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Abstract

We survey some results in quantum cryptography. After & brteoduction to classical cryp-
tography, we provide the quantum-mechanical backgrouadexto present some fundamental
protocols from quantum cryptography. In particular, waeemguantum key distribution via the
BB84 protocol and its security proof, as well as the relatedrum bit commitment protocol
and its proof of insecurity.

Categories and subject descriptorsk.3; E.4; F.1; F.2.2; J.2.

General Terms Theory; Security; Algorithms; Experimentation.

Key words and phrasegjuantum cryptography; quantum key distribution; quanhifhtom-
mitment.

1 Introduction

Cryptography is the science of keeping private informafimm unauthorized access, of ensur-
ing data integrity and authentication, and other tasks.his $urvey, we will focus on quantum-
cryptographic key distribution and bit commitment protiscand we in particular will discuss their
security. Before turning to quantum cryptography, let we @i brief review of classical cryptogra-
phy, its current challenges and its historical development

Two parties, Alice and Bob, wish to exchange messages via swsacure channel in a way that
protects their messages from eavesdropping. An algorititrich is called aipherin this context,
scrambles Alice’s message via some rule such that resttmangriginal message is hard—if not
impossible—without knowledge of the secret key. This “stbéed” message is called the cipher-
text. On the other hand, Bob (who possesses the secret keyasdy decipher Alice’s ciphertext
and obtains her original plaintext. Figure 2 in the nextisecpresents this basic cryptographic
scenario.
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Cryptographic technology in use today relies on the haglméscertain mathematical prob-
lems. Classical cryptography faces the following two peois. First, the security of many clas-
sical cryptosystems is based on the hardness of problerhsasuinteger factoring or the discrete
logarithm problem. But since these problems typically aweprovably hard, the corresponding
cryptosystems are potentially insecure. For example,ah®fis and widely used RSA public-key
cryptosystem [RSA78] could easily be broken if large integeere easy to factor. The hardness of
integer factoring, however, is not a proven fact but rathieyothesis. We mention in passing that
computing the RSA secret key from the corresponding puldici& polynomial-time equivalent to
integer factoring [May04].

Second, the theory of quantum computation has yielded netliade to tackle these mathe-
matical problems in a much more efficient way. Although thare still numerous challenges to
overcome before a working quantum computer of sufficientgrogan be built, in theory many
classical ciphers (in particular public-key cryptosyssesnch as RSA) might be broken by such a
powerful machine. However, while quantum computation set@nbe a severe challenge to clas-
sical cryptography in a possibly not so distant future, atshme time it offers new possibilities
to build encryption methods that are safe even againstkattaerformed by means of a quantum
computer. Quantum cryptography extends the power of clalssryptography by protecting the
secrecy of messages using the physical laws of quantum miesha

Looking back in the history of cryptography, one of the firstg/ption methods was the scytale.
The first recorded use of the scytale dates back to the fiftugeB.C. when the Spartans used it
to exchange battle information between generals withowgaléng it to the enemy. To encrypt a
message, called thptaintext a strip of leather or pergament was wrapped around a wogdieder,
the scytale. The encrypted message, also calledigtertext was then written from left to right
onto the leather, so that unravelling the strip would predaeneaningless alignment of seemingly
random letters, see Figure 1 for the encryption of the paintscytaleisatranspositioncipher” by
“ssoicaspytihtrteaairlnoesnipc.” The decryption of tighertext was achieved by using a scytale of
the same diameter as the cylinder that was used for encnyptio
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Figure 1: The Scytale
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INotwithstanding the fact that we currently do not have amgsgical) polynomial-time algorithm for factoring inte-
gers, Fellows and Koblitz [FK92] provided evidence that thecision version of the) integer factoring problem in fiact
far from being hard (in the traditional model of worst-casenplexity), by showing that it is unlikely to be NP-complete
Of course, even if this problem were NP-complete, it stilghiihappen that P= NP (which itself is a famous open
guestion) and so all NP-complete problems would have pohyaltime algorithms. And even if integer factoring were
NP-complete and B4 NP, it still might happen that integers could be factored atypomial timeon the average
For the average-case complexity model, we refer to LevimekvjlLev86] and to the surveys by Goldreich [Gol97] and
Wang [Wan97]. On a related note, Ajtai and Dwork proposedyatosystem whose security is based on a lattice prob-
lem shown to be equally hard in the worst case and in the agarage [AD97], see [NS98] for the cryptanalysis of this
cryptosystem.



The scytale is a so-called transposition cipher, since tmdyorder of the letters within the
message is changed. Another type of encryption is the $uliati cipher. Here, instead of swapping
the positions of the letters, each plaintext letter is regdaby another letter according to some
specific rule.

The method of encryption and decryption is calledrgptosystemwhereas the particular in-
formation used for encryption or decryption in an indivilobammunication is called key. In the
case of the scytale, the diameter of the cylinder represhatsecret key. Obviously, this ancient
cryptosystem has a very low level of security. Once the nteti@ncryption is known to the eaves-
dropper, he or she can simply try all possible diametersealethe original message. The fact
that the cryptosystem is publicly known is not the reasortterinsecurity of the communication,
but rather the small number of possible keys that can be wseghtryption. In the 19th century,
Auguste Kerckhoffs stated the principle that the securfity oryptosystem must be based solely on
the secrecy of the key itself. Therefore, when designing ciglers, one should always treat the
algorithm as if it were publicly known.

Over time, the amount of information that needed to be ened/pxploded, making it impossi-
ble to use simple and insecure procedures like the scytaliérsi mechanical devices were built to
speed up the encryption and the (authorized) decryptioogss) and to increase the complexity of
the keys used to scramble the messages. An infamous exafrgulelpa mechanical cryptosystem
is the Enigma, which was used in World War Il by the Germansoteceal their military commu-
nication. Not being aware of certain weaknesses of theiryption device (the most significant of
which was that this substitution cipher allowed for knowahptext attacks), the Germans consid-
ered the Enigma unbreakable. However, allied cryptaralysBletchley Park near London often
were able to decrypt the German’s military messages duhi@gvar. One might argue that breaking
the Enigma was one of the most crucial factors for the victdihe allied forces and for ending the
war. After the war, it was the invention of the transistorttimade the rise of the computer industry
possible.

The huge speed-up in executing mathematical calculatiesigted in the need to create much
more secure cryptosystems, among them symmetric bloclepsuch as the Data Encryption
Standard (DES) and the Advanced Encryption Standard (AB&pablic-key cryptosystems such
as RSA and others, which are integrated in modern cryptbgragpplications currently in use. A
nice and easy-to-read overview of the history of cryptobyais given by Singh [Sin99]. With the
currently emerging theory of quantum computation, we seebetat the beginning of yet another
era of cryptography.

This survey is organized as follows. Section 2 describesuhdamentals of classical cryptog-
raphy including an easy example. Section 3 provides songbaend of quantum mechanics and
introduces our notation. In Section 4, we present the BB&htyum key distribution protocol and
discuss its security. In particular, we describe an entanght-based version of BB84, which is
akin to Ekert’s protocol [Eke91] (see also Bennett et al. JBR]), provide a proof of security for
this protocol, and show that it is equivalent to the “prepamd-measure” version of the BB84 pro-
tocol. Section 5 presents the BB84 quantum bit commitmestbpol and shows that the security of
unconditional quantum bit commitment is impossible. Hingbection 6 gives a brief outlook and
draws some conclusions.



2 Classical Cryptography

Overviews of classical cryptography can be found in varitxs books, see, e.g., [Rot05,Sti05].
Here, we present just the basic definition of a cryptosystathgive one example of a classical
encryption method, the one-time pad.

Definition 1 A (deterministic, symmetric) cryptosysteis a five-tuple(P,C, K, E, D) satisfying
the following conditions:

1. P is afinite set of possiblplaintexts
2. Cis afinite set of possibleiphertexts
3. K is afinite set of possiblkeys

4. For eachk € IC, there are arencryption rulee;, € £ and a correspondinglecryption rule
dx € D, whereey, : P — C anddy : C — P are functions satisfyingy (e (z)) = z for each
plaintext element € P.

Eve

Figure 2: Communication between Alice and Bob, with Eveshgtg

In the basic scenario in cryptography, we have two parties wish to communicate over an
insecure channel, such as a phone line or a computer netWetklly, these parties are referred to
as Alice and Bob. Since the communication channel is inge@ur eavesdropper, called Eve, may
intercept the messages that are sent over this channel. rBgiag on a secret kely via a secure
communication method, Alice and Bob can make use of a cryptem to keep their information
secret, even when sent over the insecure channel. Thisisitusillustrated in Figure 2.

