
measures theith state in the basiŝθi, and denotes the outcome bŷwi.

If we take a look at the two density matrices for then states corresponding tob = 0 andb = 1,
respectively, it is easy to see that they are the same, and equal to the identity matrix. Thus, Bob has
no chance to get any information about the bitb.

The unveil procedure:

1. Alice publishesb (i.e., the basis that she used for encoding) and the stringw.
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2. For about half of then states, Bob used the same basis for his measurement as Alice used for
encoding. In these cases Bob can verify that Alice’s revealed bits are matching his measure-
ment results.

How could a dishonest party cheat in this protocol? For example, Alice could choose the bit
b = 1 for the commit phase, so she encodes the states with the diagonal basis×. Later during
the unveil phase, she changes her mind and tells Bob that she committed to the bitb = 0, so Bob
assumes that Alice has used the rectilinear basis+. In approximatelyn/2 cases, Bob measures the
states with the rectilinear basis+, and in these cases Alice has to guess the bits Bob measured. Since
Alice’s success to make a right guess for one bit is1/2, her overall cheating will not be detected
with a probability of(1/2)n/2. Oncen is chosen large enough, Alice has practically no chance to
manipulate the protocol by this probabilistic method.

But what if Alice uses specially entangled states as in the entanglement-based version of the
BB84 protocol (see Section 4.2.1, Equation (4.9))? Alice could createn pairs of entangled states
and send one part of each pair to Bob. She doesn’t have to commit to a bit in the beginning, because
she can perform a measurement right before the unveil phase.If, for example, she chooses bitb = 0,
she measures the states that she has kept in the rectilinear basis+. Bob’s measurement results will
be perfectly correlated, due to the shape of the entangled state in Equation (4.9). If Alice wants
to choose bitb = 1 instead, she measures the states that she has kept in the diagonal basis×. As
the state from Equation (4.9) is form-invariant under a basis rotation by45◦, Alice’s announced
encoded states will again match Bob’s measurement results.Thus, Bob has no chance to notice the
attack.

5.2 Impossibility of Unconditionally Secure Quantum Bit Commitment

As mentioned above, unconditionally secure quantum bit commitment is impossible. In this section
we will review the main arguments to prove this statement. According to Lo and Chau [LC97], the
ideas of all quantum bit commitment protocols proposed up todate can be roughly described by the
following five steps:

1. Alice chooses a bitb ∈ {0, 1} and prepares the state

|0〉 =
∑

i

αi|eAi 〉 ⊗ |fB
i 〉

for b = 0, and the state
|1〉 =

∑

j

βj |e′j
A〉 ⊗ |f ′j

B〉

for b = 1, where|eAi 〉 and|e′j
A〉 are orthonormal bases of Alice’s Hilbert space, i.e.,〈eAi |eAk 〉 =

δik and〈e′Aj |e′Al 〉 = δjl. The states|fB
i 〉 and|f ′j

B〉 live in Bob’s Hilbert space, and are not
necessarily orthogonal to each other.

2. Now, Alice has to make a measurement on the first part of the above state, and will thus
determinei or j, depending on her initial choice forb.
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3. Alice sends the second part of the above state to Bob. This is the last step in the commit
phase.

4. At the beginning of the unveil phase, Alice publicly announcesi or j together withb.

5. Bob makes a measurement on his part of the state, in order tomake sure that in Step 3, Alice
committed to the same bit she has announced in Step 4.

To show that a cheating Alice cannot be detected, we distinguish two cases. We give only a
sketch of the proof, for more details we refer to [May97,LC97].

In the first case, Bob cannot get any information about the bitb out of the state that Alice sent
him. This means that his two reduced density matrices, corresponding to the two states|0〉 and|1〉,
are the same, i.e.,trA|0〉〈0| = trA|1〉〈1|. Thus, the fidelity7 of the two states isF = 1. Now, we
can write the Schmidt decomposition (i.e., a bi-orthogonaldecomposition that can always be found,
see, e.g., Nielsen and Chuang [NC00]) as

|0〉 =
∑

k

√

λk|êAk 〉 ⊗ |f̂B
k 〉

and
|1〉 =

∑

k

√

λk|ê
′A
k 〉 ⊗ |f̂B

k 〉,

where|êAk 〉 and |ê′Ak 〉 are orthonormal bases of Alice’s Hilbert space, and|f̂B
k 〉 is an orthonormal

basis of Bob’s Hilbert space. Theλk ’s are the eigenvalues of Bob’s two reduced density matrices
corresponding to|0〉 and|1〉 (which are identical). There always exists a unitary transformationU
that maps an orthonormal basis|êAk 〉 of a Hilbert space to another orthonormal basis|ê′Ak 〉 of the
same Hilbert space, and thus thislocal unitary transformation (a rotation on Alice’s side only) can
map|0〉 to |1〉.

Therefore, Alice can start her commit phase with the bitb = 0. She prepares the state|0〉, skips
the measurement (delays until Step 4) and sends Bob’s part ofthe state|0〉 directly to Bob. At the
beginning of the unveil phase, Alice has to choose the valueb. If she choosesb = 0, she can proceed
with the original protocol honestly. If she choosesb = 1, she can execute the unitary transformation
U , and switch|0〉 to |1〉. BecauseF = 1, Bob has no chance to detect the cheating.