The method of encryption works as follows. For her secretsagan, Alice uses the key:
and the encryption ruley to obtain the ciphertext = e;(m). She sends Bob the ciphertexbver
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the insecure channel. Knowing the kiyBob can easily decrypt the ciphertext by the decryption
rule dy:

di(c) = di(ex(m)) = m.
Knowing the ciphertext but missing the keyt, there is no easy way for Eve to determine the
original messagen.

There exist many cryptosystems in modern cryptographyattstnit secret messages. An early
well-known system is thene-time padwhich is also known as théernam cipher The one-time
pad is a substitution cipher. Despite its advantageouseptiep, which we will discuss later on, the
one-time pad’s drawback is the costly effort needed to trétnand store the secret keys.

Example 2 (One-Time Pad) For plaintext elements if?, we use capital letters and some punctu-
ation marks, which we encode as numbers ranging ficdm29, see Figure 3. As is the case with
most cryptosystems, the ciphertext space equals the gtaisppace. Furthermore, the key spdce

A|lB|C|D|E|---|X|Y]|Z Py =1 .
00|01(02|03|04|---]|123|24|25|26|27|28]|29

Figure 3: Letters and punctuation marks encoded by numbars® to 29

also equalsP, and we have? = C = K = {0, 1,...,29}.

Next, we describe how Alice and Bob use the one-time pad msrtrid their messages. A
concrete example is shown in Figure 4. Suppose Alice and Balke @ joint secret key: of
lengthn = 12, where each key symbé] € {0,1,...,29} is chosen uniformly at random. Let
m = mimsy...m, be a given message of length which Alice wishes to encrypt. For each
plaintext letterm;, wherel < ¢ < n, Alice adds the plaintext numbers to the key numbers. The
result is taken modul80. For example, the last letter of the plaintext from Figure'd,” is en-
coded by ‘mi5 = 03" The corresponding key isthio = 28" so we havec;s = 3 + 28 = 31.
Since31 = 1 mod 30, our plaintext letter ‘D” is encrypted as ‘B.” Decryption works similarly
by subtracting, character by character, the key lettersrfrthe corresponding ciphertext letters.
So the encryption and decryption can be written as respaygtiy, = (m; + k;) mod 30 and
m; = (¢; — ki) mod 30,1 < i < n.

plaintextm | O | N | E| - | T || | M| E P|A | D
mencoded|| 14 | 13|04 |28 19|08 |12|04|26| 15| 00| 03
key k 06|13[02|01|14|05|07|18|05| 26| 13| 28
cencoded || 20|26/ 06|29|03|13|19|22|01|11|13|01
ciphertextc || U G| .|D/N|T|W|B|L|N|B

Figure 4: Encryption and decryption example for the oneetpad

We will prove that the one-time pad achieves perfect secrBryefine perfect secrecy, we need
some elementary notions from probability theory.



Notation 3 LetX be a discrete random variable that can take on values fromite faetX’ accord-
ing to a given probability distribution oiX’. We denote b¥r[X = z] the probability thatX takes
on the valuer € X. If X is clear from the context, we just writer|x]. For all x € X, Pr[z] > 0.
Additionally, >, Pr[z] = 1. For another random variablé/ defined on the finite set, we
denote byPr[z|y] the conditional probability thaX takes on the value € X given thatY takes
on the valuey € ).

Suppose that a probability distribution on the finite plaittspaceP is given. Thus, the plain-
text element defines a random variable, which we denote. iyimilarly, the key chosen by Alice
and Bob for their communication defines a random variableherkey space, denoted By Both
probability distributions, fop andk, induce a probability distribution on the ciphertext spé&ce
which gives another random variabtefor the ciphertext element. We now define the notion of
perfect secrecy that was introduced by Shannon [Sha49].

Definition 4 A cryptosystem is said to achieperfect secrecif and only if for eaclp € P and for
eachc € C,

Pr[p|c] = Pr[p].

That means that the event that some plaintextis encrypted is independent of the ciphertext
being observed. In other words, knowiagields no advantage when trying to retrieve the original
plaintextp.

In his pathbreaking paper, Shannon [Sha49] showed thabfocrgptosystem achieving perfect
secrecy, the uncertainty about the key used for encryptismmeasured by the entropy of the key
space) is at least as large as the uncertainty about the geessarypted. We here state a character-
ization of when perfect secrecy can be achieved, which alsormetimes referred to as Shannon'’s
Theorem (and the proof of which can be found in, e.g., [R&665]): Suppose thdP,C, K, £, D)
is a cryptosystem with || = ||P|| = ||C|| and such that every plaintext element will be encrypted
with a positive probability. Then, this cryptosystem agk&perfect secrecy if and only if

1. the keys inC are uniformly distributed, and
2. for eactp € P and for eaclt € C, there exists a unique kdysuch thaky (p) = c.

Using this characterization, it is easy to see that the ome-pad satisfies the property of perfect
secrecy. Since a new key element is created for each sirgjlaeott element randomly under the
uniform distribution, knowing the ciphertext is no advaygafor an eavesdropper who seeks to
recover the original message.

In addition to providing perfect secrecy, the one-time phalie the choice of timing: Keys
are transmitted whenever possible, and then encryptioong advhenever needed. However, the
one-time pad also has severe disadvantages that make @dtigat to use. Recall that the key has
to be as large as the message itself. Thus, the number ohhbitsieed to be exchanged over a
secure channel for obtaining a joint secret key increastgsthe amount of information that Alice
and Bob wish to transmit secretly. In light of this fact, onight ask why they don't use the secure
channel directly for their communication. Using the samefie encryption more than once is no
alternative, as the one-time pad’s perfect secrecy ctyaapends on creating a new key for every
single plaintext element.



The scytale and the one-time pad are two examples of a syiampetptosystem. That means
that the same key is used for encryption and decryption {deast, that the decryption key can
be easily determined from the encryption key). Thus, in otdeuse such a cryptosystem, Alice
and Bob first (i.e., prior to executing the protocol) have goeg on a joint secret key. Since the
encryption and decryption keys (essentially) are the sitm@ght seem that this secret-key agree-
ment necessarily requires an expensive secure channedy lhat immediately be obvious how two
parties can agree on a joint secret key via communicatingavésecure (and inexpensive) public
channel: If one party simply chooses some key and sendsriffged to the other party, then which
key should be used to encrypt the other key in the first plada® dilemma is known as the key
agreement problem, and it was long considered unsolvaleelkr, Diffie and Hellman [DH76]
found a quite simple but brilliant way to avoid this dilemmadao solve the key agreement prob-
lem, making use of the hardness of the discrete logarithrbl@no. Other secret-key agreement
protocols were proposed by Rivest and Sherman (see [RS9B,HRR,HRSO05]), and others.

Diffie and Hellman’s secret-key agreement protocol enaBles and Bob to agree on a joint
secret key by communicating over a public channel, and dvaungh Eve intercepts each bit trans-
mitted she is not able to determine the secret key, provitdad discrete logarithms are hard to
compute. As mentioned earlier, whether or not the discagarithm problem indeed is hard is an
open question, and it is also not known whether or not comgudiscrete logarithms is as hard as
breaking Diffie—Hellman (see [MW99] for more details).

A major disadvantage of symmetric ciphers and the relatedei®f key distribution occurs
when many parties in a large communication network needdocesiint secret keys. In principle,
if n parties participaten(n + 1)/2 different secret keys would have to be generated. Public-ke
cryptosystems, also called asymmetric cryptosystemsymmivent this key distribution problem as
follows: Instead of having one key for every pair of partiegly one pair of keys per party is
needed to communicate securely. In 1976, Whitfield Diffie Biadtin Hellman [DH76] proposed
the principle idea of public-key cryptography, namely t@ o distinct keys, a public key for
encryption and a private key for decryptién.

The first public-key cryptosystem that appeared in the operaturé is the RSA system, named
after its three inventors, Ron Rivest, Adi Shamir, and Ledrfedleman [RSA78]. Up to date, RSA
is still used in numerous cryptographic applications. Rudkdy cryptosystems are based on so-
called (trapdoor) one-way functiongunctions that are easy to compute but hard to invert (snles
one possesses a certain “trapdoor” information requireddthorized decryption).

To communicate via a public-key cryptosystem, Alice credeo keys kpupiic andKprivate. Her
encryption keykpuniic is public, but Alice keeps her private decryption keyivate secret. Each
time Bob wishes to communicate with Alice, he looks up herliputey and uses it to encrypt his

2Interestingly, Diffie and Hellman [DH76] simultaneouslyheed the key agreement problem and proposed public-key
cryptography, which makes the use of secret-key agreent=aiete. Note, however, that symmetric cryptosystems do
have important advantages, such as being more efficienttioahpublic-key cryptosystems, which makes them and the
corresponding key agreement protocols still very usefpractice.

%ln 1997, the British Government Communications Headquarevealed that its researchers James Ellis, William
Cocks, and Malcolm Williamson had independently and evelieeaiscovered the principle idea of public-key cryptog-
raphy, the cryptosystem now called RSA, and the secretggeaent protocol now called Diffie-Hellman, see, e.g., the
discussion in [Sin99,Rot05].



message. Since only Alice knows her private key, she alonéafficiently) decrypt the ciphertext,
i.e., invert the encryption function, which is one-way.

Unfortunately, it is a central open question whether ong-fusctions exist. The notion of
one-way function has been intensely studied in variousest®it In particular, “noninvertibility”
as implicit in the definition of one-way-ness strongly degeion the computational model used,
and so do concrete candidates of one-way functions. Bermarv{], Brassard, Fortune, and
Hopcroft [BFH78,Bra79], Ko [Ko85], and—perhaps most ndyabGrollmann and Selman [GS88]
were among the first to study one-way functions in the tradé model of worst-case complexity.
Such “complexity-theoretic” one-way functions and onepyparmutations have been further inves-
tigated in, e.g., [AR88,Wat88,HH91,Sel92, HRW97a,HRW&2EP7,HR99,BHHR99,HR00,RH02,
FFNRO3,HT03,Hom04,HRS05,HPR]. Along a different pathe-avay functions were carefully
studied in the more challenging average-case complexityemavhich is central to cryptographic
applications. To mention just one result along this lineasfearch, Hastad et al. [HILL99] have
shown how to construct pseudorandom number generatorsityofrom any one-way permutation
but even from any given one-way function. Finally, the studyone-way functions in quantum
cryptography, not surprisingly, was initiated not long ago mention just one recent result here,
Kawachi et al. [KKKPO5] provided a necessary and sufficiemtdition that can be used as a uni-
versal test for quantum one-way functions and that is akithéonext-bit test for pseudorandom
number generators.

The key issue is to find one-way functions that are securegintuuse for public-key cryp-
tography. The first one-way function designed for this psgg.e., the RSA encryption function)
is based on the problem of factoring large integers. As romatl in the introduction, no efficient
classical algorithm for computing the prime factors of sagiven integer is known up to now (see
Footnote 1). Other public-key cryptosystems—such as tiamlal system [EIG85]—are based
on the presumed hardness of computing discrete logarit@ns. disadvantage of such systems is
that they typically lack a proof of security. Another disadtage is that the directory storing the
public keys has to be protected against manipulation andthoezed access. If eavesdropper Eve
replaces Alice’s public key with her own key, she can decajpinessages sent to Alice.

Since Peter Shor proposed his celebrated polynomial-tigeithms for factoring integers and
computing discrete logarithms with quantum computers 8haall cryptosystems whose security
is based on the hardness of solving these mathematicabpnsiiiave become (at least theoretically)
vulnerable. Although it will certainly take some time foetfirst practical quantum computers to
emerge, it is advisable to look for alternative, new crypstems whose security is not based solely
on the hardness of solving such mathematical problems witieist computer technology. Quantum
theory seems to be the perfect basis on which to build suctvarngtosystem that withstands even
an attack by quantum computers.

3 From Bits to Qubits

The most important unit of information in computer scierethiebit. There are two possible values
that can be stored by a bit: the bit is either equal@bdr equal to “1.” These two different states
can be represented in various ways, for example by a simpletsar by a capacitor: if not charged,
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the capacitor holds the value zero; if charged, it holds #iee/one.
In general, a quantum state¢) is an element of a finite-dimensional complex vector space
(or Hilbert space)d. We denote the scalar product of two state$ and |¢) by (i|¢), where

(| = WT is the conjugate transpose [of).* It is convenient to deal with normalized states, so
we require(y|y) = 1 for all stategv)) that have a physical meaning.

The quantum analog of the bit is callgdbit, which is derived fronguantumbit. A qubit |¢))
is an element of a two-dimensional Hilbert space, in whichcene introduce an orthonormal basis,
consisting of the two staté8) and|1). Unlike its classical counterpart, the quantum state can be
any coherent superpositioaf the basis states:

) = |0) + S[1), (3.1)

wherea and 3 are, in general, complex coefficients. This is due to the flaat the quantum
mechanical equation of motion, the Schrodinger equattlmear: Any linear superposition of its
solutions (the quantum states) is also a solution. Sincesgpgire quantum states to be normalized,
we find that the coefficients in (3.1) have to fulfitt|? + | 3> = 1, where| - | denotes the absolute
value.

There exist many possibilities to physically represent hitgim practice, as every quantum
system with at least two states can serve as a qubit. For éxathe spin of an atom or the
polarizatioR of a light particle can represent the state of a qubit. Eveatanith its two basic
states “dead” and “alive,” introduced by Schroedinger [[&jho visualize fundamental concepts
of quantum mechanics, might serve as a representation. atlsepcoblem—or fortune from the
animal’s point of view—when being used as a quantum systéts sheer size compared to that of
an atom or light particle. There is no way to protect such agpigntum instance from interaction
with its environment, which in turn will result in decohepenof the superposition of the cat. For
the rest of the chapter, we will leave the cat alone and ubt figrticles as our preferred qubits.

The physical meaning of (3.1) can most easily be understooenvwe measure the quan-
tum state|y)). In quantum mechanics, this is achieved bpasitive operator valued measure-
ment (POVM), which is a family of positive-definite, hermitian e@tors€ = {F,},cx act-
ing on the Hilbert space of the qubit. The members of this lfatmave to sum up to the iden-
tity, > .cx Ex = 1. A simple, special case occurs when thig are orthogonal projectors, i.e.,
E; = |¢z)(¢e] and (¢|d,) = dy. This simple projection measurement is callesh Neu-
mann measurementThe resultz of a von Neumann measurement will occur with probability
Pr[z] = (¢|E 7)) = |{¥)|¢.)|?. Consider our qubit being represented by the polarizatiates of
a photon. We denote horizontal polarization|byand vertical polarization bji). It is a physical
property of the electromagnetic field that these two state®ahogona¥, i.e., (0[1) = 0, and thus

“Mathematically,(+| is an element of the dual spaég".

SLight particles, called photons, can be seen as electroatimghwaves. A specific property of them is their transver-
sality, which means that the electric and the magnetic fildorthogonal to each other and to the propagation directio
The inclination of the electric (or magnetic) field to thesagf the propagation is called polarization.

®This is by no means a consequence of the geometric relatfphstween “horizontal” and “vertical.” For instance,
the spin of a spin-1/2 particle like the electron can poimg™ar “down,” and the corresponding state$) and| |) are
orthogonal. However, the angle between the two spin satigigertainly not 90 degree.



form a basis in the two-dimensional Hilbert space. A simpiasurement that tells us whether the
qubit is in the state0) or |1) is given by the projection s€t0) (0|, |1)(1|}. When performing this
measurement on the state defined by (3.1), the qubit will badadn the staté0) with probabil-

ity |a|?, and in the statél) with probability |3|2. We are free to choose a different basis in the
Hilbert space; for instance, the one given by the two states

1

0) = ﬁ(!0>+!1>) and
1
D = E(M_M)'

This is a rotated basis, and a photon in the sfiaite and|1) , respectively, has a polarization of
+45° against the horizontal. If we measure in this basis by meétisegrojection measurement
{10y, (0], 1), (1]}, we find the qubit in the state) . with probability1/2+R(a3), and in the state
1), with probability 1/2 — R(a3). Let us consider the special case where, for instafice, 0:
When we do the first measurement, we find the qubit in the $tatevith certainty. But when
we apply the second measurement, the outcome will be coapletndom. This is an important
property of theconjugated base§|0), |1)} and{|0), |1), } with |(i|j)x| = 1/+/2 for all s and,
which will be exploited in many quantum key distribution feols, as described below.

From POVMs it is just a small step mbservables Each measurable physical quantity is rep-
resented by a hermitian operator, called observable. Whewnite an observabld in its spectral
decompositionA = . A;|i)(i|, where(i|j) = d;;, the corresponding POVM is given by the or-
thogonal projectord|i)(i|}. A measurement ofi always yields one of the eigenvalugs as a
result, and the measured quantum statéapsesonto the corresponding sta.