In the second case, letF 6= 1, i.e., the two reduced density matrices of Bob, corresponding to
the two states|0〉 and|1〉, are not the same. The fidelity must be close to1; otherwise, Bob could
easily distinguish between the bits0 and1, and so he could cheat. Alice can again use her cheating
strategy from above. Mayers [May97] has shown that with a cheating Alice, the probability of Bob
being able to distinguish between0 and1 will not be larger. Thus Alice can cheat again with a
probability close to1.

As we can see, a dishonest party uses the same algorithm as an honest party. Hence it is im-
possible for the honest party to detect the cheater, and thussecure quantum bit commitment is not
possible.

7Note that the fidelityF for two mixed statesρ1 andρ2 is defined asF = tr
p√

ρ1ρ2

√
ρ1.
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6 Outlook and Conclusions

The security of quantum key distribution relies on the inviolable laws of quantum mechanics:
nonorthogonal quantum states are used as signal states in the BB84 protocol. The impossibility
of perfect cloning of nonorthogonal states implies the security of this protocol.

In the security proof for the BB84 protocol, we have employedan equivalent entanglement-
based protocol. The main idea is that local measurements on amaximally entangled state, shared
by Alice and Bob, have perfectly correlated outcomes that can be used as the key. A maximally
entangled state is necessarily pure, and a pure state cannotbe entangled with an eavesdropper’s
state—thus Eve cannot learn anything about the key. The ideafor quantum cryptography with en-
tangled states goes back to Artur Ekert [Eke97], who suggested to confirm the existence of quantum
correlations in the state of Alice and Bob by a Bell inequality test.

6.1 Other Quantum Key Distribution Protocols

A variety of quantum key distribution protocols can be foundin the literature. All known prepare-
and-measure schemes can be seen as variations of the BB84 protocol, which are obtained by chang-
ing the number and/or dimension of the quantum states.

In 1992, Charles Bennett [Ben92] proposed a protocol—whichnow is named after him the
B92 protocol—in which only two nonorthogonal states are used. In the so-called six-state proto-
col [Bru98,BPG99], the six eigenstates of the three Pauli operators are used. This protocol has a
lower efficiency compared with BB84, as in only one third of the cases Alice and Bob use the same
basis, but it is more difficult for Eve to retrieve any information, thus the security is enhanced.

In this paper, we have always considered qubits, i.e., two-level systems as information carriers.
What happens if one considers higher-dimensional systems,such as qutrits (three-level systems)?
Intuitively, one would expect that the increased number of degrees of freedom makes it more difficult
for Eve to extract information on the key. As proven in [BM02], higher-dimensional systems indeed
offer increased security.

A recently suggested protocol [SARG04] introduces a new sifting method: rather than announc-
ing the basis, Alice gives Bob a list of two nonorthogonal states from which the signal state was
taken. This protocol has certain security advantages that are connected with experimental imple-
mentations of quantum cryptography.

6.2 Experimental Status

So far, we have presented quantum key distribution in a rather theoretical, abstract manner. What is
the experimental situation—can the ideas of quantum cryptography be made reality? In recent years,
much effort has been devoted to experiments on quantum cryptography, and much progress has been
made. In most experiments, polarized photons are representing the qubits: photons are polarized if
their electromagnetic field oscillates in a fixed direction of space (which has to be orthogonal to the
direction of flight). The two degrees of freedom for a photonic qubit can be, e.g., horizontal and
vertical polarization (the rectilinear basis in the BB84 protocol), or polarization rotated by45◦ with
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respect to the horizontal/vertical direction—this corresponds to the diagonal basis in BB84. The
experimentalist “only” has to produce single polarized photons on demand.

This, however, is one of the main experimental challenges: an attenuated laser pulse consists
of Poisson-distributed number states, i.e., with a certainprobability more than one photon will be
emitted. These events with more than one photon allow for a dangerous eavesdropping strategy,
the so-called photon-number splitting attack, where Eve splits off a photon and receives full infor-
mation about the key. Apart from experimental progress towards true single-photon sources, new
algorithms that can cope with this sort of attack have been developed. One example, the protocol
by Scarani et al. [SARG04], has already been mentioned above.

The long-term goal in experimental quantum key distribution is to reach high key rates over large
distances. For the transmission of photons, two possibilities exist: either transmission via optical
fibers, or transmission in free space. Rather than trying to summarize all existing experiments, let
us mention just two examples. A very stable, robust system with optical fiber transmission has been
developed by Gisin and Zbinden at the University of Geneva, see [GRTZ02]. They were able to
transmit a secret key from Geneva to Lausanne (i.e., over a distance of about 67 km), with a rate of
130 bit/s. Regarding free space quantum cryptography, Weinfurter from LMU Munich [KZH+02]
recently demonstrated secret key exchange over about 23.4 km (in the Alps, from Zugspitze to
Karwendelspitze), with a rate of about 1000 bit/s.

Long-term goals of quantum key distribution are the realistic implementation via fibers, e.g.,
for different buildings of a bank or company (with a relatively small distance), and free space
key exchange via satellites. Future practical developments will have to prove which one of the
described protocols will turn out to be successful. At the moment, demonstrators for long-range
quantum key distribution are being built within the EU project SECOQC (for further information,
see www.secoqc.net). Quantum cryptography already provides the most advanced technology of
quantum information science, and is on the way to achieve the(quantum) jump from university
laboratories to the real world.
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