An important concept in quantum mechanics is demsity matrixor density operatop: The
density matrix of a so-calledure state|«)) is given by the projectof))(¢|. In the case of a qubit,
this is a complex-valued2 x 2) matrix. The advantage of this representation is the pdigibi
to describe systems with a statistical distribution ofestatFor instance, consider a system that
is known to be in the statg),) with probability Pr[z], for x € X. Let& = {E,},cy be some
POVM. Then the probability to get the resuitif the system was known to be in the state)
would be (| Ey|1,). But since we do not know, we have to average over all possihtes, just
as we would do if the system were prepared many times in onkeo$tates|¢,.)} and we had
repeated the measurement each time. The probability touresas theensembld |, ), Pr[z]} is
consequently

Prly] = ) Prla](¢|Eylyy) = tr (Ey > Pr[w]!d}xﬂwx\) : 3.2)

TeEX rzeX

wheretrA denotes the trace of the matrik i.e., the sum of its diagonal elements. We can now
introduce the density matrix = > Prz][¢,) (.|, such that (3.2) takes the simple form:
Prly] = tr(E,p). From now on, we can concentrate on density matrices ssielye anypure state

|1 is just a special case where one probability in the ensefiblg , Pr[x]} is equal to one and all
others vanish. In the general case, i.e., when at least tff@veatit states in the ensemble occur with
nonvanishing probability, the system is said to be migedstate.
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Once we consider composite quantum systems, the situagioonmes more complicated—and
more interesting. Let us consider Alice holding a staie acting on a Hilbert spac# 4, and Bob
holding a statepp acting onHpg. Both states are part of a total statgg, acting on the tensor
productH 4 ® Hpg, and they are related by the partial trapa: = trppap andpp = trapap. This
operation discards degrees of freedom in the respectiv&y/stdm. Composite states, suctpag
can be divided into two classeseparableandentangledstates. We first look at pure states, which
means thap 45 is of the formpap = [YaB) (Y ap|. Separable pure states @reduct states

[YaB) = |Y4) ® [¥B) = |Ya)|¥B) = [PatB).

(The last three expressions are equivalent notations.y difeecomposed of two independent states
of the two subsystemd and B. Pure states that cannot be written in this form are callégnghed.
A famous example of pure entangled states are the Bell states

%) = %uoowm), (3.3)
) = %uoniuo» (3.9)

These four states form a basis in the two-qubit Hilbert spdcenixed state is calledeparableif
and only if it can be written as a convex sum of projectors gmtmluct states [Wer89]:

p=> Prlallpfol)wiel| = Priallv) (v @ [62) (6], (3.5)

TeEX rzeX

with Pr[z] > 0 for eachz € X and}__ _, Pr[z] = 1. These states can be prepared locally in
Alice’s and Bob’s laboratory only by means dfssicalcommunication, i.e., no quantum systems
need to be sent. If a state cannot be written in the form (8.B)calledentangled

4 Quantum Key Distribution

Quantum cryptography exploits the quantum mechanicalgrtgphat a qubit cannot be copied or
amplified without disturbing its original state. This is thatement of thé&o-Cloning Theorem
[WZ82], which is easily proven: Assume there exists a upiteansformatiof U that can copy two

stateg)1) and|i)s):

Ulpn)|0) = [¢1) 1), (4.6)
Ulp2)|0) = [h2)[ta), (4.7)

where|0) is an arbitrary input state. If we equate the scalar prodottbe left-hand and right-
hand sides, it follows by the unitarity @f that (y;]12) = (31]12)2, which implies that(y [2)
equalsd or 1. This means that we can copy only orthogonal or identicagstdn contrast, arbitrary

"The time-evolution of an isolated quantum system is desdrlly a unitary transformatidii: |1)) — U|s).
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unknown states cannot be perfectly cloned. (Note that gahal or identical states are not viewed
as “unknown” states, since we do know they are orthogonakxXample.)

The essence of this theorem is the main ingredient of quakyndistribution, where Alice
and Bob use a quantum channel to exchange a sequence of gutts will then be used to create
a key for the one-time pad in order to communicate over arcimsechannel. Any disturbance of
the qubits, for example caused by Eve trying to measure thiéxjstate, can be detected with high
probability.

In this section, we describe the BB84 protocol proposed tarieh Bennett and Gilles Brassard
in 1984, see [BB84§. This is the first protocol designed to employ quantum medsafdr two
parties to agree on a joint secret key.

4.1 The BB84 Protocol

In this protocol, Alice and Bob use a quantum channel to seuits; They are also connected by
a classical channel, which is insecure against an eavgseir@yoit unjammable. Alice and Bob use
four possible quantum states in two conjugate bases (saygethilinear basis- and the diagonal
basisx). We use/0)_ and|0), = (|0), + |1),)/v/2 for the classical signal0;” and we usg1)
and|1), = (|0), —|1),)/V2 for the classical signall"” Note that the two bases are connected by
the so-called Hadamard transformation

500

in the following way: We have|0), = |0), andH|1), = [1),, and vice versa, sincH? = 1.
The protocol works as follows (see also Table 1 for illusbrat

1. Alice randomly prepare2n qubits, each in one of the four stat@s_ , [0),, [1),, or[1),
and sends them to Bob.

2. For each qubit that Bob receives, he chooses at randomfdhe two bases+ or x) and
measures the qubit with respect to that basis. In the cas@eiffactly noiseless channel, if
Bob chooses the same basis as Alice, his measurement sethdt same as the classical bit
that Alice prepared. If the bases differ, Bob’s result is ptetely random.

3. Alice tells Bob via the classical channel which basis skedufor each qubit. They keep the
bits where Bob has used the same basis for his measuremelht@asTis happens in about
half the cases, so they will have approximatelpits left. These are forming the so-called
sifted key

4. Alice and Bob choose a subset of the sifted key to estintetestror-rate. They do so by
announcing publicly the bit values of the subset. If theyediin too many cases, they abort
the protocol, since its security cannot be guaranteed.

5. Finally, Alice and Bob obtain a joint secret key from theneening bits by performing error
correction and privacy amplification.

12



Alice’sstring|l 21 /1 /0120020221200
Alicesbasis || + | + | + | X | X | + | X | X | X | x|+ |+ ]|+ |+
Bobsbasis |+ | x |+ |+ | X |+ | x|+ | X | x|+]|+]|+]|+
Bob’s string 1" R{O/R|O|O|2|R|1|2]2(2|0]|O0
Samebasis?| Y N|Y|N|Y | Y| Y |[N|Y|Y|Y|Y|Y]|Y
Bitstokeep || 1 0 0/ 0|1 1|11(1]1/0]0
Test Y N N|Y|N NI{IN|N|Y|Y|N
Key 0 0 1 111 0

Table 1: The BB84 Key Distribution Protocol. Here, “Y” and "stand for “yes” and “no,” respec-
tively, and “R” means that Bob obtains a random result.

Which possibilities does Eve have to attack this protocolfd,Aconsequently, what is the
threshold of the error-rate, at which Alice and Bob shouldrakthe protocol? To answer these
guestions, we look at a simple eavesdropping strategyhwhicalled “intercept-and-resend.” (This
attack is not the optimal one from Eve’s perspective, iberd are strategies that provide the adver-
sary with more information about the key.) We will not rigasty prove the security of the protocol
against the “intercept-and-resend” attack here. Rathercowmsider this attack merely to provide
some intuition about how the BB84 protocol counteracts sdnmoping.

Eve's goal is to learn at least some part of the key. Thus, atoob strategy for her is to
intercept the qubits being transmitted from Alice to Bobe®hAnnot simply copy the qubits, since
this would contradict the No-Cloning Theorem. In order ttr@st some information, she is forced
to measure (and thus destroy) them. But since she does net tkigobasis in which they were
prepared (Alice announces this information only after Beteived all signals), she can only guess
or just flip a coin for the selection of the measurement basiabout half the cases, she will happen
to choose the same basis as Alice and get completely ceueldt values. In the other half, her
results will be random and uncorrelated. Bob certainly etgto receive something from Alice, so
Eve needs to send some gqubits to him. However, she still haeaavhich basis Alice used, so she
prepares each qubit in the same basis as she measured i¢ @r@bses a basis at random). These
newly created qubits again match Alice’s bases in only hialhe cases. After Bob receives Eve's
qubits, he measures them, and Alice and Bob apply the sifBegause of Eve’s disturbance, about
half of Bob’s key was measured in a different basis than itpvapared by Alice. Since Bob'’s result
is random in those cases, his sifted key will contain abo@t 28rors. In the error-estimation stage,
if Alice and Bob obtain such a high error rate, it would be wisethem to abort the protocol.

If the error rate is below an agreed threshold value, Alicgé Bob can eliminate errors with
(classical) error correction. A simple method for errorreotion works as follows: Alice chooses
two bits at random and tells Bob the XOR-value of the two H&eb tells Alice if he has the same
value. In this case, they keep the first bit and discard thergkbit. If their values differ, they
discard both bits. The remaining bits form the key.

The last stage of the protocol is privacy amplification [MayBEBCM95]—a procedure in which
Alice and Bob eliminate (or, at least, drastically reduceg’E knowledge about the key. They do

8Some of the ideas used in the BB84 protocol were alreadydnted by Wiesner [Wie83].
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so by choosing random pairs of bits of the sifted key and oipdathem by their corresponding
XOR-values. Thus, they halve the length of the key, in ordélamplify” their privacy. Note that
Eve has less knowledge about the XOR-value, even if she khewalues of the single bits with
high probability (but not with certainty).

Note that these simple methods for error correction andapyiamplification do not always
work. For the general case, there exist more sophisticatategies. For more details on error-
correcting codes and their usage in the physics of quantémmiation, we refer to Huffman and
Pless [HP03] and Bouwmeester, Ekert, and Zeilinger [BEZ00]

4.2 Security of Quantum Key Distribution

Unlike many of the classical cryptosystems in use today,s&lsecurity often draws on unproven as-
sumptions about the computational complexity of matherahproblems, the security of quantum
cryptography is based on—and employs—the laws of physibe t&rm “unconditional security”
is used to emphasize the fact that it does not rely on the preduyet unproven hardness of some
mathematical problem. In this section, we present the poddlfie unconditional security of the
BB84 protocol, as devised by Peter Shor and John PreskillQEP

We divide the proof into three parts:

e In the first part, we present the so-calledtanglement-basegersion of the BB84 protocol.
In contrast, the scheme presented in the previous secticalled aprepare-and-measure
scheme for obvious reasons. In the entanglement-based versitice And Bob’s aim is
to share a special entangled state that allows them to op&afectly correlated bits upon
measuring their half of the state. We will see how they carsttant such a state, how they
can check whether they were successful, and how they cact @ate’s attempted attack.

¢ In the second part, we will show that the equivalent entanglg-based version is secure.
In contrast to earlier work by Shor and Preskill [SP0O0], vihis based on a proof by Lo
and Chau [LC99], we use theniversally composabldefinition of unconditional security
[BHL T05]. This general security definition refers to the overatptosystem, with any num-
ber of subprotocols, including the quantum and the claksiages.

¢ In the third part, we show that the two schemes are equivaidetd.

4.2.1 The Entanglement-Based Version of BB84

The entanglement-based version of the BB84 protocol thatamepresent is similar to the protocol
introduced by Ekert [Eke91] and follows ideas of BennettlefBBM92]. In this version of the
protocol, Alice and Bob aim at creating a special entanglaté snamely the Bell state

1
V2

where Alice holds the first particle and Bob holds the seconé. 0An important property of
this state is that it has the same form in the rectilinearsbasand in the diagonal basis, as

|67) = —=(100) + [11)), (4.9)
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lpT) = %(|0>+|0>Jr +1) 1)) = %(|O>X|O>X + 1) 1) ). This means that Alice’s and Bob’s
measurement results are completely correlated whenesgenthasure the stal@™) in one of those
bases. (Moreover, their results are random.) Since theistptire, it cannot be entangled with any-
thing else, in particular not with anything under Eve’s eoht Thus, whenever Alice and Bob are
sure they share g") state, they know that (a) measuring in the same basis gesesashared
random bit, and (b) Eve has no knowledge about this bit. Tegea the whole key, Alice and Bob
prepare a large number of these Bell states,

61" =T @ - @ |6T),

and measure each qubit separately. We will now show how taeyachieve this.
We need to take a brief detour to quantum error correctiot finscontrast to a classical bit, a
qubit can undergo three different errors: bit flips, phaserer and combinations of these two:

e When a bit flip occurs, the stat@) becomeg1), and vice versa. This error is described by

the Pauli matrix
(01
Oy = 1 0/

e Phase errors transform the state into —|1), but leave|0) unchanged. Such an error is
described by the Pauli matrix
(1 0
=0 %)

e Both these errors can also occur combined. For examplegeig®) to —|1) and|1) to |0)
can be described by, o, = io,, where

0 —1
o=\, o)

Let us now recall some elements of classical error cornecti (classical) lineafn, k] code
C that encodeg bits of information by am bit string is a set o2* codewords. Each codeword
is ann-dimensional binary vector. The whole code can be desciilyedn (n x k)-dimensional
generator matrixG that maps each messageo the encoded messagér. Thus, the set of all
possible codewords is the vector space that is spanned bgothmns ofG. We require those
vectors to be linearly independent. Error correction faeéir codes can be easily described by
means of the parity check matriX. This is an((n — k) x n) matrix with the property thatfz = 0
for all codewordse.

Suppose now that a messagis encoded ag = Gz. Due to an erroe, one obtaing/ = y +e.
Since we haveHy = 0 for all codewords, it follows thaf{y’ = He, which is called theerror)
syndrome Thus, if the syndrome is 0, no error has occurred. Otherwisis constructed such that
the syndrome contains information about the error thatlshmake it possible to correct it. Finally,
we introduce the concept diiality: Let C be a lineaifn, k] code with generator matri and parity
check matrixH. Then we can define the dual cofé of C, which is the set of all codewords that
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are orthogonal to each codeword@h The dual code> ! is an[n — k,n] code which is generated
by H” and has a parity check matr&x”. Dual codes play an important role in the construction of
CSS codes, as we explain below.

Definition 5 Let C; and Cy be classical linear[n, k1] and [n, k2] codes, respectively, such that
Cy C (4. For each codeword: € 1, define the quantum state

|z + Cy) = Z |z + ). (4.10)

V| 2 yeCo

The space spanned Byz + C5) }.cc, defines ann, k1 — k2] quantum code, which is called the
Calderbank—Shor—Steane co@&S(C1, Cs) for short.

Let 2z andz’ in C; be codewords such that— z’ is in Cy. Then one can show that
|z + Co) = |2’ + Cy),

i.e., the statér + Cy) depends only o', /Cs, that is, on the coset to whichbelongs® It follows
that if x andz’ belong to different cosets, the statest+ Cs) and|z’ + Cs) are orthogonal. As the
number of cosets af’y in C1 is |C1]/|Cx|, the dimension of the spa€&sS(Cy, Cy) is |Ch|/|Ce| =
2k1—k2 thusm = k; — ks qubits can be encoded.

Error correction with CSS codes works as follows. Suppoatdh andCy- both can correct
errors. Moreover, lef; be the parity check matrix far, and letH, be that forer. Define

00 =0 RoZR Qo (4.12)
wherea € {z,y,z}, 0% = 1, ands = (sy,s2,...,5,) iS ann bit vector. It can be shown that

the syndrome for bit flip errors can be computed by measurinépr each row vector of H;.
Similarly, the syndrome for phase errors can be computed dgsnrings’, for each row vector
of Hs. In this way,/ bit flips and¢ phase errors can be corrected.

We have now collected all the ingredients to describe thanghtment-based version of the
BB84 protocol:

1. Alice create2n qubit pairs in the statpb+>®2".
2. She randomly selectsof those qubits which will later serve as check qubits.

3. Alice selects a randomiw bit string b and applies the Hadamard transformation (4.8) to her
half of each qubit pair whenever the corresponding bit isf“1.”

4. She sends the other half of all qubit pairs to Bob.
5. Alice announces and which qubits are to serve as check qubits.

6. Bob performs a Hadamard transformation on those of higsjuereb is “1.”

®Let G and H be two groups withG C H. For eachh ¢ H, we define theleft) coset of5 in H with respect tch as
hG ={h+ g| g € G}. The groupH /G is the set of all cosets @¥ in H (i.e., the equivalence classes).
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7. Alice and Bob measure the check qubits in {h@&, |1)} basis to estimate the error rate. If
more thary results differ, they abort the protocol.

8. For the remaining qubits, Alice and Bob measure the syndsofor the code§’; and Cs,
correct the errors, and obtajip )",

9. They measure this state in th®), |1) } basis to obtain a shared secret key.

The point of performing the Hadamard transformation on bétthe qubits is that this operation
effectively changes the basis, in which the qubits are pegpdrom{[0)_,[1)_ } to {|0),,[1)}.
This is necessary because if Eve knew the basis, she couldndhe intercept-resend attack pre-
sented in the previous section and break the protocol.

4.2.2 Security of the Entanglement-Based Version

Up to this point, we often used the term “security” withoubyiding a rigorous definition. In this
section, we will make up for this. Additionally, we need tmpide a mathematical framework to
coverall possible eavesdropping strategies, in particular thosrevtine adversary stores a quan-
tum system that contains information about the classi¢atbings obtained by Alice and Bob upon
measuring their quantum states. Such a situation, wherartwm system is correlated with clas-
sical data, can be described by so-calttksical-quantum statgsq-states, for short): LeX be a
random variable with rang& and let{|z) }.c » be some basis of a Hilbert space. Moreover, denote
by p7 the state of the quantum systefhconditioned on the valug of the random variableX.
Then the overall system can be described by the cg-state

pxp =3 Prlalla) (@] @ pj.
TeEX

Applying this formalism to our key distribution scenariet & denote the set of all possible keys
that can be extracted by the protocol. The individual keyd bg Alice and Bob can be described
by random variable$ 4 and Sg, respectively, taking values, andsg in S. The adversary holds
a quantum system:**#, which is correlated with those variables, and thus the sytstem can be
described by thelassical-classical-quantum statecq-state, for short)

psassE = Y Prlsa,spllsa)(sal ®|sp)(sp| @ pi. (4.12)
SA,SBES

In the ideal case, Alice’s and Bob’s keys are identical anifoumly distributed, i.e., each pos-
sible key occurs with equal probability. Moreover, the stat Eve’s quantum system should be
completely independent of the key. Thus, the ideal ccepssagiven by

1
puU ® pp = EZIS)(SI ® [s)(s| ® pg. (4.13)
seS
We now are ready to define the notion of unconditionally se&asy.

Definition 6 Let pg,s,E, as defined in (4.12), be the ccg-state describing a claksieg pair
(S4,Sp) together with an adversary holding a quantum systemThen(S 4, Sp) is said to be
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e-secure with respect tB' if and only if

lpsaspE — puu @ pEl| <€,
wherepyy @ pg is the ideal state, defined in (4.13).

Here,||p — o|| = tr|p — o|/2 (with |M| = vV MTM whereMt = M is the conjugate transpose of
matrix M) denotes the trace distance, which is a proper distanceumgeisthe space of hermitian
operators. The above definition of security (Definition 63 b@e intuitive interpretation that a key
pair (S4,Sp) is e-secure if it is t-close” to the ideal state described by (4.13) in the sense th
(S4,Sp) is an ideal pair of keys with probability at least- . Moreover, it guarantees that the key
pair remains secure when used in cryptographic application

We can now prove the unconditional security of the entangtgrbased version of the BB84
protocol. Recall that the aim of this protocol is to disttidthe statéy™)“". In the real world, Alice
and Bob are of course not able @gactlyachieve this; rather, at the end of the protocol (after step
8), they will hold a state 4 5, which hopefully is very similar t¢¢+>®". The “distance” to a pure
state is measured by means of the so-cdiigelity, which is defined a$'(p, [)) = (¥|p|v). If
F =1, the two states are identical. Since we do not make anyctstrs about the eavesdropper’s
strategy, we consider the worst case in which Eve holds &jngisystem ofo 45. This is the state
pE = trap|Vase)(Yase|, Where|V 4pp) is a pure state (in a higher-dimensional Hilbert space)
such thatoap = trg|Vapr)(Yape|. This scenario corresponds to the case where the adversary
has full control over the quantum channel.

The following lemma relates the fidelity gfyp to [¢)“" with the security of the key that is
obtained when measuring, 5. The proof of this lemma can be found in [KRBMO6].

>®

Lemma 7 Lete > 0 andp 45 be a bipartite quantum state such that

Flpap,|oT)™") > V1 — e

Then the twoe-bit string obtained from measurings s locally in the{|0), |1) }-basis arec-secure
keys, with respect to an adversary holding the purifyindesysofp 4.

It remains to show that by the random sampling that Alice aal &oply, they can reliably estimate
the fidelity of the remaining qubits. The main ingredient toye this is again a lemma, which we
also state here without proof. (The proof is left to the reasiee Nielsen and Chuang [NCO00].)

Lemma 8 Let a random2n bit string that might contain some errors, and a random stilode:
check bits of that string be given. Then, for any two constént 0 ande > 0, the probability of
finding less tharn errors on the check bits, and more th@+- €)n errors on the remaining bits is
less thane=C(€*™), for sufficiently largen.

Although this lemma is based on classical probability theare can give an argument for its
validity in the quantum world: The observables that Alicel @ob measure on the check bits are
both diagonal in the Bell basis (Egs. (3.3) and (3.4)), whiwmans that the statistics of the results
can be described purely classically. These measuremeriisyah H g are given by the POVMs

{Poe = [0 ) (" |+ [0 7)1 = Pl
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which are used to check for bit flips, and

{Poe = o) (¢ |+ 1) (071 = Pre},

which are used to check for phase errors. Alice and Bob chonseof those measurements at
random for each check qubit. In this way, they can calculdtsvar bound for the fidelity of the
remaining qubits.

To summarize, we have shown that by random sampling thetfidglthe state shared by Alice
and Bob can be lower-bounded, with an exponentially smalbalility of error. Moreover, this
bound directly defines how secure a key generated by megghitstate will be.

4.2.3 Equivalence of the Two Schemes

We prove the equivalence of the entanglement-based andrprapd-measure versions of the BB84
protocol by successive simplifications. Each step is vemph?, so it is easy to verify that the
security of the protocol is not compromised.

A major simplification is that all measurements done by Abfer transmitting the particles
can already be done at the very beginning: If Alice measueepart of the statgs™), she obtains
a random bit as a result, but on the other hand, Bob’s parteo$tilite collapses onto the correlated
state|0) or [1). Thus, instead of sending entangled qubits for the chedkeAdan as well prepare
single qubits randomly in one of the statés and|1), and send those states to Bob. Of course, it
is crucial for the security of the protocol that Eve does maivka priori which qubits will serve as
check qubits and which as “key qubits”; otherwise, she ctnddt them differently and thus fudge
the error estimation.

Another measurement Alice can do at the beginning is the mmeaent of her syndrome and
her key qubits. This is not very obvious, so let us give someentetail: Given a CSS code
CSS(C4, Cy), we can define a family of equivalent cod€Ss, .,(C1, C), in the sense that they
have the same error correcting properties. The codeworttige @odeCsSS,, ., (C1, C2) are given by

w0, 0) = —— S (= 1)V +y + ), (4.14)

Vv |C2| yeCa

wherez,, is one representative of one of thecosets of’; in C1, andv andw are arbitraryn bit
strings. Since th¢|zy, v, w) } form a basis, we can rewrite

2" —1

6N = S i) = 3 [k v, ), v, w), (4.15)
=0

2” \/2_n T, UV, W
wherei is in binary notation. If now Alice measures the error symdes, namely’ for each
row vectorr of H; ando’ for each row vector of Hs, she obtains a random result forand w.
Finally, if she does a last measurement in {f@®, |1) } basis, she obtains a random codewsoyd
From (4.15), we see that Bob’s state then collapses|ent®, w), which is a random qubit encoded
in a random code.
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As an intermediate result, we rephrase the entanglemeaetharotocol including all simplifi-
cations introduced so far:

1. Alice creates: random check qubits, each in the stieor |1), a randomn bit string &,
which will serve as the key, and two randonbit stringsv andw. She prepares the state
and encodes it usingSS,, ., (C1, C2).

2. She randomly selects positions for the check qubits and puts the encoded qubithen
remaining positions.

3. Alice selects a randofn bit stringb and applies the Hadamard transformation to her half of
each qubit pair whergis “1.”

She sends the other half of all qubit pairs to Bob.
Alice announces, v, andw, and which qubits are to serve as check qubits.

Bob performs a Hadamard transformation on those of higgjuereb is “1.”

N o s

Bob measures the check qubits in #i@), |1)} basis. If he finds more thafiresults that
disagree with Alice’s prepared states, they abort the pobto

8. Bob decodes the key qubits frait$S,, ., (C1, C2) and obtains the staté).
9. He measurel:) in the {|0), |1) } basis and obtains the kéyas the result.

We will now simplify this protocol even further: Note that the original version, Alice and
Bob do not care whether they shared the siate or |¢~) = (]00) — [11))/+/2, because measuring
both states provides them with correlated, random bitsrefeive phase is irrelevant. Thus, it is
unnecessary to send the phase correction informatitnBob. This is why CSS codes are used:
They decouple the bit flip error correction from the phaserecorrection. If now Bob were to
measure his key qubits before the decoding, he would obtait v + w + e, wheree denotes
the bit errors that occurred during the transmission (or wexre introduced by Eve). He can now
classically decode this bit string by subtractimgwhich was announced by Alice, and correct it to
the codewordry, + y, if e did not introduce too many errors. Bob finds the key by conmguthe
coset to whichry, + y belongs. But since Bob does not negdvhy should Alice send it? If she
never reveals that value, she effectively prepares a dtatad a classical mixture of all possible
values that) can take, weighted with the corresponding probabilities:

1 1
Papw = on ZU: |z, v, w) (T, v, w| = @ Z; |zg + 2 + w)(zK + 2 + w. (4.16)
2

We see that this state can also be prepared by classicalbsicigpa random codeword € C,
and constructingzy, + z + w). Thus, the preparation in Step 1 can be done equivalentlfien t
following way: Alice creates: random check qubits, each in the stiigor |1), a randomn bit
string w, a random stringe;, € Cy/C>, and a random codeword € C,. Then key qubits are
prepared in the state;, + w + z), and the check qubits are placed at random positions.

Note that we can also remove the needfor Cs, if Alice instead of choosing;;, € C;/C,
choosesc;, € €. With this modification, Alice sends the state. + w) as key qubits, which Bob
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then measures and correctsiio+ w. Sincery + w is a completely random bit string, Alice can

as well just preparéy), wherey is a randomn bit string. She sends it to Bob who measures it to
obtainy + e, then Alice sends error correction informatigr- x;, which Bob subtracts from—+e to
finally obtainzy, 4+ e. He corrects it tac;, and calculates the kdyas the coset to which;, belongs.
What we have achieved is that now the check and the key quiiisist prepared randomly in one
of the states$0) or |1). The whole protocol so far looks as follows:

1. Alice create2n random qubits, each in the stat or |1), and a random codeworg, € C4.

2. She randomly selects positions to be check qubits and the remainingositions to define
the key qubitgy).

3. Alice selects a rando2w. bit stringb and applies the Hadamard transformation to her half of
each qubit pair whergis “1.”

She sends the other half of all qubit pairs to Bob.
Alice announces andy — x, and which qubits are to serve as check qubits.

Bob performs a Hadamard transformation on those of higgjuhereb is “1.”

N g &

Bob measures the check qubits in #i@), |1)} basis. If he finds more thafiresults that
disagree with Alice’s prepared state, they abort the padtoc

8. Bob measures the key qubits and gets e, subtracts; — x, and corrects:;, + e to x;.
9. He calculates the coset to whigh belongs to get the kej.

Finally, we can remove the Hadamard transformation, andliee choose randomly one of
the four states i{|0)_, [1),|0),,[1), }. Then Bob, instead of waiting far to be announced,
simply chooses one basis at random and measures the agiviitg. As he will choose the wrong
basis in roughly half the cases, Alice should double the rema input qubits toin. After his
measurement, Alice announces which basis she used andibctinddall instances where they used
a different basis. With this last modification, we finallyiaed at the prepare-and-measure version
of the BB84 protocol, only up to some small twists.

5 Quantum Bit Commitment

When talking about quantum cryptography, everyone is thinkbout key distribution. There are,
however, other cryptographic applications as well, suchibsommitment. In 1993, a bit com-
mitment protocol based on quantum mechanics was introdogdgfassard et al. [BCJIL93]. The
unconditional security of the protocol (which means thatskcurity of the protocol is independent
of the computational resources, such as computing timeuataf memory used, and computer
technology of the cheater) has been accepted without phaaf95]. Two years after it had been
proposed, the protocol turned out to be insecure [May95].

A commitment protocol is a procedure in which one party, séged deposits a message such
that no one (and in particular not Alice) can read it nor cleaibgAt some point in the future, Alice
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can announce her message, and with high certainty it carobeipthat the revealed message is the
same as the one Alice had deposited originally. To illustthts situation, suppose Bob wants to
auction off a diamond ring, subject to the condition thatheperson wishing to participate in the
auction can bid only one single amount of money. After eaghgrehas chosen a specific amount,
the highest bidder gets the ring. So everyone writes their loig on a piece of paper, puts it into
a personal safe, which is then locked and given to Bob. Uhtiids have been submitted to Bob,
each bidder keeps the key matching the lock of his or her satbis way Bob cannot see any of the
bids, which in turn cannot be changed once they have beenigetnsince only Bob has access to
the committed safes. All keys are handed over to Bob afteekedceived all safes from the people
participating in the auction. The different offers are camgal in public, so that everybody can be
sure that only the highest bidder walks away with the diamamdian empty wallet.

We can describe this commitment protocol mathematicallfolsws: The protocol has two
stages, the commit phase and the unveil phase. Alice conimargelf to the datan by com-
putingc = f(m), and she sendsto Bob. Alice unveils the commitment by showing Bob the
preimagem of c. In classical cryptography, and in particular in publigtikayptography, one-way
functions are used for commitment. In quantum cryptograplgywant to make use of the laws of
guantum mechanics to create a fair protocol for both sidéscdnmitment is a special case of a
commitment protocol, where the dataconsists of only one single bit.

It is widely believed that it is impossible to create a pettfesecure classical bit commitment
protocol. Regarding the extension to the quantum world,a$ whown that unconditionally se-
cure guantum bit commitment is also impossible [May97,LIC#owever, when relaxing the se-
curity constraints, quantum bit commitment becomes ptissib slightly modified frameworks.
One example is Kent's quantum bit commitment protocol, Whi based on special relativity
theory [Ken99]. Another example is due to Damgard et al. $8B5] who proposed a quantum
bit commitment protocol that is secure in the bounded storagdel.

5.1 The BB84 Quantum Bit Commitment Protocol

The BB84 protocol was introduced in Section 4.1. A quantutncbimmitment protocol can be

created from the BB84 quantum key distribution protocohvdatfew minor changes [BB84]. Just
as in the classical bit commitment protocol, the quantuntqmal starts with the commit phase and
ends with the unveil phase.

The commit procedure:
1. Alice chooses a bit € {0,1}.
2. Alice creates a random binary string= w; - - - w, with n bits.

3. If Alice wants to commit td), she does a quantum encoding of each:itn the two basis
states of the rectilinear basis If she wants to commit tdé, she encodes the bits in the two
basis states of the diagonal bagisLet 8; denote the basis chosen foy.

4. Alice sends the sequencertncoded quantum states to Bob.
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5. Bob chooses a random measurement basis (rectilineaagoril) for each of the received
quantum states, i.e., he chooses a string of random WBased); ---6,, € {+, x}". He
measures théh state in the basig;, and denotes the outcome hy.

If we take a look at the two density matrices for thetates corresponding to= 0 andb = 1,
respectively, it is easy to see that they are the same, arad e identity matrix. Thus, Bob has
no chance to get any information about thebbit

The unveil procedure:
1. Alice publishe$ (i.e., the basis that she used for encoding) and the string

2. For about half of the states, Bob used the same basis for his measurement as #diddar
encoding. In these cases Bob can verify that Alice’s revehies are matching his measure-
ment results.

How could a dishonest party cheat in this protocol? For exeymidice could choose the bit
b = 1 for the commit phase, so she encodes the states with thendibbasisx. Later during
the unveil phase, she changes her mind and tells Bob thatoshmitted to the bib = 0, so Bob
assumes that Alice has used the rectilinear basis approximatelyn /2 cases, Bob measures the
states with the rectilinear basis and in these cases Alice has to guess the bits Bob measimed. S
Alice’s success to make a right guess for one bit/i8, her overall cheating will not be detected
with a probability of(1/2)™/2. Oncen is chosen large enough, Alice has practically no chance to
manipulate the protocol by this probabilistic method.

But what if Alice uses specially entangled states as in thanghement-based version of the
BB84 protocol (see Section 4.2.1, Equation (4.9))? Aliceldareaten pairs of entangled states
and send one part of each pair to Bob. She doesn't have to ddmanbit in the beginning, because
she can perform a measurement right before the unveil piaga.example, she chooses bit= 0,
she measures the states that she has kept in the rectiliagiarh Bob’s measurement results will
be perfectly correlated, due to the shape of the entangted st Equation (4.9). If Alice wants
to choose bib = 1 instead, she measures the states that she has kept in tbealibgsisx. As
the state from Equation (4.9) is form-invariant under a $astation by45°, Alice’s announced
encoded states will again match Bob’s measurement rediitss, Bob has no chance to notice the
attack.

5.2 Impossibility of Unconditionally Secure Quantum Bit Canmitment

As mentioned above, unconditionally secure quantum bita@ment is impossible. In this section
we will review the main arguments to prove this statementokding to Lo and Chau [LC97], the
ideas of all quantum bit commitment protocols proposed wate can be roughly described by the
following five steps:

1. Alice chooses a bit € {0, 1} and prepares the state

0) = ailef) @ 1f)
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for b = 0, and the state

=gl @117
J

for b = 1, where|e/!) and ]e}A> are orthonormal bases of Alice’s Hilbert space, i.e.,
(eltlef) = 6y and(e'!]e/]') = 6. The statesf?) and]fj’-B> live in Bob’s Hilbert space,
and are not necessarily orthogonal to each other.

2. Now, Alice has to make a measurement on the first part of boweastate, and will thus
determinei or j, depending on her initial choice fér

3. Alice sends the second part of the above state to Bob. $hiweilast step in the commit
phase.

4. At the beginning of the unveil phase, Alice publicly annoes: or j together withp.

5. Bob makes a measurement on his part of the state, in ordesike sure that in Step 3, Alice
committed to the same bit she has announced in Step 4.

To show that a cheating Alice cannot be detected, we digshgwo cases. We give only a
sketch of the proof, for more details we refer to [May97,LL97

We first consider the case where Bob cannot get any informatiout the bit out of the state
that Alice sent him. This means that his two possible redutmtsity matrices, corresponding to
the two state$0) and|1), are the same, i.etx 4]|0) (0] = tr4|1)(1]. Now, we can write the Schmidt
decomposition (i.e., a bi-orthogonal decomposition tlaatt always be found, see, e.g., Nielsen and

Chuang [NCO0Q]) as )
0) = > Vled) @ 1)
k

and

1) =" Ve @ IfF),
k

where|éi!) and|é;!) are orthonormal bases of Alice’s Hilbert space, af‘@ is an orthonormal
basis of Bob’s Hilbert space. The,’s are the eigenvalues of Bob’s two reduced density matrices
corresponding td0) and|1) (which are identical). There always exists a unitary tramsationU/
that maps an orthonormal basig') of a Hilbert space to another orthonormal basjg) of the
same Hilbert space, and thus thisal unitary transformation (a rotation on Alice’s side onlyhca
map|0) to |1).

Therefore, Alice can start her commit phase with thebbit 0. She prepares the stat®,
skips the measurement (delays until Step 4) and sends Bali'®fthe statd0) directly to Bob.
At the beginning of the unveil phase, Alice has to choose #iaeb. If she choose$ = 0, she
can proceed with the original protocol honestly. If she cfesd = 1, she can execute the unitary
transformatiorl/, and switch0) to |1). Bob has no chance to detect the cheating, since his reduced
density matrix is the same in both cases.

In the second case, let the two possible reduced densitycemwof Bob, corresponding to the
two states|0) and|1), be different. They must, however, be similar; otherwisd Bould easily
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distinguish between the bits and 1, and so he could cheat. Alice can again use her cheating
strategy from above. Mayers [May97] has shown that with atihg Alice, the probability of Bob
being able to distinguish betwe@&nand 1 will not be larger. Thus Alice can cheat again with a
probability close tadl.

As we can see, a dishonest party can udecal action for subsequent modification of the
committed bit. Hence it is impossible for the honest partyétect the cheater, and thus secure
guantum bit commitment is not possible.

6 Outlook and Conclusions

The security of quantum key distribution relies on the italide laws of quantum mechanics:
nonorthogonal quantum states are used as signal states BB®4 protocol. The impossibility
of perfect cloning of nonorthogonal states implies the ggcof this protocol.

In the security proof for the BB84 protocol, we have emplogedequivalent entanglement-
based protocol. The main idea is that local measurementsnoaxamally entangled state, shared
by Alice and Bob, have perfectly correlated outcomes thatlmused as the key. A maximally
entangled state is necessarily pure, and a pure state charaitangled with an eavesdropper’s
state—thus Eve cannot learn anything about the key. Thef@eguantum cryptography with en-
tangled states goes back to Artur Ekert [Eke91], who sugddstconfirm the existence of quantum
correlations in the state of Alice and Bob by a Bell ineqyatigst.

6.1 Other Quantum Key Distribution Protocols

A variety of quantum key distribution protocols can be foumdhe literature. All known prepare-
and-measure schemes can be seen as variations of the BB8dgbravhich are obtained by chang-
ing the number and/or dimension of the quantum states.

In 1992, Charles Bennett [Ben92] proposed a protocol—wimctv is named after him the
B92 protocol—in which only two nonorthogonal states areduda the so-called six-state proto-
col [Bru98,BPG99], the six eigenstates of the three Pawdraiors are used. In this protocol, it is
more difficult for Eve to retrieve any information, thus trexarity is enhanced.

In this paper, we have always considered qubits, i.e., avellsystems as information carriers.
What happens if one considers higher-dimensional systeant$, as qutrits (three-level systems)?
Intuitively, one would expect that the increased numbelegfrdes of freedom makes it more difficult
for Eve to extract information on the key. As proven in [BMPRigher-dimensional systems indeed
offer increased security.

A recently suggested protocol [SARGO04] introduces a netingiinethod: rather than announc-
ing the basis, Alice gives Bob a list of two nonorthogonategarom which the signal state was
taken. This protocol has certain security advantages tieat@nected with experimental imple-
mentations of quantum cryptography.
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6.2 Experimental Status

So far, we have presented quantum key distribution in a ratleeretical, abstract manner. What is
the experimental situation—can the ideas of quantum cgypfithy be made reality? In recent years,
much effort has been devoted to experiments on quantumogsggihy, and much progress has been
made. In most experiments, polarized photons are repiegaht qubits: photons are polarized if
their electromagnetic field oscillates in a fixed directidisace (which has to be orthogonal to the
direction of flight). The two degrees of freedom for a photogubit can be, e.g., horizontal and
vertical polarization (the rectilinear basis in the BB84tprol), or polarization rotated bys° with
respect to the horizontal/vertical direction—this cop@sds to the diagonal basis in BB84. The
experimentalist “only” has to produce single polarizedtphs on demand.

This, however, is one of the main experimental challengesateenuated laser pulse consists
of Poisson-distributed number states, i.e., with a ceppaiability more than one photon will be
emitted. These events with more than one photon allow forngel@us eavesdropping strategy,
the so-called photon-number splitting attack, where ENigsspif a photon and receives full infor-
mation about the key. Apart from experimental progress tda/&rue single-photon sources, new
algorithms that can cope with this sort of attack have begnldped. One example, the protocol by
Scarani et al. [SARGO04], has already been mentioned abaveth&r important contribution is the
so-called decoy state protocol introduced by Hwang [Hwa@8]ch uses two photon sources with
different number statistics to “decoy” the adversary.

The long-term goal in experimental quantum key distributsto reach high key rates over large
distances. For the transmission of photons, two pos$#siliéxist: either transmission via optical
fibers, or transmission in free space. Rather than tryingimonsarize all existing experiments, let
us mention just two examples. A very stable, robust systetim eytical fiber transmission has been
developed by Gisin and Zbinden at the University of Genega, [ERTZ02]. They were able to
transmit a secret key from Geneva to Lausanne (i.e., ovestaraie of about 67 km), with a rate of
130 bit/s. Regarding free space quantum cryptography, ffgem from LMU Munich [KZHT02]
recently demonstrated secret key exchange over about 23.dnkthe Alps, from Zugspitze to
Karwendelspitze), with a rate of about 1000 bit/s.

For realistic implementations, the above security procdrideal protocol does not necessar-
ily hold, due to imperfections in the source (multi-photagnsls) and detectors (noise, losses),
see [ILMO1]. With present technology it is possible to impknt unconditionally secure quantum
key distribution protocols for distances around 20 km, withusing the decoy state method, and
for higher distances with decoy pulses.

Long-term goals of quantum key distribution are the realishplementation via fibers, e.g.,
for different buildings of a bank or company (with a relativemall distance), and free space
key exchange via satellites. Future practical developseiilt have to prove which one of the
described protocols will turn out to be successful. At themaat, demonstrators for long-range
guantum key distribution are being built within the EU paj&ECOQC (for further information,
see www.secoqc.net). Quantum cryptography already pesvilde most advanced technology of
guantum information science, and is on the way to achievggbantum) jump from university
laboratories to the real world.
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